WO2014136813A1 - Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator - Google Patents

Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator Download PDF

Info

Publication number
WO2014136813A1
WO2014136813A1 PCT/JP2014/055554 JP2014055554W WO2014136813A1 WO 2014136813 A1 WO2014136813 A1 WO 2014136813A1 JP 2014055554 W JP2014055554 W JP 2014055554W WO 2014136813 A1 WO2014136813 A1 WO 2014136813A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
particles
coating film
meth
battery
Prior art date
Application number
PCT/JP2014/055554
Other languages
French (fr)
Japanese (ja)
Inventor
嘉人 清水
太一 上村
Original Assignee
協立化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協立化学産業株式会社 filed Critical 協立化学産業株式会社
Priority to JP2015504351A priority Critical patent/JP6058783B2/en
Priority to CN201480012044.4A priority patent/CN105027328B/en
Priority to KR1020157026896A priority patent/KR102009736B1/en
Publication of WO2014136813A1 publication Critical patent/WO2014136813A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode or separator coating film composition, a battery electrode or separator having a coating film obtained by using the composition, and a battery having the battery electrode or separator.
  • Lithium ion secondary batteries that are lightweight, have high voltage and large capacity have been put into practical use as power sources for mobile devices such as mobile phones and laptop computers, power tools and power tools such as cars.
  • conventional batteries have low safety resulting from poor heat resistance and pressure collapse resistance, and there is a problem that conductive foreign substances that enter at the manufacturing stage penetrate the separator and cause a short circuit.
  • the lithium ion secondary battery has high internal resistance, charging and discharging characteristics at a high rate are not practically sufficient, charging and discharging capacities are not sufficient, and the active material layer is greatly deteriorated when used for a long time.
  • lithium ion secondary batteries cannot provide sufficient safety is that the insulation by the separator is broken due to contamination of conductive foreign matter, dent light, battery damage, etc. In this case, the mechanism for preventing the thermal runaway from proceeding and the heat resistance are insufficient.
  • Patent Document 1 a method for protecting the active material from falling off the electrode by forming a porous film made of alumina powder or silica powder on the active material coating layer applied to the current collector has been devised.
  • a porous protective film suppresses the generation of dentite, and the porous film also functions as a layer for holding the electrolyte solution.
  • the porous protective film serves as an ion supply source to lower internal resistance, and at a high rate. It also contributes to the improvement of discharge characteristics.
  • the porous protective film buffers and accelerates local degradation resulting from concentration of electrode reactions due to electrode surface non-uniformity, thereby preventing deterioration of the active material layer when used for a long period of time. There is also an effect.
  • Patent Documents 1 and 2 have a problem that curling occurs in the porous resin layer formed on the electrode or the separator.
  • curling occurs due to the generation of stress from the difference between the elastic modulus and the linear expansion coefficient between the electrode and the porous protective film.
  • curling occurs due to stress generated between the separator and the porous resin layer because the solvent evaporates and the coating film shrinks. This curl not only deteriorates handling during assembly, but also causes wrinkles. When wrinkles occur, the distance between the electrodes changes locally. As a result, localization of the electrochemical reaction occurs, and there is a problem that the charge / discharge characteristics and life of the battery are reduced.
  • an object of the present invention is to provide a battery electrode or separator coating film composition that can suppress the occurrence of curling and can form a coating film having high heat resistance.
  • the present inventor has studied to solve the above-mentioned problems of the prior art, and by using viscoelastic particles as a component contained in the composition forming the coating film, the occurrence of curling of the coating film can be suppressed and high.
  • a battery having a heat resistance and a battery electrode and / or a separator having a coating film obtained by using the coating film composition has a high heat resistance, a low internal resistance, and a charge and discharge cycle characteristic.
  • the present inventors have found that it is excellent, has a large charge and discharge capacity, has a small deterioration in the active material layer after long-term multicycle charge and discharge, and has a long life.
  • the gist of the present invention is as follows.
  • the present invention 1 is a battery electrode or separator coating film composition comprising a binder, a solvent, and viscoelastic particles.
  • the present invention 2 is the battery electrode or separator coating film composition of the present invention 1 in which the viscoelastic modulus of the viscoelastic particles is lower than the viscoelastic modulus of the binder.
  • the present invention 3 is the battery electrode or separator coating film composition of the present invention 1 or 2, wherein the viscoelastic particles have shape anisotropy.
  • the present invention 4 is a battery electrode or separator having a coating film obtained by using the battery electrode or separator coating film composition of any one of the present inventions 1 to 3.
  • Invention 5 is a battery according to Invention 4, wherein the viscoelastic particles have shape anisotropy, and the longest axis of the viscoelastic particles is oriented in parallel to the shrinkage direction of the base material of the battery electrode or separator. It is an electrode or a separator.
  • the present invention 6 is a battery having the battery electrode and / or separator of the present invention 5.
  • a battery electrode or separator coating film composition in which curling is suppressed and a battery electrode or separator coating film having high heat resistance is obtained.
  • the coating film of the present invention becomes an electrolyte holding layer on the electrode or separator surface or a desolvation layer of ions in the electrolyte, the ion conduction resistance is reduced. There is an effect that it is possible to prevent the deterioration of the battery characteristics after the multi-cycle charge and discharge for a period of time or when the battery is left at a high temperature in the charged state. Therefore, the battery of the present invention has high heat resistance, low internal resistance, excellent charge and discharge cycle characteristics, large charge and discharge capacity, and small deterioration of the active material layer after long-term multicycle charge and discharge. Long life.
  • the binder has a structure in which a porous structure is maintained by binding particles. Therefore, the stress relaxation ability of the binder is relatively weaker and the heat resistance is lower than when the particles are provided with a function of relaxing stress.
  • the method of the present invention using viscoelastic particles makes it difficult for the viscoelastic particles to be deformed beyond the deformation amount of the viscoelastic particles, so compared to the method of reducing the viscoelastic modulus of the binder, It is possible to obtain a coating film in which the occurrence of curling is suppressed and the heat resistance is high.
  • the coating film of the present invention can also be used as a solid electrolyte film or a gel electrolyte film by impregnating a porous structure with a solid or gel having ion conductivity.
  • FIG. 1 is a cross-sectional view of a battery electrode having a battery electrode or a separator coating film.
  • FIG. 2 is a cross-sectional view of a separator having a battery electrode or a separator coating film.
  • FIG. 3 is an optical micrograph of a separator having the coating film of Example 8. Arrows indicate the conveyance direction of the substrate.
  • the battery electrode or separator coating film composition has (1) viscoelastic particles, (2) a binder, and (3) a solvent.
  • the “viscoelastic particle” is a particle having a property of irreversibly plastically deforming with respect to stress and a property of reversibly elastically deforming.
  • the battery electrode or the separator coating film composition contains viscoelastic particles, the particles can be irreversibly deformed in the coating film, and the viscoelastic modulus of the resulting coating film is lowered. Thereby, the stress with a battery electrode or a separator base material can be reduced.
  • the base material is applied with tension applied and wound while being dried.
  • the tension at the time of coating is released, which causes curling. Since the viscoelastic particles in the coating film can reduce the occurrence of curling by relieving the stress with the base material, it is easy to handle even when manufacturing batteries by means of roll-to-roll. Occurrence is suppressed. Thereby, a high quality battery can be provided.
  • various polymers such as polyethylene, polypropylene, polystyrene, polycarbonate, polyacetal, polyphenylene sulfide, liquid crystal polymer, polyvinyl chloride, celluloid, polyvinyl alcohol, polyester, polyvinyl acetate, a polymer having a polyethylene glycol structure, Polymer having carbonate group, polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, polyisoprene, chloroprene rubber, acrylic rubber, polymer having cyano group, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, butadiene rubber, Fluoro rubber, ethylene-vinyl alcohol copolymer, acrylic-vinyl alcohol copolymer, epoxy resin, oxetane resin, urethane resin , Acrylic resins, polysaccharides, polyimide, polyamide-imide, silicone
  • polymer derivative having a cyano group specifically, cyanoethylated vinyl alcohol, cyanoethylated carboxymethylcellulose, cyanoethylated pullulan, cyanoethylated cellulose, cyanoethylated starch, cyanoethylated esterified starch, cyanoethylated dextrin, cyanoethylated collagen, And nitrile rubber and the like.
  • polymer derivative having a polyethylene glycol structure include a polyethylene glycol acrylic acid amide styrene copolymer, a polyethylene glycol polylactic acid copolymer, and polyvinyl alcohol pendant with a polyethylene glycol chain.
  • a polymer having a carbonyl group there can be illustrated, for example, Nippon Polyvinyl acetate, PVA; D polymer (PVA having a carbonyl group);
  • a polymer having a ⁇ -diketone structure specifically, a polyacrylic compound having a ⁇ -diketone structure that can be prepared by radical copolymerization of a vinyl compound having a ⁇ -diketone structure such as allyl acetoacetate and an acrylate ester. Examples thereof include ester copolymers and polyvinyl alcohol copolymerized with vinyl acetate.
  • polymer having a carbonate group examples include polycarbonate and CO 2 -philic Co-polymer (CO 2 amphiphilic copolymer).
  • material of the viscoelastic particles urethane resin and polyethylene are preferable.
  • Viscoelastic particles may be used singly or in combination.
  • the viscoelastic particles may be in the form of a dispersion dispersed in a dispersion medium (for example, water).
  • the average particle diameter of the viscoelastic particles is preferably in the range of 0.001 to 100 ⁇ m, more preferably in the range of 0.01 to 50 ⁇ m, and still more preferably in the range of 0.05 to 10 ⁇ m. Since the porosity of the coating film can be further increased, it is preferable that the particle size distribution of the viscoelastic particles is narrow. That is, when the average particle diameter of viscoelastic particles is 1/5 times A and 5 times B, particles having a particle diameter in the range of A to B are 80% by volume of viscoelastic particles. It is preferable that the amount is 90% by volume or more.
  • the average particle size and particle size distribution can be measured by, for example, a laser diffraction / scattering particle size distribution measuring apparatus, and specifically, LA-920 manufactured by Horiba, Ltd. can be used.
  • Viscoelastic particles can be produced by various known methods, and can be produced by pulverization, emulsion polymerization, recrystallization, spraying, or using a forced thin film microreactor.
  • the shape of the viscoelastic particles is not particularly limited.
  • examples of the viscoelastic particles include viscoelastic particles having shape isotropy or shape anisotropy.
  • the viscoelastic particles preferably have shape anisotropy.
  • the viscoelastic particles have shape anisotropy
  • the electrode battery or separator coating film composition containing the viscoelastic particles having shape anisotropy is applied to the battery electrode or separator substrate
  • the shearing force can orient viscoelastic particles having shape anisotropy in the coating flow direction.
  • the viscoelastic particles can be oriented so that the longest axis is parallel to the contraction direction of the battery electrode or the separator substrate.
  • Examples of the shape of the viscoelastic particles having isotropy include a cubic shape and a spherical shape.
  • Examples of the shape of the viscoelastic particles having shape anisotropy include a flat shape (for example, a plate shape which is a rectangular parallelepiped), a fiber shape, a bent fiber shape, and a coil shape.
  • the separator has a direction that tends to shrink, the viscoelastic particles can be oriented in a direction effective to relieve the shrinkage stress.
  • plate-like viscoelastic particles can be prepared by tapping and crushing the particles, thinly slicing the fibers, or making it plate-like by self-organization. it can.
  • the fibrous particles can be produced by cutting a spun polymer shortly or by an electrospinning method.
  • Short fibers that can be used as particles having shape anisotropy can be produced by cutting the fibrous particles into short pieces or making short fibers by turning on and off the electric field when spinning by the electrospinning method.
  • the degree of elastic deformation of the viscoelastic particles can be expressed by an elastic modulus h3 determined by the following measurement method 1.
  • h3 of the viscoelastic particles is preferably 0.95 or less, and more preferably 0.9 or less.
  • the h3 of the viscoelastic particles is not particularly limited, but can be 0.5 or more, and preferably 0.6 or more.
  • the degree of plastic deformation of the viscoelastic particles can be expressed by the plastic deformation rate h6 determined by the following measurement method 2.
  • h6 is preferably 0.85 or less, and more preferably 0.75 or less.
  • h6 of the viscoelastic particles is not particularly limited, but is preferably 0.5 or more, and more preferably 0.6 or more.
  • h3 and h6 of the viscoelastic particles are equal to or less than the upper limit value, the stress relaxation ability is increased and curling can be effectively suppressed. If h3 and h6 of the viscoelastic particles are equal to or higher than the lower limit, the heat resistance is further improved. h3 and h6 are both parameters indicating ease of deformation, and both of them are easier to deform when the numerical value is smaller. Therefore, when h3 and h6 are smaller, curling is further suppressed. However, deformation due to elastic deformation leaves deformation stress. On the other hand, deformation due to plastic deformation does not leave deformation stress. Here, the deformation stress is a force that can cause curling. Therefore, the smaller the plastic deformation rate: h6, the more curling can be suppressed compared to the case where the elastic deformation rate: h3 is small.
  • Step of obtaining test particles (2) Packing the test particles obtained in step (1) into an acrylic cylinder having an inner diameter of 10 mm, an outer diameter of 110 mm, and a height of 150 mm so as to have a height of 100 mm.
  • Step of pushing in an iron bar having a length of 10 mm and a length of 200 mm using an autograph (3) Measuring height h1 when pushed in with 1 kgf and height h2 when pushing in with 0.5 kgf after loosening the pushing force.
  • Step (4) A step of obtaining the elastic modulus h3 of the viscoelastic particles by h1 / h2 h3.
  • the test object viscoelastic particles are sieved with a sieve having an opening of 50 ⁇ m to obtain test particles.
  • particles that are likely to be clogged are made into test particles by filtering in an aqueous dispersion.
  • the content of viscoelastic particles is 0.1 to 99.9% by weight or more of the components contained in the coating film composition excluding the solvent, preferably 0.5 to 99.5% by weight, more preferably Is from 1 to 99% by weight. If it is such a range, the stress relaxation ability accompanying deformation
  • the solvent includes a solvent for a binder described later and a dispersion medium when the viscoelastic particles are in the form of a dispersion.
  • the (2) binder of the present invention will be described.
  • the battery electrode or separator coating film composition of the present invention contains a binder.
  • the binder include a solid (for example, particulate) binder or a liquid binder.
  • the binder can be in a state dispersed in a solvent, a state dissolved in a solvent, a state dispersed in a solvent, and a state dissolved in a solvent.
  • Solid binder Various known solid binders can be used as the solid binder.
  • the solid binder include thermoplastic organic particles, organic crystals, and organic particles that crosslink during heat fusion.
  • the average particle size of the solid binder is not particularly limited, and can be 0.01 to 500 ⁇ m. Further, the solid binder does not include particles (that is, viscoelastic particles) having a property of plastically irreversibly with respect to stress and a property of elastically deforming reversibly.
  • thermoplastic organic particles are not particularly limited as long as they can be bonded by hot-melting the particles with a hot melt, and examples thereof include thermoplastic polymer particles.
  • thermoplastic polymers include viscoelastic particle materials.
  • the thermoplastic organic particles may be used alone or in combination of two or more.
  • thermoplastic organic particles polymer derivative particles having a cyano group, polymer derivative particles having a polyethylene glycol structure, and polymer derivatives having a carbonyl group are easy to interact with ions and from the viewpoint of ion conduction.
  • Particles preferably, polymer particles having a ⁇ -diketone structure
  • polymer particles having a carbonate group are preferable, particles of a polymer derivative having a cyano group, particles of a polymer having a polyethylene glycol structure, and Polymer particles having a carbonate group are more preferable.
  • Thermoplastic organic particles can be adjusted in molecular weight and crosslinking density to such an extent that they have a melting point and softening point in the range of -40 to 300 ° C.
  • thermoplastic organic particles can be used as a dry powder, or can be used as an aqueous emulsion by forming protective colloid particles using a surfactant or a water-soluble polymer. Further, for the purpose of adjusting the melting point, it is also possible to use a solvent with a high boiling point solvent having a boiling point of 80 ° C. or higher, such as ethylene glycol, glycerin, diethylene glycol, N-methylpyrrolidone, dimethyl sulfoxide, and isophorone.
  • a solvent with a high boiling point solvent having a boiling point of 80 ° C. or higher such as ethylene glycol, glycerin, diethylene glycol, N-methylpyrrolidone, dimethyl sulfoxide, and isophorone.
  • Organic crystals examples include hydrazide crystals, acid anhydride crystals, amine crystals, imidazole crystals, triazine crystals, and mixed crystals thereof.
  • the melting point of the organic crystal is preferably 40 ° C. or higher, more preferably 50 to 300 ° C.
  • hydrazide crystals As hydrazide crystals, adipic acid dihydrazide (melting point: 177 to 180 ° C.), 1,3-bis (hydrazinecarbonoethyl) -5-isopropylhydantoin (melting point: 120 ° C.), 7,11-octadecadien-1,18-di Examples thereof include carbohydrazide (melting point: 160 ° C.).
  • acid anhydride crystals include maleic anhydride (melting point 53 ° C.), phthalic anhydride (melting point 131 ° C.), pyromellitic anhydride (melting point 286 ° C.), and the like.
  • Examples of amine crystals include urea (melting point: 132 ° C.) and dicyandiamide (melting point: 208 ° C.).
  • Examples of imidazole crystals include imidazole (melting point 89 to 91 ° C.), 2-methylimidazole (melting point 140 to 148 ° C.), phenyl imidazole (melting point 174 to 184 ° C.), and the like.
  • triazine crystals examples include 2,4-diamino-6-vinyl-S-triazine (melting point 240 ° C.), 2,4-diamino-6-methacryloyloxyethyl-S-triazine (melting point 170 ° C.), and the like.
  • Organic crystals can be used in the form of a solid solution by mixing two or more kinds for the purpose of adjusting the melting point and the softening point.
  • Organic particles that crosslink during thermal fusion are various known latent curable solid resin particles.
  • latent curable solid resins include epoxy resins, mixtures of epoxy resins and oxirane compounds, (meth) acrylic acid esters, and prepolymers having active hydrogen groups.
  • a particle in which a latent thermal initiator is blended with a solid epoxy resin a particle in which a latent thermal initiator is blended in a mixture of a solid epoxy resin and an oxirane compound Particles that are a system containing a solid (meth) acrylic acid ester and a curing agent or an initiator; and particles that are a combination of a prepolymer having an active hydrogen group and a crosslinking agent.
  • (meth) acrylic acid ester refers to acrylic acid ester and methacrylic acid ester.
  • EPICLON 1050 bisphenol A type epoxy resin having a softening point of 64 to 74 ° C.
  • EPICLON N-660 cresol novolac type epoxy having a softening point of 62 to 70 ° C.
  • EPICLON N-770 phenol novolac type epoxy resin having a softening point of 65 to 75 ° C.
  • HP-7200HH dicyclopentadiene type epoxy resin having a softening point of 88 to 98 ° C.
  • EPICLON HP-4700 a naphthalene type epoxy resin having a softening point of 85 to 95 ° C.
  • EX-721 a monofunctional solid epoxy phthalimide skeleton having a melting point of 94 to 96 ° C.
  • EX- 71 melting point 40 ° C. of lauryl alcohol (EO) 15 glycidyl ether
  • oxirane compounds include oxetane compounds.
  • Specific examples of the oxirane compound include 3-ethyl-3-hydroxymethyloxetane, 3- (meth) allyloxymethyl-3-ethyloxetane, (3-ethyl-3-oxetanylmethoxy) methylbenzene, 4-fluoro- [1- (3-Ethyl-3-oxetanylmethoxy) methyl] benzene, 4-methoxy- [1- (3-ethyl-3-oxetanylmethoxy) methyl] benzene, [1- (3-ethyl-3-oxetanylmethoxy) ) Ethyl] phenyl ether, isobutoxymethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyl (3-ethy
  • thermal initiators for epoxy resins and oxirane compounds are catalysts for cationic polymerization, such as diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluoro).
  • Phenyl) borate bis (dodecylphenyl) iodonium / hexafluorophosphate, bis (dodecylphenyl) iodonium / hexafluoroantimonate, bis (dodecylphenyl) iodonium / tetrafluoroborate, bis (dodecylphenyl) iodonium / tetrakis (pentafluorophenyl) ) Borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluo Phosphate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrafluoroborate, 4-methylphenyl-4- (1-methylethyl) pheny
  • the amount of the thermal initiator is preferably 0.001 to 50 parts by weight, preferably 0.01 to 20 parts by weight, based on 100 parts by weight of the solid epoxy resin or the mixture of the solid epoxy resin and the oxirane compound. More preferably, the amount is 0.1 to 10 parts by weight.
  • a crosslinking reaction can also be advanced at the time of heat fusion.
  • the cross-linking reaction can proceed simultaneously with the heat fusion, so that a mutually cross-linked and cross-linked structure can be obtained.
  • the blending amount of the curing agent is preferably 1 to 500 parts by weight, more preferably 2 to 200 parts by weight, based on 100 parts by weight of solid prepolymer particles described later.
  • Particles that are blended with a latent heat initiator in a solid epoxy resin, or particles that are blended with a latent heat initiator in a mixture of a solid epoxy resin and an oxirane compound are the solid epoxy resin.
  • Producing solid prepolymer particles by mixing a resin or a mixture of the solid epoxy resin and oxirane compound, a latent thermal initiator, and optionally a curing agent, and then grinding.
  • solid epoxy resin particles or particles of a mixture of the solid epoxy resin and the oxirane compound, initiator particles, and curing agent particles may be mixed to obtain solid prepolymer particles.
  • EBECRYL 740-40TP manufactured by Daicel Cytec Co., Ltd.
  • 1 -Hydroxy-cyclohexyl-phenyl-ketone 100: 5
  • crosslinking agent in the combination of the prepolymer having an active hydrogen group and the crosslinking agent examples include carboxylic acid, carboxylic acid anhydride, and metal chelate.
  • combinations of prepolymers having active hydrogen groups and crosslinking agents include boric acid such as a mixture of polyvinyl alcohol and polycarboxylic acid and derivatives thereof, a mixture of polyvinyl alcohol and derivatives thereof with metal chelates and alkoxides, and the like. Can do.
  • polycarboxylic acids examples include citric acid, butanetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, hexahydrophthalic acid, 1,3,3a, 4,5,9b-hexahydro-5 (Tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2-c] furan-1,3-dione (anhydride), glycerin bisanhydro trimellitate monoacetate (anhydride), 3 , 3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, ethylene glycol bisanhydrotrimellitate (anhydride), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, ethylene glycol bisanhydro Trimellitate, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, bicyclo [2.2.1] h
  • aromatic carboxylic acids are preferable from the viewpoint of reactivity, and those having three or more carboxyl groups in one molecule are preferable from the viewpoint of reactivity and crosslinking density.
  • those corresponding to acid anhydrides can also be used.
  • titanium chelates and alkoxides zirconium tetranormal propoxide, zirconium tetraacetyl acetonate, zirconium dibutoxy bis (ethyl acetoacetate), zirconium tributoxy monostearate, such as zirconium chelates and alkoxides, aluminum isopropoxide
  • Various known metal compounds such as aluminum chelate can be exemplified.
  • the combination of the prepolymer which has an active hydrogen group, and a crosslinking agent may contain the said hardening
  • Particles that are a combination of a prepolymer having active hydrogen groups and a crosslinker will not react with heat when mixing the prepolymer having active hydrogen groups, the crosslinker, and any hardeners and initiators present.
  • these are mixed in a good solvent, casted thinly and dried at room temperature, and can be produced by grinding while cooling and used as an organic particle type binder that crosslinks during thermal fusion. Can do.
  • An electrode battery or separator coating film composition containing organic particles that crosslink at the time of heat fusion as a binder, the composition and the battery electrode or separator are fused by evaporating the solvent after coating the composition.
  • crosslinking can be advanced by heating or irradiation with energy rays. Thereby, a protective film having excellent mechanical strength and high heat resistance can be obtained.
  • a liquid binder can be used as the binder of the present invention.
  • liquid binder various known liquid binders can be used.
  • specific examples of the liquid binder include a mixture of a liquid prepolymer and an initiator; a solid polymer substance dissolved in a solvent; a solid inorganic substance by a sol-gel reaction; and water glass It is done.
  • (Mixture of liquid prepolymer and initiator) As a mixture of a liquid prepolymer and an initiator, a combination of a photo radical initiator or a thermal radical generator and a compound having a (meth) acryl group, an allyl group, a vinyl group, a maleimide group, etc .; a photo cation initiator or A combination of a thermal cation initiator and a compound having an epoxy group, an oxirane ring such as an oxetane ring, a vinyl ether, a cyclic acetal, etc .; and a photoanion initiator, a compound having an epoxy group and / or a compound having a cyanoacrylate group And combinations thereof.
  • the (meth) acryl group includes an acryl group and a methacryl group.
  • a combination of a photo radical initiator or a thermal radical generator and a compound having a (meth) acryl group, an allyl group, a vinyl group, a maleimide group, etc. will be described.
  • photo radical initiators 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- (4-Isopropylfeinyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2 Acetophenones such as -hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1; Benzoin, benzoin methyl ether, benzoin ethyl ether Benzoins such as ter, benzoin isopropyl ether, benzoin isobutyl
  • electron donors are used for intermolecular hydrogen abstraction type photoinitiators such as benzophenone, Michler ketone, dibenzosuberone, 2-ethylanthraquinone, camphorquinone, and isobutylthioxanthone.
  • electron donors include aliphatic amines and aromatic amines having active hydrogen.
  • Specific examples of the aliphatic amine include triethanolamine, methyldiethanolamine, and triisopropanolamine.
  • aromatic amine examples include 4,4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone, ethyl 2-dimethylaminobenzoate, and ethyl 4-dimethylaminobenzoate.
  • Thermal radical generators include 4-azidoaniline hydrochloride and azides such as 4,4′-dithiobis (1-azidobenzene); 4,4′-diethyl-1,2-dithiolane, tetramethylthiuram disulfide, And disulfides such as tetraethylthiuram disulfide; octanoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, decanoyl peroxide, lauroyl peroxide, succinic peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, and m-toluyl peroxide Diacyl peroxides such as: di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, and di- (2-ethoxyethyl) B) Peroxydi
  • a decomposition accelerator can be used in combination with the above thermal radical generator.
  • the decomposition accelerator include thiourea derivatives, organometallic complexes, amine compounds, phosphate compounds, toluidine derivatives, and aniline derivatives.
  • examples include urea, N, N′-diphenylthiourea, and N, N′-dilaurylthiourea, preferably tetramethylthiourea or benzoylthiourea.
  • organometallic complex examples include cobalt naphthenate, vanadium naphthenate, copper naphthenate, iron naphthenate, manganese naphthenate, cobalt stearate, vanadium stearate, copper stearate, iron stearate, and manganese stearate.
  • amine compound primary or tertiary alkylamines or alkylenediamines represented by an integer of 1 to 18 carbon atoms of the alkyl group or alkylene group, diethanolamine, triethanolamine, dimethylbenzylamine, trisdimethylaminomethylphenol, Trisdiethylaminomethylphenol, 1,8-diazabicyclo (5,4,0) undecene-7, 1,8-diazabicyclo (5,4,0) undecene-7, 1,5-diazabicyclo (4,3,0)- Nonene-5,6-dibutylamino-1,8-diazabicyclo (5,4,0) -undecene-7, 2-methylimidazole, 2-ethyl-4-methylimidazole and the like can be exemplified.
  • Examples of the phosphate compound include methacrylic phosphate, dimethycyl phosphate, monoalkyl acid phosphate, dialkyl phosphate, trialkyl phosphate, dialkyl phosphate, and trialkyl phosphate.
  • Examples of toluidine derivatives include N, N-dimethyl-p-toluidine and N, N-diethyl-p-toluidine.
  • Examples of aniline derivatives include N, N-dimethylaniline and N, N-diethylaniline.
  • a compound having a (meth) acryl group, an allyl group, a vinyl group, or a maleimide group is a liquid prepolymer.
  • the compound having a (meth) acryl group include butanediol mono (meth) acrylate, t-butylaminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and N, N-diethylaminoethyl (meth).
  • Examples of the compound having a vinyl group include vinyl acetate, chloroethylene, vinyltrimethoxysilane, 1-vinyl-3,4-epoxycyclohexane, vinyl acetate, and the like.
  • Examples of the compound having an allyl group include allyl alcohol, 3-aminopropene, allyl bromide, allyl chloride, diallyl ether, diallyl sulfide, allicin, allyl disulfide, allyl isothiocyanate, and the like.
  • maleimide group maleimide, N-phenylmaleimide, N-cyclohexylmaleimide, 4,4′-diphenylmethanemaleimide, m-phenylenemaleimide, bisphenol A diphenylether bismaleimide, 3,3′-dimethyl-5,5′- Examples include diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, and 1,6′-bismaleimide- (2,2,4-trimethyl) hexane.
  • compounds having a (meth) acryl group and a vinyl group are preferable. These compounds can be cured with an electron beam even in the absence of a photoradical initiator.
  • a photo radical initiator and a thermal radical generator can be used in combination of two or more. These photoradical initiator and thermal radical generator are 0.01 to 50 parts by weight with respect to 100 parts by weight of a compound having a (meth) acryl group, an allyl group, a vinyl group, or a maleimide group as a liquid prepolymer. It is preferably added, more preferably 0.1 to 20 parts by weight, still more preferably 1 to 10 parts by weight.
  • the photoradical initiator and the thermal radical generator are used in combination, the above content is the total content of the photoradical initiator and the thermal radical generator.
  • the content of the electron donor is preferably 10 to 500 parts by weight with respect to 100 parts by weight of the photo radical initiator.
  • the content of the decomposition accelerator is preferably 1 to 500 parts by weight with respect to 100 parts by weight of the thermal radical generator.
  • a combination of a photocationic initiator, a thermal cation initiator or a photoanion initiator and a compound having an epoxy group, an oxirane ring such as an oxetane ring, a vinyl ether, a cyclic acetal or the like will be described.
  • photocationic initiator examples include compounds other than the combination of silsesquioxane and aluminum acetylacetonate in the latent thermal initiator for the epoxy resin and oxirane compound described above.
  • a sensitizer can be used in combination with the photocationic initiator.
  • Such sensitizers include 9,10-butoxyanthracene, acridine orange, acridine yellow, benzoflavin, cetoflavin T, perylene, pyrene, anthracene, phenothiazine, 1,2-benzacetracene, coronene, thioxanthone, fluorenone, benzophenone And anthraquinone.
  • thermal cation initiator examples include latent thermal initiators for the epoxy resins and oxirane compounds described above.
  • Examples of the photoanion initiator include a 2-nitrobenzyl carbamate compound obtained by blocking a bifunctional or higher isocyanate with an o-nitrobenzyl alcohol compound, and a combination of a quinonediazide sulfonate compound and an N-alkylaziridine compound.
  • the photoanion initiator is used for polymerizing a compound having an epoxy group and a compound having a cyanoacrylate group.
  • a compound having an epoxy group, a cyanoacrylate group, an episulfide, an oxetane ring, a spiro ortho carbonate, or a vinyl ether group is a liquid prepolymer and is crosslinked with a photocationic initiator, a thermal cationic initiator, and / or a photoanionic initiator. It is a compound having a reactive substituent.
  • Examples of the compound having a cyanoacrylate group include methyl cyanoacrylate and ethyl cyanoacrylate.
  • the compound having episulfide is a compound in which the oxygen atom of the above-mentioned compound having an epoxy group is substituted with a sulfur atom.
  • Examples of the compound having an oxetane ring include the oxetane compounds described above.
  • Examples of the compound having spiro ortho carbonate include spiro glycol diallyl ether and bicycloorthoester.
  • Compounds having vinyl ether include n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, allyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, 9-hydroxynonyl vinyl ether , 4-hydroxycyclohexyl vinyl ether, cyclohexanedimethanol monovinyl ether, triethylene glycol monovinyl ether, triethylene glycol divinyl ether, 1,4-butanediol divinyl ether, nonanediol divinyl ether, cyclohexanediol divinyl ether, cyclohexane dimeta Over distearate ether, triethylene glycol divinyl ether, trimethyl propane trivinyl ether
  • the compound having an oxetane ring is preferable as the compound having an epoxy group, a cyanoacrylate group, an episulfide, an oxetane ring, a spiro ortho carbonate, or a vinyl ether group.
  • the photo cation initiator, the thermal cation initiator, and the photo anion initiator can be used in combination of two or more.
  • These photocationic initiator, thermal cationic initiator, and photoanion initiator are based on 100 parts by weight of a compound having an epoxy group, a cyanoacrylate group, an episulfide, an oxetane ring, a spiro orthocarbonate, or a vinyl ether group, which is a liquid prepolymer.
  • the addition amount is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 20 parts by weight, and still more preferably 1 to 10 parts by weight.
  • the above content is the total content of the photocationic initiator, the thermal cation initiator, and the photoanion initiator.
  • the content of the sensitizer is preferably 5 to 500 parts by weight with respect to 100 parts by weight of the photocation initiator.
  • liquid binder with solid polymer dissolved in solvent examples include those obtained by dissolving the above-described polymer particles in a solvent and those suspended in a solvent.
  • a solvent it can select suitably from the solvent which can melt
  • solid polymer substances include fully saponified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray Poval PVA-124, Nippon Vinegar Poval Co., Ltd .; JC-25), partially saponified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray Poval PVA-235, manufactured by Nihon Ventures & Poval Co., Ltd .; JP-33, etc.) Modified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray K Polymer KL-118, Kuraray C Polymer CM-318, Kuraray R Polymer R-1130 Kuraray LM Polymer LM-10HD, manufactured by Nihon Vinegar Poval Co., Ltd .; D Polymer DF-20, anion-modified PVA AF-17, alkyl-modified PVA ZF-15, carboxymethyl cellulose (manufactured by Daicel Industries,
  • acrylic ester polymerization emulsion Showa Denko Co., Ltd .; Polysol F-361, F-417, S-65, SH-502
  • ethylene / vinyl acetate copolymer emulsion Kuraray Co., Ltd.
  • An emulsion such as Panflex OM-4000NT, OM-4200NT, OM-28NT, OM-5010NT) can be used in a state suspended in water.
  • polyvinylidene fluoride manufactured by Kureha Co., Ltd .; Kureha KF Polymer # 1120, Kureha KF Polymer # 9130
  • modified polyvinyl alcohol manufactured by Shin-Etsu Chemical Co., Ltd .; cyanoresin CR-V
  • modified pullulan Polymers such as (Shin-Etsu Chemical Co., Ltd .; cyanoresin CR-S) can be used in a state dissolved in N-methylpyrrolidone.
  • liquid binder obtained by dissolving a solid polymer substance in a solvent a liquid binder obtained by dissolving a water-soluble polymer in water, and a binder obtained by suspending an emulsion in water are preferable.
  • a liquid binder obtained by dissolving a solid polymer substance in a solvent can be solidified by removing the solvent by heating and / or reducing the pressure.
  • Such a binder can also improve the ionic conductivity of the coating film by impregnating the electrolytic solution in the coating film to form a gel electrolytic layer.
  • Liquid binder that becomes solid inorganic substance by sol-gel reaction Liquid binders that become solid inorganic substances by sol-gel reaction include triethoxysilane, trimethoxysilane, aluminum isopropoxide, titanium tetraisopropoxide, titanium tetranormal butoxide, titanium butoxide dimer, titanium tetra-2-ethylhexoxy.
  • the catalyst for sol-gel reaction can be added to these.
  • the catalyst for the sol-gel reaction is not particularly limited as long as it is a catalyst for a reaction in which an inorganic component is hydrolyzed and polycondensed.
  • Such catalysts include acids such as hydrochloric acid; alkalis such as sodium hydroxide; amines; or dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate, dibutyltin dimaleate, dioctyltin dilaurate, dioctyltin dimaleate
  • Organotin compounds such as tin octylate; organotitanate compounds such as isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, tetraalkyl titanate;
  • the surfactant may form micelles.
  • a solid inorganic substance can be made into an inorganic porous body using micelles as a template.
  • a quaternary ammonium salt is preferable, and specific examples include butyltrimethylammonium chloride, hexyltrimethylammonium chloride, dibutyldimethylammonium chloride, dihexyldimethylammonium chloride and the like.
  • water glass In addition to the liquid binder that becomes a solid inorganic substance by the sol-gel reaction, water glass can be exemplified as the liquid binder from which the solid inorganic substance is obtained. Specifically, No. 1 water glass, No. 2, water glass, No. 3 water glass of JIS standard table K1408, 1 type of sodium metasilicate, 2 types of sodium metasilicate, 1 type of potassium silicate, 2 type of potassium silicate, and Lithium silicate or the like can be used.
  • the degree of the elastic deformation property and the plastic deformation property of the binder can be expressed by the elastic modulus (h3) and the plastic deformation rate (h6), similarly to the viscoelastic particles.
  • h3 of the binder is preferably 0.95 or less, and more preferably 0.9 or less.
  • the h3 of the binder is not particularly limited, but can be 0.5 or more, and preferably 0.6 or more.
  • h6 of the binder is preferably 0.90 or less, and preferably 0.85 or less.
  • h6 is not specifically limited, It is preferable that it is 0.5 or more, and it is more preferable that it is 0.6 or more.
  • h3 and h6 of a binder are below the said upper limit, it will be excellent in stress relaxation ability, and will be excellent in the adhesive force when a base material is bent. If h3 and h6 of a binder are more than the said lower limit, mechanical strength and heat resistance will improve more.
  • the viscoelastic modulus of the viscoelastic particles is lower than the viscoelastic modulus of the binder.
  • “the viscoelastic modulus of the viscoelastic particles is lower than the viscoelastic modulus of the binder” means that the h3 and h6 of the viscoelastic particles are smaller than the h3 and h6 of the binder.
  • the difference between h6 of the viscoelastic particles and the binder is preferably 0.01 to 0.3, and is preferably 0.05 to 0.2. Is more preferable. If the difference in h6 between the viscoelastic particles and the binder is 0.01 or more, it is possible to efficiently achieve both improved heat resistance and curl generation, and if it is 0.3 or less, the heat resistance is further improved. In addition, the occurrence of curling is further suppressed. Note that ⁇ h6 indicating the amount of plastic deformation is more dominant in suppressing the occurrence of curling.
  • the h3 and h6 of the binder can be measured in the same manner as that of the viscoelastic particles. That is, after solidifying into a film having a thickness of 50 ⁇ m under conditions using a binder, the particles are cooled with liquid nitrogen and then pulverized using a mill (manufactured by IKA; M20 general-purpose mill) to obtain binder particles. be able to.
  • This binder particle can be used as a test target particle in step (1) of [Measurement method 1] and [Measurement method 2]. Thereby, h3 and h6 of a binder can be calculated
  • the binder content is preferably a practically sufficient addition amount without filling the voids generated between the particles.
  • the content of the binder is preferably 0.01 to 49 parts by weight, more preferably 0.5 to 30 parts by weight, with respect to 100 parts by weight of the viscoelastic particles. Part by weight is more preferred.
  • the (3) solvent of the present invention will be described.
  • the battery electrode or separator coating film composition of the present invention has a solvent for generating voids due to transpiration and adjusting fluidity.
  • the solvent can be evaporated by heat drying, vacuum drying, freeze drying, or a combination thereof.
  • the binder is a resin that is cured with light or an electron beam, it can be made porous using a frosted shape by being lyophilized and then cured with light or an electron beam.
  • the electrolyte solution solvent used for a battery can be added in advance to assist the impregnation of the electrolyte.
  • Solvents include hydrocarbons (propane, n-butane, n-pentane, isohexane, cyclohexane, n-octane, isooctane, benzene, toluene, xylene, ethylbenzene, amylbenzene, turpentine oil, pinene, etc.), halogenated hydrocarbons (chlorinated) Methyl, chloroform, carbon tetrachloride, ethylene chloride, methyl bromide, ethyl bromide, chlorobenzene, chlorobromomethane, bromobenzene, fluorodichloromethane, dichlorodifluoromethane, difluorochloroethane, etc.), alcohol (methanol, ethanol, n-propanol, (Isopropanol, n-amyl alcohol, isoamyl alcohol, n-hex
  • a solvent can be added to the battery electrode or separator coating film composition at an arbitrary ratio in order to adjust the viscosity in accordance with the coating apparatus.
  • the kind and content of the solvent for obtaining such a viscosity can be determined as appropriate. In the present invention, the viscosity is a value obtained with a cone plate type rotational viscometer.
  • the battery electrode or separator coating film composition is within the range not impairing the object of the present invention, other particles, core-shell type foaming agent, salt, ionic liquid, coupling agent, stabilizer, preservative, and interface.
  • An active agent can be included.
  • the battery electrode or separator coating film composition may further contain one or more particles selected from the group consisting of organic fillers, carbon-based fillers, and inorganic fillers as other particles.
  • the other particles do not include particles having the property of irreversibly plastically deforming with respect to stress and the property of reversibly elastically deforming (that is, viscoelastic particles).
  • organic filler examples include polymers such as acrylic resin, epoxy resin, and polyimide that are three-dimensionally cross-linked and not substantially plastically deformed, cellulose particles, silicone particles, polyolefin particles, and the like. Examples include fibers and flakes.
  • An organic filler can be used 1 type or in combination of 2 or more types.
  • the carbon filler examples include graphite, acetylene black, and carbon nanotube.
  • a carbon type filler can be used combining 1 type or 2 types or more.
  • the carbon-based filler is a particle that can be added to such an extent that the insulating property is not impaired.
  • inorganic fillers include powders of metal oxides such as alumina, silica, zirconia, beryllia, magnesium oxide, titania, and iron oxide; sols such as colloidal silica, titania sol, alumina sol, talc, kaolinite, and smectite.
  • metal oxides such as alumina, silica, zirconia, beryllia, magnesium oxide, titania, and iron oxide
  • sols such as colloidal silica, titania sol, alumina sol, talc, kaolinite, and smectite.
  • Clay minerals such as silicon carbide and titanium carbide; nitrides such as silicon nitride, aluminum nitride and titanium nitride; borides such as boron nitride, titanium boride and boron oxide; complex oxides such as mullite; water
  • examples include hydroxides such as aluminum oxide, magnesium hydroxide, and iron hydroxide; barium titanate, strontium carbonate, magnesium silicate, lithium silicate, sodium silicate, potassium silicate, and glass.
  • the inorganic filler that can be added to such an extent that the insulating properties are not impaired include lithium cobaltate and olivine-type lithium iron phosphate.
  • One kind of inorganic filler or two or more kinds of inorganic fillers can be used in appropriate combination.
  • the inorganic filler is preferably dried at a high temperature of about 200 ° C. for about 1 hour in order to activate the active hydrogen groups on the surface.
  • a high temperature of about 200 ° C. for about 1 hour in order to activate the active hydrogen groups on the surface.
  • activating the active hydrogen group adhesion to organic particles is improved, mechanical strength and heat resistance are improved, and ion conductivity is improved by stabilizing ions in the electrolyte.
  • the inorganic filler may be used in powder form, or in the form of a water-dispersed colloid such as silica sol or alumina sol or in a state dispersed in an organic solvent such as organosol. These may be contained in the organic particles to be thermally fused, or may be used in close contact with the surface of the organic particles to be thermally fused, or in a state independent of the organic particles to be thermally fused. May be added.
  • the size of other particles is preferably in the range of 0.001 to 100 ⁇ m, and more preferably in the range of 0.005 to 10 ⁇ m. Furthermore, it is also preferable to use a porous body of other particles from the viewpoint of increasing the porosity. Specifically, inorganic fillers such as silica gel, porous alumina, and various zeolites can be used as the other particles.
  • the surface of other particles can be modified with various coupling agents.
  • the coupling agent include a silane coupling agent and a titanium coupling agent.
  • silane coupling agent examples include (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane as a fluorine-based silane coupling agent, and (2-bromo) as a bromine-based silane coupling agent.
  • TESOX vinyltrimethoxysilane
  • vinyltriethoxysilane ⁇ -chloro Propyltrimethoxysilane
  • ⁇ -aminopropyltriethoxysilane N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane
  • N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane ⁇ -glycine Sidoxypropyltrimethoxysilane (city KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • ⁇ -glycidoxypropylmethyldimethoxysilane ⁇ -methacryloxypropyltrimethoxysilane
  • ⁇ -methacryloxypropylmethyldimethoxysilane ⁇ -mercaptopropyl
  • Examples include silane coupling agents such as trimethoxysilane and cyan
  • Titanium coupling agents include triethanolamine titanate, titanium acetylacetonate, titanium ethyl acetoacetate, titanium lactate, titanium lactate ammonium salt, tetrastearyl titanate, isopropyltricumylphenyl titanate, isopropyltri (N-aminoethyl-aminoethyl) ) Titanate, dicumylphenyloxyacetate titanate, isopropyl trioctanor titanate, isopropyl dimethacrylisostearoyl titanate, titanium lactate ethyl ester, octylene glycol titanate, isopropyl triisostearoyl titanate, triisostearyl isopropyl titanate, isopropyl tridodecyl benzene sulfonyl Titanate, tetra 2-ethylhexyl) titanate, butyl titanate dimer, isopropyliso
  • titanium coupling agents vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ - Aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -methacryloxypropylpropyl Methoxysilane, ⁇ -methacryloxyxypropylmethyldimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and cyanohydrin silyl ether are preferred.
  • a silane coupling agent and a titanium coupling agent can be used alone or in combination of
  • Such a coupling agent can improve adhesion by causing interaction with the battery electrode surface or the separator surface. Also, by coating the surface of other particles with these coupling agents, gaps are created between the other particles due to the exclusion effect of the coupling agent molecules, and ions are conducted between them to improve ion conductivity. You can also. Moreover, since these particles can be hydrophobized by coating the surfaces of inorganic fillers, silicone particles, polyolefin particles and the like with a coupling agent, the defoaming property can be further improved.
  • the amount of water adsorbed on the surface can be reduced by substituting active hydrogen on the surface of other particles with a silane coupling agent, so that the amount of moisture that causes deterioration of characteristics in the non-aqueous battery can be reduced.
  • the other particles are preferably particles whose surfaces are coated with polymer chains formed by graft polymerization. Examples of the polymer chain include those described in the viscoelastic particle of the present invention, including preferable ones.
  • Titanium coupling agents can be more preferably applied to inorganic particles having an isoelectric point pH of 7 or more, and silane coupling agents can be more preferably applied to inorganic particles having an isoelectric point pH of less than 7.
  • pH of the isoelectric point of the inorganic particles the value measured by the method defined in JIS R1638 “Method for measuring the isoelectric point of fine ceramic powder” can be used.
  • Silica (pH about 1.8), kaolin (pH about 5.1), mullite (pH about 6.3; the pH of isoelectric point can be controlled by changing the ratio of silicon and aluminum), titania (anatase type) (pH about 6.2), tin oxide (pH About 6.9), boehmite (pH about 7.7), ⁇ -alumina (pH about 7.9), ⁇ -alumina (pH about 9.1), beryllia (pH about 10.1), iron hydroxide; Examples thereof include Fe (OH) 2 (pH about 12.0), manganese hydroxide (pH about 12.0), magnesium hydroxide (pH about 12.4), and the like.
  • the above-mentioned other particles can be added within a range that does not deteriorate the porosity and the continuity of the voids, and preferably 0 to 100 parts by weight of the viscoelastic particles. Up to 90 parts by weight can be contained, more preferably 0 to 50 parts by weight.
  • the content of the carbon-based filler and the inorganic filler that can be added to such an extent that the insulating property is not impaired is 0.01 to 10 parts by weight with respect to 100 parts by weight of the viscoelastic particles. The amount is preferably 0.1 to 5 parts by weight.
  • a combination of inorganic fillers having a large difference in pH at the isoelectric point is preferable because an acid-base interaction is likely to occur, and the amount of one active hydrogen is increased because the activity of the other active hydrogen is improved.
  • a combination is preferable, and a combination of silica and ⁇ -alumina or a combination of silica and magnesium hydroxide is more preferable.
  • the addition amount of silica having a low isoelectric point pH is preferably in the range of 0.1 to 100% by weight with respect to the inorganic filler having a high isoelectric point pH, and is 1 to 10% by weight.
  • the range of is more preferable.
  • the battery electrode or separator coating film composition of the present invention can contain a core-shell type foaming agent.
  • a foaming agent EXPANCEL (made by Nippon Philite Co., Ltd.) etc. can be used. Since the shell is organic, long-term reliability with respect to the electrolyte is poor. Therefore, what coat
  • metal oxides such as alumina, silica, zirconia, beryllia, magnesium oxide, titania and iron oxide
  • sols such as colloidal silica, titania sol and alumina sol
  • gels such as silica gel and activated alumina
  • Complex oxides hydroxides such as aluminum hydroxide, magnesium hydroxide, and iron hydroxide: and barium titanate can be exemplified.
  • These inorganic substances can be coated on the surface of the viscoelastic particles by sol-gel reaction or heating.
  • the surface is treated with a chromate treatment, a plasma treatment, a water-soluble polymer such as PVA, carboxymethyl cellulose, starch, or the like and a compound obtained by adding the above-described polycarboxylic acid to the ester and crosslinking.
  • a chromate treatment a plasma treatment
  • a water-soluble polymer such as PVA, carboxymethyl cellulose, starch, or the like
  • a compound obtained by adding the above-described polycarboxylic acid to the ester and crosslinking.
  • the adhesion can also be improved.
  • the foaming agent foams when the battery runs out of heat.
  • the distance between the electrodes can be increased, and thereby the shutdown function can be exhibited.
  • the shell portion expands greatly, the distance between the electrodes can be increased, thereby preventing a short circuit or the like. Further, since the expanded shell portion maintains its shape even after the heat generation has subsided, it is possible to prevent the electrodes from being narrowed again and short-circuiting again.
  • the battery electrode or separator coating film composition of the present invention preferably contains 1 to 99 parts by weight of the above core-shell type foaming agent with respect to 100 parts by weight of the total of the viscoelastic particles and the binder. More preferably, it is more preferably 20 to 97 parts by weight.
  • the battery electrode or separator protective film composition of the present invention can contain salts serving as various ion sources. Thereby, ion conductivity can be improved. It is also possible to add the electrolyte of the battery used.
  • a lithium ion battery as an electrolyte, lithium hydroxide, lithium silicate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium bis (trifluoromethanesulfonyl) imide, lithium bis (pentafluoro) Ethanesulfonyl) imide and lithium trifluoromethanesulfonate can be exemplified.
  • examples of the electrolyte include calcium hydroxide and calcium perchlorate.
  • examples of the electrolyte include magnesium perchlorate.
  • examples of the electrolyte include tetraethylammonium tetrafluoroborate, triethylmethylammonium bis (trifluoromethanesulfonyl) imide, and tetraethylammonium bis (trifluoromethanesulfonyl) imide.
  • the battery electrode or separator coating film composition of the present invention preferably contains 0.1 to 300 parts by weight, preferably 0.5 to 200 parts by weight of the above-mentioned salt with respect to 100 parts by weight as a total of the viscoelastic particles and the binder. More preferably, it is contained in an amount of 1 to 100 parts by weight.
  • the salt may be added as a powder, made porous, or dissolved in a compounding component.
  • the battery electrode or separator coating film composition of the present invention can contain an ionic liquid.
  • the ionic liquid may be a solution in which the salt is dissolved in a solvent or an ionic liquid.
  • examples of the solution in which the salt is dissolved in a solvent include a solution in which a salt such as lithium hexafluorophosphate or tetraethylammonium borofluoride is dissolved in a solvent such as dimethyl carbonate.
  • ionic liquids examples include imidazo such as 1,3-dimethylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium bis (pentafluoroethylsulfonyl) imide, 1-ethyl-3-methylimidazolium bromide, etc.
  • Pyridinium salt derivatives such as 3-methyl-1-propylpyridinium bis (trifluoromethylsulfonyl) imide, 1-butyl-3-methylpyridinium bis (trifluoromethylsulfonyl) imide; tetrabutylammonium heptadeca Alkylammonium derivatives such as fluorooctane sulfonate and tetraphenylammonium methanesulfonate; phosphonium salt derivatives such as tetrabutylphosphonium methanesulfonate; Composite conductive agent complex such as a periodate such as lithium can show.
  • the content of the ionic liquid is preferably 0.01 to 40 parts by weight, more preferably 0.1 to 30 parts by weight, with respect to 100 parts by weight of the viscoelastic particles. More preferred is 5 parts by weight.
  • the battery electrode or separator coating film composition of the present invention can further contain a coupling agent.
  • the coupling agent include those exemplified above, including preferred ones.
  • the content of the coupling agent is preferably 0.001 to 10 parts by weight, and more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the viscoelastic particles.
  • the battery electrode or separator coating film composition of the present invention may contain a stabilizer.
  • stabilizers include 2,6-di-tert-butyl-phenol, 2,4-di-tert-butyl-phenol, 2,6-di-tert-butyl-4-ethyl- Phenol-based antioxidants exemplified by phenol, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butyl-anilino) -1,3,5-triazine Agents: alkyldiphenylamine, N, N'-diphenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine, etc.
  • Aromatic amine antioxidants exemplified by: dilauryl-3,3′-thiodipropionate, ditridecyl-3,3′-thiodipropionate, bis A sulfide hydroperoxide decomposer exemplified by [2-methyl-4- ⁇ 3-n-alkylthiopropionyloxy ⁇ -5-tert-butyl-phenyl] sulfide, 2-mercapto-5-methyl-benzimidazole and the like; (Isodecyl) phosphite, phenyl diisooctyl phosphite, diphenyl isooctyl phosphite, di (nonylphenyl) pentaerythritol diphosphite, 3,5-di-tert-butyl-4-hydroxy-benzyl phosphate diethyl ester, Phosphorus hydroperoxide decomposers exemplified by
  • Stabilizer benzophenone light stabilizer exemplified by 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, etc .; 2- (2′-hydroxy-5′-methylphenyl) benzotriazole 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol] and the like; Hindered amine light stabilizers exemplified by phenyl-4-piperidinyl carbonate, bis- [2,2,6,6-tetramethyl-4-piperidinyl] sebacate and the like; [2,2′-thio-bis (4-t-octylphenolate)]-2-ethylhexylamine-nickel- (II) Agent; cyanoacrylate light stabilizer; oxalic anilide-based light stabilizer; fullerenes, fullerene hydrogenated, mention may be made
  • the content of the stabilizer is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, with respect to 100 parts by weight of the viscoelastic particles. More preferably, it is part.
  • the battery electrode or separator coating film composition of the present invention can further contain a preservative, whereby the storage stability of the composition can be adjusted.
  • Preservatives include acids such as benzoic acid, salicylic acid, dehydroacetic acid, sorbic acid, salts such as sodium benzoate, sodium salicylate, sodium dehydroacetate, and potassium sorbate, 2-methyl-4-isothiazoline-3- ON, and isothiazoline-based preservatives such as 1,2-benzisothiazolin-3-one, alcohols such as methanol, ethanol, isopropyl alcohol, and ethylene glycol, parahydroxybenzoates, phenoxyethanol, benzalkonium chloride, And chlorhexidine hydrochloride.
  • acids such as benzoic acid, salicylic acid, dehydroacetic acid, sorbic acid, salts such as sodium benzoate, sodium salicylate, sodium dehydroacetate, and potassium sorbate, 2-methyl-4-isothiazoline-3- ON, and isothiazoline-based preservatives such as 1,2-benzisothiazolin-3-one, alcohols such as methanol, ethanol
  • preservatives can be used alone or in combination of two or more.
  • the content of the preservative is preferably 0.0001 to 1 part by weight, more preferably 0.0005 to 0.5 part by weight with respect to 100 parts by weight of the viscoelastic particles.
  • the battery electrode or separator coating film composition of the present invention can further contain a surfactant for the purpose of adjusting the wettability and antifoaming property of the composition.
  • the battery electrode or separator coating film composition of the present invention can contain an ionic surfactant for the purpose of further improving ionic conductivity.
  • Surfactants include anionic surfactants such as soap, lauryl sulfate, polyoxyethylene alkyl ether sulfate, alkyl benzene sulfonate (eg, dodecyl benzene sulfonate), polyoxyethylene alkyl ether phosphate, poly Oxyethylene alkyl phenyl ether phosphate, N-acyl amino acid salt, ⁇ -olefin sulfonate, alkyl sulfate ester salt, alkyl phenyl ether sulfate ester salt, methyl taurate, trifluoromethane sulfonate, pentafluoroethane sulfonate , Heptafluoropropane sulfonate, nonafluorobutane sulfonate, and the like.
  • anionic surfactants such as soap, lauryl sulfate, polyoxyethylene alkyl ether sulfate,
  • sodium ion, lithium ion, or the like can be used as the counter cation.
  • a lithium ion type surfactant is more preferable, and in the sodium ion battery, a sodium ion type surfactant is more preferable.
  • Amphoteric surfactants include alkyldiaminoethylglycine hydrochloride, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, lauryldimethylaminoacetic acid betaine, coconut oil fatty acid amide propyl betaine, fatty acid alkyl betaine, sulfobetaine , Amidoxide and the like.
  • Nonionic (nonionic) surfactants include alkyl ester compounds such as polyethylene glycol and acetylene glycol, alkyl ether compounds such as triethylene glycol monobutyl ether, ester compounds such as polyoxysorbitan esters, alkylphenol compounds, A fluorine type compound, a silicone type compound, etc. are mentioned.
  • Surfactant can be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0.01 to 50 parts by weight, more preferably 0.05 to 20 parts by weight, and more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the viscoelastic particles. More preferred are parts by weight.
  • the battery electrode or separator coating film composition of the present invention is used to protect the battery electrode or separator. That is, the composition of the present invention is used as a composition for a coating film formed on at least the surface of a battery electrode or a separator, and a part of the composition may enter the battery electrode or the separator.
  • the battery electrode or separator coating film composition of the present invention can be prepared by mixing and stirring the above components.
  • Stirring can be performed using a stirring device such as a propeller mixer, a planetary mixer, a hybrid mixer, a kneader, an emulsifying homogenizer, and an ultrasonic homogenizer.
  • a stirring device such as a propeller mixer, a planetary mixer, a hybrid mixer, a kneader, an emulsifying homogenizer, and an ultrasonic homogenizer.
  • it can also stir, heating or cooling as needed.
  • the method for producing viscoelastic particles whose surface is coated with a polymer formed by graft polymerization is the following process: mixing the viscoelastic particles of the present invention and a coupling agent having a reactive substituent.
  • a silane coupling agent having a reactive substituent is immobilized on the surface of the viscoelastic particles.
  • the graft polymerization can be performed using the reactive substituent immobilized on the surface as a reaction starting point.
  • immobilization means the state chemically bonded to the viscoelastic particle surface or the state physically adsorbed.
  • Examples of the coupling agent having a reactive substituent at one end include the above-mentioned silane coupling agents and titanium coupling agents, with fluorine-based silane coupling agents and bromine-based silane coupling agents being preferred, (2 -Bromo-2-methyl) propionyloxypropyltriethoxysilane is particularly preferred.
  • the amount of the coupling agent having a reactive substituent at one end is preferably 0.1 to 200 parts by weight, preferably 1 to 150 parts by weight, based on 100 parts by weight of the solid content of the viscoelastic particles. Is more preferable.
  • a step of washing the viscoelastic particles using the aforementioned solvent can be included.
  • reaction residues such as an unreacted coupling agent
  • the solvent used in the step of washing the viscoelastic particles is not particularly limited as long as it dissolves the reaction residue and does not peel off the surface-modified polymer, and the amount of the solvent used is an amount that can remove the reaction residue. If it does not specifically limit.
  • examples include compounds having a ring, vinyl ether, cyclic acetal, and the like, and those that react with and bind to the reactive substituents of the surface-modified viscoelastic particles can be selected.
  • the reactive substituent is a (2-bromo-2-methyl) propionyloxy group
  • a compound having a (meth) acryl group, an allyl group, and a vinyl group as the polymerizable compound Is mentioned.
  • the amount of the polymerizable compound is not particularly limited as long as viscoelastic particles coated with a desired polymer are obtained, and is 100 to 300 parts by weight with respect to 100 parts by weight of viscoelastic particles as a raw material. Is preferred.
  • Polymerization may be performed in the presence of an initiator.
  • An initiator can be used according to the kind of the polymerizable compound. Examples of such initiators include the latent thermal initiators, photocationic initiators, and thermal cationic initiators described above, and can be used depending on the type of polymerizable compound used. These initiators may be used alone or in combination of two or more. As for the usage-amount of an initiator, content of the latent thermal initiator mentioned above, a photocationic initiator, and a thermal cation initiator can be illustrated.
  • a step of washing viscoelastic particles coated with the polymer may be included after the step of obtaining viscoelastic particles coated with a polymer whose surface is formed by graft polymerization.
  • the solvent described above can be used for washing.
  • the battery electrode or separator surface protecting method of the present invention is a coating having voids by forming at least one layer of the battery electrode or separator coating film composition on the battery electrode or separator surface and evaporating the solvent. Forming a film. The surface of the battery electrode or separator is protected by the battery electrode or separator coating film of the present invention.
  • the present invention also relates to a coating film obtained by using the battery electrode or separator coating film composition of the present invention in the battery electrode or separator surface protecting method. That is, in the method for producing a coating film obtained using the battery electrode or separator coating film composition of the present invention, when the binder is dissolved in a solvent, the battery electrode or separator is formed on the surface of the battery electrode or separator. Including a step of forming at least one coating layer of the coating film composition and a step of evaporating the solvent.
  • the binder is a solid that does not dissolve in the solvent
  • a step of forming at least one coating layer of the battery electrode or separator coating film composition on the surface of the battery electrode or separator a step of evaporating the solvent
  • a step of heat-sealing the solid binder is included.
  • a gravure coater, a slit die coater, a spray coater, dipping or the like can be used to form a coating layer of the coating film composition on the battery electrode or separator.
  • the thickness of the coat layer is preferably in the range of 0.01 to 100 ⁇ m, and more preferably in the range of 0.05 to 50 ⁇ m from the viewpoint of electrical characteristics and adhesion.
  • the battery electrode or separator coating film composition of the present invention may have a structure in which at least a part of the battery electrode or separator is impregnated.
  • the dry thickness of the coating layer that is, the thickness of the coating film is preferably in the range of 0.01 to 100 ⁇ m, more preferably in the range of 0.05 to 50 ⁇ m. If the thickness of the coating film is 0.01 ⁇ m or more, the insulation against electronic conduction is good and the risk of a short circuit is suppressed. If the thickness of the coating film is 100 ⁇ m or less, the resistance increases in proportion to the thickness, so the resistance to ion conduction is low, and the charge / discharge characteristics of the battery are improved.
  • the amount of impregnation of the composition is an amount that does not completely fill the pore structure of the electrode or separator. That is, it is preferable that the porosity of the electrode or separator is more than 0%, preferably the amount of porosity of the electrode or separator is 50% or more, more preferably the porosity of the electrode or separator is 75% or more. Is the amount.
  • the viscoelastic particles are particles having shape anisotropy, the particles having shape anisotropy in the coating direction can be oriented by a shearing force during coating.
  • the solvent can be obtained by heat drying, vacuum drying, freeze drying, or a combination thereof. Heating and drying can be performed using a hot stove, an infrared heater, a heat roll, or the like.
  • the vacuum drying can be performed by putting a coating film of the coating film composition in a chamber and applying a vacuum. Freeze drying can be employed when a solvent having sublimation properties is used.
  • the heating temperature and heating time in heat drying are not particularly limited as long as the temperature and time at which the solvent evaporates, and can be, for example, 80 to 120 ° C. and 0.1 to 2 hours.
  • the components excluding the solvent of the battery electrode or separator coating film composition are in close contact with the battery electrode or the separator, and when the binder is hot melt particles, the components of the present invention are thermally fused. A coating film is formed.
  • the binders can be thermally fused to be solidified.
  • the particles can be solidified by heat fusion at a temperature at which the particles are completely melted, or the surfaces of the organic particles can be melted and welded and cooled in a state of being in close contact with each other. It can also be solidified in a state where it is in close contact with a gap. According to the former heat fusion solidification, there are many portions in a continuous phase, and ion conductivity, mechanical strength, and heat resistance are high.
  • the ion conductivity, mechanical strength and heat resistance through the fused organic particles are inferior. Impregnation can improve ion conductivity. Further, since the latter has a structure in which gaps are randomly opened, the effect of preventing a short circuit can be enhanced by preventing the linear growth when dentlite is generated.
  • Various known methods such as hot air, hot plate, oven, infrared ray, ultrasonic fusion can be used as the heat fusion method at the time of hot melt, and the density of the protective agent layer can be increased by pressing during heating. it can.
  • various known methods such as cooling gas and pressing against a heat sink can be used for cooling. Further, when heating to a temperature at which the binder is melted, the heating can be performed at a temperature at which the binder is melted for 0.1 to 1000 seconds.
  • the compounded material can be solidified in an oriented state using a magnetic field and / or an electric field.
  • a coating film having anisotropy in ion conductivity, mechanical strength, and heat resistance can be formed.
  • the stress relaxation ability can be enhanced by fixing the viscoelastic particles in a state in which they are oriented in a direction in which stress relaxation is easy using a magnetic field and / or an electric field.
  • anisotropy can be imparted to the magnetic susceptibility and / or the dielectric constant by stretching, so that the polymer material can be oriented by a magnetic field and / or an electric field.
  • fibers having anisotropy such as cellulose can also be used. Ion conductivity can be improved by pulverizing fibers and fibers produced by stretching such a polymer into particles and orienting the major axis so as to stand perpendicular to the electrode surface.
  • organic crystals those having crystal magnetic and / or dielectric anisotropy can be oriented by a magnetic field and / or an electric field, and the effects as described above can be exhibited.
  • the magnetic field and / or electric field may be a static magnetic field and / or an electric field or a time-varying magnetic field and / or an electric field such as a rotating magnetic field and / or an electric field, and the magnetic field and the electric field may be applied simultaneously.
  • the battery electrode or separator having a coating film on its surface can be obtained by the method for producing a battery electrode or separator coating film of the present invention including the above steps. Note that at least a part of the coating film may be formed so as to enter the inside of the battery electrode or the separator.
  • the porosity of the coating film is 40% or more, preferably 41 to 90%, and more preferably 41 to 80%.
  • the present invention relates to a battery electrode and / or separator having a coating film which is protected by the battery electrode or separator coating film or manufactured by the method for manufacturing the battery electrode or separator coating film.
  • the battery electrode or separator protected with the battery electrode or separator coating film of the present invention can be produced by coating the battery electrode or separator with the composition of the present invention and then evaporating the solvent.
  • a battery electrode the positive electrode and / or negative electrode of a well-known various battery and an electric double layer type capacitor can be illustrated,
  • a battery electrode or a separator coating film composition can be apply
  • the separator examples include a porous material made of polypropylene or polyethylene, a nonwoven fabric made of cellulose, polypropylene, polyethylene, or polyester, and can be applied or impregnated on both sides or one side.
  • the battery electrode or separator coating film composition of the present invention can be used in a state of being in close contact with the opposing separator or electrode. After the solvent is not evaporated, the separator and the electrode are in close contact and then dried or after battery assembly. These members can be brought into close contact with each other by hot pressing.
  • Electrodes and separators may have anisotropy in elastic modulus, linear expansion coefficient, and shrinkage when heated, depending on the application direction of the electrode active material layer, the stretching and winding directions of the separator, and the like.
  • a uniaxially stretched polyethylene separator relieves stress during stretching and increases the amount of shrinkage in the stretching direction when heated, resulting in an anisotropic increase in stress between the coating films.
  • the viscoelastic particles have shape anisotropy, and the longest axis of the viscoelastic particles is oriented parallel to the contraction direction (that is, the stretching direction) of the battery electrode or the separator base material.
  • a battery electrode or separator having a coating film obtained by using the battery electrode or separator coating film composition of the invention is preferred.
  • the longest axis of the viscoelastic particles refers to a line having the longest straight line connecting the end points of any two points of the viscoelastic particles.
  • the base material of a battery electrode or a separator means parts other than the coating film in the battery electrode or separator which have a coating film.
  • the stress relaxation ability between the coating film and the base material of the battery electrode or separator is increased, curling is further suppressed, and the heat resistance is further improved.
  • the present invention relates to a battery comprising a battery electrode and / or a separator protected with the battery electrode or separator coating film composition of the present invention.
  • the battery can be manufactured by a known method.
  • a battery can be manufactured using a coating film impregnated with ion conductivity by impregnating the coating film with an electrolytic solution.
  • the coating film composition itself can have ion conductivity and can be incorporated into a battery as a solid electrolyte film.
  • the amount of the binder with respect to the viscoelastic particles can be 20% by weight or less, and the ionic conductivity can be imparted by impregnating the electrolytic solution into the void formed by the volume exclusion effect of the particles. .
  • ion conductivity can be imparted by swelling the electrolyte in the binder.
  • Test Example 1 The elastic modulus and plastic deformation rate of the viscoelastic particles and binder used in Examples and Comparative Examples described later were evaluated by the following methods.
  • the dispersion of the viscoelastic particle to be used was filtered and dried to obtain test particles.
  • the binder was solidified into a film having a thickness of 50 ⁇ m under the conditions for using the binder used, cooled with liquid nitrogen, pulverized using a mill (made by IKA; M20 general-purpose mill), A test particle was obtained by sieving with an opening 50 ⁇ m sieve.
  • the test particles were packed into an acrylic cylinder having an inner diameter of 10 mm, an outer diameter of 110 mm, and a height of 150 mm so as to have a height of 100 mm, and an iron bar having an outer diameter of 10 mm and a length of 200 mm was pushed in using an autograph.
  • the battery was charged at a constant current of 0.005 mA until the voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V for 2 hours. Thereafter, the battery was discharged at a constant current of 0.005 mA until the voltage reached 3.5V. This was repeated three times, and the third discharge capacity was set as the initial capacity.
  • the cell whose initial capacity was measured was set to a potential of 4.2 V, and an impedance of 1 kHz was measured with a voltage change of ⁇ 15 mV with the potential at the center.
  • the discharge rate was obtained from the initial capacity, and the discharge capacity for each discharge rate was measured.
  • the charge was increased to 4.2 V with a constant current over 10 hours each time, and then charged with a 4.2 V constant voltage for 2 hours. Thereafter, the battery was discharged at a constant current to 3.5 V over 10 hours, and the discharge capacity at this time was set to a discharge capacity of 0.1 C.
  • the battery was discharged at a current value at which discharge was completed in 1 hour from the discharge capacity determined at 0.1 C, and the discharge capacity at that time was determined to be the discharge capacity at 1 C.
  • the discharge dose at 3C, 10C, and 30C was determined, and the capacity retention rate was calculated when the discharge capacity at 0.1C was 100%.
  • the test method was the same as the heat-resistant insulation test described above, and the battery after the test was disassembled to confirm the internal state.
  • the evaluation criteria were as follows. ⁇ : There is no direct touch between the positive electrode and the negative electrode and the insulation state is maintained, and the battery electrode protective layer is in close contact with the electrode and / or the separator. ⁇ : There is no direct touch between the positive electrode and the negative electrode and the insulation state is maintained. Battery electrode protective layer is partially lifted but not peeled ⁇ : Desorption progresses and part of positive and negative electrodes is exposed ⁇ : Positive and negative electrodes are touched and short-circuited
  • Example 1 a negative electrode having a coating film obtained by coating a battery electrode or separator coating film composition comprising a solvent, a binder, and viscoelastic particles on a negative electrode and evaporating the solvent is used for lithium ion secondary. A method for manufacturing the secondary battery will be described.
  • composition of composition 20 kg of water is added to 50 kg of the dispersion, and 200 g of polyoxyethylene (manufactured by Meisei Chemical Co., Ltd .; Alcox E-30) is added and dissolved by stirring for 6 hours to obtain a battery electrode or separator coating film composition. It was. In the composition, the content of viscoelastic particles among the components excluding the solvent was 99.2% by weight.
  • the positive electrode and the negative electrode coated with the coating film are cut at 40 mm ⁇ 50 mm so as to include an area where the active material layer is not coated at both ends with a width of 10 mm on the short side, and in a portion where the metal is exposed
  • the positive electrode was joined with an aluminum tab, and the negative electrode was joined with a nickel tab by resistance welding.
  • a separator manufactured by Celgard Co., Ltd .; # 2400 was cut to a width of 45 mm and a length of 120 mm, folded back into three, and sandwiched so that the positive electrode and the negative electrode faced each other, and an aluminum laminate cell with a width of 50 mm and a length of 100 mm was obtained.
  • the sheet was sandwiched between two parts, and the sealant was sandwiched between the parts where the tabs hit, and then the sealant part and the side perpendicular to it were heat laminated to form a bag.
  • Example 2 a positive electrode having a coating film obtained by coating a battery electrode or separator coating film composition comprising a solvent, a binder, and viscoelastic particles on a positive electrode and evaporating the solvent is used to form a lithium ion catalyst.
  • a method for manufacturing the secondary battery will be described.
  • the positive electrode was manufactured by the method of Example 1.
  • Example 3 a battery electrode or separator coating film composition comprising a solvent, a binder and viscoelastic particles is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form lithium ion A method for manufacturing the secondary battery will be described.
  • a separator was produced in the same manner as in Example 1.
  • Example 4 a battery electrode or separator coating film composition comprising a solvent, a binder, and viscoelastic particles is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form a lithium ion solution.
  • a method for manufacturing the secondary battery will be described.
  • composition of composition 2 kg of water was added to 12 kg of the dispersion, 0.1 kg of ethylene / vinyl acetate copolymer emulsion (manufactured by Kuraray Co., Ltd .; Panflex OM-4000NT) was added and dissolved by stirring for 6 hours, and then lithium dodecylbenzenesulfonate was added. 0.01 kg of 55% aqueous solution was added and further stirred for 2 hours to obtain a battery electrode or separator coating film composition. In the composition, the content of viscoelastic particles among the components excluding the solvent was 99.2% by weight.
  • Example 5 a battery electrode comprising a solvent, a binder, and viscoelastic particles or a separator coating film composition is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form a lithium ion solution.
  • a method for manufacturing the secondary battery will be described.
  • composition of composition 2 kg of water was added to 12 kg of the dispersion, 0.1 kg of ethylene / vinyl acetate copolymer emulsion (manufactured by Kuraray Co., Ltd .; Panflex OM-4000NT) was added and dissolved by stirring for 6 hours, and then lithium dodecylbenzenesulfonate was added. 0.01 kg of 55% aqueous solution was added and further stirred for 2 hours to obtain a battery electrode or separator coating film composition. In the composition, the content of viscoelastic particles among the components excluding the solvent was 99.2% by weight.
  • Example 6 a separator having a coating film obtained by coating a battery electrode or separator coating film composition comprising a solvent, a binder and viscoelastic particles on a separator and evaporating the solvent, lithium ion A method for manufacturing the secondary battery will be described.
  • the finely pulverized slurry is filtered with a nylon mesh having an opening of 5 ⁇ m, stored in a 100 L polypropylene tank and allowed to stand for 2 days. Then, the supernatant layer of 1/5 of the volume is removed by a pump, and the remaining 3/5 is removed. An intermediate layer was collected by a pump and stored in a 100 L polypropylene tank, and 1/5 remaining at the bottom of the container was removed as a sedimentation layer. For the 3/5 sampled, the drained water was added to make 67%, then stored in a 50 L polypropylene tank and allowed to stand for 2 days, and the supernatant layer and the sedimented layer were similarly removed.
  • This operation of separating the intermediate layer was repeated three times after changing the capacity of the polypropylene tank to 20 L, and then the magnetic foreign matter was further removed from the finally separated intermediate layer with a 2T electromagnet, which was removed in the process.
  • Ion exchange water was added to prepare an inorganic particle-dispersed slurry containing 67% corundum particles.
  • composition of composition Add 1 kg of water to 3 kg of the inorganic particle-dispersed slurry, add 0.03 kg of polyoxyethylene (manufactured by Meisei Chemical Co., Ltd .; Alcox E-30) and stir for 6 hours to dissolve, and then add 100 g of CD-1200. The mixture was stirred for 2 hours to obtain a battery electrode or separator coating film composition.
  • the content of viscoelastic particles among the components excluding the solvent was 2.9% by weight.
  • Example 7 (Manufacture of lithium ion secondary batteries) Manufactured by the method of Example 1.
  • a battery electrode comprising a solvent, a binder, and viscoelastic particles or a separator coating film composition is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form a lithium ion solution.
  • a method for manufacturing the secondary battery will be described.
  • a polyethylene fishing line (manufactured by YKG Yotsuami; G-soul Pe 0.3) is cut to a width of 1 mm, and then dispersed in 50 g of water (5 kg). While cooling this, a bead mill (0.3 mm zirconia beads having a vessel volume of 0.6 L) The slurry was circulated and dispersed for one day using 80% filling and a peripheral speed of 10 m / s). Thereafter, the slurry was heated and stirred at 80 ° C. to remove moisture, and the concentration was increased to 60%. (Production of composition) A composition was prepared in the same manner as in Example 6 except that the above slurry was added instead of CD-1200 in Example 6.
  • Example 8 a battery electrode or a separator coating film composition comprising a solvent, a binder, and viscoelastic particles is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used.
  • a method for manufacturing the secondary battery will be described. (Manufacture of separator with coating film) Except that the cylinder / conveying speed ratio is set to 2, the cylinder is double the conveying speed, and the fiber is oriented so that the fiber is oriented parallel to the conveying direction of the substrate by the shearing force between the cylinder and the substrate. This was produced by the method of Example 3. The state of fiber orientation was observed with an optical microscope.
  • Example 1 A lithium ion secondary battery was produced in the same manner as in Example 1 except that a battery electrode or an electrode having no separator coating film and a separator were used.
  • the substrate electrode or separator coating film composition of the present invention even if the coating film is applied, the substrate electrode or separator suppresses the occurrence of curling and has high heat resistance. Since there is no deterioration in electrochemical durability due to the wrinkles of the base material, a battery with excellent long-term reliability can be provided.

