JP2003059480A - Separator for battery and battery using it - Google Patents

Separator for battery and battery using it

Info

Publication number
JP2003059480A
JP2003059480A JP2001246887A JP2001246887A JP2003059480A JP 2003059480 A JP2003059480 A JP 2003059480A JP 2001246887 A JP2001246887 A JP 2001246887A JP 2001246887 A JP2001246887 A JP 2001246887A JP 2003059480 A JP2003059480 A JP 2003059480A
Authority
JP
Japan
Prior art keywords
battery
separator
organic polymer
polymer layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001246887A
Other languages
Japanese (ja)
Other versions
JP5082177B2 (en
Inventor
Hiroe Nakagawa
裕江 中川
Toshiyuki Onda
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2001246887A priority Critical patent/JP5082177B2/en
Publication of JP2003059480A publication Critical patent/JP2003059480A/en
Application granted granted Critical
Publication of JP5082177B2 publication Critical patent/JP5082177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery using a separator quickly effectively deactivating the battery when battery temperature is abnormally raised and hardly causing deformation of the separator. SOLUTION: This porous separator is used for the battery comprising a positive electrode 1, a negative electrode 2, an electrolyte, and a separator 3. The separator is composed of a porous substrate sheet and a organic polymer layer having microporous structure, the porous substrate sheet is not dissolved in an electrolyte at a temperature less than at least 135 deg.C, the organic polymer layer is formed in at least a part of the substrate surface comprising the face surface, back surface, and hole inner wall surface of the porous substrate sheet, and a polymer forming the organic polymer layer has a dissolution starting point starting dissolution in the electrolyte in a temperature range of 100-120 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電池用セパレータお
よびそれを用いた電池に関するもので、さらに詳しく
は、電池用セパレータに用いる材料の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator and a battery using the same, and more particularly to improvement of materials used for the battery separator.

【0002】[0002]

【従来の技術】近年、携帯電話、PHS、小型パーソナ
ルコンピュータなどの携帯機器類は、エレクトロニクス
技術の進展に伴って小型化、軽量化が著しく、これらの
機器類に用いられる電源としての電池においても小型
化、軽量化が求められるようになってきている。
2. Description of the Related Art In recent years, portable devices such as mobile phones, PHSs, and small personal computers have been remarkably miniaturized and lightened with the progress of electronics technology, and even in batteries used as a power source for these devices. There is an increasing demand for smaller size and lighter weight.

【0003】このような用途に期待できる電池のひとつ
としてリチウム電池があるが、既に実用化されているリ
チウム一次電池に加えて、リチウム二次電池の実用化、
高容量化、長寿命化が求められている。特に、従来のリ
チウムイオン二次電池はいずれも円筒形あるいは角形が
中心であるのに対し、薄形形状のリチウムイオン二次電
池やリチウムポリマー二次電池の実用化に向け、各種の
研究開発がなされている。
A lithium battery is one of the batteries that can be expected for such applications. In addition to the lithium primary battery which has already been put into practical use, a lithium secondary battery has been put into practical use.
Higher capacity and longer life are required. In particular, conventional lithium-ion secondary batteries are mainly cylindrical or prismatic, whereas various research and development efforts have been made toward the practical application of thin lithium-ion secondary batteries and lithium polymer secondary batteries. Has been done.

【0004】円筒形あるいは角形リチウム二次電池の場
合、正極、負極およびセパレータからなる極群を円筒形
あるいは角形の金属製電槽に挿入した後、液体状の非水
電解質を注液するという工程を経て作製される。これに
対し、薄形形状のリチウムポリマー二次電池において
は、正極と負極をゲル状の電解質を介して対向させた
後、金属樹脂複合材でパッキングする方法で作製され、
製造上の利点がある。しかし、このようなリチウムポリ
マー二次電池は、円筒形あるいは角形リチウム二次電池
に比較して、高率充放電性能や低温性能が悪いという欠
点があった。
In the case of a cylindrical or prismatic lithium secondary battery, a step of inserting a pole group consisting of a positive electrode, a negative electrode and a separator into a cylindrical or prismatic metal battery case and then injecting a liquid non-aqueous electrolyte. It is produced through. On the other hand, in the thin-shaped lithium polymer secondary battery, the positive electrode and the negative electrode are made to face each other through the gel electrolyte, and then packed by the metal resin composite material.
There are manufacturing advantages. However, such a lithium polymer secondary battery has a drawback that it has poor high-rate charge / discharge performance and low-temperature performance as compared with a cylindrical or prismatic lithium secondary battery.