Abstract

The problem of the present invention is to provide a coating film composition for battery electrodes or separators that is capable of forming a coating film which has high heat resistance and for which the occurrence of curling is suppressed. The present invention is a coating film composition for battery electrodes or separators which includes a binding agent, a solvent, and viscoelastic particles.

Description

電池電極又はセパレーターコーティング膜組成物、これを用いて得られるコーティング膜を有する電池電極又はセパレーター、及びこの電池電極又はセパレーターを有する電池Battery electrode or separator coating film composition, battery electrode or separator having a coating film obtained by using the same, and battery having this battery electrode or separator
 本発明は、電池電極又はセパレーターコーティング膜組成物、これを用いて得られるコーティング膜をその表面に有する電池電極又はセパレーター、及びこの電池電極又はセパレーターを有する電池に関する。 The present invention relates to a battery electrode or separator coating film composition, a battery electrode or separator having a coating film obtained by using the composition, and a battery having the battery electrode or separator.
 軽量で電圧が高く容量も大きいリチウムイオン二次電池は、携帯電話やノートパソコンなどのモバイル機器、電動工具や車などのパワーツール用の電源として一部実用化されている。しかし、従来の電池では耐熱性や耐圧崩性の悪さに由来する安全性が低く、また製造の段階で入る導電性の異物がセパレーターを突き抜けショートしてしまう問題がある。またリチウムイオン二次電池は、内部抵抗が高く、ハイレートにおける充電及び放電特性が実用上十分ではなく、充電及び放電容量も十分ではなく、長期間使用した場合の活物質層の劣化も激しい。 Lithium ion secondary batteries that are lightweight, have high voltage and large capacity have been put into practical use as power sources for mobile devices such as mobile phones and laptop computers, power tools and power tools such as cars. However, conventional batteries have low safety resulting from poor heat resistance and pressure collapse resistance, and there is a problem that conductive foreign substances that enter at the manufacturing stage penetrate the separator and cause a short circuit. Further, the lithium ion secondary battery has high internal resistance, charging and discharging characteristics at a high rate are not practically sufficient, charging and discharging capacities are not sufficient, and the active material layer is greatly deteriorated when used for a long time.
 上記のように、リチウムイオン二次電池が十分な安全性を提供できない一つの理由として、導電性異物の混入、デントライトの発生、電池の破損などによってセパレーターによる絶縁性が破れ、ショートして発熱した際、熱暴走的に破壊が進行してしまうことを防ぐ仕組みや耐熱性が不十分であることが挙げられる。 As described above, one reason why lithium ion secondary batteries cannot provide sufficient safety is that the insulation by the separator is broken due to contamination of conductive foreign matter, dent light, battery damage, etc. In this case, the mechanism for preventing the thermal runaway from proceeding and the heat resistance are insufficient.
 上記の問題の改善策として、集電体に塗布される活物質塗布層に、アルミナ粉末やシリカ粉末からなる多孔質膜を形成し、活物質が電極から脱落することを保護する方法が考案されている(特許文献1)。このような多孔性保護膜はデントライトの発生を抑えたり多孔質膜が電解液を保持する層としても働いたりし、多孔性保護膜がイオン供給源となることで内部抵抗を下げ、ハイレートにおける放電特性の向上にも寄与する。また、電極表面の不均一さに伴う電極反応の集中に由来する局所的な劣化の加速を該多孔性保護膜が緩衝均一化することで、長期間使用した場合の活物質層の劣化を防ぐ効果も有る。 As an improvement measure for the above problem, a method for protecting the active material from falling off the electrode by forming a porous film made of alumina powder or silica powder on the active material coating layer applied to the current collector has been devised. (Patent Document 1). Such a porous protective film suppresses the generation of dentite, and the porous film also functions as a layer for holding the electrolyte solution. The porous protective film serves as an ion supply source to lower internal resistance, and at a high rate. It also contributes to the improvement of discharge characteristics. In addition, the porous protective film buffers and accelerates local degradation resulting from concentration of electrode reactions due to electrode surface non-uniformity, thereby preventing deterioration of the active material layer when used for a long period of time. There is also an effect.
 一方、電極とセパレーターとを接着層で接着した電池において、接着層が多孔性樹脂層であり、溶媒が蒸散したときの経路を利用して連続した多孔質の保護層を形成する方法が考案されている(特許文献2)。このような、多孔性樹脂層の貫通孔に液体電解液が保持されることにより、電極電解質界面の良好なイオン伝導性を確保できる。 On the other hand, in a battery in which an electrode and a separator are bonded with an adhesive layer, a method has been devised in which a porous porous protective layer is formed using a path when the solvent is evaporated and the adhesive layer is a porous resin layer. (Patent Document 2). By holding the liquid electrolyte in the through-holes of the porous resin layer, good ion conductivity at the electrode electrolyte interface can be ensured.
特開平7-220759JP-A-7-220759 WO1999/026307WO1999 / 026307
 しかし、特許文献1及び2では、電極又はセパレーターに形成した多孔性樹脂層について、カールが発生する問題があった。特許文献1に記載された方法では、電極と多孔性保護膜との弾性率と線膨張係数の違いから応力が発生することにより、カールが発生する。また、特許文献2に記載された方法では、溶媒が蒸散するのと共に塗膜が収縮するためセパレーターと多孔性樹脂層間に応力が発生することにより、カールが発生する。このカールは、組立時のハンドリングを悪くするのみではなく、しわの発生要因にもなる。しわが発生すると電極間距離が局所的に変わる。これにより、電気化学反応の局在化が発生し、電池の充放電特性や寿命が低下するという問題があった。 However, Patent Documents 1 and 2 have a problem that curling occurs in the porous resin layer formed on the electrode or the separator. In the method described in Patent Document 1, curling occurs due to the generation of stress from the difference between the elastic modulus and the linear expansion coefficient between the electrode and the porous protective film. Further, in the method described in Patent Document 2, curling occurs due to stress generated between the separator and the porous resin layer because the solvent evaporates and the coating film shrinks. This curl not only deteriorates handling during assembly, but also causes wrinkles. When wrinkles occur, the distance between the electrodes changes locally. As a result, localization of the electrochemical reaction occurs, and there is a problem that the charge / discharge characteristics and life of the battery are reduced.
 よって、本発明の課題は、カールの発生が抑えられ、高い耐熱性を有するコーティング膜を形成することができる電池電極又はセパレーターコーティング膜組成物を提供することである。 Therefore, an object of the present invention is to provide a battery electrode or separator coating film composition that can suppress the occurrence of curling and can form a coating film having high heat resistance.
 本発明者は、従来技術の上記問題点を解決すべく検討したところ、コーティング膜を形成する組成物に含まれる成分として粘弾性粒子を用いることで、コーティング膜のカールの発生が抑えられ、高い耐熱性を有し、かつ、そのコーティング膜組成物を用いて得られるコーティング膜を有する電池電極及び/又はセパレーターを備えた電池が、耐熱性が高く、内部抵抗が低く、充電及び放電サイクル特性に優れ、充電及び放電容量が大きく、長期間多サイクル充電及び放電した後の活物質層の劣化が小さく、長寿命であることを見出した。 The present inventor has studied to solve the above-mentioned problems of the prior art, and by using viscoelastic particles as a component contained in the composition forming the coating film, the occurrence of curling of the coating film can be suppressed and high. A battery having a heat resistance and a battery electrode and / or a separator having a coating film obtained by using the coating film composition has a high heat resistance, a low internal resistance, and a charge and discharge cycle characteristic. The present inventors have found that it is excellent, has a large charge and discharge capacity, has a small deterioration in the active material layer after long-term multicycle charge and discharge, and has a long life.
 本発明の要旨は、以下のとおりである。
 本発明1は、結着剤、溶媒及び粘弾性粒子を含む、電池電極又はセパレーターコーティング膜組成物である。
 本発明2は、粘弾性粒子の粘弾性率が、結着剤の粘弾性率よりも低い、本発明1の電池電極又はセパレーターコーティング膜組成物である。
 本発明3は、粘弾性粒子が形状異方性を有する、本発明1又は2の電池電極又はセパレーターコーティング膜組成物である。
 本発明4は、本発明1~3のいずれかの電池電極又はセパレーターコーティング膜組成物を用いて得られるコーティング膜を有する電池電極又はセパレーターである。
 本発明5は、粘弾性粒子が形状異方性を有し、電池電極又はセパレーターの基材の収縮方向に対して、粘弾性粒子の最長軸が平行に配向している、本発明4の電池電極又はセパレーターである。
 本発明6は、本発明5の電池電極及び/又はセパレーターを有する電池である。
The gist of the present invention is as follows.
The present invention 1 is a battery electrode or separator coating film composition comprising a binder, a solvent, and viscoelastic particles.
The present invention 2 is the battery electrode or separator coating film composition of the present invention 1 in which the viscoelastic modulus of the viscoelastic particles is lower than the viscoelastic modulus of the binder.
The present invention 3 is the battery electrode or separator coating film composition of the present invention 1 or 2, wherein the viscoelastic particles have shape anisotropy.
The present invention 4 is a battery electrode or separator having a coating film obtained by using the battery electrode or separator coating film composition of any one of the present inventions 1 to 3.
Invention 5 is a battery according to Invention 4, wherein the viscoelastic particles have shape anisotropy, and the longest axis of the viscoelastic particles is oriented in parallel to the shrinkage direction of the base material of the battery electrode or separator. It is an electrode or a separator.
The present invention 6 is a battery having the battery electrode and / or separator of the present invention 5.
 本発明により、カールの発生が抑えられ、高い耐熱性を有する電池電極又はセパレーターコーティング膜が得られる、電池電極又はセパレーターコーティング膜組成物が提供される。本発明のコーティング膜を有する電池電極又はセパレーターを電池に用いることで、事故による電池の圧壊や導電性の異物の混入や熱暴走等によるセパレーターの融解等に伴う正負極のショートを防ぐことができる。 According to the present invention, there is provided a battery electrode or separator coating film composition in which curling is suppressed and a battery electrode or separator coating film having high heat resistance is obtained. By using the battery electrode or separator having the coating film of the present invention for the battery, it is possible to prevent the positive and negative electrodes from being short-circuited due to the battery crushing due to an accident, mixing of conductive foreign matters, melting of the separator due to thermal runaway, etc. .
 また、本発明のコーティング膜が、電極又はセパレーター表面の電解液の保持層や電解液中のイオンの脱溶媒和層となる事でイオン伝導抵抗を低減させるため、ハイレートで充電及び放電でき、長期間多サイクル充電及び放電した後や、充電した状態で高温放置されたときの電池特性の劣化を防ぐことができるという効果を奏する。よって、本発明の電池は、耐熱性が高く、内部抵抗が低く、充電及び放電サイクル特性に優れ、充電及び放電容量が大きく、長期間多サイクル充電及び放電した後の活物質層の劣化が小さく、長寿命である。 In addition, since the coating film of the present invention becomes an electrolyte holding layer on the electrode or separator surface or a desolvation layer of ions in the electrolyte, the ion conduction resistance is reduced. There is an effect that it is possible to prevent the deterioration of the battery characteristics after the multi-cycle charge and discharge for a period of time or when the battery is left at a high temperature in the charged state. Therefore, the battery of the present invention has high heat resistance, low internal resistance, excellent charge and discharge cycle characteristics, large charge and discharge capacity, and small deterioration of the active material layer after long-term multicycle charge and discharge. Long life.
 一方、カールの発生を抑える方法として、結着剤の粘弾性率を低くする方法もある。しかし、結着剤は粒子間を結着することにより多孔質構造を保持している構造を有する。そのため、結着剤の応力緩和能は、粒子に応力を緩和する機能をつけた場合に比べて、相対的に弱くなるし、耐熱性も低くなる。これに対して、粘弾性粒子を用いた本発明の方法は、粘弾性粒子の変形量以上には粘弾性粒子が変形しにくくなるので、結着剤の粘弾性率を下げる方法に比べて、カールの発生が抑えられ、かつ耐熱性が高いコーティング膜を得ることができる。
 また、本発明のコーティング膜は、多孔質構造にイオン伝導性を有する固体やゲルを含浸させることで、固体電解質膜やゲル電解質膜として用いることもできる。
On the other hand, as a method of suppressing the occurrence of curling, there is a method of lowering the viscoelastic modulus of the binder. However, the binder has a structure in which a porous structure is maintained by binding particles. Therefore, the stress relaxation ability of the binder is relatively weaker and the heat resistance is lower than when the particles are provided with a function of relaxing stress. On the other hand, the method of the present invention using viscoelastic particles makes it difficult for the viscoelastic particles to be deformed beyond the deformation amount of the viscoelastic particles, so compared to the method of reducing the viscoelastic modulus of the binder, It is possible to obtain a coating film in which the occurrence of curling is suppressed and the heat resistance is high.
The coating film of the present invention can also be used as a solid electrolyte film or a gel electrolyte film by impregnating a porous structure with a solid or gel having ion conductivity.
図1は、電池電極又はセパレーターコーティング膜を有する電池用電極の断面図である。FIG. 1 is a cross-sectional view of a battery electrode having a battery electrode or a separator coating film. 図2は、電池電極又はセパレーターコーティング膜を有するセパレーターの断面図である。FIG. 2 is a cross-sectional view of a separator having a battery electrode or a separator coating film. 図3は、実施例8のコーティング膜を有するセパレーターの光学顕微鏡写真である。矢印は基材の搬送方向を示す。FIG. 3 is an optical micrograph of a separator having the coating film of Example 8. Arrows indicate the conveyance direction of the substrate.
 電池電極又はセパレーターコーティング膜組成物は、(1)粘弾性粒子、(2)結着剤、及び(3)溶媒を有する。 The battery electrode or separator coating film composition has (1) viscoelastic particles, (2) a binder, and (3) a solvent.
[粘弾性粒子]
 本発明の(1)粘弾性粒子について説明する。本発明において、「粘弾性粒子」とは、応力に対して不可逆的に塑性変形する性質と、可逆的に弾性的に変形する性質とを有する粒子である。電池電極又はセパレーターコーティング膜組成物が粘弾性粒子を含むことで、コーティング膜において、該粒子が不可逆的に変形することができ、得られるコーティング膜の粘弾性率が下がる。これにより、電池電極又はセパレーター基材との応力を低減させることができる。電池の製造においてグラビアコーターなどを用い、ロールトゥロールで塗工する際は、基材に張力をかけた状態で塗工し、乾燥させながら巻き取る。この巻き取られた基材を後の工程で切り出すと、塗工時の張力が開放されため、カールの原因にもなっていた。コーティング膜中の粘弾性粒子が基材との応力を緩和することでカールの発生を低減できるため、ロールトゥロールの手段により電池を製造する場合であっても、ハンドリング性が良く、またしわの発生が抑えられる。これにより、高品位な電池を提供できる。
[Viscoelastic particles]
The (1) viscoelastic particles of the present invention will be described. In the present invention, the “viscoelastic particle” is a particle having a property of irreversibly plastically deforming with respect to stress and a property of reversibly elastically deforming. When the battery electrode or the separator coating film composition contains viscoelastic particles, the particles can be irreversibly deformed in the coating film, and the viscoelastic modulus of the resulting coating film is lowered. Thereby, the stress with a battery electrode or a separator base material can be reduced. When using a gravure coater or the like in the production of a battery and applying with roll-to-roll, the base material is applied with tension applied and wound while being dried. When the wound base material is cut out in a later process, the tension at the time of coating is released, which causes curling. Since the viscoelastic particles in the coating film can reduce the occurrence of curling by relieving the stress with the base material, it is easy to handle even when manufacturing batteries by means of roll-to-roll. Occurrence is suppressed. Thereby, a high quality battery can be provided.
 粘弾性粒子の材質として、各種ポリマー例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリアセタール、ポリフェニレンスルフィド、液晶ポリマー、ポリ塩化ビニル、セルロイド、ポリビニルアルコール、ポリエステル、ポリ酢酸ビニル、ポリエチレングリコール構造を有する高分子、カーボネート基を有する高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、ポリイソプレン、クロロプレンゴム、アクリルゴム、シアノ基を有する高分子、ウレタンゴム、エチレンプロピレンゴム、エピクロルヒドリンゴム、ブタジエンゴム、フッ素ゴム、エチレン-ビニルアルコール共重合体、アクリル-ビニルアルコール共重合体、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂、アクリル樹脂、多糖類、ポリイミド、ポリアミドイミド、シリコーン、カルボニル基を有する高分子(例えば、β-ジケトン構造を有する高分子)及びこれらの共重合体が例示できる。 As the material of the viscoelastic particles, various polymers such as polyethylene, polypropylene, polystyrene, polycarbonate, polyacetal, polyphenylene sulfide, liquid crystal polymer, polyvinyl chloride, celluloid, polyvinyl alcohol, polyester, polyvinyl acetate, a polymer having a polyethylene glycol structure, Polymer having carbonate group, polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, polyisoprene, chloroprene rubber, acrylic rubber, polymer having cyano group, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, butadiene rubber, Fluoro rubber, ethylene-vinyl alcohol copolymer, acrylic-vinyl alcohol copolymer, epoxy resin, oxetane resin, urethane resin , Acrylic resins, polysaccharides, polyimide, polyamide-imide, silicone, polymer having a carbonyl group (e.g., a polymer having a β- diketone structure) and copolymers thereof can be exemplified.
 シアノ基を有する高分子誘導体として、具体的には、シアノエチル化ビニルアルコール、シアノエチル化カルボキシメチルセルロース、シアノエチル化プルラン、シアノエチル化セルロース、シアノエチル化澱粉、シアノエチル化エステル化澱粉、シアノエチル化デキストリン、シアノエチル化コラーゲン、及びニトリルゴム等が例示できる。ポリエチレングリコール構造を有する高分子誘導体として、具体的には、ポリエチレングリコールアクリル酸アミドスチレン共重合体、ポリエチレングリコールポリ乳酸共重合体、ポリエチレングリコール鎖をペンダントしたポリビニルアルコール等が例示できる。カルボニル基を有する高分子の例として、日本酢ビ・ポバール製;Dポリマー(カルボニル基を有するPVA)、クラレ株式会社製;イソバンなどを例示できる。β-ジケトン構造を有する高分子として、具体的には、アセト酢酸アリル等のβ-ジケトン構造を有するビニル化合物とアクリル酸エステルとをラジカル共重合することで作製できるβ-ジケトン構造を有するポリアクリルエステル共重合体や更に酢酸ビニルと共重合したポリビニルアルコール等が例示できる。カーボネート基を有する高分子として、具体的には、ポリカーボネート、CO-philic Co-polymer(CO親媒性コポリマー)等が例示できる。粘弾性粒子の材質として、ウレタン樹脂及びポリエチレンが好ましい。 As the polymer derivative having a cyano group, specifically, cyanoethylated vinyl alcohol, cyanoethylated carboxymethylcellulose, cyanoethylated pullulan, cyanoethylated cellulose, cyanoethylated starch, cyanoethylated esterified starch, cyanoethylated dextrin, cyanoethylated collagen, And nitrile rubber and the like. Specific examples of the polymer derivative having a polyethylene glycol structure include a polyethylene glycol acrylic acid amide styrene copolymer, a polyethylene glycol polylactic acid copolymer, and polyvinyl alcohol pendant with a polyethylene glycol chain. As an example of a polymer having a carbonyl group, there can be illustrated, for example, Nippon Polyvinyl acetate, PVA; D polymer (PVA having a carbonyl group); As a polymer having a β-diketone structure, specifically, a polyacrylic compound having a β-diketone structure that can be prepared by radical copolymerization of a vinyl compound having a β-diketone structure such as allyl acetoacetate and an acrylate ester. Examples thereof include ester copolymers and polyvinyl alcohol copolymerized with vinyl acetate. Specific examples of the polymer having a carbonate group include polycarbonate and CO 2 -philic Co-polymer (CO 2 amphiphilic copolymer). As the material of the viscoelastic particles, urethane resin and polyethylene are preferable.
 粘弾性粒子は、単独で用いてもよく、また複数の組合せで用いてもよい。また、粘弾性粒子は分散媒(例えば、水)に分散した分散液の状態であってもよい。 Viscoelastic particles may be used singly or in combination. The viscoelastic particles may be in the form of a dispersion dispersed in a dispersion medium (for example, water).
 粘弾性粒子の平均粒子径は0.001~100μmの範囲が好ましく、0.01~50μmの範囲であるのがより好ましく、0.05~10μmの範囲であるのが更に好ましい。コーティング膜の空隙率をより高くできることから、粘弾性粒子の粒度分布は狭いものが好ましい。すなわち、粘弾性粒子の平均粒子径に対して、その1/5倍をA、その5倍をBとしたとき、A~Bの範囲の粒子径を有する粒子が、粘弾性粒子の80体積%以上あることが好ましく、90体積%以上あることがより好ましい。平均粒子径及び粒度分布は、例えばレーザー回折/散乱式粒度分布測定装置で測定でき、具体的には株式会社堀場製作所製LA-920等を用いることができる。粘弾性粒子は、各種公知の方法で生産でき、粉砕したり、乳化重合したり、再結晶させたり、噴霧したり、強制薄膜マイクロリアクターを用いたりして作製できる。 The average particle diameter of the viscoelastic particles is preferably in the range of 0.001 to 100 μm, more preferably in the range of 0.01 to 50 μm, and still more preferably in the range of 0.05 to 10 μm. Since the porosity of the coating film can be further increased, it is preferable that the particle size distribution of the viscoelastic particles is narrow. That is, when the average particle diameter of viscoelastic particles is 1/5 times A and 5 times B, particles having a particle diameter in the range of A to B are 80% by volume of viscoelastic particles. It is preferable that the amount is 90% by volume or more. The average particle size and particle size distribution can be measured by, for example, a laser diffraction / scattering particle size distribution measuring apparatus, and specifically, LA-920 manufactured by Horiba, Ltd. can be used. Viscoelastic particles can be produced by various known methods, and can be produced by pulverization, emulsion polymerization, recrystallization, spraying, or using a forced thin film microreactor.
 粘弾性粒子の形状は、特に限定されない。粘弾性粒子は、形状等方性又は形状異方性を有する粘弾性粒子が挙げられる。本発明において、粘弾性粒子は形状異方性を有するのが好ましい。 The shape of the viscoelastic particles is not particularly limited. Examples of the viscoelastic particles include viscoelastic particles having shape isotropy or shape anisotropy. In the present invention, the viscoelastic particles preferably have shape anisotropy.
 粘弾性粒子が形状異方性を有する場合、形状異方性がある粘弾性粒子を含む電極電池又はセパレーターコーティング膜組成物を電池電極又はセパレーターの基材に塗工する際に、塗工時のせん断力で、塗工の流れ方向に形状異方性がある粘弾性粒子を配向させることができる。また、磁場や電場などを印加して、電池電極又はセパレーターの基材の収縮方向に対して、粘弾性粒子の最長軸が平行になるように配向させることができる。これにより、該粒子の変形に伴う応力緩和能をより高めることができると共に、コート層中の細孔を配向させることができ、電池特性をより向上させることができる。 When the viscoelastic particles have shape anisotropy, when the electrode battery or separator coating film composition containing the viscoelastic particles having shape anisotropy is applied to the battery electrode or separator substrate, The shearing force can orient viscoelastic particles having shape anisotropy in the coating flow direction. Further, by applying a magnetic field, an electric field or the like, the viscoelastic particles can be oriented so that the longest axis is parallel to the contraction direction of the battery electrode or the separator substrate. Thereby, while being able to improve the stress relaxation ability accompanying deformation | transformation of this particle | grain, the pore in a coating layer can be orientated and a battery characteristic can be improved more.
 形状等方性を有する粘弾性粒子の形状として、立方体状、球状等が挙げられる。形状異方性を有する粘弾性粒子の形状として、扁平な形状(例えば、直方体である板状)、繊維状、折れ曲がった繊維状、コイル状等が挙げられる。セパレーターに収縮しやすい方向がある場合、収縮応力を緩和するのに有効な方向に粘弾性粒子を配向させて用いることができる。扁平な形状の粘弾性粒子の内、板状の粘弾性粒子は、粒子をタッピングしてつぶしたり、繊維を薄くスライスしたり、自己組織化で板状になるようにする等で作製することができる。繊維状粒子は、紡糸した高分子を短く切ったり、エレクトロスピニング法で作製することができる。この繊維状粒子を短く切ったり、エレクトロスピニング法で紡糸する際電場をオンオフすることで短い繊維を作ったりすることで、形状異方性がある粒子として利用できる短繊維を作製することができる。 Examples of the shape of the viscoelastic particles having isotropy include a cubic shape and a spherical shape. Examples of the shape of the viscoelastic particles having shape anisotropy include a flat shape (for example, a plate shape which is a rectangular parallelepiped), a fiber shape, a bent fiber shape, and a coil shape. When the separator has a direction that tends to shrink, the viscoelastic particles can be oriented in a direction effective to relieve the shrinkage stress. Of the viscoelastic particles of flat shape, plate-like viscoelastic particles can be prepared by tapping and crushing the particles, thinly slicing the fibers, or making it plate-like by self-organization. it can. The fibrous particles can be produced by cutting a spun polymer shortly or by an electrospinning method. Short fibers that can be used as particles having shape anisotropy can be produced by cutting the fibrous particles into short pieces or making short fibers by turning on and off the electric field when spinning by the electrospinning method.
 粘弾性粒子の弾性変形する性質の程度は、下記測定方法1により求められる弾性率:h3で表すことができる。本発明において粘弾性粒子のh3が、0.95以下であるのが好ましく、0.9以下であるのがより好ましい。また、粘弾性粒子のh3は、特に限定されないが、0.5以上であることができ、0.6以上であるのが好ましい。粘弾性粒子の塑性変形する性質の程度は、下記測定方法2により求められる塑性変形率:h6で表すことができる。本発明においてh6が、0.85以下であるのが好ましく、0.75以下であるのが好ましいし。また、粘弾性粒子のh6は、特に限定されないが、0.5以上であるのが好ましく、0.6以上であるのがより好ましい。粘弾性粒子のh3及びh6が、前記上限値以下であれば、応力緩和能が高くなり有効にカールを抑えることができる。粘弾性粒子のh3及びh6が前記下限値以上であれば、耐熱性がより向上する。h3及びh6は、いずれも変形のし易さを示すパラメーターであり、どちらも数値が小さいほうが変形しやすい。よって、h3及びh6がより小さい場合、カールはより抑えられる。しかし、弾性変形による変形は、変形応力が残る。一方、塑性変形による変形は、変形応力が残らない。ここで、変形応力はカールを生じうる力となる。したがって、塑性変形率:h6が小さいほうが、弾性変形率:h3が小さい場合に比べて、カールの発生がより抑えられる。 The degree of elastic deformation of the viscoelastic particles can be expressed by an elastic modulus h3 determined by the following measurement method 1. In the present invention, h3 of the viscoelastic particles is preferably 0.95 or less, and more preferably 0.9 or less. The h3 of the viscoelastic particles is not particularly limited, but can be 0.5 or more, and preferably 0.6 or more. The degree of plastic deformation of the viscoelastic particles can be expressed by the plastic deformation rate h6 determined by the following measurement method 2. In the present invention, h6 is preferably 0.85 or less, and more preferably 0.75 or less. Further, h6 of the viscoelastic particles is not particularly limited, but is preferably 0.5 or more, and more preferably 0.6 or more. If h3 and h6 of the viscoelastic particles are equal to or less than the upper limit value, the stress relaxation ability is increased and curling can be effectively suppressed. If h3 and h6 of the viscoelastic particles are equal to or higher than the lower limit, the heat resistance is further improved. h3 and h6 are both parameters indicating ease of deformation, and both of them are easier to deform when the numerical value is smaller. Therefore, when h3 and h6 are smaller, curling is further suppressed. However, deformation due to elastic deformation leaves deformation stress. On the other hand, deformation due to plastic deformation does not leave deformation stress. Here, the deformation stress is a force that can cause curling. Therefore, the smaller the plastic deformation rate: h6, the more curling can be suppressed compared to the case where the elastic deformation rate: h3 is small.
[測定方法1]
 (1)試験粒子を得る工程、(2)内径10mm、外径110mm、高さ150mmのアクリル製の筒に工程(1)で得られた試験粒子を高さ100mmになるように詰め、外径10mm、長さ200mmの鉄製の棒をオートグラフを用いて押し込む工程、(3)1kgfで押し込んだときの高さh1とその後押し込む力を緩め0.5kgfで押し込んだときの高さh2を測定する工程、(4)h1/h2=h3により、粘弾性粒子の弾性率:h3を求める工程。
[Measurement method 1]
(1) Step of obtaining test particles, (2) Packing the test particles obtained in step (1) into an acrylic cylinder having an inner diameter of 10 mm, an outer diameter of 110 mm, and a height of 150 mm so as to have a height of 100 mm. Step of pushing in an iron bar having a length of 10 mm and a length of 200 mm using an autograph, (3) Measuring height h1 when pushed in with 1 kgf and height h2 when pushing in with 0.5 kgf after loosening the pushing force. Step (4) A step of obtaining the elastic modulus h3 of the viscoelastic particles by h1 / h2 = h3.
[測定方法2]
 (1)試験粒子を得る工程、(2)内径10mm、外径110mm、高さ150mmのアクリル製の筒に試験粒子を高さ100mmになるように詰め、外径10mm、長さ200mmの鉄製の棒をオートグラフを用いて押し込む工程、(3)1kgfの加重をかけた後、荷重を0.5kgfまで戻したときの高さh4を求め、次いで鉄製の棒を100kgfで押し込んだ後、荷重を0.5kgfまで戻したときの高さh5を求める。(4)h5/h4=h6により、粘弾性粒子の塑性変形率:h6を求める工程。
[Measurement method 2]
(1) Step of obtaining test particles, (2) Packing of test particles into an acrylic cylinder having an inner diameter of 10 mm, an outer diameter of 110 mm, and a height of 150 mm so that the height is 100 mm, and made of iron having an outer diameter of 10 mm and a length of 200 mm Step of pushing the bar using an autograph, (3) After applying a weight of 1 kgf, obtain the height h4 when the load is returned to 0.5 kgf, then push the iron bar with 100 kgf, The height h5 when returned to 0.5 kgf is obtained. (4) A step of obtaining a plastic deformation rate: h6 of the viscoelastic particles by h5 / h4 = h6.
 なお、粘弾性粒子の平均粒子径が50μm以上である場合は、試験対象の粘弾性粒子を、目開き50μmの篩で篩い、試験粒子とする。また、目詰まりしやすい粒子は、水分散体にしてろ過することにより、試験粒子とする。 When the average particle diameter of the viscoelastic particles is 50 μm or more, the test object viscoelastic particles are sieved with a sieve having an opening of 50 μm to obtain test particles. In addition, particles that are likely to be clogged are made into test particles by filtering in an aqueous dispersion.
 粘弾性粒子の含有量は、溶媒を除いたコーティング膜組成物に含まれる成分のうちの0.1~99.9重量%以上であり、好ましくは0.5~99.5重量%、より好ましくは1~99重量%である。このような範囲であれば、粘弾性粒子の変形や低弾性率化に伴う応力緩和能が高くなり有効にカールを抑えることができる。なお、溶媒には、後述する結着剤のための溶媒、及び粘弾性粒子が分散液の形態である場合の分散媒が含まれる。 The content of viscoelastic particles is 0.1 to 99.9% by weight or more of the components contained in the coating film composition excluding the solvent, preferably 0.5 to 99.5% by weight, more preferably Is from 1 to 99% by weight. If it is such a range, the stress relaxation ability accompanying deformation | transformation of a viscoelastic particle and low elastic modulus will become high, and it can suppress curl effectively. The solvent includes a solvent for a binder described later and a dispersion medium when the viscoelastic particles are in the form of a dispersion.
[結着剤]
 本発明の(2)結着剤について説明する。本発明の電池電極又はセパレーターコーティング膜組成物は、結着剤を含む。結着剤として、固体(例えば、粒子状)の結着剤又は液体の結着剤が挙げられる。結着剤は、溶媒に分散した状態、溶媒に溶解した状態、又は溶媒に分散した状態及び溶媒に溶解した状態であることもできる。
[Binder]
The (2) binder of the present invention will be described. The battery electrode or separator coating film composition of the present invention contains a binder. Examples of the binder include a solid (for example, particulate) binder or a liquid binder. The binder can be in a state dispersed in a solvent, a state dissolved in a solvent, a state dispersed in a solvent, and a state dissolved in a solvent.
[固体の結着剤]
 固体の結着剤としては、各種公知の固体の結着剤を用いることができる。固体の結着剤として、熱可塑性の有機物の粒子、有機物の結晶、及び熱融着時に架橋する有機物の粒子が挙げられる。固体の結着剤の平均粒子径は特に限定されず、0.01~500μmとすることができる。また、固体の結着剤には、応力に対して不可逆的に塑性変形する性質と、可逆的に弾性的に変形する性質とを有する粒子(すなわち、粘弾性粒子)は含まれない。
[Solid binder]
Various known solid binders can be used as the solid binder. Examples of the solid binder include thermoplastic organic particles, organic crystals, and organic particles that crosslink during heat fusion. The average particle size of the solid binder is not particularly limited, and can be 0.01 to 500 μm. Further, the solid binder does not include particles (that is, viscoelastic particles) having a property of plastically irreversibly with respect to stress and a property of elastically deforming reversibly.
 熱可塑性の有機物の粒子は、ホットメルトで粒子を熱融着させることで結着させることができるものであれば特に限定されず、熱可塑性の高分子の粒子が挙げられる。 The thermoplastic organic particles are not particularly limited as long as they can be bonded by hot-melting the particles with a hot melt, and examples thereof include thermoplastic polymer particles.
 熱可塑性の高分子として、粘弾性粒子の材質が例示できる。熱可塑性の有機物の粒子は、単独で用いてもよく、また複数の組合せで用いてもよい。熱可塑性の有機物の粒子として、イオンと相互作用しやすく、イオン伝導の観点で、シアノ基を有する高分子誘導体の粒子、ポリエチレングリコール構造を有する高分子誘導体の粒子、カルボニル基を有する高分子誘導体の粒子(好ましくは、β-ジケトン構造を有する高分子の粒子)、及びカーボネート基を有する高分子の粒子が好ましく、シアノ基を有する高分子誘導体の粒子、ポリエチレングリコール構造を有する高分子の粒子、及びカーボネート基を有する高分子の粒子がより好ましい。 Examples of thermoplastic polymers include viscoelastic particle materials. The thermoplastic organic particles may be used alone or in combination of two or more. As thermoplastic organic particles, polymer derivative particles having a cyano group, polymer derivative particles having a polyethylene glycol structure, and polymer derivatives having a carbonyl group are easy to interact with ions and from the viewpoint of ion conduction. Particles (preferably, polymer particles having a β-diketone structure), and polymer particles having a carbonate group are preferable, particles of a polymer derivative having a cyano group, particles of a polymer having a polyethylene glycol structure, and Polymer particles having a carbonate group are more preferable.
 熱可塑性の有機物の粒子は、-40~300℃の範囲に融点や軟化点を有する程度に分子量や架橋密度を調整できる。 Thermoplastic organic particles can be adjusted in molecular weight and crosslinking density to such an extent that they have a melting point and softening point in the range of -40 to 300 ° C.
 熱可塑性の有機物の粒子は、乾燥粉末として用いることもできるし、界面活性剤や水溶性高分子による保護コロイド粒子にすることで水性エマルジョンとして用いることもできる。また、融点を調整する目的で、更にエチレングリコール、グリセリン、ジエチレングリコール、N-メチルピロリドン、ジメチルスルホキシド、及びイソホロンなどの沸点が80℃以上の高沸点溶媒を加えたものを用いることもできる。 The thermoplastic organic particles can be used as a dry powder, or can be used as an aqueous emulsion by forming protective colloid particles using a surfactant or a water-soluble polymer. Further, for the purpose of adjusting the melting point, it is also possible to use a solvent with a high boiling point solvent having a boiling point of 80 ° C. or higher, such as ethylene glycol, glycerin, diethylene glycol, N-methylpyrrolidone, dimethyl sulfoxide, and isophorone.
[有機物の結晶]
 有機物の結晶としては、ヒドラジド結晶、酸無水物結晶、アミン結晶、イミダゾール結晶、及びトリアジン結晶やこれらの混晶が例示できる。有機物の結晶の融点は、40℃以上であるのが好ましく、50~300℃であるのがより好ましい。
[Organic crystals]
Examples of organic crystals include hydrazide crystals, acid anhydride crystals, amine crystals, imidazole crystals, triazine crystals, and mixed crystals thereof. The melting point of the organic crystal is preferably 40 ° C. or higher, more preferably 50 to 300 ° C.
 ヒドラジド結晶として、アジピン酸ジヒドラジド(融点177~180℃)、1,3-ビス(ヒドラジンカルボノエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)等が例示できる。酸無水物結晶として、無水マレイン酸(融点53℃)、無水フタル酸(融点131℃)、無水ピロメリット酸(融点286℃)等が例示できる。アミン結晶として、尿素(融点132℃)、ジシアンジアミド(融点208℃)等が例示できる。イミダゾール結晶として、イミダゾール(融点89~91℃)、2-メチルイミダゾール(融点140~148℃)、フェニルイミダゾール(融点174~184℃)等が例示できる。トリアジン結晶として、2,4-ジアミノ-6-ビニル-S-トリアジン(融点240℃)、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン(融点170℃)等が例示できる。有機物の結晶は、融点や軟化点を調整する目的で2種類以上を混ぜて固溶体にして用いることもできる。 As hydrazide crystals, adipic acid dihydrazide (melting point: 177 to 180 ° C.), 1,3-bis (hydrazinecarbonoethyl) -5-isopropylhydantoin (melting point: 120 ° C.), 7,11-octadecadien-1,18-di Examples thereof include carbohydrazide (melting point: 160 ° C.). Examples of acid anhydride crystals include maleic anhydride (melting point 53 ° C.), phthalic anhydride (melting point 131 ° C.), pyromellitic anhydride (melting point 286 ° C.), and the like. Examples of amine crystals include urea (melting point: 132 ° C.) and dicyandiamide (melting point: 208 ° C.). Examples of imidazole crystals include imidazole (melting point 89 to 91 ° C.), 2-methylimidazole (melting point 140 to 148 ° C.), phenyl imidazole (melting point 174 to 184 ° C.), and the like. Examples of triazine crystals include 2,4-diamino-6-vinyl-S-triazine (melting point 240 ° C.), 2,4-diamino-6-methacryloyloxyethyl-S-triazine (melting point 170 ° C.), and the like. Organic crystals can be used in the form of a solid solution by mixing two or more kinds for the purpose of adjusting the melting point and the softening point.
[熱融着時に架橋する有機物の粒子]
 熱融着時に架橋する有機物の粒子は、各種公知の潜在性硬化型の固形樹脂の粒子である。潜在性硬化型の固形樹脂として、エポキシ樹脂、エポキシ樹脂とオキシラン化合物との混合物、(メタ)アクリル酸エステル、及び活性水素基を有するプレポリマーが挙げられる。よって、熱融着時に架橋する有機物の粒子として、固形のエポキシ樹脂に潜在性の熱開始剤を配合した粒子;固形のエポキシ樹脂とオキシラン化合物との混合物に潜在性の熱開始剤を配合した粒子;固形の(メタ)アクリル酸エステルと、硬化剤又は開始剤とを含む系である粒子;並びに、活性水素基を有するプレポリマーと架橋剤との組み合わせである粒子;が挙げられる。本発明において、(メタ)アクリル酸エステルとは、アクリル酸エステル及びメタクリル酸エステルを示す。
[Organic particles that crosslink during thermal fusion]
The organic particles that are crosslinked at the time of heat fusion are various known latent curable solid resin particles. Examples of latent curable solid resins include epoxy resins, mixtures of epoxy resins and oxirane compounds, (meth) acrylic acid esters, and prepolymers having active hydrogen groups. Therefore, as a particle of an organic substance that crosslinks at the time of heat fusion, a particle in which a latent thermal initiator is blended with a solid epoxy resin; a particle in which a latent thermal initiator is blended in a mixture of a solid epoxy resin and an oxirane compound Particles that are a system containing a solid (meth) acrylic acid ester and a curing agent or an initiator; and particles that are a combination of a prepolymer having an active hydrogen group and a crosslinking agent. In the present invention, (meth) acrylic acid ester refers to acrylic acid ester and methacrylic acid ester.
 固形のエポキシ樹脂としては、DIC株式会社製;EPICLON 1050(軟化点64~74℃のビスフェノールA型エポキシ樹脂)、DIC株式会社製;EPICLON N-660(軟化点62~70℃のクレゾールノボラック型エポキシ樹脂)、DIC株式会社製;EPICLON N-770(軟化点65~75℃のフェノールノボラック型エポキシ樹脂)、DIC株式会社製;HP-7200HH(軟化点88~98℃のジシクロペンタジエン型エポキシ樹脂)、DIC株式会社製;EPICLON HP-4700(軟化点85~95℃のナフタレン型エポキシ樹脂)、ナガセケムテックス株式会社製;EX-721(融点94~96℃の単官能固形エポキシフタルイミド骨格)、ナガセケムテックス株式会社製;EX-171(融点40℃のラウリルアルコール(EO)15グリシジルエーテル)等が例示できる。なお、本明細書において、「EO」はエチレンオキシドをいい、「PO」はプロピレンオキシドをいう。 As a solid epoxy resin, manufactured by DIC Corporation; EPICLON 1050 (bisphenol A type epoxy resin having a softening point of 64 to 74 ° C.), manufactured by DIC Corporation; EPICLON N-660 (cresol novolac type epoxy having a softening point of 62 to 70 ° C. Resin), manufactured by DIC Corporation; EPICLON N-770 (phenol novolac type epoxy resin having a softening point of 65 to 75 ° C.), manufactured by DIC Corporation; HP-7200HH (dicyclopentadiene type epoxy resin having a softening point of 88 to 98 ° C.) EPICLON HP-4700 (a naphthalene type epoxy resin having a softening point of 85 to 95 ° C.), manufactured by Nagase ChemteX Corporation; EX-721 (a monofunctional solid epoxy phthalimide skeleton having a melting point of 94 to 96 ° C.), Nagase Made by Chemtex Co., Ltd .; EX- 71 (melting point 40 ° C. of lauryl alcohol (EO) 15 glycidyl ether) and the like. In the present specification, “EO” refers to ethylene oxide, and “PO” refers to propylene oxide.
 オキシラン化合物としては、オキセタン化合物が挙げられる。オキシラン化合物は、具体的には、3-エチル-3-ヒドロキシメチルオキセタン、3-(メタ)アリルオキシメチル-3-エチルオキセタン、(3-エチル-3-オキセタニルメトキシ)メチルベンゼン、4-フルオロ-[1-(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、4-メトキシ-[1-(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、[1-(3-エチル-3-オキセタニルメトキシ)エチル]フェニルエーテル、イソブトキシメチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニル(3-エチル-3-オキセタニルメチル)エーテル、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、エチルジエチレングリコール(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンタジエン(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニル(3-エチル-3-オキセタニルメチル)エーテル、テトラヒドロフルフリル(3-エチル-3-オキセタニルメチル)エーテル、テトラブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-テトラブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、トリブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-トリブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、ブトキシエチル(3-エチル-3-オキセタニルメチル)エーテル、ペンタクロロフェニル(3-エチル-3-オキセタニルメチル)エーテル、ペンタブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、ボルニル(3-エチル-3-オキセタニルメチル)エーテル、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、3,3’-(1,3-(2-メチレニル)プロパンジイルビス(オキシメチレン))ビス-(3-エチルオキセタン)、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリコースビス(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレン(3-エチル-3-オキセタニルメチル)エーテル、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、ペンタエリスリトールトリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ポリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールヘキサス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールヘキサス(3-エチル-3-オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールペンタキス(3-エチル-3-オキセタニルメチル)エーテル、ジトリメチロールプロパンテトラキス(3-エチル-3-オキセタニルメチル)エーテル、EO変性ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、PO変性ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、EO変性水添ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、PO変性水添ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、EO変性ビスフェノールF(3-エチル-3-オキセタニルメチル)エーテル、オキセタニルシルセスキオキサン等が例示できる。 Examples of oxirane compounds include oxetane compounds. Specific examples of the oxirane compound include 3-ethyl-3-hydroxymethyloxetane, 3- (meth) allyloxymethyl-3-ethyloxetane, (3-ethyl-3-oxetanylmethoxy) methylbenzene, 4-fluoro- [1- (3-Ethyl-3-oxetanylmethoxy) methyl] benzene, 4-methoxy- [1- (3-ethyl-3-oxetanylmethoxy) methyl] benzene, [1- (3-ethyl-3-oxetanylmethoxy) ) Ethyl] phenyl ether, isobutoxymethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyl (3-ethyl-3-oxetanylmethyl) ether 2-ethylhexyl (3-ethyl-3-oxetanylmethyl) Ether, ethyldiethylene glycol (3-ethyl-3-oxetanylmethyl) ether, dicyclopentadiene (3-ethyl-3-oxetanylmethyl) ether, dicyclopentenyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, dicyclo Pentenyl (3-ethyl-3-oxetanylmethyl) ether, tetrahydrofurfuryl (3-ethyl-3-oxetanylmethyl) ether, tetrabromophenyl (3-ethyl-3-oxetanylmethyl) ether, 2-tetrabromophenoxyethyl ( 3-ethyl-3-oxetanylmethyl) ether, tribromophenyl (3-ethyl-3-oxetanylmethyl) ether, 2-tribromophenoxyethyl (3-ethyl-3-oxetanylmethyl) ether, Roxyethyl (3-ethyl-3-oxetanylmethyl) ether, 2-hydroxypropyl (3-ethyl-3-oxetanylmethyl) ether, butoxyethyl (3-ethyl-3-oxetanylmethyl) ether, pentachlorophenyl (3-ethyl- 3-oxetanylmethyl) ether, pentabromophenyl (3-ethyl-3-oxetanylmethyl) ether, bornyl (3-ethyl-3-oxetanylmethyl) ether, 3,7-bis (3-oxetanyl) -5-oxa- Nonane, 3,3 ′-(1,3- (2-methylenyl) propanediylbis (oxymethylene)) bis- (3-ethyloxetane), 1,4-bis [(3-ethyl-3-oxetanylmethoxy) Methyl] benzene, 1,2-bis [(3-ethyl-3-oxetanylmeth) Xyl) methyl] ethane, 1,3-bis [(3-ethyl-3-oxetanylmethoxy) methyl] propane, ethylene glycose bis (3-ethyl-3-oxetanylmethyl) ether, dicyclopentenyl bis (3-ethyl- 3-oxetanylmethyl) ether, triethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, tetraethyleneglycol bis (3-ethyl-3-oxetanylmethyl) ether, tricyclodecanediyldimethylene (3-ethyl- 3-oxetanylmethyl) ether, trimethylolpropane tris (3-ethyl-3-oxetanylmethyl) ether, 1,4-bis (3-ethyl-3-oxetanylmethoxy) butane, 1,6-bis (3-ethyl- 3-Oxetanylmethoxy) hexane, pen Erythritol tris (3-ethyl-3-oxetanylmethyl) ether, pentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether, polyethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol hexas ( 3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol pentakis (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether, caprolactone-modified dipentaerythritol hexa (3-ethyl-3-oxetanylmethyl) ether, caprolactone-modified dipentaerythritol pentakis (3-ethyl-3-oxetanylmethyl) ether, ditrimethylo Rupropanetetrakis (3-ethyl-3-oxetanylmethyl) ether, EO-modified bisphenol A bis (3-ethyl-3-oxetanylmethyl) ether, PO-modified bisphenol A bis (3-ethyl-3-oxetanylmethyl) ether, EO Modified hydrogenated bisphenol A bis (3-ethyl-3-oxetanylmethyl) ether, PO-modified hydrogenated bisphenol A bis (3-ethyl-3-oxetanylmethyl) ether, EO-modified bisphenol F (3-ethyl-3-oxetanylmethyl) ) Ether, oxetanylsilsesquioxane and the like.
 エポキシ樹脂やオキシラン化合物に対する潜在性の熱開始剤は、カチオン重合用触媒であり、ジフェニルヨードニウム・ヘキサフルオロホスフェート、ジフェニルヨードニウム・ヘキサフルオロアンチモネート、ジフェニルヨードニウム・テトラフルオロボレート、ジフェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウム・テトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、4-メトキシジフェニルヨードニウム・ヘキサフルオロホスフェート、ビス(4-メチルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(4-t-ブチルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウム・トリルクミルヨードニウムヘキサフルオロホスフェート等のヨードニウム塩;
トリアリルスルホニウムヘキサフルオロアンチモネートなどのスルホニウム塩;
トリフェニルピレニルメチルホスホニウム塩などのホスホニウム塩;
(η6-ベンゼン)(η5-シクロペンタジエニル)鉄(II)ヘキサフルオロアンチモネート;
o-ニトロベンジルシリルエーテルとアルミニウムアセチルアセトナートとの組み合わせ;
シルセスキオキサンとアルミニウムアセチルアセトナートとの組み合わせ;
等が例示できる。
Potential thermal initiators for epoxy resins and oxirane compounds are catalysts for cationic polymerization, such as diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluoro). Phenyl) borate, bis (dodecylphenyl) iodonium / hexafluorophosphate, bis (dodecylphenyl) iodonium / hexafluoroantimonate, bis (dodecylphenyl) iodonium / tetrafluoroborate, bis (dodecylphenyl) iodonium / tetrakis (pentafluorophenyl) ) Borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluo Phosphate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrafluoroborate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium / tetrakis (pentafluorophenyl) borate, 4-methoxydiphenyliodonium / hexafluorophosphate, bis (4-methylphenyl) iodonium / hexafluorophosphate, bis (4-t-butylphenyl) iodonium Hexafluorophosphates, iodonium salts such as bis (dodecylphenyl) iodonium, tolylcumyl iodonium hexafluorophosphate;
Sulfonium salts such as triallylsulfonium hexafluoroantimonate;
Phosphonium salts such as triphenylpyrenylmethylphosphonium salts;
(Η6-benzene) (η5-cyclopentadienyl) iron (II) hexafluoroantimonate;
a combination of o-nitrobenzylsilyl ether and aluminum acetylacetonate;
A combination of silsesquioxane and aluminum acetylacetonate;
Etc. can be illustrated.
 熱開始剤の配合量は、固形のエポキシ樹脂又は前記固形のエポキシ樹脂とオキシラン化合物との混合物100重量部に対して、0.001~50重量部であるのが好ましく、0.01~20重量部であるのがより好ましく、0.1~10重量部であるのが更に好ましい。 The amount of the thermal initiator is preferably 0.001 to 50 parts by weight, preferably 0.01 to 20 parts by weight, based on 100 parts by weight of the solid epoxy resin or the mixture of the solid epoxy resin and the oxirane compound. More preferably, the amount is 0.1 to 10 parts by weight.
 固形のエポキシ樹脂に潜在性の熱開始剤を配合したもの、及び固形のエポキシ樹脂とオキシラン化合物との混合物に潜在性の熱開始剤を配合したものは、更にカルボン酸、カルボン酸無水物、アミン、及びヒドラジド等の硬化剤粒子を含有させてもよい。これにより、熱融着時に架橋反応を進行させることもできる。硬化剤粒子を配合することで、熱融着と同時に架橋反応を進行させることができ、互いに連続相になりかつ架橋された構造を得ることができる。硬化剤の配合量は、後述する固形のプレポリマー粒子100重量部に対して、1~500重量部であるのが好ましく、より好ましくは2~200重量部である。 Solid epoxy resin blended with latent thermal initiator, and solid epoxy resin and oxirane compound blended with latent thermal initiator, carboxylic acid, carboxylic anhydride, amine , And hardener particles such as hydrazide. Thereby, a crosslinking reaction can also be advanced at the time of heat fusion. By blending the curing agent particles, the cross-linking reaction can proceed simultaneously with the heat fusion, so that a mutually cross-linked and cross-linked structure can be obtained. The blending amount of the curing agent is preferably 1 to 500 parts by weight, more preferably 2 to 200 parts by weight, based on 100 parts by weight of solid prepolymer particles described later.
 固形のエポキシ樹脂に潜在性の熱開始剤を配合したものである粒子、又は固形のエポキシ樹脂とオキシラン化合物との混合物に潜在性の熱開始剤を配合したものである粒子は、前記固形のエポキシ樹脂又は前記固形のエポキシ樹脂とオキシラン化合物との混合物、潜在性の熱開始剤、及び場合により配合される硬化剤を、混合して、次いで粉砕することにより、固形のプレポリマー粒子として製造することができる。また、固形のエポキシ樹脂の粒子又は前記固形のエポキシ樹脂とオキシラン化合物との混合物の粒子、開始剤粒子、及び硬化剤粒子を、混合することにより、固形のプレポリマー粒子として得てもよい。 Particles that are blended with a latent heat initiator in a solid epoxy resin, or particles that are blended with a latent heat initiator in a mixture of a solid epoxy resin and an oxirane compound are the solid epoxy resin. Producing solid prepolymer particles by mixing a resin or a mixture of the solid epoxy resin and oxirane compound, a latent thermal initiator, and optionally a curing agent, and then grinding. Can do. Alternatively, solid epoxy resin particles or particles of a mixture of the solid epoxy resin and the oxirane compound, initiator particles, and curing agent particles may be mixed to obtain solid prepolymer particles.
 固形の(メタ)アクリル酸エステルと、硬化剤又は開始剤とを含む系としては、熱硬化性の系として、メタクリル酸エステルと熱開始剤の混合物(EBECRYL 767(ダイセル・サイテック株式会社製):パーヘキサHC(日油株式会社製)=100:5混合物)が例示でき、光硬化性の系として、メタクリル酸エステルと光開始剤の混合物(EBECRYL 740-40TP(ダイセル・サイテック株式会社製):1-ヒドロキシ-シクロヘキシル-フェニル-ケトン=100:5)等が例示できる。 As a system including a solid (meth) acrylic acid ester and a curing agent or an initiator, a mixture of a methacrylic acid ester and a thermal initiator (EBECRYL 767 (manufactured by Daicel Cytec Co., Ltd.)) as a thermosetting system: Perhexa HC (manufactured by NOF Corporation) = 100: 5 mixture) can be exemplified, and as a photocurable system, a mixture of a methacrylic ester and a photoinitiator (EBECRYL 740-40TP (manufactured by Daicel Cytec Co., Ltd.): 1 -Hydroxy-cyclohexyl-phenyl-ketone = 100: 5) and the like.
 活性水素基を有するプレポリマーと架橋剤との組合せにおける架橋剤として、カルボン酸やカルボン酸無水物、金属キレート等が例示できる。活性水素基を有するプレポリマーと架橋剤との組合せとしては、ポリビニルアルコールとポリカルボン酸及びそれら誘導体との混合物、ポリビニルアルコールやその誘導体と金属キレートやアルコキシドとの混合物等、ホウ酸を例示することができる。ポリカルボン酸の例として、クエン酸、ブタンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、ヘキサヒドロフタル酸、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン(酸無水物)、グリセリンビスアンヒドロトリメリテートモノアセテート(酸無水物)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、エチレングリコールビスアンヒドロトリメリテート(酸無水物)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、エチレングリコールビスアンヒドロトリメリテート、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、アスパラギン酸、ピロメリット酸、メリト酸、含リンエステル基テトラカルボン酸、フェニルエチニルフタル酸、オキシジフタル酸、ポリアクリル酸、ポリメタクリル酸、及びその誘導体などを例示できる。中でも芳香族カルボン酸が反応性の観点で好ましく、カルボキシル基が1分子中に3以上有するものが反応性や架橋密度の観点で好ましい。また、例示したポリカルボン酸の内、酸無水物に相当するものを使用することもできる。金属キレートとしては、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンラクテートアンモニウム塩、チタンジイソプロポキシビス(トリエタノールアミネート)の様なチタンキレートやアルコキシド、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレートのようなジルコニウムキレートやアルコキシド、アルミニウムイソプロポキシドのようなアルミキレート、など各種公知の金属化合物を例示することができる。また、活性水素基を有するプレポリマーと架橋剤との組合せは、場合により前記の硬化剤及び熱開始剤を含有することができる。活性水素基を有するプレポリマーと架橋剤との組合せである粒子は、活性水素基を有するプレポリマー、架橋剤、並びに場合により存在する硬化剤及び開始剤を、混合する際に熱で反応しないように、これらに対する良溶媒中で混合し、薄くキャストして溶媒を室温で乾燥させたものを、冷却しながら粉砕することで製造でき熱融着時に架橋する有機物粒子型の結着剤として用いることができる。 Examples of the crosslinking agent in the combination of the prepolymer having an active hydrogen group and the crosslinking agent include carboxylic acid, carboxylic acid anhydride, and metal chelate. Examples of combinations of prepolymers having active hydrogen groups and crosslinking agents include boric acid such as a mixture of polyvinyl alcohol and polycarboxylic acid and derivatives thereof, a mixture of polyvinyl alcohol and derivatives thereof with metal chelates and alkoxides, and the like. Can do. Examples of polycarboxylic acids include citric acid, butanetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, hexahydrophthalic acid, 1,3,3a, 4,5,9b-hexahydro-5 (Tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2-c] furan-1,3-dione (anhydride), glycerin bisanhydro trimellitate monoacetate (anhydride), 3 , 3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, ethylene glycol bisanhydrotrimellitate (anhydride), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, ethylene glycol bisanhydro Trimellitate, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, bicyclo [2.2.1] heptane-2,3-di Carboxylic acid, aspartic acid, pyromellitic acid, mellitic acid, phosphorus-containing ester group tetracarboxylic acid, phenyl ethynyl phthalic acid, oxydiphthalic acid, polyacrylic acid, may be mentioned polymethyl methacrylate, and the like derivatives. Of these, aromatic carboxylic acids are preferable from the viewpoint of reactivity, and those having three or more carboxyl groups in one molecule are preferable from the viewpoint of reactivity and crosslinking density. In addition, among the exemplified polycarboxylic acids, those corresponding to acid anhydrides can also be used. As metal chelates, titanium tetraisopropoxide, titanium tetranormal butoxide, titanium diisopropoxy bis (acetylacetonate), titanium tetraacetylacetonate, titanium lactate ammonium salt, titanium diisopropoxy bis (triethanolaminate) Such as titanium chelates and alkoxides, zirconium tetranormal propoxide, zirconium tetraacetyl acetonate, zirconium dibutoxy bis (ethyl acetoacetate), zirconium tributoxy monostearate, such as zirconium chelates and alkoxides, aluminum isopropoxide Various known metal compounds such as aluminum chelate can be exemplified. Moreover, the combination of the prepolymer which has an active hydrogen group, and a crosslinking agent may contain the said hardening | curing agent and thermal initiator depending on the case. Particles that are a combination of a prepolymer having active hydrogen groups and a crosslinker will not react with heat when mixing the prepolymer having active hydrogen groups, the crosslinker, and any hardeners and initiators present. In addition, these are mixed in a good solvent, casted thinly and dried at room temperature, and can be produced by grinding while cooling and used as an organic particle type binder that crosslinks during thermal fusion. Can do.
 熱融着時に架橋する有機物粒子を結着剤として含む電極電池又はセパレーターコーティング膜組成物は、組成物をコートした後に、溶媒を蒸散させることで、組成物と電池電極又はセパレーターとを融着させると同時及び/又は融着後に、加熱やエネルギー線の照射によって架橋を進行させることができる。これにより、機械的強度に優れ耐熱性の高い保護膜が得られる。 An electrode battery or separator coating film composition containing organic particles that crosslink at the time of heat fusion as a binder, the composition and the battery electrode or separator are fused by evaporating the solvent after coating the composition. At the same time and / or after fusing, crosslinking can be advanced by heating or irradiation with energy rays. Thereby, a protective film having excellent mechanical strength and high heat resistance can be obtained.
[液状の結着剤]
 本発明の結着剤として液状の結着剤を使用することができる。
[Liquid binder]
A liquid binder can be used as the binder of the present invention.
 液状の結着剤としては、各種公知の液状の結着剤を用いることができる。液状の結着剤として、具体的には、液状のプレポリマーと開始剤との混合物;固形高分子物質を溶媒に溶かしたもの;ゾルゲル反応によって固形の無機物になるもの;及び、水ガラスが挙げられる。 As the liquid binder, various known liquid binders can be used. Specific examples of the liquid binder include a mixture of a liquid prepolymer and an initiator; a solid polymer substance dissolved in a solvent; a solid inorganic substance by a sol-gel reaction; and water glass It is done.
(液状のプレポリマーと開始剤との混合物)
 液状のプレポリマーと開始剤との混合物として、光ラジカル開始剤又は熱ラジカル発生剤と、(メタ)アクリル基、アリル基、ビニル基、マレイミド基などを有する化合物との組み合わせ;光カチオン開始剤又は熱カチオン開始剤と、エポキシ基、オキセタン環等のオキシラン環、ビニルエーテル、環状アセタールなどを有する化合物との組み合わせ;並びに、光アニオン開始剤と、エポキシ基を有する化合物及び/又はシアノアクリレート基を有する化合物との組合せ;を例示できる。なお、(メタ)アクリル基は、アクリル基及びメタクリル基を含む。
(Mixture of liquid prepolymer and initiator)
As a mixture of a liquid prepolymer and an initiator, a combination of a photo radical initiator or a thermal radical generator and a compound having a (meth) acryl group, an allyl group, a vinyl group, a maleimide group, etc .; a photo cation initiator or A combination of a thermal cation initiator and a compound having an epoxy group, an oxirane ring such as an oxetane ring, a vinyl ether, a cyclic acetal, etc .; and a photoanion initiator, a compound having an epoxy group and / or a compound having a cyanoacrylate group And combinations thereof. The (meth) acryl group includes an acryl group and a methacryl group.
 光ラジカル開始剤又は熱ラジカル発生剤と、(メタ)アクリル基、アリル基、ビニル基、マレイミド基などを有する化合物との組み合わせについて説明する。 A combination of a photo radical initiator or a thermal radical generator and a compound having a (meth) acryl group, an allyl group, a vinyl group, a maleimide group, etc. will be described.
 光ラジカル開始剤として、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、4-t-ブチル-トリクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェインル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1などのアセトフェノン系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、α-アリルベンゾイン、α-アリルベンゾインアリールエーテルなどのベンゾイン系;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系;チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、及び2,4-ジイソプロピルチオキサントンなどのチオキサントン系;1-フェニル-1,2-プロパンジオン-2(O-エトキシカルボニル)オキシム、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、9,10-フェナントレンキノン、カンファーキノン、ジベンゾスベロン、2-エチルアントラキノン、4’,4”-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、1-[4-(3-メルカプトプロピルチオ)フェニル]-2-メチル-2-モルホリン-4-イル-プロパン-1-オン、1-[4-(10-メルカプトデカニルチオ)フェニル]-2-メチル-2-モルホリン-4-イル-プロパン-1-オン、1-(4-{2-[2-(2-メルカプト-エトキシ)エトキシ]エチルチオ}フェニル)-2-メチル-2-モルホリン-4-イル-プロパン-1-オン、1-[3-(メルカプトプロピルチオ)フェニル]-2-ジメチルアミノ-2-ベンジル-プロパン-1-オン、1-[4-(3-メルカプトプロピルアミノ)フェニル]-2-ジメチルアミノ-2-ベンジル-プロパン-1-オン、1-[4-(3-メルカプト-プロポキシ)フェニル]-2-メチル-2-モルホリン-4-イル-プロパン-1-オン、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス[2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル]チタニウム、1,2-オクタンジオン、1-4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、及び1,3-ビス(p-ジメチルアミノベンジリデン)アセトンなどを例示することができる。光ラジカル開始剤のうち、ベンゾフェノン、ミヒラーケトン、ジベンゾスベロン、2-エチルアンスラキノン、カンファーキノン、イソブチルチオキサントンのような分子間水素引き抜き型の光開始剤に対しては、電子供与体(水素供与体)を開始助剤として添加できる。このような電子供与体として、活性水素を有する脂肪族アミン及び芳香族アミンが挙げられる。脂肪族アミンとして、具体的には、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミンが例示できる。芳香族アミンとして、具体的には、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノ安息香酸エチル、及び4-ジメチルアミノ安息香酸エチルが例示できる。 As photo radical initiators, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- (4-Isopropylfeinyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2 Acetophenones such as -hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1; Benzoin, benzoin methyl ether, benzoin ethyl ether Benzoins such as ter, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, α-allyl benzoin, α-allyl benzoin aryl ether; benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylic Benzophenones such as benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3'-dimethyl-4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropyl Thioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropylthioxanthate 1-phenyl-1,2-propanedione-2 (O-ethoxycarbonyl) oxime, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, 9,10-phenanthrenequinone, Camphorquinone, dibenzosuberone, 2-ethylanthraquinone, 4 ′, 4 ″ -diethylisophthalophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 1- [4- ( 3-mercaptopropylthio) phenyl] -2-methyl-2-morpholin-4-yl-propan-1-one, 1- [4- (10-mercaptodecanylthio) phenyl] -2-methyl-2-morpholine -4-yl-propan-1-one, 1- (4- {2- [2- (2-mercap) -Ethoxy) ethoxy] ethylthio} phenyl) -2-methyl-2-morpholin-4-yl-propan-1-one, 1- [3- (mercaptopropylthio) phenyl] -2-dimethylamino-2-benzyl- Propan-1-one, 1- [4- (3-mercaptopropylamino) phenyl] -2-dimethylamino-2-benzyl-propan-1-one, 1- [4- (3-mercapto-propoxy) phenyl] -2-Methyl-2-morpholin-4-yl-propan-1-one, bis (η5-2,4-cyclopentadien-1-yl) bis [2,6-difluoro-3- (1H-pyrrole-1 -Yl) phenyl] titanium, 1,2-octanedione, 1-4 (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl 6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and 1,3-bis Examples thereof include (p-dimethylaminobenzylidene) acetone. Among photoradical initiators, electron donors (hydrogen donors) are used for intermolecular hydrogen abstraction type photoinitiators such as benzophenone, Michler ketone, dibenzosuberone, 2-ethylanthraquinone, camphorquinone, and isobutylthioxanthone. ) As a starting aid. Such electron donors include aliphatic amines and aromatic amines having active hydrogen. Specific examples of the aliphatic amine include triethanolamine, methyldiethanolamine, and triisopropanolamine. Specific examples of the aromatic amine include 4,4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone, ethyl 2-dimethylaminobenzoate, and ethyl 4-dimethylaminobenzoate.
 熱ラジカル発生剤としては、4-アジドアニリン塩酸塩、及び4,4’-ジチオビス(1-アジドベンゼン)などのアジ化物;4,4’-ジエチル-1,2-ジチオラン、テトラメチルチウラムジスルフィド、及びテトラエチルチウラムジスルフィドなどのジスルフィド;オクタノイルペルオキシド、3,5,5-トリメチルヘキサノイルペルオキシド、デカノイルペルオキシド、ラウロイルペルオキシド、コハク酸ペルオキシド、ベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、及びm-トルイルペルオキシドのようなジアシルペルオキシド;ジ-n-プロピルペルオキシジカルボナート、ジイソプロピルペルオキシジカルボナート、ジ-2-エチルヘキシルペルオキシジカルボナート、及びジ-(2-エトキシエチル)ペルオキシジカルボナートのようなペルオキシジカルボナート;t-ブチルペルオキシイソブチラート、t-ブチルペルオキシピバラート、t-ブチルペルオキシオクタノアート、オクチルペルオキシオクタノアート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノアート、t-ブチルペルオキシネオドデカノアート、オクチルペルオキシネオドデカノアート、t-ブチルペルオキシラウラート、及びt-ブチルペルオキシベンゾアートのようなペルオキシエステル;ジ-t-ブチルペルオキシド、t-ブチルクミルペルオキシド、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、及び2,5-ジメチル-2,5-ジ(t-ブチル)ヘキシン-3のようなジアルキルペルオキシド;2,2-ビス(t-ブチルペルオキシ)ブタン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、及びn-ブチル-4,4-ビス(t-ブチルペルオキシ)バレラートのようなペルオキシケタール;メチルエチルケトンペルオキシドのようなケトンペルオキシド;p-メンタンヒドロペルオキシド、及びクメンヒドロペルオキシドなどの過酸化物;2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチルニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、及び2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリルなどのアゾニトリル類;2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(4-ヒドロキシフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(4-フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]などのアゾアミド類;2,2’-アゾビス(2,4,4-トリメチルペンタン)、及び2,2’-アゾビス(2-メチルプロパン)などのアルキルアゾ化合物類;並びに、その他ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(4-シアノバレリックアシッド)、及び2,2’-アゾビス[2-(ヒドロキシメチル)プロピオネート]などのアゾ化合物;ビピリジン;遷移金属を有する開始剤(例えば、塩化銅(I)及び塩化銅(II));メチル2-ブロモプロピオネート、エチル2-ブロモプロピオネート、エチル2-ブロモイソブチレートなどのハロゲン化合物;が例示できる。 Thermal radical generators include 4-azidoaniline hydrochloride and azides such as 4,4′-dithiobis (1-azidobenzene); 4,4′-diethyl-1,2-dithiolane, tetramethylthiuram disulfide, And disulfides such as tetraethylthiuram disulfide; octanoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, decanoyl peroxide, lauroyl peroxide, succinic peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, and m-toluyl peroxide Diacyl peroxides such as: di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, and di- (2-ethoxyethyl) B) Peroxydicarbonates such as peroxydicarbonate; t-butylperoxyisobutyrate, t-butylperoxypivalate, t-butylperoxyoctanoate, octylperoxyoctanoate, t-butylperoxy-3, Peroxyesters such as 5,5-trimethylhexanoate, t-butylperoxyneodecanoate, octylperoxyneodecanoate, t-butylperoxylaurate, and t-butylperoxybenzoate; di-t-butyl Peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and 2,5-dimethyl-2,5-di (t-butyl) hexyne Dialkyl peroxides such as -3 2,2-bis (t-butylperoxy) butane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, and n- Peroxyketals such as butyl-4,4-bis (t-butylperoxy) valerate; ketone peroxides such as methyl ethyl ketone peroxide; peroxides such as p-menthane hydroperoxide and cumene hydroperoxide; 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2-methylpropionitrile), 2,2'- Azobis (2-methylbutylnitrile), 1,1'-azobis (cyclohexane-1-carbonito Ril), 1-[(1-cyano-1-methylethyl) azo] formamide, and azonitriles such as 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile; 2,2′-azobis (2- Methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [N- (4-hydroxyphenyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [2-methyl-N- (4-phenylmethyl) propionamidine] dihydrochloride, 2,2′-azobis [2-methyl-N- (2 -Propenyl) propionamidine] dihydrochloride, 2,2′-azobis (2-methylpropionamid ) Dihydrochloride, 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) ) Propane] dihydrochloride, 2,2′-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2′-azobis [2- (2- Azoamides such as imidazolin-2-yl) propane]; alkylazo compounds such as 2,2′-azobis (2,4,4-trimethylpentane) and 2,2′-azobis (2-methylpropane); Dimethyl-2,2′-azobis (2-methylpropionate), 2,2′-azobis (4-cyanovaleric acid), and 2 Azo compounds such as 2′-azobis [2- (hydroxymethyl) propionate]; bipyridine; initiators with transition metals (eg, copper (I) chloride and copper (II) chloride); methyl 2-bromopropionate; And halogen compounds such as ethyl 2-bromopropionate and ethyl 2-bromoisobutyrate.
 上述の熱ラジカル発生剤に対して、分解促進剤を併用することができる。分解促進剤として、チオ尿素誘導体、有機金属錯体、アミン化合物、ホスフェート化合物、トルイジン誘導体、アニリン誘導体が例示できる。 A decomposition accelerator can be used in combination with the above thermal radical generator. Examples of the decomposition accelerator include thiourea derivatives, organometallic complexes, amine compounds, phosphate compounds, toluidine derivatives, and aniline derivatives.
 チオ尿素誘導体として、N,N’-ジメチルチオ尿素、テトラメチルチオ尿素、N,N’-ジエチルチオ尿素、N,N’-ジブチルチオ尿素、ベンゾイルチオ尿素、アセチルチオ尿素、エチレンチオ尿素、N,N’-ジエチレンチオ尿素、N,N’-ジフェニルチオ尿素、及びN,N’-ジラウリルチオ尿素が挙げられ、好ましくは、テトラメチルチオ尿素またはベンゾイルチオ尿素である。有機金属錯体として、ナフテン酸コバルト、ナフテン酸バナジウム、ナフテン酸銅、ナフテン酸鉄、ナフテン酸マンガン、ステアリン酸コバルト、ステアリン酸バナジウム、ステアリン酸銅、ステアリン酸鉄、及びステアリン酸マンガンなどが例示できる。アミン化合物として、アルキル基またはアルキレン基の炭素数が1~18の整数で表わされる1~3級のアルキルアミン類またはアルキレンジアミン類、ジエタノールアミン、トリエタノールアミン、ジメチルベンジルアミン、トリスジメチルアミノメチルフェノール、トリスジエチルアミノメチルフェノール、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、1,5-ジアザビシクロ(4,3,0)-ノネン-5、6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7、2-メチルイミダゾール、及び2-エチル-4-メチルイミダゾールなどが例示できる。ホスフェート化合物として、メタクリルホスフェート、ジメチクリルホスフェート、モノアルキルアシッドフォスフェート、ジアルキルフォスフェート、トリアルキルホスフェート、ジアルキルホスファイト、及びトリアルキルホスファイトなどが例示できる。トルイジン誘導体として、N,N-ジメチル-p-トルイジン、及びN,N-ジエチル-p-トルイジンなどが例示できる。アニリン誘導体として、N,N-ジメチルアニリン、及びN,N-ジエチルアニリンなどが例示できる。 As thiourea derivatives, N, N′-dimethylthiourea, tetramethylthiourea, N, N′-diethylthiourea, N, N′-dibutylthiourea, benzoylthiourea, acetylthiourea, ethylenethiourea, N, N′-diethylenethio Examples include urea, N, N′-diphenylthiourea, and N, N′-dilaurylthiourea, preferably tetramethylthiourea or benzoylthiourea. Examples of the organometallic complex include cobalt naphthenate, vanadium naphthenate, copper naphthenate, iron naphthenate, manganese naphthenate, cobalt stearate, vanadium stearate, copper stearate, iron stearate, and manganese stearate. As the amine compound, primary or tertiary alkylamines or alkylenediamines represented by an integer of 1 to 18 carbon atoms of the alkyl group or alkylene group, diethanolamine, triethanolamine, dimethylbenzylamine, trisdimethylaminomethylphenol, Trisdiethylaminomethylphenol, 1,8-diazabicyclo (5,4,0) undecene-7, 1,8-diazabicyclo (5,4,0) undecene-7, 1,5-diazabicyclo (4,3,0)- Nonene-5,6-dibutylamino-1,8-diazabicyclo (5,4,0) -undecene-7, 2-methylimidazole, 2-ethyl-4-methylimidazole and the like can be exemplified. Examples of the phosphate compound include methacrylic phosphate, dimethycyl phosphate, monoalkyl acid phosphate, dialkyl phosphate, trialkyl phosphate, dialkyl phosphate, and trialkyl phosphate. Examples of toluidine derivatives include N, N-dimethyl-p-toluidine and N, N-diethyl-p-toluidine. Examples of aniline derivatives include N, N-dimethylaniline and N, N-diethylaniline.
 (メタ)アクリル基、アリル基、ビニル基、又はマレイミド基を有する化合物は、液状のプレポリマーである。(メタ)アクリル基を有する化合物としては、ブタンジオールモノ(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ピリエチレングリコール400ジ(メタ)アクリレート、プリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、(メタ)アクリロキシエチルフタレート、N-(メタ)アクリロキシ-N-カルボキシピペリジン、N-(メタ)アクリロキシ-N,N-ジカルボキシメチル-p-フェニレンジアミン、ヒドロキシナフトキシプロピル(メタ)アクリレート、(メタ)アクリロキシエチルホスホリスフェニル、4-(メタ)アクリロキシエチルトリメリット酸、(メタ)アクリロキシエチルホスフェート、長鎖脂肪族(メタ)アクリレート、アリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、ECH変性ブチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、3-クロロ-2-ヒドロキシプロミル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、脂環式変性ネオペンチルグリコール(メタ)アクリレート、2,3-ジブロモプロピル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロキシプロピルトリメチルアンモニウムクロライド、2-ヒドロキシプロピル(メタ)アクリレート、イソボニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、γ-(メタ)アクリロキシプロピルトリメトキシシラン、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール1000(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、モルホリン(メタ)アクリレート、ノニルフェノキシプリエチレングリコール(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、オクチル(メタ)アクリレート、フェノキシヒドロキシプロピル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、EO変性フェノキシ化リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、EO変性リン酸(メタ)アクリレート、EO変性リン酸(メタ)アクリレート、EO変性フタル酸(メタ)アクリレート、EO,PO変性フタル酸(メタ)アクリレート、ポリエチレングリコール90(メタ)アクリレート、ポリエチレングリコール200(メタ)アクリレート、ポリエチレングリコール400(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール500(メタ)アクリレート、ポリプロピレングリコール800(メタ)アクリレート、ポリエチレングリコール/ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、スルホン酸ナトリウムエトキシ(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)EO変性ビスフェノールAジ(メタ)アクリレート、アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、(メタ)アクリル化イソシアヌレート、ビス(アクリロキシネオペンチルグリコール)アジペート、EO変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールSジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、EO変性ビスフェノールADジ(メタ)アクリレート、EO変性ビスフェノールAFジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ECH(エピクロロヒドリン)変性ジエチレングリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、シルセスキオキサン(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、グリセロール(メタ)アクリレート、グリセロールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、メトキシ化シクロヘキシルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、EO変性リン酸ジ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、ポリエチレングリコール200ジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラブロモビスフェノールAジ(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、トリス(メタクリロキシエチル)イソシアヌレート、亜鉛ジ(メタ)アクリレート、イソシアネートエチルメタクリレート、クロレンド酸ジ(メタ)アクリレート、メトキシエーテル(メタ)アクリレート、及び2-(メタクリロイルオキシ)エチルトリメチルアミニウム・ビス(トリフルオロメチルスルホニル)アミンアニオンなどが例示できる。 A compound having a (meth) acryl group, an allyl group, a vinyl group, or a maleimide group is a liquid prepolymer. Examples of the compound having a (meth) acryl group include butanediol mono (meth) acrylate, t-butylaminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and N, N-diethylaminoethyl (meth). Acrylate, 2-ethoxyethyl (meth) acrylate, n-hexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxypropyl (meth) acrylate 2-methoxyethyl (meth) acrylate, neopentyl glycol di (meth) acrylate, pyriethylene glycol 400 di (meth) acrylate, propylene glycol mono (meth) acrylate, polyethylene glycol Cole mono (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, (meth) acryloxyethyl phthalate, N- (meth) acryloxy-N-carboxypiperidine, N- (meth) acryloxy-N, N-dicarboxymethyl -P-phenylenediamine, hydroxynaphthoxypropyl (meth) acrylate, (meth) acryloxyethyl phosphorisphenyl, 4- (meth) acryloxyethyl trimellitic acid, (meth) acryloxyethyl phosphate, long chain aliphatic ( (Meth) acrylate, allyl (meth) acrylate, benzyl (meth) acrylate, butoxyethyl (meth) acrylate, butanediol mono (meth) acrylate, butoxytriethylene glycol (meth) acrylate, ECH-modified butyl ( ) Acrylate, t-butylaminoethyl (meth) acrylate, caprolactone (meth) acrylate, 3-chloro-2-hydroxypromyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclo Pentanyl (meth) acrylate, cycloaliphatic modified neopentyl glycol (meth) acrylate, 2,3-dibromopropyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, N , N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate, 2-ethyl Xyl (meth) acrylate, glycerol (meth) acrylate, glycidyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, caprolactone modified 2-hydroxyethyl (meth) acrylate, 2-hydroxy -3- (Meth) acryloxypropyltrimethylammonium chloride, 2-hydroxypropyl (meth) acrylate, isobornyl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, γ- (meta ) Acryloxypropyltrimethoxysilane, 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethyleneglycol (Meth) acrylate, methoxytetraethylene glycol (meth) acrylate, methoxypolyethylene glycol 1000 (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxylated cyclodecatriene (meth) acrylate, morpholine (meth) acrylate, nonylphenoxy Preethylene glycol (meth) acrylate, octafluoropentyl (meth) acrylate, octyl (meth) acrylate, phenoxyhydroxypropyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) ) Acrylate, phenoxyhexaethylene glycol (meth) acrylate, EO-modified Enoxylated phosphoric acid (meth) acrylate, phenoxy (meth) acrylate, EO modified phosphoric acid (meth) acrylate, EO modified phosphoric acid (meth) acrylate, EO modified phthalic acid (meth) acrylate, EO, PO modified phthalic acid (meta ) Acrylate, polyethylene glycol 90 (meth) acrylate, polyethylene glycol 200 (meth) acrylate, polyethylene glycol 400 (meth) acrylate, polypropylene glycol (meth) acrylate, polypropylene glycol 500 (meth) acrylate, polypropylene glycol 800 (meth) acrylate, Polyethylene glycol / polypropylene glycol (meth) acrylate, stearyl (meth) acrylate, EO-modified succinic acid (meth) acrylate, sulfur Sodium ethoxy (meth) acrylate, tetrafluoropropyl (meth) acrylate, tetrahydrofurfuryl (meth) EO modified bisphenol A di (meth) acrylate, acrylate, caprolactone modified tetrahydrofurfuryl (meth) acrylate, trifluoroethyl (meta ) Acrylate, allylated cyclohexyl di (meth) acrylate, (meth) acrylated isocyanurate, bis (acryloxyneopentyl glycol) adipate, EO modified bisphenol A di (meth) acrylate, EO modified bisphenol S di (meth) acrylate, Bisphenol F di (meth) acrylate, EO-modified bisphenol AD di (meth) acrylate, EO-modified bisphenol AF di (meth) acrylate, 1,4-butyl Diol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,3-butylene glycol di ( (Meth) acrylate, dicyclopentanyl di (meth) acrylate, diethylene glycol di (meth) acrylate, ECH (epichlorohydrin) modified diethylene glycol di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxy Penta (meth) acrylate, silsesquioxane (meth) acrylate, alkyl-modified dipentaerythritol penta (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate Relate, ditrimethylolpropane tetra (meth) acrylate, ethylene glycol di (meth) acrylate, glycerol (meth) acrylate, glycerol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, methoxylated cyclohexyl di (meth) ) Acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol diacrylate, caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate , Stearic acid modified pentaerythritol di (meth) acrylate, EO modified phosphate di (meth) acrylate, EO modified phosphate (Meth) acrylate, polyethylene glycol 200 di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tetrabromobisphenol A di (meth) acrylate, triethylene glycol (meth) acrylate, triglycerol di (meth) acrylate, neo Pentyl glycol modified trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, tris (acryloxyethyl) isocyanurate, Caprolactone-modified tris (acryloxyethyl) isocyanurate, tris (methacryloxyethyl) isocyanurate, zinc di (meth) acrylate , Isocyanatoethyl methacrylate, chlorendic di (meth) acrylate, methoxy ether (meth) acrylate, and 2-like (methacryloyloxy) ethyl trimethyl aminium bis (trifluoromethylsulfonyl) amine anion can be exemplified.
 ビニル基を有する化合物として、酢酸ビニル、クロロエチレン、ビニルトリメトキシシラン、1-ビニルー3,4-エポキシシクロヘキサン、ビニルアセテート、等が例示できる。アリル基を有する化合物として、アリルアルコール、3-アミノプロペン、臭化アリル、塩化アリル、ジアリルエーテル、ジアリルスルフィド、アリシン、二硫化アリル、アリルイソチオシアネート、等が例示できる。マレイミド基を有する化合物として、マレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、4,4’-ジフェニルメタンマレイミド、m-フェニレンマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、及び1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等が例示できる。これらの化合物のなかで、(メタ)アクリル基、及びビニル基を有する化合物が好ましい。これらの化合物は、光ラジカル開始剤の不存在下であっても、電子線で硬化させることができる。 Examples of the compound having a vinyl group include vinyl acetate, chloroethylene, vinyltrimethoxysilane, 1-vinyl-3,4-epoxycyclohexane, vinyl acetate, and the like. Examples of the compound having an allyl group include allyl alcohol, 3-aminopropene, allyl bromide, allyl chloride, diallyl ether, diallyl sulfide, allicin, allyl disulfide, allyl isothiocyanate, and the like. As compounds having a maleimide group, maleimide, N-phenylmaleimide, N-cyclohexylmaleimide, 4,4′-diphenylmethanemaleimide, m-phenylenemaleimide, bisphenol A diphenylether bismaleimide, 3,3′-dimethyl-5,5′- Examples include diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, and 1,6′-bismaleimide- (2,2,4-trimethyl) hexane. Among these compounds, compounds having a (meth) acryl group and a vinyl group are preferable. These compounds can be cured with an electron beam even in the absence of a photoradical initiator.
 光ラジカル開始剤及び熱ラジカル発生剤は、2以上を組み合わせて用いることもできる。これら光ラジカル開始剤及び熱ラジカル発生剤は、液状のプレポリマーである(メタ)アクリル基、アリル基、ビニル基、又はマレイミド基を有する化合物100重量部に対して、0.01~50重量部添加するのが好ましく、より好ましくは0.1~20重量部、更に好ましくは1~10重量部である。光ラジカル開始剤及び熱ラジカル発生剤を併用するときは、上記の含有量は、光ラジカル開始剤及び熱ラジカル発生剤の合計の含有量である。また、電子供与体の含有量は、光ラジカル開始剤100重量部に対して、10~500重量部であるのが好ましい。分解促進剤の含有量は、熱ラジカル発生剤100重量部に対して、1~500重量部であるのが好ましい。 A photo radical initiator and a thermal radical generator can be used in combination of two or more. These photoradical initiator and thermal radical generator are 0.01 to 50 parts by weight with respect to 100 parts by weight of a compound having a (meth) acryl group, an allyl group, a vinyl group, or a maleimide group as a liquid prepolymer. It is preferably added, more preferably 0.1 to 20 parts by weight, still more preferably 1 to 10 parts by weight. When the photoradical initiator and the thermal radical generator are used in combination, the above content is the total content of the photoradical initiator and the thermal radical generator. The content of the electron donor is preferably 10 to 500 parts by weight with respect to 100 parts by weight of the photo radical initiator. The content of the decomposition accelerator is preferably 1 to 500 parts by weight with respect to 100 parts by weight of the thermal radical generator.
 光カチオン開始剤、熱カチオン開始剤又は光アニオン開始剤と、エポキシ基、オキセタン環等のオキシラン環、ビニルエーテル、環状アセタールなどを有する化合物との組み合わせについて説明する。 A combination of a photocationic initiator, a thermal cation initiator or a photoanion initiator and a compound having an epoxy group, an oxirane ring such as an oxetane ring, a vinyl ether, a cyclic acetal or the like will be described.
 光カチオン開始剤として、前記したエポキシ樹脂やオキシラン化合物に対する潜在性の熱開始剤における、シルセスキオキサンとアルミニウムアセチルアセトナートとの組み合わせ以外の化合物が挙げられる。 Examples of the photocationic initiator include compounds other than the combination of silsesquioxane and aluminum acetylacetonate in the latent thermal initiator for the epoxy resin and oxirane compound described above.
 光カチオン開始剤に増感剤を併用することができる。このような増感剤として、9,10-ブトキシアントラセン、アクリジンオレンジ、アクリジンイエロー、ベンゾフラビン、セトフラビンT、ペリレン、ピレン、アントラセン、フェノチアジン、1,2-ベンズアセトラセン、コロネン、チオキサントン、フルオレノン、ベンゾフェノン、及びアントラキノン等が例示できる。 A sensitizer can be used in combination with the photocationic initiator. Such sensitizers include 9,10-butoxyanthracene, acridine orange, acridine yellow, benzoflavin, cetoflavin T, perylene, pyrene, anthracene, phenothiazine, 1,2-benzacetracene, coronene, thioxanthone, fluorenone, benzophenone And anthraquinone.
 熱カチオン開始剤として、前記したエポキシ樹脂やオキシラン化合物に対する潜在性の熱開始剤が挙げられる。 Examples of the thermal cation initiator include latent thermal initiators for the epoxy resins and oxirane compounds described above.