【0005】この原因として、以下のような要因が挙げ
られる。すなわち、円筒形あるいは角形電池の場合、液
体状の非水電解質を注液するため、電極およびセパレー
タ中のリチウムイオン伝導度は、一般に電池作動に必要
なレベルと言われる1×10 -3S/cmオーダーを確保
することが容易である。これに対し、リチウムポリマー
二次電池の場合、電解質が固体状のため、電解質作製時
には一般に注液工程を必要としないが、リチウムイオン
伝導度が液系に比較して低くならざるを得ず、一般に1
×10-3S/cmオーダーを確保することは困難であっ
た。そのため、充放電性能が劣るという欠点があった。
The causes are as follows.
To be That is, in the case of cylindrical or prismatic batteries, the liquid
To inject the body-shaped non-aqueous electrolyte, the electrode and separator
The lithium ion conductivity in the battery is generally necessary for battery operation.
1 × 10 that is said to be a level -3Secure S / cm order
Easy to do. In contrast, lithium polymer
In the case of secondary batteries, the electrolyte is solid, so
Generally does not require an injection process, but lithium ion
The conductivity is inevitably lower than that of liquid systems, and is generally 1
× 10-3It is difficult to secure the S / cm order.
It was Therefore, there is a drawback that the charge and discharge performance is inferior.

【0006】そこで、円筒形あるいは角形リチウム二次
電池の利点とリチウムポリマー二次電池の利点を兼ね備
えた、液体状の非水電解質を用い金属樹脂複合材でパッ
キングした薄形形状のリチウムイオン二次電池も、各種
の研究開発がなされ、近年ほぼ実用化に至っている。
Therefore, a thin lithium ion secondary battery packed with a metal resin composite material using a liquid non-aqueous electrolyte, which has the advantages of a cylindrical or prismatic lithium secondary battery and the advantages of a lithium polymer secondary battery. Various researches and developments have been made on batteries, and in recent years, they have almost been put into practical use.

【0007】また、リチウムイオン二次電池およびゲル
状のポリマー電解質を用いたリチウムポリマー二次電池
は、有機溶媒を電解質に用いているが、これらの有機溶
媒は一般に揮発しやすく、引火性も高いため、可燃性物
質に分類されるものである。従って、過充電、過放電や
ショートなどのアブユース時や高温環境下における安全
性に問題点があった。
Further, a lithium polymer secondary battery and a lithium polymer secondary battery using a gel-like polymer electrolyte use an organic solvent as an electrolyte, but these organic solvents are generally volatile and highly flammable. Therefore, it is classified as a flammable substance. Therefore, there is a problem in safety during use such as overcharging, overdischarging, short-circuiting, or the like, or in a high temperature environment.

【0008】そこで、高温環境下での安全性を確保する
ため、微多孔膜からなるセパレータに、温度ヒューズ機
能を兼備させることが提案されている。すなわち、正常
な使用状態においては、正極と負極の間に存在して両極
のショートを防止すると共に、その微多孔構造により両
極間の抵抗を低く抑えて電池性能を維持するが、何らか
の異常発生により電池の内部温度が上昇した場合には、
セパレータを構成する材料が溶融することで、所定の温
度で膜の微多孔を塞いで無孔化(熱閉塞)し、抵抗を増
大させて電池反応を遮断し、さらなる温度上昇を防止し
て安全性を確保しようとするものである。この熱閉塞に
よる電池反応の遮断機能は、セパレータのシャットダウ
ン特性と呼ばれており、リチウムイオン電池用セパレー
タに求められる重要な機能の一つとなっている。
Therefore, in order to ensure safety in a high temperature environment, it has been proposed that the separator made of a microporous film also has a thermal fuse function. That is, in a normal use state, it exists between the positive electrode and the negative electrode to prevent a short circuit between both electrodes, and the microporous structure keeps the resistance between both electrodes low to maintain the battery performance. If the internal temperature of the battery rises,
By melting the material that composes the separator, it closes the micropores of the membrane at a predetermined temperature to make it non-porous (heat blocking), increases the resistance and shuts off the battery reaction, and prevents further temperature rise and is safe. It aims to secure the sex. The function of shutting off the battery reaction due to this thermal blockage is called the shutdown characteristic of the separator, and is one of the important functions required for the separator for lithium ion batteries.

【0009】さらに、安全性確保の観点から、増大した
抵抗は適当な温度まで、適当な時間維持されることが必
要である。熱閉塞が完全に起こった場合は、セパレータ
が絶縁体になるため、理想的には電流は瞬時に0まで低
下することになるが、実際には、シャットダウン開始温
度に達した後も電池の内部温度はさらに上昇することが
多い。従って、シャットダウン開始温度を超えて、さら
に温度が上昇した場合でも、微多孔膜が収縮や破損する
ことなく一定の膜面積を維持し続ける性質(形状保持
力)も重要となる。また、微多孔膜の形状保持力が喪失
する温度(耐熱温度)に影響を与える重要なパラメータ
としては、セパレータを構成する材料の融点、厚さ、開
孔率などが挙げられる。反面、形状保持力に劣る微多孔
膜をセパレータとして用いると、シャットダウン開始温
度を超えて電池の内部温度が上昇した場合に微多孔膜が
収縮又は破損し、正負極が直接接触して内部短絡を引き
起こし、熱暴走するなど非常に危険な状態を引き起こ
し、重大な結果を招く虞がある。
Further, from the viewpoint of ensuring safety, it is necessary to maintain the increased resistance up to an appropriate temperature for an appropriate time. When the thermal blockage occurs completely, the separator will become an insulator, so ideally the current will instantly drop to 0, but in reality, even after the shutdown start temperature is reached, the inside of the battery The temperature often rises further. Therefore, even when the temperature exceeds the shutdown start temperature and further rises, the property of maintaining a constant membrane area (shape retention) without shrinkage or damage is also important. In addition, important parameters that affect the temperature (heat resistant temperature) at which the shape retention of the microporous film is lost include the melting point, thickness, and porosity of the material forming the separator. On the other hand, if a microporous membrane with poor shape retention is used as a separator, the microporous membrane contracts or is damaged when the internal temperature of the battery rises above the shutdown start temperature, and the positive and negative electrodes come into direct contact to cause an internal short circuit. It may cause a very dangerous state such as a thermal runaway, resulting in a serious result.