 光アニオン開始剤として、o-ニトロベンジルアルコール化合物で2官能性以上のイソシアネートをブロックした2-ニトロベンジルカルバメート化合物、及びキノンジアジドスルホン酸エステル化合物とN-アルキルアジリジン化合物との組み合わせなどが例示できる。光アニオン開始剤は、エポキシ基を有する化合物、シアノアクリレート基を有する化合物を重合させるために用いられる。 Examples of the photoanion initiator include a 2-nitrobenzyl carbamate compound obtained by blocking a bifunctional or higher isocyanate with an o-nitrobenzyl alcohol compound, and a combination of a quinonediazide sulfonate compound and an N-alkylaziridine compound. The photoanion initiator is used for polymerizing a compound having an epoxy group and a compound having a cyanoacrylate group.
 エポキシ基、シアノアクリレート基、エピスルフィド、オキセタン環、スピロオルトカーボネート、又はビニルエーテル基を有する化合物は、液状のプレポリマーであり、光カチオン開始剤、熱カチオン開始剤及び/又は光アニオン開始剤で架橋する反応性置換基を有する化合物である。 A compound having an epoxy group, a cyanoacrylate group, an episulfide, an oxetane ring, a spiro ortho carbonate, or a vinyl ether group is a liquid prepolymer and is crosslinked with a photocationic initiator, a thermal cationic initiator, and / or a photoanionic initiator. It is a compound having a reactive substituent.
 エポキシ基を有する化合物は、(3’,4’-エポキシシクロヘキサン)メチル3,4-エポキシシクロヘキサンカルボキシレート、4-ビニルシクロヘキセンオキサイド、1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4.1.0]ヘプタン、エポキシ化ブタンテトラカルボン酸テトラキス-(3-シクロヘキセニルメチル)修飾イプシロン-カプロラクトン、エポキシ化ポリブタジエン、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、3,4-エポキシシクロヘキシルメチルメタアクリレート、α-オレフィンエポキシド、スチレン-ブタジエンブロック共重合体のエポキシ化物、スチレン-ブタジエンブロック共重合体のエポキシ化物、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、ジヒドロキシナフタレン・ジグリシジルエーテル、ビフェニル型エポキシ樹脂、シルセスキオキサン型エポキシ樹脂、イソプレン型エポキシ樹脂、イソボニル骨格、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、エポキシ変性シリコーン、及びエポキシ変性シルセスキオキサンなどが例示できる。 Compounds having an epoxy group are (3 ′, 4′-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate, 4-vinylcyclohexene oxide, 1-methyl-4- (2-methyloxiranyl) -7- 1 of oxabicyclo [4.1.0] heptane, epoxidized butanetetracarboxylic acid tetrakis- (3-cyclohexenylmethyl) -modified epsilon-caprolactone, epoxidized polybutadiene, 2,2-bis (hydroxymethyl) -1-butanol , 2-epoxy-4- (2-oxiranyl) cyclohexane adduct, 1,2-epoxy-4- (2-oxiranyl) cyclosoxane adduct of 2,2-bis (hydroxymethyl) -1-butanol, 3, 4-epoxycyclohexenylmethyl-3 ', 4'-epoxy Lohexene carboxylate, 3,4-epoxycyclohexylmethyl methacrylate, α-olefin epoxide, epoxidized product of styrene-butadiene block copolymer, epoxidized product of styrene-butadiene block copolymer, bisphenol A type epoxy resin, bisphenol AD Type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, α-naphthol novolak type epoxy resin, bisphenol A novolak type epoxy resin, tetrabromobisphenol A type epoxy resin , Tetraglycidyl diaminodiphenyl methane, dihydroxynaphthalene diglycidyl ether, biphenyl type epoxy resin, silsesqui Xane type epoxy resin, isoprene type epoxy resin, isobonyl skeleton, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, epoxy modified silicone, and epoxy modified silsesqui Examples include oxane and the like.
 シアノアクリレート基を有する化合物は、メチルシアノアクリレート、及びエチルシアノアクリレートが例示できる。 Examples of the compound having a cyanoacrylate group include methyl cyanoacrylate and ethyl cyanoacrylate.
 エピスルフィドを有する化合物は、上述のエポキシ基を有する化合物の酸素原子が硫黄原子に置換された化合物であり、エチレンスルフィド、プロピレンスルフィド、1-ブテンスルフィド、2-ブテンスルフィド、イソブチレンスルフィド、1-ペンテンスルフィド、2-ペンテンスルフィド、1-へキセンスルフィド、1-オクテンスルフィド、1-ドデセンスルフィド、シクロペンテンスルフィド、シクロへキセンスルフィド、スチレンスルフィド、ビニルシクロへキセンスルフィド、3-フェニルプロピレンスルフィド、3,3,3-トリフルオロプロピレンスルフィド、3-ナフチルプロピレンスルフィド、3-フェノキシプロピレンスルフィド、3-ナフトキシプロピレンスルフィド、ブタジエンモノスルフィド、及び3-トリメチルシリルオキシプロピレンスルフィドなどが例示できる。 The compound having episulfide is a compound in which the oxygen atom of the above-mentioned compound having an epoxy group is substituted with a sulfur atom. Ethylene sulfide, propylene sulfide, 1-butene sulfide, 2-butene sulfide, isobutylene sulfide, 1-pentene sulfide 2-pentene sulfide, 1-hexene sulfide, 1-octene sulfide, 1-dodecene sulfide, cyclopentene sulfide, cyclohexene sulfide, styrene sulfide, vinylcyclohexene sulfide, 3-phenylpropylene sulfide, 3, 3, 3 -Trifluoropropylene sulfide, 3-naphthylpropylene sulfide, 3-phenoxypropylene sulfide, 3-naphthoxypropylene sulfide, butadiene monosulfide, and 3-toluene Such as methyl silyl oxypropylene sulfide can be exemplified.
 オキセタン環を有する化合物としては、前記したオキセタン化合物が挙げられる。 Examples of the compound having an oxetane ring include the oxetane compounds described above.
 スピロオルトカーボネートを有する化合物としては、スピログリコールジアリルエーテル、及びビシクロオルトエステルなどが例示できる。 Examples of the compound having spiro ortho carbonate include spiro glycol diallyl ether and bicycloorthoester.
 ビニルエーテルを有する化合物としては、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、2-エチルヘキシルビニルエーテル、オクタデシルビニルエーテル、シクロヘキシルビニルエーテル、アリルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、9-ヒドロキシノニルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、ノナンジオールジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル、トリメチルプロパントリビニルエーテル、及びペンタエリスリトールテトラビニルエーテルなどが例示できる。 Compounds having vinyl ether include n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, allyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, 9-hydroxynonyl vinyl ether , 4-hydroxycyclohexyl vinyl ether, cyclohexanedimethanol monovinyl ether, triethylene glycol monovinyl ether, triethylene glycol divinyl ether, 1,4-butanediol divinyl ether, nonanediol divinyl ether, cyclohexanediol divinyl ether, cyclohexane dimeta Over distearate ether, triethylene glycol divinyl ether, trimethyl propane trivinyl ether, and pentaerythritol tetra ether can be exemplified.
 エポキシ基、シアノアクリレート基、エピスルフィド、オキセタン環、スピロオルトカーボネート、又はビニルエーテル基を有する化合物は、オキセタン環を有する化合物が好ましい。 The compound having an oxetane ring is preferable as the compound having an epoxy group, a cyanoacrylate group, an episulfide, an oxetane ring, a spiro ortho carbonate, or a vinyl ether group.
 光カチオン開始剤、熱カチオン開始剤及び光アニオン開始剤は、2以上を組み合わせて用いることもできる。これら光カチオン開始剤、熱カチオン開始剤及び光アニオン開始剤は、液状のプレポリマーであるエポキシ基、シアノアクリレート基、エピスルフィド、オキセタン環、スピロオルトカーボネート、又はビニルエーテル基を有する化合物100重量部に対して、0.01~50重量部添加するのが好ましく、より好ましくは0.1~20重量部、更に好ましくは1~10重量部である。光カチオン開始剤、熱カチオン開始剤及び光アニオン開始剤を併用するときは、上記の含有量は、光カチオン開始剤、熱カチオン開始剤及び光アニオン開始剤の合計の含有量である。また、増感剤の含有量は、光カチオン開始剤100重量部に対して、5~500重量部であるのが好ましい。 The photo cation initiator, the thermal cation initiator, and the photo anion initiator can be used in combination of two or more. These photocationic initiator, thermal cationic initiator, and photoanion initiator are based on 100 parts by weight of a compound having an epoxy group, a cyanoacrylate group, an episulfide, an oxetane ring, a spiro orthocarbonate, or a vinyl ether group, which is a liquid prepolymer. The addition amount is preferably 0.01 to 50 parts by weight, more preferably 0.1 to 20 parts by weight, and still more preferably 1 to 10 parts by weight. When a photocationic initiator, a thermal cation initiator, and a photoanion initiator are used in combination, the above content is the total content of the photocationic initiator, the thermal cation initiator, and the photoanion initiator. The content of the sensitizer is preferably 5 to 500 parts by weight with respect to 100 parts by weight of the photocation initiator.
(固形の高分子物質を溶媒に溶かした液状の結着剤)
 固形の高分子物質を溶媒に溶かした液状の結着剤として、前述の高分子粒子を溶媒に溶かしたもの及び溶媒に懸濁したものが例示できる。溶媒としては、固形高分子を溶かすことができる溶媒から適宜選択することができ、2以上を混合して用いることもできる。
(Liquid binder with solid polymer dissolved in solvent)
Examples of the liquid binder obtained by dissolving a solid polymer substance in a solvent include those obtained by dissolving the above-described polymer particles in a solvent and those suspended in a solvent. As a solvent, it can select suitably from the solvent which can melt | dissolve a solid polymer, and can mix and use 2 or more.
 固形の高分子物質として、完全ケン化ポリビニルアルコール(株式会社クラレ製;クラレポバールPVA-124、日本酢ビ・ポバール株式会社製;JC-25等)、部分ケン化ポリビニルアルコール(株式会社クラレ製;クラレポバールPVA-235、日本酢ビ・ポバール株式会社製;JP-33等)変性ポリビニルアルコール(株式会社クラレ製;クラレKポリマーKL-118、クラレCポリマーCM-318、クラレRポリマーR-1130、クラレLMポリマーLM-10HD、日本酢ビ・ポバール株式会社製;DポリマーDF-20、アニオン変性PVA AF-17、アルキル変性PVA ZF-15、カルボキシメチルセルロース(ダイセル工業株式会社製;H-CMC、DN-100L、1120、2200、日本製紙ケミカル株式会社製;MAC200HC等)、ヒドロキシエチルセルロース(ダイセル工業株式会社製;SP-400等)、ポリアクリルアミド(MTアクアポリマー株式会社製;アコフロックA-102)、ポリオキシエチレン(明成化学工業株式会社製;アルコックスE-30)、エポキシ樹脂(ナガセケムテックス株式会社製;EX-614、ジャパンケムテック株式会社製;エピコート5003-W55等)、ポリエチレンイミン(日本触媒株式会社製;エポミンP-1000)、ポリアクリル酸エステル(MTアクアポリマー株式会社製;アコフロックC-502等)、並びに糖類及びその誘導体(和光純薬工業株式会社;キトサン5、日澱化学株式会社製;エステル化澱粉乳華、グリコ株式会社製;クラスターデキストリン、ポリスチレンスルホン酸(東ソー有機化学株式会社製;ボリナスPS-100等)等の水溶性高分子は、水に溶かした状態で用いることができる。 Examples of solid polymer substances include fully saponified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray Poval PVA-124, Nippon Vinegar Poval Co., Ltd .; JC-25), partially saponified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray Poval PVA-235, manufactured by Nihon Ventures & Poval Co., Ltd .; JP-33, etc.) Modified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray K Polymer KL-118, Kuraray C Polymer CM-318, Kuraray R Polymer R-1130 Kuraray LM Polymer LM-10HD, manufactured by Nihon Vinegar Poval Co., Ltd .; D Polymer DF-20, anion-modified PVA AF-17, alkyl-modified PVA ZF-15, carboxymethyl cellulose (manufactured by Daicel Industries, Ltd .; H-CMC, DN -100L, 1120, 2200, made in Japan Chemical Co., Ltd .; MAC200HC, etc.), Hydroxyethylcellulose (Daicel Industrial Co., Ltd .; SP-400, etc.), Polyacrylamide (MT Aquapolymer Co., Ltd .; Acoflock A-102), Polyoxyethylene (Maisei Chemical Co., Ltd.) Alcox E-30), epoxy resin (manufactured by Nagase ChemteX Corporation; EX-614, manufactured by Japan Chemtech Co., Ltd .; Epicoat 5003-W55, etc.), polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd .; Epomin P-1000) , Polyacrylic acid ester (MT Aquapolymer Co., Ltd .; Acofloc C-502, etc.), and saccharides and derivatives thereof (Wako Pure Chemical Industries, Ltd .; Chitosan 5, Nissho Chemical Co., Ltd .; esterified starch milk powder, glyco Made by Co., Ltd .; cluster dextrin, Li styrene sulfonic acid; a water-soluble polymer such as (manufactured by Tosoh Organic Chemical Co., Ltd. Bolinas PS-100, etc.) may be used in a state dissolved in water.
 固形の高分子物質として、アクリル酸エステル重合エマルジョン(昭和電工株式会社製;ポリゾールF-361、F-417、S-65、SH-502)、及びエチレン・酢酸ビニル共重合エマルジョン(株式会社クラレ製;パンフレックスOM-4000NT、OM-4200NT、OM-28NT、OM-5010NT)等のエマルジョンは、水に懸濁した状態で用いることができる。また、固形の高分子物質として、ポリフッ化ビニリデン(株式会社クレハ製;クレハKFポリマー#1120、クレハKFポリマー#9130)、変性ポリビニルアルコール(信越化学工業株式会社製;シアノレジンCR-V)、変性プルラン(信越化学工業株式会社製;シアノレジンCR-S)等の高分子は、N-メチルピロリドンに溶かした状態で用いることができる。 As solid polymer substances, acrylic ester polymerization emulsion (Showa Denko Co., Ltd .; Polysol F-361, F-417, S-65, SH-502), and ethylene / vinyl acetate copolymer emulsion (Kuraray Co., Ltd.) An emulsion such as Panflex OM-4000NT, OM-4200NT, OM-28NT, OM-5010NT) can be used in a state suspended in water. Further, as a solid polymer substance, polyvinylidene fluoride (manufactured by Kureha Co., Ltd .; Kureha KF Polymer # 1120, Kureha KF Polymer # 9130), modified polyvinyl alcohol (manufactured by Shin-Etsu Chemical Co., Ltd .; cyanoresin CR-V), modified pullulan Polymers such as (Shin-Etsu Chemical Co., Ltd .; cyanoresin CR-S) can be used in a state dissolved in N-methylpyrrolidone.
 固形の高分子物質を溶媒に溶かした液状の結着剤として、水溶性高分子を水に溶かした液状の結着剤、及びエマルジョンを水に懸濁した結着剤が好ましい。 As a liquid binder obtained by dissolving a solid polymer substance in a solvent, a liquid binder obtained by dissolving a water-soluble polymer in water, and a binder obtained by suspending an emulsion in water are preferable.
 固形の高分子物質を溶媒に溶かした液状の結着剤は、加熱及び/又は減圧することで溶媒を除去し固化することができる。このような結着剤は、コーティング膜中で電解液を含浸しゲル電解層となることでコーティング膜のイオン伝導性を高めることもできる。 A liquid binder obtained by dissolving a solid polymer substance in a solvent can be solidified by removing the solvent by heating and / or reducing the pressure. Such a binder can also improve the ionic conductivity of the coating film by impregnating the electrolytic solution in the coating film to form a gel electrolytic layer.
(ゾルゲル反応によって固形の無機物となる液状の結着剤)
 ゾルゲル反応によって固形の無機物となる液状の結着剤としては、トリエトキシシラン、トリメトキシシラン、アルミニウムイソプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンブトキシドダイマー、チタンテトラー2ーエチルヘキソキシド、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、乳酸チタン、ポリヒドロキシチタンステアレート、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコウニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノステアレート、各種カップリング剤などを例示する事ができる。また、これらはゾルゲル反応用の触媒を添加する事ができる。ゾルゲル反応用の触媒として、無機成分を加水分解し重縮合させる反応のための触媒であれば特に限定されない。このような触媒として、塩酸のような酸;水酸化ナトリウムのようなアルカリ;アミン;あるいはジブチルスズジアセテ-ト、ジブチルスズジオクテ-ト、ジブチルスズジラウレート、ジブチルスズジマレート、ジオクチルスズジラウレート、ジオクチルスズジマレート、オクチル酸スズ等の有機スズ化合物;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、テトラアルキルチタネート等の有機チタネート化合物;テトラブチルジルコネート、テトラキス(アセチルアセトナート)ジルコニウム、テトライソブチルジルコネート、ブトキシトリス(アセチルアセトナート)ジルコニウム、ナフテン酸ジルコニウム等の有機ジルコニウム化合物;トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム等の有機アルミニウム化合物;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸コバルト等の有機金属触媒等を挙げることができる。これらの中でも、市販品としてジブチルスズ化合物(三共有機化学(株)製SCAT-24)を具体的に挙げることができる。これらの化合物は、1種類、又は2種類以上を組み合わせて使用することができる。
(Liquid binder that becomes solid inorganic substance by sol-gel reaction)
Liquid binders that become solid inorganic substances by sol-gel reaction include triethoxysilane, trimethoxysilane, aluminum isopropoxide, titanium tetraisopropoxide, titanium tetranormal butoxide, titanium butoxide dimer, titanium tetra-2-ethylhexoxy. Titanium diisopropoxybis (acetylacetonate), titanium tetraacetylacetonate, titanium dioctyloxybis (octylene glycolate), titanium diisopropoxybis (ethylacetoacetate), titanium diisopropoxybis (triethanol) Aminates), titanium lactate, polyhydroxytitanium stearate, zirconium tetranormal propoxide, zirconium tetranormal butoxide, zirconium tetraacetylacetonate , Zirconium tributoxy monoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethyl acetoacetate), zirconium dibutoxy bis (ethyl acetoacetate), zirconium tetraacetylacetonate, zirconium tributoxy monostearate, various coupling agents, etc. Can be illustrated. Moreover, the catalyst for sol-gel reaction can be added to these. The catalyst for the sol-gel reaction is not particularly limited as long as it is a catalyst for a reaction in which an inorganic component is hydrolyzed and polycondensed. Such catalysts include acids such as hydrochloric acid; alkalis such as sodium hydroxide; amines; or dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate, dibutyltin dimaleate, dioctyltin dilaurate, dioctyltin dimaleate Organotin compounds such as tin octylate; organotitanate compounds such as isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, tetraalkyl titanate; tetrabutyl zirconate, tetrakis (Acetylacetonato) zirconium, tetraisobutylzirconate, butoxytris (acetylacetonato) zirconium, dinaphthoic acid Organic zirconium compounds such as konnium; organoaluminum compounds such as tris (ethyl acetoacetate) aluminum and tris (acetylacetonato) aluminum; organometallic catalysts such as zinc naphthenate, cobalt naphthenate and cobalt octylate . Among these, a dibutyltin compound (SCAT-24 manufactured by Sansha Machinery Chemical Co., Ltd.) can be specifically mentioned as a commercial product. These compounds can be used alone or in combination of two or more.
 電池電極又はセパレーターコーティング膜組成物が、後述する界面活性剤を含む場合、界面活性剤がミセルを形成する場合がある。この場合、ミセルを鋳型にして、固形の無機物を無機多孔質体にすることができる。無機多孔質体を形成するための界面活性剤として、第四級アンモニウム塩が好ましく、ブチルトリメチルアンモニウムクロリド、ヘキシルトリメチルアンモニウムクロリド、ジブチルジメチルアンモニウムクロリド、ジヘキシルジメチルアンモニウムクロリド等が具体的に挙げられる。 When the battery electrode or separator coating film composition contains a surfactant described later, the surfactant may form micelles. In this case, a solid inorganic substance can be made into an inorganic porous body using micelles as a template. As the surfactant for forming the inorganic porous material, a quaternary ammonium salt is preferable, and specific examples include butyltrimethylammonium chloride, hexyltrimethylammonium chloride, dibutyldimethylammonium chloride, dihexyldimethylammonium chloride and the like.
(水ガラス)
 ゾルゲル反応によって固形の無機物となる液状の結着剤の他に、固形の無機物が得られる液状の結着剤として、水ガラスを例示できる。具体的には、JIS規格表K1408の1号水ガラス、2号、水ガラス、3号水ガラスや、メタ珪酸ナトリウム1種、メタ珪酸ナトリウム2種、1号珪酸カリ、2号珪酸カリ、及び珪酸リチウム等を用いる事ができる。
(Water glass)
In addition to the liquid binder that becomes a solid inorganic substance by the sol-gel reaction, water glass can be exemplified as the liquid binder from which the solid inorganic substance is obtained. Specifically, No. 1 water glass, No. 2, water glass, No. 3 water glass of JIS standard table K1408, 1 type of sodium metasilicate, 2 types of sodium metasilicate, 1 type of potassium silicate, 2 type of potassium silicate, and Lithium silicate or the like can be used.
 結着剤の弾性変形する性質の程度及び塑性変形する性質の程度は、粘弾性粒子と同様に、弾性率(h3)及び塑性変形率(h6)で表すことができる。本発明において結着剤のh3が、0.95以下であるのが好ましく、0.9以下であるのがより好ましい。また、結着剤のh3は、特に限定されないが、0.5以上であることができ、0.6以上であるのが好ましい。本発明において結着剤のh6が、0.90以下であるのが好ましく、0.85以下であるのが好ましいし。また、h6は、特に限定されないが、0.5以上であるのが好ましく、0.6以上であるのがより好ましい。結着剤のh3及びh6が、前記上限値以下であれば、応力緩和能に優れ、基材を折り曲げたときの密着力に優れる。結着剤のh3及びh6が前記下限値以上であれば、機械的強度や耐熱性がより向上する。 The degree of the elastic deformation property and the plastic deformation property of the binder can be expressed by the elastic modulus (h3) and the plastic deformation rate (h6), similarly to the viscoelastic particles. In the present invention, h3 of the binder is preferably 0.95 or less, and more preferably 0.9 or less. The h3 of the binder is not particularly limited, but can be 0.5 or more, and preferably 0.6 or more. In the present invention, h6 of the binder is preferably 0.90 or less, and preferably 0.85 or less. Moreover, although h6 is not specifically limited, It is preferable that it is 0.5 or more, and it is more preferable that it is 0.6 or more. If h3 and h6 of a binder are below the said upper limit, it will be excellent in stress relaxation ability, and will be excellent in the adhesive force when a base material is bent. If h3 and h6 of a binder are more than the said lower limit, mechanical strength and heat resistance will improve more.
 本発明において、粘弾性粒子の粘弾性率が、結着剤の粘弾性率よりも低いのが好ましい。本発明において「粘弾性粒子の粘弾性率が、結着剤の粘弾性率よりも低い」とは、粘弾性粒子のh3及びh6が、結着剤のh3及びh6よりも小さいことを意味する。粘弾性粒子の粘弾性率が、結着剤の粘弾性率よりも低い場合は、熱時の強度は結着剤、カールは粘弾性粒子が応力緩和することができる。そのため、耐熱性がより高く、よりカールの発生を抑えられたコーティング膜を得ることができる。粘弾性粒子と結着剤のh3の差(Δh3=h3結着剤-h3粘弾性粒子)が0.01~0.3であるのが好ましく、0.05~0.2であるのがより好ましい。粘弾性粒子と結着剤のh3の差が0.01以上であれば、 耐熱性の向上とカールの発生の抑制が効率的に両立でき、0.3以下であれば、耐熱性がより向上し、カールの発生がより抑えられる。また、粘弾性粒子と結着剤のh6の差(Δh6=h6結着剤-h6粘弾性粒子)が0.01~0.3であるのが好ましく、0.05~0.2であるのがより好ましい。粘弾性粒子と結着剤のh6の差が0.01以上であれば、耐熱性の向上とカールの発生の抑制が効率的に両立でき、0.3以下であれば、耐熱性がより向上し、カールの発生がより抑えられる。なお、カールの発生を抑制することについては、塑性変形量を示すΔh6の方がより支配的である。 In the present invention, it is preferable that the viscoelastic modulus of the viscoelastic particles is lower than the viscoelastic modulus of the binder. In the present invention, “the viscoelastic modulus of the viscoelastic particles is lower than the viscoelastic modulus of the binder” means that the h3 and h6 of the viscoelastic particles are smaller than the h3 and h6 of the binder. . When the viscoelastic modulus of the viscoelastic particles is lower than the viscoelastic modulus of the binder, the strength during heating can be relaxed by the binder, and the curl can be relaxed by the viscoelastic particles. Therefore, it is possible to obtain a coating film having higher heat resistance and further curling is prevented. The difference in h3 between the viscoelastic particles and the binder (Δh3 = h3 binder −h3 viscoelastic particles ) is preferably 0.01 to 0.3, more preferably 0.05 to 0.2. preferable. If the difference in h3 between the viscoelastic particle and the binder is 0.01 or more, it is possible to efficiently achieve both improved heat resistance and curl generation, and if it is 0.3 or less, the heat resistance is further improved. In addition, the occurrence of curling is further suppressed. The difference between h6 of the viscoelastic particles and the binder (Δh6 = h6 binder −h6 viscoelastic particles ) is preferably 0.01 to 0.3, and is preferably 0.05 to 0.2. Is more preferable. If the difference in h6 between the viscoelastic particles and the binder is 0.01 or more, it is possible to efficiently achieve both improved heat resistance and curl generation, and if it is 0.3 or less, the heat resistance is further improved. In addition, the occurrence of curling is further suppressed. Note that Δh6 indicating the amount of plastic deformation is more dominant in suppressing the occurrence of curling.
 結着剤のh3及びh6は、粘弾性粒子のものと同様に測定することができる。すなわち、結着剤を使用する条件で厚み50μmの膜状に固化させたのち、液体窒素で冷却した上でミル(IKA製;M20汎用ミル)を用いて粉砕することで結着剤粒子を得ることができる。この結着剤粒子を[測定方法1]及び[測定方法2]の工程(1)の試験対象の粒子とすることができる。これにより、結着剤のh3及びh6を求めることができる。 The h3 and h6 of the binder can be measured in the same manner as that of the viscoelastic particles. That is, after solidifying into a film having a thickness of 50 μm under conditions using a binder, the particles are cooled with liquid nitrogen and then pulverized using a mill (manufactured by IKA; M20 general-purpose mill) to obtain binder particles. be able to. This binder particle can be used as a test target particle in step (1) of [Measurement method 1] and [Measurement method 2]. Thereby, h3 and h6 of a binder can be calculated | required.
 結着剤の含有量は、粒子間に発生する空隙を埋めず、更に実用上十分な量の添加量であるのが好ましい。本発明の組成物において、結着剤の含有量は、前記粘弾性粒子100重量部に対して、0.01~49重量部が好ましく、0.5~30重量部がより好ましく、1~20重量部がさらに好ましい。 The binder content is preferably a practically sufficient addition amount without filling the voids generated between the particles. In the composition of the present invention, the content of the binder is preferably 0.01 to 49 parts by weight, more preferably 0.5 to 30 parts by weight, with respect to 100 parts by weight of the viscoelastic particles. Part by weight is more preferred.
[溶媒]
 本発明の(3)溶媒について説明する。本発明の電池電極又はセパレーターコーティング膜組成物は、蒸散に伴う空隙を発生させまた流動性を調整するために溶媒を有する。溶媒の蒸散は、加熱乾燥、真空乾燥、凍結乾燥、又はこれらの組み合わせにより行うことができる。結着剤が光又は電子線で硬化する樹脂の場合、凍結乾燥させた後光又は電子線で硬化させることで着霜形状を利用した多孔質化もできる。また、電池に使用する電解液溶媒を事前に添加しておき、電解質の含浸をアシストさせることもできる。溶媒としては、炭化水素(プロパン、n-ブタン、n-ペンタン、イソヘキサン、シクロヘキサン、n-オクタン、イソオクタン、ベンゼン、トルエン、キシレン、エチルベンゼン、アミルベンゼン、テレビン油、ピネン等)、ハロゲン系炭化水素(塩化メチル、クロロホルム、四塩化炭素、塩化エチレン、臭化メチル、臭化エチル、クロロベンゼン、クロロブロモメタン、ブロモベンゼン、フルオロジクロロメタン、ジクロロジフルオロメタン、ジフルオロクロロエタン等)、アルコール(メタノール、エタノール、n-プロパノール、イソプロパノール、n-アミルアルコール、イソアミルアルコール、n-ヘキサノール、n-ヘプタノール、2-オクタノール、n-ドデカノール、ノナノール、シクロヘキサノール、グリシドール等)、エーテル、アセタール(エチルエーテル、ジクロロエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、エチルベンジルエーテル、フラン、フルフラール、2-メチルフラン、シネオール、メチラール)、ケトン(アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-アミルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロヘキサノン、アセトフェノン等)、エステル(ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸-n-アミル、酢酸メチルシクロヘキシル、酪酸メチル、酪酸エチル、酪酸プロピル、ステアリン酸ブチル等、炭酸プロピレン、炭酸ジエチル、エチレンカーボネート、ビニレンカーボネート等)、多価アルコールとその誘導体(エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、メトキシメトキシエタノール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル等)、脂肪酸及びフェノール(ギ酸、酢酸、無水酢酸、プロピオン酸、無水プロピオン酸、酪酸、イソ吉草酸、フェノール、クレゾール、o-クレゾール、キシレノール等)、窒素化合物(ニトロメタン、ニトロエタン、1-ニトロプロパン、ニトロベンゼン、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジアミルアミン、アニリン、モノメチルアニリン、o-トルイジン、o-クロロアニリン、ジクロヘキシルアミン、ジシクロヘキシルアミン、モノエタノールアミン、ホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、アセトニトリル、ピリジン、α-ピコリン、2,4-ルチジン、キノリン、モルホリン等)、硫黄、リン、その他化合物(二硫化炭素、ジメチルスルホキシド、4,4-ジエチル-1,2-ジチオラン、ジメチルスルフィド、ジメチルジスルフィド、メタンチオール、プロパンスルトン、リン酸トリエチル、リン酸トフェニル、炭酸ジエチル、炭酸エチレン、ホウ酸アミル等)、無機溶剤(液体アンモニア、シリコーンオイル等)、水等の液体を例示することができる。
[solvent]
The (3) solvent of the present invention will be described. The battery electrode or separator coating film composition of the present invention has a solvent for generating voids due to transpiration and adjusting fluidity. The solvent can be evaporated by heat drying, vacuum drying, freeze drying, or a combination thereof. In the case where the binder is a resin that is cured with light or an electron beam, it can be made porous using a frosted shape by being lyophilized and then cured with light or an electron beam. Moreover, the electrolyte solution solvent used for a battery can be added in advance to assist the impregnation of the electrolyte. Solvents include hydrocarbons (propane, n-butane, n-pentane, isohexane, cyclohexane, n-octane, isooctane, benzene, toluene, xylene, ethylbenzene, amylbenzene, turpentine oil, pinene, etc.), halogenated hydrocarbons (chlorinated) Methyl, chloroform, carbon tetrachloride, ethylene chloride, methyl bromide, ethyl bromide, chlorobenzene, chlorobromomethane, bromobenzene, fluorodichloromethane, dichlorodifluoromethane, difluorochloroethane, etc.), alcohol (methanol, ethanol, n-propanol, (Isopropanol, n-amyl alcohol, isoamyl alcohol, n-hexanol, n-heptanol, 2-octanol, n-dodecanol, nonanol, cyclohexanol, glycidol, etc.) Ether, acetal (ethyl ether, dichloroethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, methyl phenyl ether, ethyl benzyl ether, furan, furfural, 2-methyl furan, cineol, methylal), ketone (acetone, methyl ethyl ketone, Methyl-n-propyl ketone, methyl-n-amyl ketone, diisobutyl ketone, phorone, isophorone, cyclohexanone, acetophenone, etc.), ester (methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, acetic acid-n- Amyl, methyl cyclohexyl acetate, methyl butyrate, ethyl butyrate, propyl butyrate, butyl stearate, propylene carbonate, diethyl carbonate, ethylene carbonate, vinylene car , Etc.), polyhydric alcohols and derivatives thereof (ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, methoxymethoxyethanol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monomethyl ether, propylene glycol, propylene Glycol monoethyl ether), fatty acids and phenols (formic acid, acetic acid, acetic anhydride, propionic acid, propionic anhydride, butyric acid, isovaleric acid, phenol, cresol, o-cresol, xylenol, etc.), nitrogen compounds (nitromethane, nitroethane, 1-nitropropane, nitrobenzene, monomethylamine, dimethylamine, trimethylamine, monoethylamine Min, diamylamine, aniline, monomethylaniline, o-toluidine, o-chloroaniline, dicyclohexylamine, dicyclohexylamine, monoethanolamine, formamide, N, N-dimethylformamide, acetamide, acetonitrile, pyridine, α-picoline, 2, 4-lutidine, quinoline, morpholine, etc.), sulfur, phosphorus, other compounds (carbon disulfide, dimethyl sulfoxide, 4,4-diethyl-1,2-dithiolane, dimethyl sulfide, dimethyl disulfide, methanethiol, propane sultone, phosphoric acid Examples thereof include liquids such as triethyl, tophenyl phosphate, diethyl carbonate, ethylene carbonate, and amyl borate), inorganic solvents (liquid ammonia, silicone oil, and the like), and water.
 電池電極又はセパレーターコーティング膜組成物には、塗工装置に合わせて粘度調整のために、任意の比率で溶媒を添加することが可能である。電池電極又はセパレーターコーティング膜組成物は、塗工性の観点から、1~10,000mPa・sの粘度が好ましく、2~5000mPa・sの粘度がより好ましく、3~1,000mPa・sの粘度がさらに好ましく、せん断速度20秒-1の時の粘度をC、せん断速度200秒-1の時の粘度をDとし、C/D=Eとしたとき1<E<3の範囲である粘度がさらに好ましい。このような粘度とするための溶媒の種類及び含有量は適宜決定できる。本発明において、粘度は、コーンプレート型回転粘度計で求めた値である。 A solvent can be added to the battery electrode or separator coating film composition at an arbitrary ratio in order to adjust the viscosity in accordance with the coating apparatus. The battery electrode or separator coating film composition preferably has a viscosity of 1 to 10,000 mPa · s, more preferably 2 to 5000 mPa · s, and more preferably 3 to 1,000 mPa · s from the viewpoint of coatability. More preferably, the viscosity when the shear rate is 20 seconds −1 is C, the viscosity when the shear rate is 200 seconds −1 is D, and when C / D = E, the viscosity is in the range of 1 <E <3. preferable. The kind and content of the solvent for obtaining such a viscosity can be determined as appropriate. In the present invention, the viscosity is a value obtained with a cone plate type rotational viscometer.
 電池電極又はセパレーターコーティング膜組成物は、本発明の目的を損なわない範囲で、その他の粒子、コアシェル型の発泡剤、塩、イオン性を有する液体、カップリング剤、安定剤、防腐剤、及び界面活性剤を含むことができる。 The battery electrode or separator coating film composition is within the range not impairing the object of the present invention, other particles, core-shell type foaming agent, salt, ionic liquid, coupling agent, stabilizer, preservative, and interface. An active agent can be included.
[その他の粒子]
 電池電極又はセパレーターコーティング膜組成物は、更に、その他の粒子として、有機フィラー、炭素系フィラー及び無機フィラーからなる群より選択される1以上の粒子を含む事ができる。その他の粒子には、応力に対して不可逆的に塑性変形する性質と、可逆的に弾性的に変形する性質とを有する粒子(すなわち、粘弾性粒子)は含まれない。
[Other particles]
The battery electrode or separator coating film composition may further contain one or more particles selected from the group consisting of organic fillers, carbon-based fillers, and inorganic fillers as other particles. The other particles do not include particles having the property of irreversibly plastically deforming with respect to stress and the property of reversibly elastically deforming (that is, viscoelastic particles).
 有機フィラーの具体例として、アクリル樹脂やエポキシ樹脂、ポリイミド等の高分子のうち三次元的に架橋して実質的に塑性変形しない高分子やセルロースの粒子、シリコーン粒子、又はポリオレフィン粒子や、これらのファイバー、フレークなどが挙げられる。有機フィラーは、1種類、又は2種類以上を組み合わせて使用することができる。 Specific examples of the organic filler include polymers such as acrylic resin, epoxy resin, and polyimide that are three-dimensionally cross-linked and not substantially plastically deformed, cellulose particles, silicone particles, polyolefin particles, and the like. Examples include fibers and flakes. An organic filler can be used 1 type or in combination of 2 or more types.
 炭素系フィラーの具体例として、グラファイト、アセチレンブラック、及びカーボンナノチューブが挙げられる。炭素系フィラーは、1種類、又は2種類以上を組み合わせて使用することができる。炭素系フィラーは、絶縁性が損なわれない程度に添加できる粒子である。 Specific examples of the carbon filler include graphite, acetylene black, and carbon nanotube. A carbon type filler can be used combining 1 type or 2 types or more. The carbon-based filler is a particle that can be added to such an extent that the insulating property is not impaired.
 無機フィラーの具体例として、アルミナ、シリカ、ジルコニア、ベリリア、酸化マグネシウム、チタニア、及び酸化鉄等の金属酸化物の粉末;コロイダルシリカやチタニアゾル、アルミナゾル等のゾル、タルク、カオリナイト、及びスメクタイト等の粘土鉱物;炭化ケイ素、及び炭化チタン等の炭化物;窒化ケイ素、窒化アルミニウム、及び窒化チタン等の窒化物;窒化ホウ素、ホウ化チタン、及び酸化ホウ素等のホウ化物;ムライト等の複合酸化物;水酸化アルミニウム、水酸化マグネシウム、及び水酸化鉄等の水酸化物;チタン酸バリウム、炭酸ストロンチウム、珪酸マグネシウム、珪酸リチウム、珪酸ナトリウム、珪酸カリウム、及びガラス等が挙げられる。また、絶縁性が損なわれない程度に添加できる無機フィラーとして、コバルト酸リチウム、オリビン型リン酸鉄リチウムが挙げられる。無機フィラーは、1種類、又は2種類以上を適宜組み合わせて使用することができる。 Specific examples of inorganic fillers include powders of metal oxides such as alumina, silica, zirconia, beryllia, magnesium oxide, titania, and iron oxide; sols such as colloidal silica, titania sol, alumina sol, talc, kaolinite, and smectite. Clay minerals; carbides such as silicon carbide and titanium carbide; nitrides such as silicon nitride, aluminum nitride and titanium nitride; borides such as boron nitride, titanium boride and boron oxide; complex oxides such as mullite; water Examples include hydroxides such as aluminum oxide, magnesium hydroxide, and iron hydroxide; barium titanate, strontium carbonate, magnesium silicate, lithium silicate, sodium silicate, potassium silicate, and glass. Examples of the inorganic filler that can be added to such an extent that the insulating properties are not impaired include lithium cobaltate and olivine-type lithium iron phosphate. One kind of inorganic filler or two or more kinds of inorganic fillers can be used in appropriate combination.
 無機フィラーは、表面の活性水素基を活性化させるために、200℃程の高温で1時間ほど乾燥させたものが好ましい。活性水素基を活性化させることで、有機物粒子に対する密着性が向上し、機械的強度や耐熱性が向上し、電解質中のイオンを安定化することでイオン伝導性が向上する。 The inorganic filler is preferably dried at a high temperature of about 200 ° C. for about 1 hour in order to activate the active hydrogen groups on the surface. By activating the active hydrogen group, adhesion to organic particles is improved, mechanical strength and heat resistance are improved, and ion conductivity is improved by stabilizing ions in the electrolyte.
 無機フィラーは、粉体で使用しても良いし、シリカゾルやアルミナゾルのような水分散コロイドの形やオルガノゾルのような有機溶媒に分散した状態で使用しても良い。これらは前記熱融着する有機物粒子に含有させても良いし、前記熱融着する有機物粒子の表面に密着した状態で用いても良いし、前記熱融着する有機物粒子とは独立した状態で加えても良い。 The inorganic filler may be used in powder form, or in the form of a water-dispersed colloid such as silica sol or alumina sol or in a state dispersed in an organic solvent such as organosol. These may be contained in the organic particles to be thermally fused, or may be used in close contact with the surface of the organic particles to be thermally fused, or in a state independent of the organic particles to be thermally fused. May be added.
 その他の粒子の大きさは、0.001~100μmの範囲が好ましく、更に好ましくは0.005~10μmの範囲である。さらに、その他の粒子の多孔質体を用いることも空隙率を上げる観点で好ましく、具体的には、その他の粒子として、シリカゲルや多孔質アルミナ、各種ゼオライト等の無機フィラーを用いることもできる。 The size of other particles is preferably in the range of 0.001 to 100 μm, and more preferably in the range of 0.005 to 10 μm. Furthermore, it is also preferable to use a porous body of other particles from the viewpoint of increasing the porosity. Specifically, inorganic fillers such as silica gel, porous alumina, and various zeolites can be used as the other particles.
 その他の粒子の表面は各種カップリング剤で修飾することができる。カップリング剤として、シラン系カップリング剤及びチタン系カップリング剤が挙げられる。 The surface of other particles can be modified with various coupling agents. Examples of the coupling agent include a silane coupling agent and a titanium coupling agent.
 シラン系カップリング剤としては、フッ素系のシランカップリング剤として、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリエトキシシラン、臭素系のシランカップリン剤として、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリエトキシシラン、オキセタン変性シランカップリング剤として、東亞合成株式会社製カップリング剤(商品名:TESOX)、あるいは、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン(市販品として、KBM-403(信越化学工業株式会社製))、β-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシキシプロピルトリメトキシシラン、γ-メタクリロキシキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、シアノヒドリンシリルエーテル等のシランカップリング剤が挙げられる。 Examples of the silane coupling agent include (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane as a fluorine-based silane coupling agent, and (2-bromo) as a bromine-based silane coupling agent. -2-Methyl) propionyloxypropyltriethoxysilane, an oxetane-modified silane coupling agent, a coupling agent manufactured by Toagosei Co., Ltd. (trade name: TESOX), or vinyltrimethoxysilane, vinyltriethoxysilane, γ-chloro Propyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-glycine Sidoxypropyltrimethoxysilane (city KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)), β-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-mercaptopropyl Examples include silane coupling agents such as trimethoxysilane and cyanohydrin silyl ether.
 チタン系カップリング剤として、トリエタノールアミンチタネート、チタニウムアセチルアセトネート、チタニウムエチルアセトアセテート、チタニウムラクテート、チタニウムラクテートアンモニウム塩、テトラステアリルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、イソプロピルトリオクタノルチタネート、イソプロピルジメタクリイソステアロイルチタネート、チタニウムラクテートエチルエステル、オクチレングリコールチタネート、イソプロピルトリイソステアロイルチタネート、トリイソステアリルイソプロピルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトラ(2-エチルヘキシル)チタネート、ブチルチタネートダイマー、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、テトラ-i-プロピルチタネート、テトラ-n-ブチルチタネート、ジイソステアロイルエチレンチタネート等を挙げることができる。 Titanium coupling agents include triethanolamine titanate, titanium acetylacetonate, titanium ethyl acetoacetate, titanium lactate, titanium lactate ammonium salt, tetrastearyl titanate, isopropyltricumylphenyl titanate, isopropyltri (N-aminoethyl-aminoethyl) ) Titanate, dicumylphenyloxyacetate titanate, isopropyl trioctanor titanate, isopropyl dimethacrylisostearoyl titanate, titanium lactate ethyl ester, octylene glycol titanate, isopropyl triisostearoyl titanate, triisostearyl isopropyl titanate, isopropyl tridodecyl benzene sulfonyl Titanate, tetra 2-ethylhexyl) titanate, butyl titanate dimer, isopropylisostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl) Phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, tetra- i-propyl titanate, tetra-n-butyl titanate, diisostearoyl ethylene titanate, etc. It is possible.
 カップリング剤として、チタン系カップリング剤、及び、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシキシプロピルトリメトキシシラン、γ-メタクリロキシキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、及びシアノヒドリンシリルエーテルが好ましい。シラン系カップリング剤及びチタン系カップリング剤は、1種類、又は2種類以上を組み合わせて使用することができる。 As coupling agents, titanium coupling agents, vinyltrimethoxysilane, vinyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ- Aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropylpropyl Methoxysilane, γ-methacryloxyxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, and cyanohydrin silyl ether are preferred. A silane coupling agent and a titanium coupling agent can be used alone or in combination of two or more.
 このようなカップリング剤は、電池電極表面やセパレーター表面と相互作用を起こすことで、密着力を向上させることができる。また、その他の粒子の表面をこれらカップリング剤で被覆することで、カップリング剤分子による排斥効果でその他の粒子の間に隙間ができ、その間をイオンが伝導することでイオン伝導性を向上させることもできる。また、無機フィラー、シリコーン粒子やポリオレフィン粒子などの表面をカップリング剤で被覆することで、これらの粒子を疎水化させることができるため、消泡性をより向上させることができる。また、その他の粒子の表面の活性水素をシランカップリング剤で置換することで表面吸着水の量を減らすことができるため、非水系電池内に特性低下の原因になる水分の量を減らすことができる。また、その他の粒子は、表面をグラフト重合で形成された高分子鎖で被覆された粒子であるのが好ましい。高分子鎖は、好ましいものも含め、本発明の粘弾性粒子において説明したものが例示される。 Such a coupling agent can improve adhesion by causing interaction with the battery electrode surface or the separator surface. Also, by coating the surface of other particles with these coupling agents, gaps are created between the other particles due to the exclusion effect of the coupling agent molecules, and ions are conducted between them to improve ion conductivity. You can also. Moreover, since these particles can be hydrophobized by coating the surfaces of inorganic fillers, silicone particles, polyolefin particles and the like with a coupling agent, the defoaming property can be further improved. In addition, the amount of water adsorbed on the surface can be reduced by substituting active hydrogen on the surface of other particles with a silane coupling agent, so that the amount of moisture that causes deterioration of characteristics in the non-aqueous battery can be reduced. it can. The other particles are preferably particles whose surfaces are coated with polymer chains formed by graft polymerization. Examples of the polymer chain include those described in the viscoelastic particle of the present invention, including preferable ones.
 同様の効果は、デンドリマーを配合しても得る事ができる。イオン伝導性の向上には、誘電率の高いシアノ基やイオンとの相互作用が強いポリオキシエチレン基等を有する構造を導入することが好ましい。チタン系のカップリング剤は等電点のpHが7以上の無機粒子に対してより好ましく適応でき、シランカプリング剤には等電点のpHが7未満の無機粒子に対してより好ましく適応できる。無機粒子の等電点のpHは、JIS R1638 「ファインセラミック粉末の等電点測定方法」で規定した方法で測定した数値を用いることができ、シリカ(pH約1.8)、カオリン(pH約5.1)、ムライト(pH約6.3;ケイ素とアルミニウムの比率を変えることで、等電点のpHをコントロールできる)、チタニア(アナターゼ型)(pH約6.2)、酸化スズ(pH約6.9)、ベーマイト(pH約7.7)、γ-アルミナ(pH約7.9)、α-アルミナ(pH約9.1)、ベリリア(pH約10.1)、水酸化鉄;Fe(OH)(pH約12.0)、水酸化マンガン(pH約12.0)、水酸化マグネシウム(pH約12.4)等を例示する事ができる。 Similar effects can be obtained by blending dendrimers. In order to improve ion conductivity, it is preferable to introduce a structure having a cyano group having a high dielectric constant, a polyoxyethylene group having a strong interaction with ions, or the like. Titanium coupling agents can be more preferably applied to inorganic particles having an isoelectric point pH of 7 or more, and silane coupling agents can be more preferably applied to inorganic particles having an isoelectric point pH of less than 7. As the pH of the isoelectric point of the inorganic particles, the value measured by the method defined in JIS R1638 “Method for measuring the isoelectric point of fine ceramic powder” can be used. Silica (pH about 1.8), kaolin (pH about 5.1), mullite (pH about 6.3; the pH of isoelectric point can be controlled by changing the ratio of silicon and aluminum), titania (anatase type) (pH about 6.2), tin oxide (pH About 6.9), boehmite (pH about 7.7), γ-alumina (pH about 7.9), α-alumina (pH about 9.1), beryllia (pH about 10.1), iron hydroxide; Examples thereof include Fe (OH) 2 (pH about 12.0), manganese hydroxide (pH about 12.0), magnesium hydroxide (pH about 12.4), and the like.
 本発明の電池電極又はセパレーターコーティング膜組成物は、上述のその他の粒子を、空隙率や空隙の連続性を落とさない範囲で添加することができ、好ましくは粘弾性粒子100重量部に対して0~90重量部含ませることができ、より好ましくは0~50重量部含ませることができる。また、本発明の組成物において、絶縁性が損なわれない程度に添加できる炭素系フィラー及び無機フィラーの含有量は、粘弾性粒子100重量部に対して、0.01~10重量部であるのが好ましく、0.1~5重量部であるのがより好ましい。 In the battery electrode or separator coating film composition of the present invention, the above-mentioned other particles can be added within a range that does not deteriorate the porosity and the continuity of the voids, and preferably 0 to 100 parts by weight of the viscoelastic particles. Up to 90 parts by weight can be contained, more preferably 0 to 50 parts by weight. In the composition of the present invention, the content of the carbon-based filler and the inorganic filler that can be added to such an extent that the insulating property is not impaired is 0.01 to 10 parts by weight with respect to 100 parts by weight of the viscoelastic particles. The amount is preferably 0.1 to 5 parts by weight.
 その他の粒子は、2種類以上を使用することができる。等電点のpHの差が大きい無機フィラーの組み合わせは、酸塩基相互作用が起きやすく、一方の活性水素が多くなるように配合した方が、もう一方の活性水素の活性が向上するので好ましい。具体的には、等電点のpHが小さいシリカと、等電点のpHが大きい無機フィラーである、γ-アルミナ、α-アルミナ、ベリリア、水酸化鉄、水酸化マンガン、水酸化マグネシウムとの組み合わせが好ましく、シリカとα-アルミナとの組み合わせ、又はシリカと水酸化マグネシウムとの組み合わせがより好ましい。Liイオン電池の場合、等電点のpHが小さいシリカの添加量は、前記等電点のpHが大きい無機フィラーに対して、0.1~100重量%の範囲が好ましく、1~10重量%の範囲がより好ましい。 Other types of particles can be used. A combination of inorganic fillers having a large difference in pH at the isoelectric point is preferable because an acid-base interaction is likely to occur, and the amount of one active hydrogen is increased because the activity of the other active hydrogen is improved. Specifically, silica having a low isoelectric point pH and inorganic fillers having a high isoelectric point pH, γ-alumina, α-alumina, beryllia, iron hydroxide, manganese hydroxide, magnesium hydroxide. A combination is preferable, and a combination of silica and α-alumina or a combination of silica and magnesium hydroxide is more preferable. In the case of a Li-ion battery, the addition amount of silica having a low isoelectric point pH is preferably in the range of 0.1 to 100% by weight with respect to the inorganic filler having a high isoelectric point pH, and is 1 to 10% by weight. The range of is more preferable.
[コアシェル型の発泡剤]
 本発明の電池電極又はセパレーターコーティング膜組成物は、コアシェル型の発泡剤を含むことができる。このような発泡剤として、EXPANCEL(日本フィライト株式会社製)などを用いることができる。シェルは有機物であるから、電解液に対する長期信頼性が乏しい。そのため、このコアシェル型発泡剤を更に無機物で被覆したものを用いることもできる。このような無機物として、アルミナ、シリカ、ジルコニア、ベリリア、酸化マグネシウム、チタニア、及び酸化鉄等の金属酸化物;コロイダルシリカやチタニアゾル、アルミナゾル等のゾル;シリカゲル、及び活性アルミナ等のゲル;ムライト等の複合酸化物;水酸化アルミニウム、水酸化マグネシウム、水酸化鉄等の水酸化物:並びに、チタン酸バリウムを例示することができる。これらの無機物は、ゾルゲル反応や加熱により粘弾性粒子表面に被覆させることができる。また、無機物の被覆の前に、表面をクロメート処理やプラズマ処理、PVAやカルボキシメチルセルロース、澱粉などの水溶性高分子及びこれらに前述のポリカルボン酸を加えてエステル架橋させた配合物で表面処理することで密着性を上げることもできる。
[Core-shell type foaming agent]
The battery electrode or separator coating film composition of the present invention can contain a core-shell type foaming agent. As such a foaming agent, EXPANCEL (made by Nippon Philite Co., Ltd.) etc. can be used. Since the shell is organic, long-term reliability with respect to the electrolyte is poor. Therefore, what coat | covered this core shell type foaming agent with the inorganic substance further can also be used. As such inorganic substances, metal oxides such as alumina, silica, zirconia, beryllia, magnesium oxide, titania and iron oxide; sols such as colloidal silica, titania sol and alumina sol; gels such as silica gel and activated alumina; mullite and the like Complex oxides; hydroxides such as aluminum hydroxide, magnesium hydroxide, and iron hydroxide: and barium titanate can be exemplified. These inorganic substances can be coated on the surface of the viscoelastic particles by sol-gel reaction or heating. In addition, before coating with an inorganic substance, the surface is treated with a chromate treatment, a plasma treatment, a water-soluble polymer such as PVA, carboxymethyl cellulose, starch, or the like and a compound obtained by adding the above-described polycarboxylic acid to the ester and crosslinking. The adhesion can also be improved.
 一定の温度になると軟化するシェルと、加熱による蒸発などによって体積が膨張する材料からなるコアを組み合わせたコアシェル型発泡剤を用いることで、電池が熱暴走した際に、発泡剤が発泡することで、電極間距離を広げることができ、これによりシャットダウン機能を発揮することができる。さらに、シェル部が大きく膨張することで、電極間距離を広げることができ、これによりショートなどを防ぐことができる。また、発熱が収まっても膨張したシェル部がその形状を維持するため、再び電極間が狭まり再度ショートすることを防ぐこともできる。また、コアシェル型発泡剤を無機物で被覆することで、充放電時の電気分解の影響を低減でき、更に無機物表面の活性水素基がイオン伝導する際のカウンターイオンとなることで、イオン伝導性を効率よく高めることもできる。
 本発明の電池電極又はセパレーターコーティング膜組成物は、上記コアシェル型発泡剤を、粘弾性粒子及び結着剤の合計100重量部に対して、1~99重量部含むのが好ましく、10~98重量部含むのがより好ましく、20~97重量部含むのがさらに好ましい。
By using a core-shell type foaming agent that combines a shell that softens at a certain temperature and a core made of a material that expands in volume due to evaporation due to heating, the foaming agent foams when the battery runs out of heat. In addition, the distance between the electrodes can be increased, and thereby the shutdown function can be exhibited. Furthermore, since the shell portion expands greatly, the distance between the electrodes can be increased, thereby preventing a short circuit or the like. Further, since the expanded shell portion maintains its shape even after the heat generation has subsided, it is possible to prevent the electrodes from being narrowed again and short-circuiting again. In addition, by coating the core-shell type foaming agent with an inorganic substance, the influence of electrolysis during charging and discharging can be reduced, and further, the active hydrogen group on the inorganic substance surface becomes a counter ion when conducting ions, thereby improving the ionic conductivity. It can also be increased efficiently.
The battery electrode or separator coating film composition of the present invention preferably contains 1 to 99 parts by weight of the above core-shell type foaming agent with respect to 100 parts by weight of the total of the viscoelastic particles and the binder. More preferably, it is more preferably 20 to 97 parts by weight.
[塩]
 本発明の電池電極又はセパレーター保護膜組成物は、各種イオン源となる塩を配合することができる。これによって、イオン伝導性を向上させる事ができる。使用する電池の電解質を加えることもできる。リチウムイオン電池の場合は、電解質として、水酸化リチウム、珪酸リチウム、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド、及びトリフルオロメタンスルホン酸リチウム等を例示でき、ナトリウムイオン電池の場合は、水酸化ナトリウム、及び過塩素酸ナトリウム等を例示できる。カルシウムイオン電池の場合は、電解質として、水酸化カルシウム、及び過塩素酸カルシウム等を例示できる。マグネシウムイオン電池の場合は、電解質として、過塩素酸マグネシウム等を例示できる。電気二重層キャパシタの場合は、電解質として、四フッ化ホウ酸テトラエチルアンモニウム、トリエチルメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、及びテトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミド等を例示できる。
[salt]
The battery electrode or separator protective film composition of the present invention can contain salts serving as various ion sources. Thereby, ion conductivity can be improved. It is also possible to add the electrolyte of the battery used. In the case of a lithium ion battery, as an electrolyte, lithium hydroxide, lithium silicate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium bis (trifluoromethanesulfonyl) imide, lithium bis (pentafluoro) Ethanesulfonyl) imide and lithium trifluoromethanesulfonate can be exemplified. In the case of a sodium ion battery, sodium hydroxide, sodium perchlorate and the like can be exemplified. In the case of a calcium ion battery, examples of the electrolyte include calcium hydroxide and calcium perchlorate. In the case of a magnesium ion battery, examples of the electrolyte include magnesium perchlorate. In the case of an electric double layer capacitor, examples of the electrolyte include tetraethylammonium tetrafluoroborate, triethylmethylammonium bis (trifluoromethanesulfonyl) imide, and tetraethylammonium bis (trifluoromethanesulfonyl) imide.
 本発明の電池電極又はセパレーターコーティング膜組成物は、上記塩を、粘弾性粒子及び結着剤の合計100重量部に対して、0.1~300重量部含むのが好ましく、0.5~200重量部含むのがより好ましく、1~100重量部含むのがさらに好ましい。上記塩は、粉体で添加したり、多孔質にして添加したり、配合成分に溶解させて用いても良い。 The battery electrode or separator coating film composition of the present invention preferably contains 0.1 to 300 parts by weight, preferably 0.5 to 200 parts by weight of the above-mentioned salt with respect to 100 parts by weight as a total of the viscoelastic particles and the binder. More preferably, it is contained in an amount of 1 to 100 parts by weight. The salt may be added as a powder, made porous, or dissolved in a compounding component.
[イオン性を有する液体]
 本発明の電池電極又はセパレーターコーティング膜組成物は、イオン性を有する液体を含むことができる。イオン性を有する液体は、前記塩が溶媒に溶解した溶液又はイオン性液体であり得る。塩が溶媒に溶解した溶液として、六フッ化リン酸リチウム、又はホウフッ化テトラエチルアンモニウム等の塩が、ジメチルカーボネート等の溶媒に溶解した溶液が例示できる。
[Ionic liquid]
The battery electrode or separator coating film composition of the present invention can contain an ionic liquid. The ionic liquid may be a solution in which the salt is dissolved in a solvent or an ionic liquid. Examples of the solution in which the salt is dissolved in a solvent include a solution in which a salt such as lithium hexafluorophosphate or tetraethylammonium borofluoride is dissolved in a solvent such as dimethyl carbonate.
 イオン性液体の例としては、1,3-ジメチルイミダゾリウムメチルスルフェート、1-エチル-3-メチルイミダゾリウムビス(ペンタフルオロエチルスルフォニル)イミド、1-エチル-3-メチルイミダゾリウムブロミド等のイミダゾリウム塩誘導体;3-メチル-1-プロピルピリジミウムビス(トリフルオロメチルスルフォニル)イミド、1-ブチル-3-メチルピリジニウムビス(トリフルオロメチルスルフォニル)イミド等のピリジニウム塩誘導体;テトラブチルアンモニウムヘプタデカフルオロオクタンスルフォネート、テトラフェニルアンモニウムメタンスルフォネート等のアルキルアンモニウム誘導体;テトラブチルフォスフォニウムメタンスルフォネート等のホスホニウム塩誘導体;ポリアルキレングリコールと過塩素酸リチウムの複合体等の複合化導電性付与剤等を示すことができる。 Examples of ionic liquids include imidazo such as 1,3-dimethylimidazolium methylsulfate, 1-ethyl-3-methylimidazolium bis (pentafluoroethylsulfonyl) imide, 1-ethyl-3-methylimidazolium bromide, etc. Pyridinium salt derivatives such as 3-methyl-1-propylpyridinium bis (trifluoromethylsulfonyl) imide, 1-butyl-3-methylpyridinium bis (trifluoromethylsulfonyl) imide; tetrabutylammonium heptadeca Alkylammonium derivatives such as fluorooctane sulfonate and tetraphenylammonium methanesulfonate; phosphonium salt derivatives such as tetrabutylphosphonium methanesulfonate; Composite conductive agent complex such as a periodate such as lithium can show.
 イオン性を有する液体の含有量は、粘弾性粒子100重量部に対して、0.01~40重量部であるのが好ましく、0.1~30重量部であるのがより好ましく、0.5~5重量部であるのがさらに好ましい。 The content of the ionic liquid is preferably 0.01 to 40 parts by weight, more preferably 0.1 to 30 parts by weight, with respect to 100 parts by weight of the viscoelastic particles. More preferred is 5 parts by weight.
[カップリング剤]
 本発明の電池電極又はセパレーターコーティング膜組成物は、さらに、カップリング剤を含むことができる。カップリング剤は、好ましいものを含め、先に例示したカップリング剤が例示できる。カップリング剤の含有量は、粘弾性粒子100重量部に対して、0.001~10重量部含むのが好ましく、0.01~5重量部含むのがより好ましい。
[Coupling agent]
The battery electrode or separator coating film composition of the present invention can further contain a coupling agent. Examples of the coupling agent include those exemplified above, including preferred ones. The content of the coupling agent is preferably 0.001 to 10 parts by weight, and more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the viscoelastic particles.
[安定剤]
 本発明の電池電極又はセパレーターコーティング膜組成物は、安定剤を選択して含むことができる。このような安定剤としては、具体的には2,6-ジ-tert-ブチル-フェノール、2,4-ジ-tert-ブチル-フェノール、2,6-ジ-tert-ブチル-4-エチル-フェノール、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチル-アニリノ)-1,3,5-トリアジン等によって例示されるフェノール系酸化防止剤;アルキルジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン等によって例示される芳香族アミン系酸化防止剤;ジラウリル-3,3’-チオジプロピオネート、ジトリデシル-3,3’-チオジプロピオネート、ビス[2-メチル-4-{3-n-アルキルチオプロピオニルオキシ}-5-tert-ブチル-フェニル]スルフィド、2-メルカプト-5-メチル-ベンゾイミダゾール等によって例示されるサルファイド系ヒドロペルオキシド分解剤;トリス(イソデシル)ホスファイト、フェニルジイソオクチルホスファイト、ジフェニルイソオクチルホスファイト、ジ(ノニルフェニル)ペンタエリトリトールジホスファイト、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスファートジエチルエステル、ナトリウムビス(4-tert-ブチルフェニル)ホスファート等によって例示されるリン系ヒドロペルオキシド分解剤;フェニルサリチラート、4-tert-オクチルフェニルサリチラート等によって例示されるサリチレート系光安定剤;2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸等によって例示されるベンゾフェノン系光安定剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]等によって例示されるベンゾトリアゾール系光安定剤;フェニル-4-ピペリジニルカルボナート、セバシン酸ビス-[2,2,6,6-テトラメチル-4-ピペリジニル]等によって例示されるヒンダードアミン系光安定剤;[2,2’-チオ-ビス(4-t-オクチルフェノラート)]-2-エチルヘキシルアミン-ニッケル-(II)によって例示されるNi系光安定剤;シアノアクリレート系光安定剤;シュウ酸アニリド系光安定剤;フラーレン、水添フラーレン、水酸化フラーレン等のフラーレン系光安定剤等を挙げることができる。これらの安定剤は、1種類、又は2種類以上を組み合わせて使用することができる。
[Stabilizer]
The battery electrode or separator coating film composition of the present invention may contain a stabilizer. Specific examples of such stabilizers include 2,6-di-tert-butyl-phenol, 2,4-di-tert-butyl-phenol, 2,6-di-tert-butyl-4-ethyl- Phenol-based antioxidants exemplified by phenol, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butyl-anilino) -1,3,5-triazine Agents: alkyldiphenylamine, N, N'-diphenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine, etc. Aromatic amine antioxidants exemplified by: dilauryl-3,3′-thiodipropionate, ditridecyl-3,3′-thiodipropionate, bis A sulfide hydroperoxide decomposer exemplified by [2-methyl-4- {3-n-alkylthiopropionyloxy} -5-tert-butyl-phenyl] sulfide, 2-mercapto-5-methyl-benzimidazole and the like; (Isodecyl) phosphite, phenyl diisooctyl phosphite, diphenyl isooctyl phosphite, di (nonylphenyl) pentaerythritol diphosphite, 3,5-di-tert-butyl-4-hydroxy-benzyl phosphate diethyl ester, Phosphorus hydroperoxide decomposers exemplified by sodium bis (4-tert-butylphenyl) phosphate, etc .; salicylate series exemplified by phenyl salicylate, 4-tert-octylphenyl salicylate, etc. Stabilizer; benzophenone light stabilizer exemplified by 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, etc .; 2- (2′-hydroxy-5′-methylphenyl) benzotriazole 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol] and the like; Hindered amine light stabilizers exemplified by phenyl-4-piperidinyl carbonate, bis- [2,2,6,6-tetramethyl-4-piperidinyl] sebacate and the like; [2,2′-thio-bis (4-t-octylphenolate)]-2-ethylhexylamine-nickel- (II) Agent; cyanoacrylate light stabilizer; oxalic anilide-based light stabilizer; fullerenes, fullerene hydrogenated, mention may be made of fullerene-based light stabilizer such as fullerene. These stabilizers can be used alone or in combination of two or more.
 安定剤の含有量は、粘弾性粒子100重量部に対して、0.01~10重量部であるのが好ましく、0.05~5重量部であるのがより好ましく、0.1~1重量部であるのがさらに好ましい。 The content of the stabilizer is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, with respect to 100 parts by weight of the viscoelastic particles. More preferably, it is part.
[防腐剤]
 本発明の電池電極又はセパレーターコーティング膜組成物は、さらに、防腐剤を含むことができ、これにより、該組成物の保存安定性を調節できる。
[Preservative]
The battery electrode or separator coating film composition of the present invention can further contain a preservative, whereby the storage stability of the composition can be adjusted.
 防腐剤としては、安息香酸、サリチル酸、デヒドロ酢酸、ソルビン酸のような酸、安息香酸ナトリウム、サリチル酸ナトリウム、デヒドロ酢酸ナトリウム、及びソルビン酸カリウムのような塩、2-メチル-4-イソチアゾリン-3-オン、及び1,2-ベンゾイソチアゾリン-3-オンのようなイソチアゾリン系防腐剤、メタノール、エタノール、イソプロピルアルコール、及びエチレングリコールなどのアルコール類、パラヒドロキシ安息香酸エステル類、フェノキシエタノール、塩化ベンザルコニウム、塩酸クロルヘキシジン等が挙げられる。 Preservatives include acids such as benzoic acid, salicylic acid, dehydroacetic acid, sorbic acid, salts such as sodium benzoate, sodium salicylate, sodium dehydroacetate, and potassium sorbate, 2-methyl-4-isothiazoline-3- ON, and isothiazoline-based preservatives such as 1,2-benzisothiazolin-3-one, alcohols such as methanol, ethanol, isopropyl alcohol, and ethylene glycol, parahydroxybenzoates, phenoxyethanol, benzalkonium chloride, And chlorhexidine hydrochloride.
 これらの防腐剤は、1種類、又は2種類以上を組み合わせて使用することができる。 These preservatives can be used alone or in combination of two or more.
 防腐剤の含有量は、粘弾性粒子100重量部に対して、0.0001~1重量部であるのが好ましく、0.0005~0.5重量部であるのがより好ましい。 The content of the preservative is preferably 0.0001 to 1 part by weight, more preferably 0.0005 to 0.5 part by weight with respect to 100 parts by weight of the viscoelastic particles.
[界面活性剤]
 本発明の電池電極又はセパレーターコーティング膜組成物は、組成物のぬれ性や消泡性を調節する目的で、さらに、界面活性剤を含むことができる。また、本発明の電池電極又はセパレーターコーティング膜組成物は、さらにイオン伝導性を向上する目的で、イオン性の界面活性剤を含むことができる。
[Surfactant]
The battery electrode or separator coating film composition of the present invention can further contain a surfactant for the purpose of adjusting the wettability and antifoaming property of the composition. In addition, the battery electrode or separator coating film composition of the present invention can contain an ionic surfactant for the purpose of further improving ionic conductivity.
 界面活性剤としては、アニオン界面活性剤として、石ケン、ラウリル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸塩)、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルフェニルエーテルリン酸、N-アシルアミノ酸塩、α-オレフィンスルホン酸塩、アルキル硫酸エステル塩、アルキルフェニルエーテル硫酸エステル塩、メチルタウリン酸塩、トリフルオロメタンスルホン酸塩、ペンタフルオロエタンスルホン酸塩、ヘプタフルオロプロパンスルホン酸塩、ノナフルオロブタンスルホン酸塩等が挙げられ、カウンターカチオンとしてはナトリウムイオンやリチウムイオン等を用いる事ができる。リチウムイオン電池においてはリチウムイオンタイプの界面活性剤がより好ましく、ナトリウムイオン電池においてはナトリウムイオンタイプの界面活性剤がより好ましい。 Surfactants include anionic surfactants such as soap, lauryl sulfate, polyoxyethylene alkyl ether sulfate, alkyl benzene sulfonate (eg, dodecyl benzene sulfonate), polyoxyethylene alkyl ether phosphate, poly Oxyethylene alkyl phenyl ether phosphate, N-acyl amino acid salt, α-olefin sulfonate, alkyl sulfate ester salt, alkyl phenyl ether sulfate ester salt, methyl taurate, trifluoromethane sulfonate, pentafluoroethane sulfonate , Heptafluoropropane sulfonate, nonafluorobutane sulfonate, and the like. As the counter cation, sodium ion, lithium ion, or the like can be used. In the lithium ion battery, a lithium ion type surfactant is more preferable, and in the sodium ion battery, a sodium ion type surfactant is more preferable.
 両性界面活性剤としては、塩酸アルキルジアミノエチルグリシン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、ヤシ油脂肪酸アミドプロピルベタイン、脂肪酸アルキルベタイン、スルホベタイン、アミオキサイド等が挙げられる。 Amphoteric surfactants include alkyldiaminoethylglycine hydrochloride, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, lauryldimethylaminoacetic acid betaine, coconut oil fatty acid amide propyl betaine, fatty acid alkyl betaine, sulfobetaine , Amidoxide and the like.
 非イオン(ノニオン)型界面活性剤としては、ポリエチレングリコールやアセチレングリコール等のアルキルエステル型化合物、トリエチレングリコールモノブチルエーテル等のアルキルエーテル型化合物、ポリオキシソルビタンエステル等のエステル型化合物、アルキルフェノール型化合物、フッ素型化合物、シリコーン型化合物等が挙げられる。 Nonionic (nonionic) surfactants include alkyl ester compounds such as polyethylene glycol and acetylene glycol, alkyl ether compounds such as triethylene glycol monobutyl ether, ester compounds such as polyoxysorbitan esters, alkylphenol compounds, A fluorine type compound, a silicone type compound, etc. are mentioned.
 界面活性剤は、1種類、又は2種類以上を組み合わせて使用することができる。 Surfactant can be used alone or in combination of two or more.
 界面活性剤の含有量は、粘弾性粒子100重量部に対して、0.01~50重量部であるのが好ましく、0.05~20重量部であるのがより好ましく、0.1~10重量部であるのがさらに好ましい。 The content of the surfactant is preferably 0.01 to 50 parts by weight, more preferably 0.05 to 20 parts by weight, and more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the viscoelastic particles. More preferred are parts by weight.
 本発明の電池電極又はセパレーターコーティング膜組成物は、電池電極又はセパレーターを保護するために用いられる。すなわち、本発明の組成物は、電池電極又はセパレーターの少なくとも表面に形成されるコーティング膜のための組成物として用いられ、その一部が電池電極やセパレーター内部に入り込んでいても良い。 The battery electrode or separator coating film composition of the present invention is used to protect the battery electrode or separator. That is, the composition of the present invention is used as a composition for a coating film formed on at least the surface of a battery electrode or a separator, and a part of the composition may enter the battery electrode or the separator.
[電池電極又はセパレーターコーティング膜組成物の製造]
 本発明の電池電極又はセパレーターコーティング膜組成物は、上記成分を混合し撹拌することによって作製できる。なお、本発明の粘弾性粒子は溶媒に分散させた状態で混合してもよい。撹拌は、プロペラ式ミキサー、プラネタリーミキサー、ハイブリッドミキサー、ニーダー、乳化用ホモジナイザー、及び超音波ホモジナイザー等の撹拌装置を用いて行うことができる。また、必要に応じて加熱又は冷却しながら撹拌することもできる。
[Production of battery electrode or separator coating film composition]
The battery electrode or separator coating film composition of the present invention can be prepared by mixing and stirring the above components. In addition, you may mix the viscoelastic particle of this invention in the state disperse | distributed to the solvent. Stirring can be performed using a stirring device such as a propeller mixer, a planetary mixer, a hybrid mixer, a kneader, an emulsifying homogenizer, and an ultrasonic homogenizer. Moreover, it can also stir, heating or cooling as needed.
 本発明において、表面がグラフト重合で形成された高分子で被覆された粘弾性粒子の製造方法は、以下の工程:本発明の粘弾性粒子と、反応性置換基を有するカップリング剤を混合して、表面修飾された粘弾性粒子を得る工程、及び表面修飾された粘弾性粒子と、表面修飾された粘弾性粒子が有する反応性置換基と反応する重合性化合物とを混合して、グラフト重合により、表面がグラフト重合で形成された高分子で被覆された粘弾性粒子を得る工程を含む。 In the present invention, the method for producing viscoelastic particles whose surface is coated with a polymer formed by graft polymerization is the following process: mixing the viscoelastic particles of the present invention and a coupling agent having a reactive substituent. A step of obtaining surface-modified viscoelastic particles, and mixing the surface-modified viscoelastic particles with a polymerizable compound that reacts with a reactive substituent of the surface-modified viscoelastic particles, and graft polymerization. To obtain viscoelastic particles whose surface is coated with a polymer formed by graft polymerization.
 表面修飾された粘弾性粒子を得る工程により、粘弾性粒子の表面には反応性置換基を有するシランカップリング剤が固定化される。表面修飾後表面に固定化された該反応性置換基を反応開始点にして前記グラフト重合が可能となる。なお、固定化とは、粘弾性粒子表面に化学的に結合した状態や物理的に吸着した状態を意味する。 In the step of obtaining surface-modified viscoelastic particles, a silane coupling agent having a reactive substituent is immobilized on the surface of the viscoelastic particles. After the surface modification, the graft polymerization can be performed using the reactive substituent immobilized on the surface as a reaction starting point. In addition, immobilization means the state chemically bonded to the viscoelastic particle surface or the state physically adsorbed.
 一端に反応性置換基を有するカップリング剤として、前記したシラン系カップリング剤及びチタン系カップリング剤が挙げられ、フッ素系のシランカップリング剤及び臭素系のシランカップリング剤が好ましく、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリエトキシシランが特に好ましい。 Examples of the coupling agent having a reactive substituent at one end include the above-mentioned silane coupling agents and titanium coupling agents, with fluorine-based silane coupling agents and bromine-based silane coupling agents being preferred, (2 -Bromo-2-methyl) propionyloxypropyltriethoxysilane is particularly preferred.
 一端に反応性置換基を有するカップリング剤の使用量は、粘弾性粒子の固形分100重量部に対して、0.1~200重量部であるのが好ましく、1~150重量部であるのがより好ましい。 The amount of the coupling agent having a reactive substituent at one end is preferably 0.1 to 200 parts by weight, preferably 1 to 150 parts by weight, based on 100 parts by weight of the solid content of the viscoelastic particles. Is more preferable.
 本発明において、表面修飾された粘弾性粒子を得る工程の後に、前述の溶媒を用いて粘弾性粒子を洗浄する工程を含むことができる。これにより、未反応のカップリング剤等の反応残渣を除去できる。粘弾性粒子を洗浄する工程において用いられる溶媒は、反応残渣を溶かしかつ表面修飾した高分子を引き剥がさないものであれば特に限定されず、使用する溶媒の量は反応残渣を除去できる量であれば特に限定されない。 In the present invention, after the step of obtaining surface-modified viscoelastic particles, a step of washing the viscoelastic particles using the aforementioned solvent can be included. Thereby, reaction residues, such as an unreacted coupling agent, can be removed. The solvent used in the step of washing the viscoelastic particles is not particularly limited as long as it dissolves the reaction residue and does not peel off the surface-modified polymer, and the amount of the solvent used is an amount that can remove the reaction residue. If it does not specifically limit.
 表面修飾された粘弾性粒子が有する反応性置換基と反応する重合性化合物として、前記した、(メタ)アクリル基、アリル基、ビニル基、マレイミド基を有する化合物、エポキシ基、オキセタン環等のオキシラン環、ビニルエーテル、環状アセタールなどを有する化合物が挙げられ、表面修飾された粘弾性粒子が有する反応性置換基と反応し結合するものを選ぶことができる。このような組合せとして、例えば、反応性置換基が(2-ブロモ-2-メチル)プロピオニルオキシ基である場合は、重合性化合物として、(メタ)アクリル基、アリル基、及びビニル基を有する化合物が挙げられる。重合性化合物の量は、所望のポリマーで被覆された粘弾性粒子が得られる量であれば特に限定されず、原料である粘弾性粒子100重量部に対して、100~300重量部であることが好ましい。 As the polymerizable compound that reacts with the reactive substituent of the surface-modified viscoelastic particle, the above-mentioned compound having a (meth) acryl group, allyl group, vinyl group, maleimide group, oxirane such as epoxy group, oxetane ring, etc. Examples include compounds having a ring, vinyl ether, cyclic acetal, and the like, and those that react with and bind to the reactive substituents of the surface-modified viscoelastic particles can be selected. As such a combination, for example, when the reactive substituent is a (2-bromo-2-methyl) propionyloxy group, a compound having a (meth) acryl group, an allyl group, and a vinyl group as the polymerizable compound Is mentioned. The amount of the polymerizable compound is not particularly limited as long as viscoelastic particles coated with a desired polymer are obtained, and is 100 to 300 parts by weight with respect to 100 parts by weight of viscoelastic particles as a raw material. Is preferred.
 重合は、開始剤の存在下で行ってもよい。開始剤は、前記重合性化合物の種類に応じて用いることができる。このような開始剤として、前記した、潜在性の熱開始剤、光カチオン開始剤、及び熱カチオン開始剤が挙げられ、用いられる重合性化合物の種類に応じて用いることができる。これらの開始剤は、単独で用いてもよく、複数を組合せて用いてもよい。開始剤の使用量は、前述した潜在性の熱開始剤、光カチオン開始剤、及び熱カチオン開始剤の含有量が例示できる。 Polymerization may be performed in the presence of an initiator. An initiator can be used according to the kind of the polymerizable compound. Examples of such initiators include the latent thermal initiators, photocationic initiators, and thermal cationic initiators described above, and can be used depending on the type of polymerizable compound used. These initiators may be used alone or in combination of two or more. As for the usage-amount of an initiator, content of the latent thermal initiator mentioned above, a photocationic initiator, and a thermal cation initiator can be illustrated.
 表面がグラフト重合で形成された高分子で被覆された粘弾性粒子を得る工程の後に、前記高分子で被覆された粘弾性粒子を洗浄する工程を含んでいてもよい。洗浄は、前述した溶媒を用いることができる。 A step of washing viscoelastic particles coated with the polymer may be included after the step of obtaining viscoelastic particles coated with a polymer whose surface is formed by graft polymerization. The solvent described above can be used for washing.
[電池電極又はセパレーター表面保護方法]
 本発明の電池電極又はセパレーター表面保護方法は、電池電極又はセパレーター表面に、上記の電池電極又はセパレーターコーティング膜組成物の層を少なくとも1層以上形成し、前記溶媒を蒸散させることで空隙を有するコーティング膜を形成する工程を含む。本発明の電池電極又はセパレーターコーティング膜によって、電池電極又はセパレーターの表面は保護される。
[Battery electrode or separator surface protection method]
The battery electrode or separator surface protecting method of the present invention is a coating having voids by forming at least one layer of the battery electrode or separator coating film composition on the battery electrode or separator surface and evaporating the solvent. Forming a film. The surface of the battery electrode or separator is protected by the battery electrode or separator coating film of the present invention.
[電池電極又はセパレーターコーティング膜の製造方法]
 本発明は、前記電池電極又はセパレーター表面保護方法において、本発明の電池電極又はセパレーターコーティング膜組成物を用いて得られるコーティング膜にも関する。すなわち、本発明の電池電極又はセパレーターコーティング膜組成物を用いて得られるコーティング膜の製造方法は、結着剤が溶媒に溶解した状態である場合、電池電極又はセパレーター表面に、前記電池電極又はセパレーターコーティング膜組成物のコート層を少なくとも1層以上形成する工程、及び溶媒を蒸散させる工程を含む。また、結着剤が溶媒に溶解しない固体の場合は、電池電極又はセパレーター表面に、前記電池電極又はセパレーターコーティング膜組成物のコート層を少なくとも1層以上形成する工程、溶媒を蒸散させる工程、及び前記溶媒を蒸散させる温度条件で固体の結着剤が熱融着しない場合は前記固体の結着剤を加熱融着する工程を含む。
[Method for producing battery electrode or separator coating film]
The present invention also relates to a coating film obtained by using the battery electrode or separator coating film composition of the present invention in the battery electrode or separator surface protecting method. That is, in the method for producing a coating film obtained using the battery electrode or separator coating film composition of the present invention, when the binder is dissolved in a solvent, the battery electrode or separator is formed on the surface of the battery electrode or separator. Including a step of forming at least one coating layer of the coating film composition and a step of evaporating the solvent. In the case where the binder is a solid that does not dissolve in the solvent, a step of forming at least one coating layer of the battery electrode or separator coating film composition on the surface of the battery electrode or separator, a step of evaporating the solvent, and In the case where the solid binder is not heat-sealed under the temperature conditions for evaporating the solvent, a step of heat-sealing the solid binder is included.
[コーティング膜組成物のコート層の形成方法]
 本発明の電池電極又はセパレーターコーティング膜の製造方法において、電池電極やセパレーターに対するコーティング膜組成物のコート層の形成は、グラビアコーターやスリットダイコーター、スプレーコーター、ディッピングなどを利用することができる。コート層の厚さは0.01~100μmの範囲が好ましく、電気特性及び密着性の観点から0.05~50μmの範囲が更に好ましい。本発明の電池電極又はセパレーターコーティング膜組成物の少なくとも一部が電池電極又はセパレーターの内部に含浸された構造であっても良い。本発明の電池電極又はセパレーターコーティング膜組成物の少なくとも一部が電池電極又はセパレーターの内部に含浸していることで、プロセスや熱時のカールや変形をよりおさえることができる。本発明において、コート層の乾燥厚み、つまりコーティング膜の厚みが、0.01~100μmの範囲が好ましく、0.05~50μmの範囲が更に好ましい。コーティング膜の厚みが、0.01μm以上であれば、電子電導に対する絶縁性が良好であり、ショートの危険性が抑えられる。コーティング膜の厚みが、100μm以下であれば、抵抗が厚みに比例して上がるため、イオン伝導に対する抵抗が低く、電池の充放電特性が向上する。
[Method of forming coating layer of coating film composition]
In the method for producing a battery electrode or separator coating film of the present invention, a gravure coater, a slit die coater, a spray coater, dipping or the like can be used to form a coating layer of the coating film composition on the battery electrode or separator. The thickness of the coat layer is preferably in the range of 0.01 to 100 μm, and more preferably in the range of 0.05 to 50 μm from the viewpoint of electrical characteristics and adhesion. The battery electrode or separator coating film composition of the present invention may have a structure in which at least a part of the battery electrode or separator is impregnated. When at least a part of the battery electrode or separator coating film composition of the present invention is impregnated inside the battery electrode or separator, curling and deformation during the process and heat can be further suppressed. In the present invention, the dry thickness of the coating layer, that is, the thickness of the coating film is preferably in the range of 0.01 to 100 μm, more preferably in the range of 0.05 to 50 μm. If the thickness of the coating film is 0.01 μm or more, the insulation against electronic conduction is good and the risk of a short circuit is suppressed. If the thickness of the coating film is 100 μm or less, the resistance increases in proportion to the thickness, so the resistance to ion conduction is low, and the charge / discharge characteristics of the battery are improved.
本発明の電池電極又はセパレーターコーティング膜組成物の少なくとも一部が電池電極又はセパレーターの内部に含浸している場合、該組成物の含浸量は、電極やセパレーターの細孔構造を完全に埋めない量、すなわち電極やセパレーターの空隙率が0%を超える量であることが好ましく、電極やセパレーターの空隙率が50%以上になる量が好ましく、更に好ましくは電極やセパレーターの空隙率が75%以上になる量である。
 粘弾性粒子が形状異方性がある粒子である場合、塗工時のせん断力で塗工方向に形状異方性がある粒子を配向させることができる。例えば、セパレーターの長軸方向に繊維状粒子の長軸方向が平行になるように塗工することで、塗工時のセパレーターの張力を開放したときの縮みに由来するカールを同じく長軸方向に配向した繊維状粒子が無秩序に存在する場合よりも効率よく応力を緩和させることができる。
When at least a part of the battery electrode or separator coating film composition of the present invention is impregnated in the battery electrode or separator, the amount of impregnation of the composition is an amount that does not completely fill the pore structure of the electrode or separator. That is, it is preferable that the porosity of the electrode or separator is more than 0%, preferably the amount of porosity of the electrode or separator is 50% or more, more preferably the porosity of the electrode or separator is 75% or more. Is the amount.
When the viscoelastic particles are particles having shape anisotropy, the particles having shape anisotropy in the coating direction can be oriented by a shearing force during coating. For example, by coating so that the major axis direction of the fibrous particles is parallel to the major axis direction of the separator, curl derived from shrinkage when releasing the tension of the separator at the time of coating is also applied to the major axis direction. The stress can be relaxed more efficiently than in the case where the oriented fibrous particles are present randomly.
[溶媒の蒸散方法]
 溶媒は、加熱乾燥、真空乾燥、凍結乾燥、又はこれらの組み合せにより行うことができる。加熱乾燥は、熱風炉、赤外線ヒーター、ヒートロールなどを用いて行うことができる。真空乾燥は、チャンバー内にコーティング膜組成物の塗膜をいれ真空にすることで行うことができる。凍結乾燥は、昇華性がある溶媒を用いる場合に採用することができる。加熱乾燥における加熱温度及び加熱時間は、溶媒が蒸散する温度及び時間であれば特に限定されず、例えば80~120℃で、0.1時間~2時間とすることができる。溶媒を蒸散させることにより、電池電極又はセパレーターコーティング膜組成物の溶媒を除いた成分が、電池電極又はセパレーターと密着し、結着剤がホットメルト粒子の場合は熱融着することで本発明のコーティング膜が形成される。
[Method of transpiration of solvent]
The solvent can be obtained by heat drying, vacuum drying, freeze drying, or a combination thereof. Heating and drying can be performed using a hot stove, an infrared heater, a heat roll, or the like. The vacuum drying can be performed by putting a coating film of the coating film composition in a chamber and applying a vacuum. Freeze drying can be employed when a solvent having sublimation properties is used. The heating temperature and heating time in heat drying are not particularly limited as long as the temperature and time at which the solvent evaporates, and can be, for example, 80 to 120 ° C. and 0.1 to 2 hours. By evaporating the solvent, the components excluding the solvent of the battery electrode or separator coating film composition are in close contact with the battery electrode or the separator, and when the binder is hot melt particles, the components of the present invention are thermally fused. A coating film is formed.
[加熱方法]
 本発明の電池電極又はセパレーターコーティング膜の製造方法において、結着剤を粒子状で使用する場合、結着剤同士を熱融着させて固化させることができる。その場合、粒子が完全に溶融する温度で熱融着させて固化させることもできるし、有機物粒子の表面だけが熱溶解して溶着し相互に密着した状態で冷却することで粒子同士が点で密着し隙間が開いた状態で固化させることもできる。前者の熱融着固化によれば、連続相になっている部分が多く、イオン伝導性や機械的強度及び耐熱性が高い。後者の熱融着固化によれば、連続相になっている部分が少ない分、融着した有機物粒子を通じたイオン伝導性や機械的強度及び耐熱性には劣るが、粒子間の空隙に電解液が含浸することでイオン伝導性を向上させることができる。また、後者はランダムに隙間が開いた構造になるため、デントライトが発生した場合、その直線的な成長を妨げることでショートを防ぐ効果を高めることもできる。ホットメルトの際の加熱融着方法は、熱風やホットプレート、オーブン、赤外線、超音波融着など各種公知の方法を用いることができ、加熱時にプレスすることで保護剤層の密度を高めることもできる。また、冷却は自然冷却の他、冷却ガス、放熱板への押し付けなど各種公知の方法を用いることができる。また、結着剤が溶融する温度まで加熱する場合は、結着剤が溶融する温度で、0.1~1000秒加熱することができる。
[Heating method]
In the method for producing a battery electrode or separator coating film of the present invention, when the binder is used in the form of particles, the binders can be thermally fused to be solidified. In that case, the particles can be solidified by heat fusion at a temperature at which the particles are completely melted, or the surfaces of the organic particles can be melted and welded and cooled in a state of being in close contact with each other. It can also be solidified in a state where it is in close contact with a gap. According to the former heat fusion solidification, there are many portions in a continuous phase, and ion conductivity, mechanical strength, and heat resistance are high. According to the latter heat fusion solidification, since there are few portions in the continuous phase, the ion conductivity, mechanical strength and heat resistance through the fused organic particles are inferior. Impregnation can improve ion conductivity. Further, since the latter has a structure in which gaps are randomly opened, the effect of preventing a short circuit can be enhanced by preventing the linear growth when dentlite is generated. Various known methods such as hot air, hot plate, oven, infrared ray, ultrasonic fusion can be used as the heat fusion method at the time of hot melt, and the density of the protective agent layer can be increased by pressing during heating. it can. In addition to natural cooling, various known methods such as cooling gas and pressing against a heat sink can be used for cooling. Further, when heating to a temperature at which the binder is melted, the heating can be performed at a temperature at which the binder is melted for 0.1 to 1000 seconds.
[磁場及び/又は電場配向]
 本発明の電池電極又はセパレーターコーティング膜の製造方法では、磁場及び/又は電場を用いて配合材料を配向させた状態で固化することができる。これにより、イオン伝導性や機械的強度及び耐熱性に異方性があるコーティング膜を形成できる。粘弾性粒子を磁場及び/又は電場を用いて応力緩和しやすい方向に配向させた状態で固定することで応力緩和能を高めることができる。前述の高分子材料の場合、延伸することで磁化率及び/又は誘電率に異方性を与えることができるので、磁場及び/又は電場で配向させることができる。また、セルロース等の異方性がある繊維を用いることもできる。このような高分子を延伸して作製したファイバーや繊維を粉砕して粒子にし、長軸方向を電極面に垂直に立つように配向させることでイオン伝導性を向上させることができる。有機物結晶に付いては、結晶磁気及び/又は誘電率異方性があるものは磁場及び/又は電場で配向でき、前述の通りの効果を発揮させることができる。磁場及び/又は電場は静磁場及び/又は電場でも回転磁場及び/又は電場のような時間変動磁場及び/又は電場でも良く、磁場と電場は同時に印加しても良い。
[Magnetic field and / or electric field orientation]
In the method for producing a battery electrode or separator coating film of the present invention, the compounded material can be solidified in an oriented state using a magnetic field and / or an electric field. Thereby, a coating film having anisotropy in ion conductivity, mechanical strength, and heat resistance can be formed. The stress relaxation ability can be enhanced by fixing the viscoelastic particles in a state in which they are oriented in a direction in which stress relaxation is easy using a magnetic field and / or an electric field. In the case of the above-described polymer material, anisotropy can be imparted to the magnetic susceptibility and / or the dielectric constant by stretching, so that the polymer material can be oriented by a magnetic field and / or an electric field. In addition, fibers having anisotropy such as cellulose can also be used. Ion conductivity can be improved by pulverizing fibers and fibers produced by stretching such a polymer into particles and orienting the major axis so as to stand perpendicular to the electrode surface. As for organic crystals, those having crystal magnetic and / or dielectric anisotropy can be oriented by a magnetic field and / or an electric field, and the effects as described above can be exhibited. The magnetic field and / or electric field may be a static magnetic field and / or an electric field or a time-varying magnetic field and / or an electric field such as a rotating magnetic field and / or an electric field, and the magnetic field and the electric field may be applied simultaneously.
 上記の工程を含む、本発明の電池電極又はセパレーターコーティング膜の製造方法により、コーティング膜をその表面に有する電池電極又はセパレーターが得られる。なお、コーティング膜の少なくとも一部が、電池電極やセパレーター内部に入り込んで形成されていても良い。コーティング膜の空隙率は、40%以上であり、41~90%であるのが好ましく、41~80%であるのがより好ましい。 The battery electrode or separator having a coating film on its surface can be obtained by the method for producing a battery electrode or separator coating film of the present invention including the above steps. Note that at least a part of the coating film may be formed so as to enter the inside of the battery electrode or the separator. The porosity of the coating film is 40% or more, preferably 41 to 90%, and more preferably 41 to 80%.
[電池電極及び/又はセパレーター]
 本発明は、上記電池電極又はセパレーターコーティング膜で保護されたか、上記電池電極又はセパレーターコーティング膜の製造方法により製造したコーティング膜を有する電池電極及び/又はセパレーターに関する。
 本発明の電池電極又はセパレーターコーティング膜で保護された電池電極又はセパレーターは、本発明の組成物を電池電極又はセパレーターにコートして、次いで溶媒を蒸散させることで製造できる。電池電極としては、公知の各種電池や電気二重層型キャパシタの正極及び/又は負極を例示でき、これらの少なくとも一面に電池電極又はセパレーターコーティング膜組成物を塗布又は含浸することができる。セパレーターとしては、ポリプロピレンやポリエチレン製の多孔質材料やセルロース製やポリプロピレン、ポリエチレン、ポリエステル製の不織布などを例示でき、これらの両面又は片面に塗布したり含浸させたりできる。本発明の電池電極又はセパレーターコーティング膜組成物は、対向するセパレーターや電極に密着させた状態で用いることができ、溶媒が蒸散しないうちにセパレーターと電極とを密着させてから乾燥させたり電池組み立て後にホットプレスを行ったりすることでこれら部材を密着させることもできる。
[Battery electrode and / or separator]
The present invention relates to a battery electrode and / or separator having a coating film which is protected by the battery electrode or separator coating film or manufactured by the method for manufacturing the battery electrode or separator coating film.
The battery electrode or separator protected with the battery electrode or separator coating film of the present invention can be produced by coating the battery electrode or separator with the composition of the present invention and then evaporating the solvent. As a battery electrode, the positive electrode and / or negative electrode of a well-known various battery and an electric double layer type capacitor can be illustrated, A battery electrode or a separator coating film composition can be apply | coated or impregnated to at least one surface. Examples of the separator include a porous material made of polypropylene or polyethylene, a nonwoven fabric made of cellulose, polypropylene, polyethylene, or polyester, and can be applied or impregnated on both sides or one side. The battery electrode or separator coating film composition of the present invention can be used in a state of being in close contact with the opposing separator or electrode. After the solvent is not evaporated, the separator and the electrode are in close contact and then dried or after battery assembly. These members can be brought into close contact with each other by hot pressing.
 電極やセパレーターは電極活物質層の塗工方向やセパレーターの延伸及び巻き取り方向などによって弾性率や線膨張係数、熱時の収縮量に異方性がある場合が有る。例えば、一軸延伸したポリエチレン製のセパレーターは、加熱すると延伸時の応力が緩和され延伸方向に縮む量が大きくなり、結果コーティング膜間との応力が異方的に大きくなる。この場合、粘弾性粒子が形状異方性を有し、電池電極又はセパレーターの基材の収縮方向(すなわち、延伸方向)に対して、粘弾性粒子の最長軸が平行に配向している、本発明の電池電極又はセパレーターコーティング膜組成物を用いて得られるコーティング膜を有する電池電極又はセパレーターが好ましい。ここで、粘弾性粒子の最長軸とは、粘弾性粒子の任意の2点の端部を最短で結ぶ直線が最長となる線をいう。また、電池電極又はセパレーターの基材とは、コーティング膜を有する電池電極又はセパレーターにおけるコーティング膜以外の部分をいう。電池電極又はセパレーターの基材の収縮方向に対して、粘弾性粒子の最長軸が平行に配向している場合、コーティング膜中の粘弾性粒子の変形量が延伸方向に大きくなるように配向している。そのため、コーティング膜を有する電池電極又はセパレーターにおいて、コーティング膜と電池電極又はセパレーターの基材との間の応力緩和能が大きくなり、カールの発生がより抑えられ、耐熱性がより向上する。たとえば、粘弾性粒子を延伸したポリエチレンファイバーを短く切ったものにし、繊維の配向方向とセパレーターの延伸方向を揃える事で応力緩和能を高める事ができ、カールの発生がより抑えられ、耐熱性がより向上する。 Electrodes and separators may have anisotropy in elastic modulus, linear expansion coefficient, and shrinkage when heated, depending on the application direction of the electrode active material layer, the stretching and winding directions of the separator, and the like. For example, a uniaxially stretched polyethylene separator relieves stress during stretching and increases the amount of shrinkage in the stretching direction when heated, resulting in an anisotropic increase in stress between the coating films. In this case, the viscoelastic particles have shape anisotropy, and the longest axis of the viscoelastic particles is oriented parallel to the contraction direction (that is, the stretching direction) of the battery electrode or the separator base material. A battery electrode or separator having a coating film obtained by using the battery electrode or separator coating film composition of the invention is preferred. Here, the longest axis of the viscoelastic particles refers to a line having the longest straight line connecting the end points of any two points of the viscoelastic particles. Moreover, the base material of a battery electrode or a separator means parts other than the coating film in the battery electrode or separator which have a coating film. When the longest axis of the viscoelastic particles is oriented parallel to the shrinkage direction of the battery electrode or separator substrate, the viscoelastic particles in the coating film are oriented so that the amount of deformation increases in the stretching direction. Yes. Therefore, in the battery electrode or separator having the coating film, the stress relaxation ability between the coating film and the base material of the battery electrode or separator is increased, curling is further suppressed, and the heat resistance is further improved. For example, it is possible to increase the stress relaxation capability by making the polyethylene fiber stretched with viscoelastic particles short and aligning the fiber orientation direction with the separator stretching direction, curling is further suppressed, and heat resistance is improved. More improved.
[電池]
 本発明は、本発明の電池電極又はセパレーターコーティング膜組成物で保護された電池電極及び/又はセパレーターを含む電池に関する。電池の製造は、公知の方法によって行うことができる。また、電解液をコーティング膜に含浸させて、イオン伝導性が付与されたコーティング膜を用いて電池を製造することができる。さらに、コーティング膜組成物自体にイオン伝導性を持たせて、固体電解質膜として電池に組み込みこむこともできる。電解液をコーティング膜に含浸させる場合は、粘弾性粒子に対する結着剤の量を20重量%以下にし、粒子の体積排除効果でできた空隙に電解液を含浸させることでイオン伝導性を付与できる。空隙が無い構造にする場合は、結着剤に電解液を膨潤させる事でイオン伝導性を付与できる。
[battery]
The present invention relates to a battery comprising a battery electrode and / or a separator protected with the battery electrode or separator coating film composition of the present invention. The battery can be manufactured by a known method. In addition, a battery can be manufactured using a coating film impregnated with ion conductivity by impregnating the coating film with an electrolytic solution. Further, the coating film composition itself can have ion conductivity and can be incorporated into a battery as a solid electrolyte film. When the coating film is impregnated with the electrolytic solution, the amount of the binder with respect to the viscoelastic particles can be 20% by weight or less, and the ionic conductivity can be imparted by impregnating the electrolytic solution into the void formed by the volume exclusion effect of the particles. . In the case of a structure having no voids, ion conductivity can be imparted by swelling the electrolyte in the binder.
 以下に実施例を用いて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。添加量の表示は、断りが無い場合は重量部又は重量%である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The indication of the amount added is part by weight or% by weight unless otherwise noted.
[試験例1]
 後述する実施例及び比較例で用いた粘弾性粒子及び結着剤について、下記の方法で弾性率と塑性変形率を評価した。ここで、粘弾性粒子については、使用する粘弾性粒子の分散液を、ろ過し、乾燥させて、試験粒子を得た。結着剤については、使用する結着剤を使用する条件で厚み50μmの膜状に固化させたのち、液体窒素で冷却した上でミル(IKA製;M20汎用ミル)を用いて粉砕し、目開き50μmの篩で篩い、試験粒子を得た。
[Test Example 1]
The elastic modulus and plastic deformation rate of the viscoelastic particles and binder used in Examples and Comparative Examples described later were evaluated by the following methods. Here, about the viscoelastic particle, the dispersion of the viscoelastic particle to be used was filtered and dried to obtain test particles. The binder was solidified into a film having a thickness of 50 μm under the conditions for using the binder used, cooled with liquid nitrogen, pulverized using a mill (made by IKA; M20 general-purpose mill), A test particle was obtained by sieving with an opening 50 μm sieve.
(弾性率の測定)
内径10mm、外径110mm、高さ150mmのアクリル製の筒に試験粒子を高さ100mmになるように詰め、外径10mm、長さ200mmの鉄製の棒をオートグラフを用いて押し込んだ。1kgfで押し込んだときの高さh1とその後押し込む力を緩め0.5kgfで押し込んだときの高さh2の比、h1/h2=h3を弾性率として測定した。
(Measurement of elastic modulus)
The test particles were packed into an acrylic cylinder having an inner diameter of 10 mm, an outer diameter of 110 mm, and a height of 150 mm so as to have a height of 100 mm, and an iron bar having an outer diameter of 10 mm and a length of 200 mm was pushed in using an autograph. The ratio of the height h1 when pressed at 1 kgf and the height h2 when pressed at 0.5 kgf was loosened and h1 / h2 = h3 was measured as the elastic modulus.
(塑性変形率の測定)
 上記測定で1kgfの加重をかけた後、荷重を0.5kgfまで戻したときの高さh4を求め、次いで鉄製の棒を100kgfで押し込んだ後、荷重を0.5kgfまで戻したときの高さh5との比、h5/h4=h6を塑性変形率として測定した。
(Measurement of plastic deformation rate)
After applying a weight of 1 kgf in the above measurement, obtain the height h4 when the load is returned to 0.5 kgf, and then push the iron rod with 100 kgf and then return the load to 0.5 kgf The ratio with h5, h5 / h4 = h6, was measured as the plastic deformation rate.
[試験例2]
 後述する実施例及び比較例で製造したリチウムイオン二次電池について、下記の特性を測定した。
[Test Example 2]
The following characteristics were measured for the lithium ion secondary batteries manufactured in Examples and Comparative Examples described later.
(初期容量測定)
 初期容量を出すために0.005mAの定電流で電圧が4.2Vになるまで充電し、次いで4.2Vの定電圧で2時間充電した。その後、0.005mAの定電流で電圧が3.5Vになるまで放電した。これを3回繰り返し、3回目の放電容量を初期容量とした。
(Initial capacity measurement)
To obtain the initial capacity, the battery was charged at a constant current of 0.005 mA until the voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V for 2 hours. Thereafter, the battery was discharged at a constant current of 0.005 mA until the voltage reached 3.5V. This was repeated three times, and the third discharge capacity was set as the initial capacity.
(初期内部抵抗)
 初期容量を測定したセルを4.2Vの電位にし、その電位をセンターに±15mVの電圧変化で1kHzのインピーダンスを測定した。
(Initial internal resistance)
The cell whose initial capacity was measured was set to a potential of 4.2 V, and an impedance of 1 kHz was measured with a voltage change of ± 15 mV with the potential at the center.
(レート特性)
 初期容量から放電レートを求めて、放電レート別の放電容量を測定した。充電は毎回10時間かけて定電流で4.2Vまで電圧を上げた後、4.2V定電圧で2時間充電した。その後、10時間かけて定電流で3.5Vになるまで放電し、このときの放電容量を0.1Cの放電容量とした。次に同様に充電した後0.1Cで求めた放電容量から1時間で放電が完了する電流値で放電しそのときの放電容量を求め1Cのときの放電容量とした。同様に、3C、10C、30Cのときの放電用量を求め、0.1Cの時の放電容量を100%としたときの容量維持率を算出した。
(Rate characteristics)
The discharge rate was obtained from the initial capacity, and the discharge capacity for each discharge rate was measured. The charge was increased to 4.2 V with a constant current over 10 hours each time, and then charged with a 4.2 V constant voltage for 2 hours. Thereafter, the battery was discharged at a constant current to 3.5 V over 10 hours, and the discharge capacity at this time was set to a discharge capacity of 0.1 C. Next, after charging in the same manner, the battery was discharged at a current value at which discharge was completed in 1 hour from the discharge capacity determined at 0.1 C, and the discharge capacity at that time was determined to be the discharge capacity at 1 C. Similarly, the discharge dose at 3C, 10C, and 30C was determined, and the capacity retention rate was calculated when the discharge capacity at 0.1C was 100%.
(サイクル寿命)
 1Cで4.2Vまで充電し、4.2Vの定電圧で2時間充電したあと1Cで3.5Vまで放電する充電及び放電試験を実施した。このとき、放電容量が最初の1回目の放電に対して何%になるかを計算し、容量が80%を下回ったときの充電及び放電回数を寿命とした。
(Cycle life)
A charge and discharge test was performed in which the battery was charged to 4.2 V at 1 C, charged at a constant voltage of 4.2 V for 2 hours, and then discharged to 3.5 V at 1 C. At this time, it was calculated what percentage the discharge capacity was with respect to the first discharge, and the number of times of charging and discharging when the capacity was less than 80% was defined as the lifetime.
(耐熱絶縁性試験)
 1Cで4.2Vまで充電し、4.2Vの定電圧で2時間充電し満充電にした状態で、25℃から260℃まで1時間に10℃ずつ昇温させその後およそ25℃まで1時間に20℃ずつ冷却する試験を実施し、耐久試験後の抵抗を前記(初期内部抵抗)の測定法で確認した。評価基準は以下の通りであった。
1kHzのインピーダンスが
◎;10MΩ以上
○:100kΩ~10MΩ未満
△:1kΩ~100kΩ未満
×:1kΩ未満
(Heat resistance insulation test)
Charge to 4.2V at 1C, charge for 2 hours at a constant voltage of 4.2V and fully charged, then raise the temperature from 25 ° C to 260 ° C in 10 ° C increments per hour, then increase to approximately 25 ° C in 1 hour The test which cools 20 degreeC at a time was implemented, and the resistance after an endurance test was confirmed by the measuring method of the said (initial internal resistance). The evaluation criteria were as follows.
Impedance at 1 kHz is ◎; 10 MΩ or more ○: 100 kΩ to less than 10 MΩ Δ: 1 kΩ to less than 100 kΩ x: less than 1 kΩ
(耐熱外観試験)
 試験法は、前述の耐熱絶縁試験と同じで、試験後の電池を分解して内部の様子を確認した。評価基準は以下の通りであった。
 ◎:正極と負極のダイレクトタッチは無く絶縁状態が保たれており電池電極保護層は電極及び/又はセパレーターに密着していた
 ○:正極と負極のダイレクトタッチは無く絶縁状態が保たれているが電池電極保護層は一部浮きが見られるが剥離はしていない
 △:脱離が進行し、正負極の一部がむき出しになっている
 ×:正負極がタッチしショートしている状態
(Heat resistance appearance test)
The test method was the same as the heat-resistant insulation test described above, and the battery after the test was disassembled to confirm the internal state. The evaluation criteria were as follows.
◎: There is no direct touch between the positive electrode and the negative electrode and the insulation state is maintained, and the battery electrode protective layer is in close contact with the electrode and / or the separator. ○: There is no direct touch between the positive electrode and the negative electrode and the insulation state is maintained. Battery electrode protective layer is partially lifted but not peeled △: Desorption progresses and part of positive and negative electrodes is exposed ×: Positive and negative electrodes are touched and short-circuited
[試験例3]
 後述する実施例及び比較例で製造した電極又はセパレーターに於いて、下記の特性を測定した。
[Test Example 3]
The following characteristics were measured in the electrodes or separators produced in Examples and Comparative Examples described later.
(カール試験)
 コーティング膜を形成した電極又はセパレーターを50mm角で切り取りカールの状態を確認した。評価基準は以下の通りであった。
 ◎: 全くカールしていない
 ○:端部が1mm未満の高さでめくれている
 △:端部が1~5mmの高さでめくれている
 ×:ロール上にカールしている
(Curl test)
The electrode or separator on which the coating film was formed was cut out at 50 mm square to confirm the curl state. The evaluation criteria were as follows.
◎: Not curled at all ○: The end is turned up at a height of less than 1 mm △: The end is turned up at a height of 1 to 5 mm ×: Curled on the roll
[実施例1]
 実施例1では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物を負極にコートして、溶媒を蒸散させることにより得られるコーティング膜を有する負極を用いてリチウムイオン二次電池を製造する方法を説明する。
[Example 1]
In Example 1, a negative electrode having a coating film obtained by coating a battery electrode or separator coating film composition comprising a solvent, a binder, and viscoelastic particles on a negative electrode and evaporating the solvent is used for lithium ion secondary. A method for manufacturing the secondary battery will be described.
(組成物の製造)
(粘弾性粒子スラリー1の作製)
 100Lポリプロピレン製タンクにイオン交換水10Lとウレタン粒子(根上工業株式会社製;低弾性率ウレタン2μm粒子の60%水混合物;アートパールMM-120TW)50kgを加え、12時間攪拌して50%分散液を作製した。分散液を目開き20μmのナイロンメッシュでフィルタリングし、更に2Tの電磁石で磁性異物を取り除き、工程で抜けた水を加えて粘弾性粒子を50%含む分散液を作製した。
(Production of composition)
(Preparation of viscoelastic particle slurry 1)
Add 10 L of ion-exchanged water and urethane particles (manufactured by Negami Kogyo Co., Ltd .; 60% water mixture of low-modulus urethane 2 μm particles; Art Pearl MM-120TW) to a 100 L polypropylene tank and stir for 12 hours to obtain a 50% dispersion. Was made. The dispersion was filtered with a nylon mesh having an opening of 20 μm, magnetic foreign substances were removed with a 2T electromagnet, and water removed in the process was added to prepare a dispersion containing 50% viscoelastic particles.
(組成物の配合)
 前記分散液50kgに水を20kg加え、更にポリオキシエチレン(明成化学工業株式会社製;アルコックスE-30)を200g加え6時間攪拌して溶解させて、電池電極又はセパレーターコーティング膜組成物を得た。なお、組成物において、溶媒を除いた成分のうち粘弾性粒子の含有量は、99.2重量%であった。
(Composition of composition)
20 kg of water is added to 50 kg of the dispersion, and 200 g of polyoxyethylene (manufactured by Meisei Chemical Co., Ltd .; Alcox E-30) is added and dissolved by stirring for 6 hours to obtain a battery electrode or separator coating film composition. It was. In the composition, the content of viscoelastic particles among the components excluding the solvent was 99.2% by weight.
(正極の製造)
 冷却ジャケット付きの10Lプラネタリーミキサーに、PVdF(ポリフッ化ビニリデン)の15%NMP(N-メチルピロリドン)溶液(株式会社クレハ製;クレハKFポリマー#1120)520部、コバルト酸リチウム(略称=LCO)(日本化学工業株式会社製;セルシードC-5H)1140部、アセチレンブラック(電気化学工業株式会社製;デンカブラックHS-100)120部、NMP5400部を加え液温が30℃を超えないように冷却しながら均一になるまで攪拌した。これを、圧延アルミニウム集電体(日本製箔株式会社製;幅300mm、厚さ20μm)に幅180mm、厚さ200μmで塗工し、130℃温風炉で30秒乾燥させた。これを線圧530kgf/cmでロールプレスした。プレス後の正極活物質層の厚みは22μmであった。
(Manufacture of positive electrode)
In a 10 L planetary mixer with a cooling jacket, 520 parts of a 15% NMP (N-methylpyrrolidone) solution of PVdF (polyvinylidene fluoride) (manufactured by Kureha; Kureha KF Polymer # 1120), lithium cobaltate (abbreviation: LCO) (Nippon Chemical Industry Co., Ltd .; Cellseed C-5H) 1140 parts, acetylene black (Denki Black HS-100, Denka Black HS-100) 120 parts and NMP 5400 parts were added and cooled so that the liquid temperature did not exceed 30 ° C. The mixture was stirred until uniform. This was coated on a rolled aluminum current collector (manufactured by Nippon Foil Co., Ltd .; width 300 mm, thickness 20 μm) with a width of 180 mm and a thickness of 200 μm, and dried in a 130 ° C. hot air oven for 30 seconds. This was roll-pressed at a linear pressure of 530 kgf / cm. The thickness of the positive electrode active material layer after pressing was 22 μm.
(負極の製造)
 冷却ジャケットつきの10Lプラネタリーミキサーに、PVdFの15%NMP溶液(株式会社クレハ製;クレハKFポリマー#9130)530部、グラファイト(日本黒鉛株式会社製;GR-15)1180部、NMP4100部を加え液温が30℃を超えないように冷却しながら均一になるまで攪拌した。これを、圧延銅箔集電体(日本製箔株式会社製;幅300mm、厚さ20μm)に幅180mm、厚さ200μmで塗工し、100℃温風炉で2分間乾燥させた。これを線圧360kgf/cmでロールプレスした。プレス後の負極活物質層の厚みは28μmであった。
(Manufacture of negative electrode)
To a 10 L planetary mixer with a cooling jacket, add 530 parts of a 15% NMP solution of PVdF (manufactured by Kureha; Kureha KF Polymer # 9130), 1180 parts of graphite (manufactured by Nippon Graphite Co., Ltd .; GR-15), and 4100 parts of NMP. It stirred until it became uniform, cooling, so that temperature might not exceed 30 degreeC. This was coated on a rolled copper foil current collector (manufactured by Nippon Foil Co., Ltd .; width 300 mm, thickness 20 μm) with a width of 180 mm and a thickness of 200 μm, and dried in a 100 ° C. hot air oven for 2 minutes. This was roll-pressed at a linear pressure of 360 kgf / cm. The thickness of the negative electrode active material layer after pressing was 28 μm.
(コーティング膜を有する負極の製造)
 前記負極に前記組成物を乾燥厚みが5μmになるようにグラビアコーターを用いて塗工し(株式会社康井精機製ミューコーター、シリンダー#100、搬送速度1m/min、シリンダー/搬送速度比=1)、100℃×60秒加熱し、電池電極又はセパレーターコーティング膜の厚みが5μmである、コーティング膜を有する負極を製造した。
(Manufacture of negative electrode with coating film)
The composition was applied to the negative electrode using a gravure coater so as to have a dry thickness of 5 μm (mucoater manufactured by Yasui Seiki Co., Ltd., cylinder # 100, conveyance speed 1 m / min, cylinder / conveyance speed ratio = 1). ), And heated at 100 ° C. for 60 seconds to produce a negative electrode having a coating film in which the thickness of the battery electrode or the separator coating film is 5 μm.
(リチウムイオン二次電池の製造)
 正極及びコーティング膜でコートされた負極を短辺に10mmの幅で両端に活物質層が塗工されていない領域が含まれるように40mm×50mmでカットし、金属がむき出しになっている部分に正極はアルミニウムのタブを、負極にニッケルのタブを抵抗溶接で接合した。セパレーター(セルガード株式会社製;#2400)を幅45mm、長さ120mmにカットし、3つに折り返してその間に正極及び負極が対向するように挟み込み、これを幅50mm長さ100mmのアルミニウムラミネートセルを二つ折りにしたもので挟み、タブが当たる部分にシーラントを挟み込んだ上でシーラント部分とそれに直行する辺を熱ラミネートして袋状にした。これを100℃の真空オーブンに24時間入れて真空乾燥させ、次いでドライブローブボックス中で6フッ化リン酸リチウム/EC:DEC=1:1 1M電解液(キシダ化学株式会社製;LBG-96533)を注入し、真空含浸した後、余った電解液を扱き出し、真空シーラーで接合密封して、リチウムイオン二次電池を製造した。
(Manufacture of lithium ion secondary batteries)
The positive electrode and the negative electrode coated with the coating film are cut at 40 mm × 50 mm so as to include an area where the active material layer is not coated at both ends with a width of 10 mm on the short side, and in a portion where the metal is exposed The positive electrode was joined with an aluminum tab, and the negative electrode was joined with a nickel tab by resistance welding. A separator (manufactured by Celgard Co., Ltd .; # 2400) was cut to a width of 45 mm and a length of 120 mm, folded back into three, and sandwiched so that the positive electrode and the negative electrode faced each other, and an aluminum laminate cell with a width of 50 mm and a length of 100 mm was obtained. The sheet was sandwiched between two parts, and the sealant was sandwiched between the parts where the tabs hit, and then the sealant part and the side perpendicular to it were heat laminated to form a bag. This was put in a vacuum oven at 100 ° C. for 24 hours and then vacuum-dried, and then in a drive lobe box, lithium hexafluorophosphate / EC: DEC = 1: 1 1M electrolyte (manufactured by Kishida Chemical Co., Ltd .; LBG-96533) Was injected and vacuum impregnated, and then the remaining electrolyte was handled and sealed with a vacuum sealer to produce a lithium ion secondary battery.
[実施例2]
 実施例2では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物を正極にコートして、溶媒を蒸散させることにより得られるコーティング膜を有する正極を用いてリチウムイオン二次電池を製造する方法を説明する。
[Example 2]
In Example 2, a positive electrode having a coating film obtained by coating a battery electrode or separator coating film composition comprising a solvent, a binder, and viscoelastic particles on a positive electrode and evaporating the solvent is used to form a lithium ion catalyst. A method for manufacturing the secondary battery will be described.
(組成物の製造)
 実施例1と同じ方法で製造した。
(Production of composition)
The same method as in Example 1 was used.
(正極の製造)
 実施例1の方法で製造した。
(Manufacture of positive electrode)
Manufactured by the method of Example 1.
(負極の製造)
 実施例1の方法で製造した。
(Manufacture of negative electrode)
Manufactured by the method of Example 1.
(コーティング膜を有する正極の製造)
 実施例1の方法で正極に対して製造した。
(Manufacture of positive electrode with coating film)
The positive electrode was manufactured by the method of Example 1.
(リチウムイオン二次電池の製造)
 実施例1の方法で製造した。
(Manufacture of lithium ion secondary batteries)
Manufactured by the method of Example 1.
[実施例3]
 実施例3では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物をセパレーターにコートして、溶媒を蒸散させることにより得られるコーティング膜を有するセパレーターを用いてリチウムイオン二次電池を製造する方法を説明する。
[Example 3]
In Example 3, a battery electrode or separator coating film composition comprising a solvent, a binder and viscoelastic particles is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form lithium ion A method for manufacturing the secondary battery will be described.
(組成物の製造)
 実施例1と同じ方法で製造した。
(Production of composition)
The same method as in Example 1 was used.
(正極の製造)
 実施例1の方法で製造した。
(Manufacture of positive electrode)
Manufactured by the method of Example 1.
(負極の製造)
 実施例1の方法で製造した。
(Manufacture of negative electrode)
Manufactured by the method of Example 1.
(コーティング膜を有するセパレーターの製造)
 実施例1と同じ方法でセパレーターに対して製造した。
(Manufacture of separator with coating film)
A separator was produced in the same manner as in Example 1.
(リチウムイオン二次電池の製造)
 実施例1の方法で製造した。
(Manufacture of lithium ion secondary batteries)
Manufactured by the method of Example 1.
[実施例4]
 実施例4では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物をセパレーターにコートして、溶媒を蒸散させることにより得られるコーティング膜を有するセパレーターを用いてリチウムイオン二次電池を製造する方法を説明する。
[Example 4]
In Example 4, a battery electrode or separator coating film composition comprising a solvent, a binder, and viscoelastic particles is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form a lithium ion solution. A method for manufacturing the secondary battery will be described.
(組成物の製造)
(粘弾性粒子スラリー1の作製)
 100Lポリプロピレン製タンクにイオン交換水10Lとウレタン粒子(根上工業株式会社製;低弾性率ウレタン2μm粒子の60%水混合物;アートパールMM-120TW)50kgを加え、12時間攪拌して50%分散液を作製した。分散液を目開き20μmのナイロンメッシュでフィルタリングし、更に2Tの電磁石で磁性異物を取り除き、工程で抜けた水を加えて粘弾性粒子を50%含む分散液(粘弾性粒子スラリー1)を製造した。
(Production of composition)
(Preparation of viscoelastic particle slurry 1)
Add 10 L of ion-exchanged water and urethane particles (manufactured by Negami Kogyo Co., Ltd .; 60% water mixture of low-modulus urethane 2 μm particles; Art Pearl MM-120TW) to a 100 L polypropylene tank and stir for 12 hours to obtain a 50% dispersion. Was made. The dispersion was filtered with a nylon mesh having a mesh size of 20 μm, magnetic foreign matter was removed with a 2T electromagnet, and water removed in the process was added to produce a dispersion (viscoelastic particle slurry 1) containing 50% viscoelastic particles. .
(組成物の配合)
 前記分散液12kgに水を2kg加え、更にエチレン・酢酸ビニル共重合エマルジョン(株式会社クラレ製;パンフレックスOM-4000NT)0.1kgを加え6時間攪拌して溶解させ、次いでドデシルベンゼンスルホン酸リチウムの55%水溶液を0.01kg加え更に2時間攪拌して、電池電極又はセパレーターコーティング膜組成物を得た。なお、組成物において、溶媒を除いた成分のうち粘弾性粒子の含有量は、99.2重量%であった。
(Composition of composition)
2 kg of water was added to 12 kg of the dispersion, 0.1 kg of ethylene / vinyl acetate copolymer emulsion (manufactured by Kuraray Co., Ltd .; Panflex OM-4000NT) was added and dissolved by stirring for 6 hours, and then lithium dodecylbenzenesulfonate was added. 0.01 kg of 55% aqueous solution was added and further stirred for 2 hours to obtain a battery electrode or separator coating film composition. In the composition, the content of viscoelastic particles among the components excluding the solvent was 99.2% by weight.
(正極の製造)
 実施例1の方法で製造した。
(Manufacture of positive electrode)
Manufactured by the method of Example 1.
(負極の製造)
 実施例1の方法で製造した。
(Manufacture of negative electrode)
Manufactured by the method of Example 1.
(コーティング膜を有するセパレーターの製造)
 実施例3の方法で製造した。
(Manufacture of separator with coating film)
Prepared by the method of Example 3.
(リチウムイオン二次電池の製造)
 実施例1の方法で製造した。
(Manufacture of lithium ion secondary batteries)
Manufactured by the method of Example 1.
[実施例5]
 実施例5では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物をセパレーターにコートして、溶媒を蒸散させることにより得られるコーティング膜を有するセパレーターを用いてリチウムイオン二次電池を製造する方法を説明する。
[Example 5]
In Example 5, a battery electrode comprising a solvent, a binder, and viscoelastic particles or a separator coating film composition is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form a lithium ion solution. A method for manufacturing the secondary battery will be described.
(組成物の製造)
(粘弾性粒子スラリー2の作製)
 100Lポリプロピレン製タンクにイオン交換水10Lとポリエチレン粒子(ユニチカ株式会社製;ポリエチレン0.2μm粒子の60%水混合物;CD-1200)50kgを加え、12時間攪拌して50%分散液を作製した。分散液を目開き20μmのナイロンメッシュでフィルタリングし、更に2Tの電磁石で磁性異物を取り除き、工程で抜けた水を加えて粘弾性粒子を50%含む分散液(粘弾性粒子スラリー2)を作製した。
(組成物の配合)
 前記分散液12kgに水を2kg加え、更にエチレン・酢酸ビニル共重合エマルジョン(株式会社クラレ製;パンフレックスOM-4000NT)0.1kgを加え6時間攪拌して溶解させ、次いでドデシルベンゼンスルホン酸リチウムの55%水溶液を0.01kg加え更に2時間攪拌して、電池電極又はセパレーターコーティング膜組成物を得た。なお、組成物において、溶媒を除いた成分のうち粘弾性粒子の含有量は、99.2重量%であった。
(Production of composition)
(Preparation of viscoelastic particle slurry 2)
To a 100 L polypropylene tank, 10 L of ion exchange water and 50 kg of polyethylene particles (manufactured by Unitika Ltd .; 60% water mixture of polyethylene 0.2 μm particles; CD-1200) were added and stirred for 12 hours to prepare a 50% dispersion. The dispersion was filtered with a nylon mesh having an opening of 20 μm, magnetic foreign substances were removed with a 2T electromagnet, and water removed in the process was added to prepare a dispersion (viscoelastic particle slurry 2) containing 50% viscoelastic particles. .
(Composition of composition)
2 kg of water was added to 12 kg of the dispersion, 0.1 kg of ethylene / vinyl acetate copolymer emulsion (manufactured by Kuraray Co., Ltd .; Panflex OM-4000NT) was added and dissolved by stirring for 6 hours, and then lithium dodecylbenzenesulfonate was added. 0.01 kg of 55% aqueous solution was added and further stirred for 2 hours to obtain a battery electrode or separator coating film composition. In the composition, the content of viscoelastic particles among the components excluding the solvent was 99.2% by weight.
(正極の製造)
 実施例1の方法で製造した。
(Manufacture of positive electrode)
Manufactured by the method of Example 1.
(負極の製造)
 実施例1の方法で製造した。
(Manufacture of negative electrode)
Manufactured by the method of Example 1.
(コーティング膜を有するセパレーターの製造)
 実施例3の方法で製造した。
(Manufacture of separator with coating film)
Prepared by the method of Example 3.
(リチウムイオン二次電池の製造)
 実施例1の方法で製造した。
(Manufacture of lithium ion secondary batteries)
Manufactured by the method of Example 1.
[実施例6]
 実施例6では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物をセパレーターにコートして、溶媒を蒸散させることにより得られるコーティング膜を有するセパレーターを用いてリチウムイオン二次電池を製造する方法を説明する。
[Example 6]
In Example 6, a separator having a coating film obtained by coating a battery electrode or separator coating film composition comprising a solvent, a binder and viscoelastic particles on a separator and evaporating the solvent, lithium ion A method for manufacturing the secondary battery will be described.
(組成物の製造)
(無機粒子分散スラリーの作製)
 100Lポリプロピレン製タンクにイオン交換水50Lとコランダム(昭和電工株式会社製;A-50-F)100kgを加え、12時間攪拌して67%分散液を作製した。これを冷却しながらベッセル容積20Lのビーズミル(0.3mmジルコニアビーズ80%充填、周速10m/s)を用いて1週間循環粉砕して微粉砕スラリーを作製した。前記微粉砕スラリーを目開き5μmのナイロンメッシュでフィルタリングし、100Lポリプロピレン製タンク内に溜めて2日間静置した後、容積の1/5の上澄み層をポンプで除去した後、残り3/5を中間層としてポンプで分取して100Lのポリプロピレン製タンクに溜め、容器の底に残った1/5を沈降層として除去した。分取した3/5に付いては抜けた水を足して67%にした後、50Lのポリプロピレン製のタンクに溜め更に2日間静置した後、同様に上澄み層と沈降層とを除去した。この中間層を分取する操作をポリプロピレン製のタンクの容量を20Lに変えて後3回繰り返した後、最終的に分取した中間層から更に2Tの電磁石で磁性異物を取り除き、工程で抜けたイオン交換水を加えてコランダム粒子を67%含む無機粒子分散スラリーを作製した。
(Production of composition)
(Preparation of inorganic particle dispersed slurry)
To a 100 L polypropylene tank, 50 L of ion exchange water and 100 kg of corundum (manufactured by Showa Denko KK; A-50-F) were added and stirred for 12 hours to prepare a 67% dispersion. While this was cooled, it was circulated and pulverized for 1 week using a bead mill having a vessel volume of 20 L (packed with 80% 0.3 mm zirconia beads, peripheral speed 10 m / s) to prepare a finely pulverized slurry. The finely pulverized slurry is filtered with a nylon mesh having an opening of 5 μm, stored in a 100 L polypropylene tank and allowed to stand for 2 days. Then, the supernatant layer of 1/5 of the volume is removed by a pump, and the remaining 3/5 is removed. An intermediate layer was collected by a pump and stored in a 100 L polypropylene tank, and 1/5 remaining at the bottom of the container was removed as a sedimentation layer. For the 3/5 sampled, the drained water was added to make 67%, then stored in a 50 L polypropylene tank and allowed to stand for 2 days, and the supernatant layer and the sedimented layer were similarly removed. This operation of separating the intermediate layer was repeated three times after changing the capacity of the polypropylene tank to 20 L, and then the magnetic foreign matter was further removed from the finally separated intermediate layer with a 2T electromagnet, which was removed in the process. Ion exchange water was added to prepare an inorganic particle-dispersed slurry containing 67% corundum particles.
(組成物の配合)
 前記無機粒子分散スラリー3kgに水1kgを加え、更にポリオキシエチレン(明成化学工業株式会社製;アルコックスE-30)0.03kg加え6時間攪拌して溶解させ、次いでCD-1200を100g加え更に2時間攪拌して、電池電極又はセパレーターコーティング膜組成物を得た。なお、組成物において、溶媒を除いた成分のうち粘弾性粒子の含有量は、2.9重量%であった。
(Composition of composition)
Add 1 kg of water to 3 kg of the inorganic particle-dispersed slurry, add 0.03 kg of polyoxyethylene (manufactured by Meisei Chemical Co., Ltd .; Alcox E-30) and stir for 6 hours to dissolve, and then add 100 g of CD-1200. The mixture was stirred for 2 hours to obtain a battery electrode or separator coating film composition. In the composition, the content of viscoelastic particles among the components excluding the solvent was 2.9% by weight.
(正極の製造)
 実施例1の方法で製造した。
(Manufacture of positive electrode)
Manufactured by the method of Example 1.
(負極の製造)
 実施例1の方法で製造した。
(Manufacture of negative electrode)
Manufactured by the method of Example 1.
(コーティング膜を有するセパレーターの製造)
 実施例3の方法で製造した。
(Manufacture of separator with coating film)
Prepared by the method of Example 3.
(リチウムイオン二次電池の製造)
 実施例1の方法で製造した。
[実施例7]
 実施例7では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物をセパレーターにコートして、溶媒を蒸散させることにより得られるコーティング膜を有するセパレーターを用いてリチウムイオン二次電池を製造する方法を説明する。
(Manufacture of lithium ion secondary batteries)
Manufactured by the method of Example 1.
[Example 7]
In Example 7, a battery electrode comprising a solvent, a binder, and viscoelastic particles or a separator coating film composition is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used to form a lithium ion solution. A method for manufacturing the secondary battery will be described.
(繊維状弾性粒子の製造)
 ポリエチレン製釣り糸(YKGよつあみ製;G-soul Pe 0.3号)を1mm幅でカットした後、水5kgに50g分散させ、これを冷却しながらベッセル容積0.6Lのビーズミル(0.3mmジルコニアビーズ80%充填、周速10m/s)を用いて1日循環分散してスラリーを作製した。その後、前記スラリーを80℃で加熱攪拌して水分を飛ばし、濃度を60%にまで高めた。
(組成物の製造)
 実施例6のCD-1200の代わりに上記スラリーを入れたこと意外は実施例6と同じ方法で組成物を作製した。
(Manufacture of fibrous elastic particles)
A polyethylene fishing line (manufactured by YKG Yotsuami; G-soul Pe 0.3) is cut to a width of 1 mm, and then dispersed in 50 g of water (5 kg). While cooling this, a bead mill (0.3 mm zirconia beads having a vessel volume of 0.6 L) The slurry was circulated and dispersed for one day using 80% filling and a peripheral speed of 10 m / s). Thereafter, the slurry was heated and stirred at 80 ° C. to remove moisture, and the concentration was increased to 60%.
(Production of composition)
A composition was prepared in the same manner as in Example 6 except that the above slurry was added instead of CD-1200 in Example 6.
(正極の製造)
 実施例1の方法で製造した。
(Manufacture of positive electrode)
Manufactured by the method of Example 1.
(負極の製造)
 実施例1の方法で製造した。
(Manufacture of negative electrode)
Manufactured by the method of Example 1.
(コーティング膜を有するセパレーターの製造)
 実施例3の方法で製造した。
(Manufacture of separator with coating film)
Prepared by the method of Example 3.
(リチウムイオン二次電池の製造)
 実施例1の方法で製造した。
(Manufacture of lithium ion secondary batteries)
Manufactured by the method of Example 1.
[実施例8]
 実施例8では、溶媒と結着剤と粘弾性粒子から成る電池電極又はセパレーターコーティング膜組成物をセパレーターにコートして、溶媒を蒸散させることにより得られるコーティング膜を有するセパレーターを用いてリチウムイオン二次電池を製造する方法を説明する。
(コーティング膜を有するセパレーターの製造)
 シリンダー/搬送速度比を2にし、シリンダーが搬送速度の2倍になるようにし、シリンダーと基材とのせん断力によってファイバーが基材の搬送方向に平行に配向するように塗工したこと以外は、実施例3の方法で製造した。ファイバー配向の様子を光学顕微鏡で観察した。
[Example 8]
In Example 8, a battery electrode or a separator coating film composition comprising a solvent, a binder, and viscoelastic particles is coated on a separator, and a separator having a coating film obtained by evaporating the solvent is used. A method for manufacturing the secondary battery will be described.
(Manufacture of separator with coating film)
Except that the cylinder / conveying speed ratio is set to 2, the cylinder is double the conveying speed, and the fiber is oriented so that the fiber is oriented parallel to the conveying direction of the substrate by the shearing force between the cylinder and the substrate. This was produced by the method of Example 3. The state of fiber orientation was observed with an optical microscope.
(リチウムイオン二次電池の製造)
 実施例1の方法で製造した。
(Manufacture of lithium ion secondary batteries)
Manufactured by the method of Example 1.
[比較例1]
 電池電極又はセパレーターコーティング膜を有さない電極及びセパレーターを用いたこと以外は実施例1と同じ方法で、リチウムイオン二次電池を製造した。
[Comparative Example 1]
A lithium ion secondary battery was produced in the same manner as in Example 1 except that a battery electrode or an electrode having no separator coating film and a separator were used.
[比較例2]
 粘弾性粒子を用いなかったこと以外は実施例6と同じ方法で、リチウムイオン二次電池を製造した。
[Comparative Example 2]
A lithium ion secondary battery was produced in the same manner as in Example 6 except that the viscoelastic particles were not used.
 結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の電池電極又はセパレーターコーティング膜組成物によれば、コーティング膜を塗工しても基材の電極やセパレーターにおいて、カールの発生が抑えられ、高い耐熱性を有するため、プロセス適正に優れ、基材のしわに伴う電気化学的な耐久性の劣化が無いため、長期信頼性に優れた電池を提供できる。 According to the battery electrode or separator coating film composition of the present invention, even if the coating film is applied, the substrate electrode or separator suppresses the occurrence of curling and has high heat resistance. Since there is no deterioration in electrochemical durability due to the wrinkles of the base material, a battery with excellent long-term reliability can be provided.
[符号の説明]
1 電池電極又はセパレーターコーティング膜
2 活物質層
3 集電体
4 セパレーター
5 基材の搬送方向
[Explanation of symbols]
1 Battery electrode or separator coating film 2 Active material layer 3 Current collector 4 Separator 5 Substrate transport direction

Claims (6)

  1.  結着剤、溶媒及び粘弾性粒子を含む、電池電極又はセパレーターコーティング膜組成物。 A battery electrode or separator coating film composition comprising a binder, a solvent and viscoelastic particles.
  2.  粘弾性粒子の粘弾性率が、結着剤の粘弾性率よりも低い、請求項1に記載の電池電極又はセパレーターコーティング膜組成物。 The battery electrode or separator coating film composition according to claim 1, wherein the viscoelastic particles have a lower viscoelastic modulus than the viscoelastic modulus of the binder.
  3.  粘弾性粒子が形状異方性を有する、請求項1又は2に記載の電池電極又はセパレーターコーティング膜組成物。 The battery electrode or separator coating film composition according to claim 1 or 2, wherein the viscoelastic particles have shape anisotropy.
  4.  請求項1~3のいずれか1項に記載の電池電極又はセパレーターコーティング膜組成物を用いて得られるコーティング膜を有する電池電極又はセパレーター。 A battery electrode or separator having a coating film obtained by using the battery electrode or separator coating film composition according to any one of claims 1 to 3.
  5.  粘弾性粒子が形状異方性を有し、電池電極又はセパレーターの基材の収縮方向に対して、粘弾性粒子の最長軸が平行に配向している、請求項4に記載の電池電極又はセパレーター。 The battery electrode or separator according to claim 4, wherein the viscoelastic particles have shape anisotropy, and the longest axis of the viscoelastic particles is oriented in parallel to the shrinkage direction of the base material of the battery electrode or separator. .
  6.  請求項4又は5に記載の電池電極及び/又はセパレーターを有する電池。 A battery comprising the battery electrode and / or separator according to claim 4 or 5.
PCT/JP2014/055554 2013-03-05 2014-03-05 Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator WO2014136813A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015504351A JP6058783B2 (en) 2013-03-05 2014-03-05 Battery electrode or separator coating film composition, battery electrode or separator having a coating film obtained by using the same, and battery having this battery electrode or separator
CN201480012044.4A CN105027328B (en) 2013-03-05 2014-03-05 Battery electrode coating composition or dividing plate coating composition, the battery electrode with the film obtained using the coating composition or dividing plate and the battery with the battery electrode or dividing plate
KR1020157026896A KR102009736B1 (en) 2013-03-05 2014-03-05 Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-043362 2013-03-05
JP2013043362 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014136813A1 true WO2014136813A1 (en) 2014-09-12

Family

ID=51491325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055554 WO2014136813A1 (en) 2013-03-05 2014-03-05 Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator

Country Status (5)

Country Link
JP (1) JP6058783B2 (en)
KR (1) KR102009736B1 (en)
CN (1) CN105027328B (en)
TW (1) TWI644472B (en)
WO (1) WO2014136813A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538576A (en) * 2014-12-17 2015-04-22 毛赢超 Modified ceramic diaphragm for lithium ion battery and preparation method of modified ceramic diaphragm
CN105070867A (en) * 2015-07-17 2015-11-18 普天新能源(深圳)有限公司 Composite diaphragm and preparation method thereof and lithium ion battery
CN105470575A (en) * 2015-04-30 2016-04-06 万向A一二三系统有限公司 Electrolyte with wide temperature range and lithium-ion battery containing electrolyte
CN105470433A (en) * 2014-09-29 2016-04-06 株式会社杰士汤浅国际 Energy storage device and method of producing energy storage device
CN105470515A (en) * 2015-04-30 2016-04-06 万向A一二三系统有限公司 Positive electrode of safe lithium-ion power battery and lithium-ion battery comprising positive electrode
JP2016072233A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Power storage device and method for manufacturing power storage device
WO2017033945A1 (en) * 2015-08-24 2017-03-02 株式会社ニコン Dielectric elastomer, method for producing dielectric elastomer, dielectric elastomer actuator, and auxiliary tool
KR20180004775A (en) * 2015-05-08 2018-01-12 셀가드 엘엘씨 Improved, coated or processed microporous battery separators, rechargeable lithium batteries, systems and associated manufacturing and / or use methods
JP2018045911A (en) * 2016-09-15 2018-03-22 住友化学株式会社 Laminate separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018190710A (en) * 2017-04-28 2018-11-29 住友化学株式会社 Insulating porous layer for nonaqueous electrolyte secondary battery
CN113214766A (en) * 2021-03-08 2021-08-06 新乡市中科科技有限公司 High-temperature-resistant binder, preparation method thereof and high-temperature-resistant coating film prepared from binder
JP2022515669A (en) * 2019-06-19 2022-02-21 エルジー エナジー ソリューション リミテッド Coating separation membrane for secondary batteries and its manufacturing method
WO2022060110A1 (en) * 2020-09-18 2022-03-24 주식회사 엘지에너지솔루션 Separator for electrochemical device and production method therefor
US11424435B2 (en) 2019-05-09 2022-08-23 New Jersey Institute Of Technology High oxidation state periodate battery
CN115472999A (en) * 2022-08-24 2022-12-13 厦门大学 Preparation method and preparation device of lithium ion battery diaphragm
US11637328B2 (en) 2019-12-18 2023-04-25 New Jersey Institute Of Technology Methods and devices for high-capacity flexible, printable, and conformal periodate and iodate batteries

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102407511B1 (en) 2015-09-04 2022-06-13 엘지전자 주식회사 Laundry Treating Apparatus
CN108878734B (en) * 2017-05-12 2022-03-22 住友化学株式会社 Insulating porous layer for nonaqueous electrolyte secondary battery
KR102311682B1 (en) * 2017-06-02 2021-10-12 삼성전자주식회사 Composite solide electrolyte comprising a silane compound and lithium battery comprising the same
EP3712903A4 (en) * 2017-11-17 2020-12-30 FUJIFILM Corporation Solid electrolyte composition, solid-electrolyte-containing sheet, all-solid-state secondary battery, production method for solid-electrolyte-containing sheet, and production method for all-solid-state secondary battery
TWI643223B (en) * 2018-01-12 2018-12-01 國立高雄科技大學 Composition for manufacturing a polymer electrolyte membrane and method for manufacturing the polymer electrolyte membrane
CN109119679A (en) * 2018-08-16 2019-01-01 深圳市科迈爱康科技有限公司 Flexible battery and its manufacturing method
CN109326796B (en) * 2018-09-21 2021-11-05 桑顿新能源科技(长沙)有限公司 Preparation method of battery pole piece capable of preventing rolling and battery pole piece
CN109560255B (en) * 2018-12-20 2022-05-10 天津市捷威动力工业有限公司 Lithium ion battery pole piece processing method, pole piece and lithium ion battery
CN109950452A (en) * 2019-02-21 2019-06-28 威海星宜新材料科技有限公司 A kind of lithium ion battery ceramics apply cloth diaphragm and preparation method thereof
JP7450635B2 (en) * 2019-03-22 2024-03-15 エルジー・ケム・リミテッド Polyolefin separation membrane and its manufacturing method
CN112864529A (en) * 2019-11-12 2021-05-28 恒大新能源技术(深圳)有限公司 Lithium ion battery diaphragm and preparation method thereof
CN110894411B (en) * 2019-12-16 2021-09-21 苏州瑞力博新材科技有限公司 Epoxy conductive adhesive for laminated solar module and preparation method thereof
JP2023514714A (en) * 2020-04-03 2023-04-07 エルジー エナジー ソリューション リミテッド Lithium secondary battery separator, manufacturing method thereof, and lithium secondary battery including the same
CN112239543B (en) * 2020-10-19 2021-08-10 华中科技大学 Cross-linked comb-shaped polymer electrolyte, and preparation method and application thereof
KR20220082772A (en) * 2020-12-10 2022-06-17 에스케이이노베이션 주식회사 A separator and its method of separator for lithium secondary batteries and secondary batteries using the same
DE102021212163A1 (en) 2021-10-27 2023-04-27 Volkswagen Aktiengesellschaft Method for manufacturing an electrode, electrode, system for manufacturing an electrode
WO2023090684A1 (en) * 2021-11-16 2023-05-25 주식회사 엘지에너지솔루션 Electrode assembly including coating layer formed on other surface of single-sided positive electrode and secondary battery comprising same
KR20230092613A (en) * 2021-12-17 2023-06-26 주식회사 엘지에너지솔루션 Method for sealing electrode assembly and sealing device for the same
CN115473003A (en) * 2022-09-29 2022-12-13 乐凯胶片股份有限公司 Ceramic slurry, battery diaphragm and lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544135A (en) * 2006-07-26 2009-12-10 ザ ジレット カンパニー Battery, battery electrode, and manufacturing method thereof
JP2011144245A (en) * 2010-01-13 2011-07-28 Nippon Zeon Co Ltd Slurry for porous membrane, and secondary battery
US20110195294A1 (en) * 2009-11-27 2011-08-11 Lg Chem, Ltd. Method for manufacturing separators, separators manufactured by the method and electrochemical devices including the separators
JP2011228114A (en) * 2010-04-20 2011-11-10 Konica Minolta Holdings Inc Electrode of secondary battery, manufacturing method thereof and secondary battery
JP2011243351A (en) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous battery
JP2013020769A (en) * 2011-07-08 2013-01-31 Teijin Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (en) 1994-01-31 2003-01-27 ソニー株式会社 Non-aqueous electrolyte secondary battery
US6232014B1 (en) 1997-11-19 2001-05-15 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and manufacture thereof
CN1249838C (en) * 2002-04-10 2006-04-05 黄穗阳 Design for high-energy safety polymer lithium ion battery and productive process thereof
CN1658426A (en) * 2004-02-16 2005-08-24 黄穗阳 Design and production process of high-molecular lithium battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544135A (en) * 2006-07-26 2009-12-10 ザ ジレット カンパニー Battery, battery electrode, and manufacturing method thereof
US20110195294A1 (en) * 2009-11-27 2011-08-11 Lg Chem, Ltd. Method for manufacturing separators, separators manufactured by the method and electrochemical devices including the separators
JP2011144245A (en) * 2010-01-13 2011-07-28 Nippon Zeon Co Ltd Slurry for porous membrane, and secondary battery
JP2011228114A (en) * 2010-04-20 2011-11-10 Konica Minolta Holdings Inc Electrode of secondary battery, manufacturing method thereof and secondary battery
JP2011243351A (en) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous battery
JP2013020769A (en) * 2011-07-08 2013-01-31 Teijin Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072233A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Power storage device and method for manufacturing power storage device
US11283136B2 (en) 2014-09-29 2022-03-22 Gs Yuasa International Ltd. Energy storage device and method of producing energy storage device
CN105470433A (en) * 2014-09-29 2016-04-06 株式会社杰士汤浅国际 Energy storage device and method of producing energy storage device
CN104538576A (en) * 2014-12-17 2015-04-22 毛赢超 Modified ceramic diaphragm for lithium ion battery and preparation method of modified ceramic diaphragm
CN105470575B (en) * 2015-04-30 2018-02-13 万向一二三股份公司 A kind of wide temperature range electrolyte and the lithium ion battery containing the electrolyte
CN105470515A (en) * 2015-04-30 2016-04-06 万向A一二三系统有限公司 Positive electrode of safe lithium-ion power battery and lithium-ion battery comprising positive electrode
CN105470515B (en) * 2015-04-30 2017-11-21 万向一二三股份公司 A kind of safe lithium ion power battery anode and the lithium ion battery containing the positive pole
CN105470575A (en) * 2015-04-30 2016-04-06 万向A一二三系统有限公司 Electrolyte with wide temperature range and lithium-ion battery containing electrolyte
KR20180004775A (en) * 2015-05-08 2018-01-12 셀가드 엘엘씨 Improved, coated or processed microporous battery separators, rechargeable lithium batteries, systems and associated manufacturing and / or use methods
JP2018518799A (en) * 2015-05-08 2018-07-12 セルガード エルエルシー Improved, coated or treated microporous battery separator, rechargeable lithium battery, system, and related methods of manufacture and / or use
KR102630516B1 (en) * 2015-05-08 2024-01-29 셀가드 엘엘씨 Improved, coated or treated microporous battery separators, rechargeable lithium batteries, systems and methods of manufacture and/or use related thereto
JP2021119569A (en) * 2015-05-08 2021-08-12 セルガード エルエルシー Improved, coated or treated microporous battery separator, rechargeable lithium battery, system, and related methods of manufacture and/or use
CN105070867A (en) * 2015-07-17 2015-11-18 普天新能源(深圳)有限公司 Composite diaphragm and preparation method thereof and lithium ion battery
WO2017033945A1 (en) * 2015-08-24 2017-03-02 株式会社ニコン Dielectric elastomer, method for producing dielectric elastomer, dielectric elastomer actuator, and auxiliary tool
JP2018045911A (en) * 2016-09-15 2018-03-22 住友化学株式会社 Laminate separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018190710A (en) * 2017-04-28 2018-11-29 住友化学株式会社 Insulating porous layer for nonaqueous electrolyte secondary battery
US11424435B2 (en) 2019-05-09 2022-08-23 New Jersey Institute Of Technology High oxidation state periodate battery
JP2022515669A (en) * 2019-06-19 2022-02-21 エルジー エナジー ソリューション リミテッド Coating separation membrane for secondary batteries and its manufacturing method
JP7337171B2 (en) 2019-06-19 2023-09-01 エルジー エナジー ソリューション リミテッド COATING SEPARATION MEMBRANE FOR SECONDARY BATTERY AND PRODUCTION METHOD THEREOF
US11637328B2 (en) 2019-12-18 2023-04-25 New Jersey Institute Of Technology Methods and devices for high-capacity flexible, printable, and conformal periodate and iodate batteries
WO2022060110A1 (en) * 2020-09-18 2022-03-24 주식회사 엘지에너지솔루션 Separator for electrochemical device and production method therefor
CN113214766A (en) * 2021-03-08 2021-08-06 新乡市中科科技有限公司 High-temperature-resistant binder, preparation method thereof and high-temperature-resistant coating film prepared from binder
CN115472999A (en) * 2022-08-24 2022-12-13 厦门大学 Preparation method and preparation device of lithium ion battery diaphragm
CN115472999B (en) * 2022-08-24 2023-12-29 厦门大学 Preparation method and device of lithium ion battery diaphragm based on coaxial electrostatic spinning

Also Published As

Publication number Publication date
KR102009736B1 (en) 2019-08-12
KR20150125700A (en) 2015-11-09
TWI644472B (en) 2018-12-11
TW201440293A (en) 2014-10-16
JPWO2014136813A1 (en) 2017-02-16
CN105027328A (en) 2015-11-04
JP6058783B2 (en) 2017-01-11
CN105027328B (en) 2017-10-27

Similar Documents

Publication Publication Date Title
JP6058783B2 (en) Battery electrode or separator coating film composition, battery electrode or separator having a coating film obtained by using the same, and battery having this battery electrode or separator
JP5991894B2 (en) Ceramic slurry for battery electrode or separator protection
JP6088822B2 (en) Battery electrode or separator surface protecting agent composition, battery electrode or separator surface protecting method using the composition, and battery electrode or separator manufacturing method using the composition
JP6417512B2 (en) Binder for non-aqueous storage element and non-aqueous storage element
JP2016103439A (en) Slurry composition, method for manufacturing the same, and coated body formed by use thereof
JP2015041502A (en) Coating material composition for nonaqueous storage devices, and nonaqueous storage device
JP2018156844A (en) Separatorless secondary battery
JP7167440B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, laminate, and non-aqueous secondary battery
JP2016197598A (en) Ceramic slurry for protecting battery electrode or separator
JP5872414B2 (en) Battery electrode or separator protective porous membrane composition, battery electrode or separator having a protective porous membrane obtained using the same, and battery having this battery electrode or separator
JP7008404B2 (en) Chemical beam and electron beam ray curable water-based electrode binders and electrodes incorporating this binder
KR20130107291A (en) Electroconductive composition for coating current collector of battery or electric double-layer capacitor, current collector for battery or electric double-layer capacitor, and battery and electric double-layer capacitor
KR20120100976A (en) Actinic and electron beam radiation curable electrode binders and electrodes incorporating same
KR20130128405A (en) Conductive undercoating agent composition
JP2011070892A (en) Negative electrode for lithium ion secondary battery, and method of manufacturing the same
JP2010272492A (en) Method of manufacturing sodium secondary battery, and sodium secondary battery
US20210376432A1 (en) Safety layer for battery cells
TWI526484B (en) Porous separator having inverse opal structure for secondary battery and method for manufacturing the same
JP6906485B2 (en) Separator for secondary battery
CA3186838A1 (en) Dispersions of carbon nanotubes for use in compositions for manufacturing battery electrodes
Park et al. High-performance lithium-ion polymer cells assembled with composite polymer electrolytes based on core-shell structured SiO2 particles containing poly (lithium acrylate) in the shell
JP2016219197A (en) Composition of coating agent for current collector, electrode plate for power storage device, and power storage device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012044.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157026896

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14759824

Country of ref document: EP

Kind code of ref document: A1