【0010】従って、リチウム二次電池では、シャット
ダウン特性と形状保持力を兼備させるため、従来のポリ
エチレンやポリプロピレンなどの単一の樹脂からなる微
多孔膜に代わって、近年は、融点の異なる樹脂を組み合
わせて用いることが提案されている。また、リチウムポ
リマー二次電池では、ゲル状の電解質自身にシャットダ
ウン特性を持たせることが提案されている。
Therefore, in the lithium secondary battery, in order to combine the shutdown characteristic and the shape retention power, in recent years, resins having different melting points have been used instead of the conventional microporous membrane made of a single resin such as polyethylene or polypropylene. It has been proposed to use them in combination. In addition, in the lithium polymer secondary battery, it has been proposed that the gel electrolyte itself has a shutdown characteristic.

【0011】例えば、特公平4−38101号公報に
は、少なくとも1枚の約80℃乃至150℃の温度にお
いて実質的に無孔化する微細孔性第1種シートと、少な
くとも1枚の第1種シートが無孔化する温度よりも少な
くとも約10℃高い温度において形状保持力を有する第
2種シート、の少なくとも2層を有する電池用セパレー
タが提案されている。
For example, Japanese Examined Patent Publication No. 4-38101 discloses at least one type 1 microporous sheet which is substantially non-porous at a temperature of about 80 ° C. to 150 ° C., and at least one first type sheet. A battery separator having at least two layers of a second seed sheet having a shape-retaining force at a temperature that is at least about 10 ° C. higher than the temperature at which the seed sheet becomes non-porous has been proposed.

【0012】しかし、このような微多孔膜を用いた電池
用セパレータは、例えばポリエチレンとポリプロピレン
の組み合わせであり、ポリエチレンとポリプロピレンの
融点の間でしかシャットダウン特性と形状保持力を兼備
させることができないという問題点があった。即ち、シ
ャットダウン特性が現れる温度が135℃と比較的高温
であるため、電池温度の上昇が135℃付近まで継続し
た場合には、電池温度が該シャットダウン温度を超えて
さらに加速度的に上昇しやすく、形状保持力が破壊され
る温度を突破してしまい、重篤な結果を招く虞があっ
た。これを避けるためには、シャットダウン温度を13
5℃未満の温度、好ましくは100〜120℃付近とす
ることが望まれるが、実質的に100〜120℃の温度
範囲に融点を有する微多孔膜を入手することが困難であ
り、前記重大な結果を招く虞を避け得る安全性の高い電
池とするための障害となっていた。
However, a battery separator using such a microporous membrane is, for example, a combination of polyethylene and polypropylene, and it is said that the shutdown characteristic and the shape-retaining power can be combined only between the melting points of polyethylene and polypropylene. There was a problem. That is, since the temperature at which the shutdown characteristic appears is relatively high at 135 ° C., when the battery temperature continues to rise to around 135 ° C., the battery temperature easily exceeds the shutdown temperature and further accelerates, There is a possibility that the shape retention force may exceed the temperature at which it is destroyed, resulting in serious consequences. To avoid this, set the shutdown temperature to 13
It is desired that the temperature is lower than 5 ° C, preferably around 100 to 120 ° C, but it is difficult to obtain a microporous membrane having a melting point substantially in the temperature range of 100 to 120 ° C, and the above-mentioned critical This has been an obstacle to a highly safe battery that can avoid the possibility of causing a result.

【0013】また、特開平11−86910号公報に
は、100℃以上190℃以下の温度範囲で孔が閉塞す
る、非水電解液により膨潤又は/及び湿潤する多孔性の
高分子電解質を用いた非水電解質電池が提案されてい
る。
Further, Japanese Patent Laid-Open No. 11-86910 uses a porous polymer electrolyte whose pores are clogged within a temperature range of 100 ° C. or higher and 190 ° C. or lower and which is swollen and / or wetted by a non-aqueous electrolyte. Non-aqueous electrolyte batteries have been proposed.

【0014】しかし、このような高分子電解質を用いた
非水電解質電池は、高分子と電解液中の有機溶媒あるい
はリチウム塩が反応して、高分子膜の孔が閉塞し、その
後、電極群全体で固化し、正負極間の短絡を防止すると
されているが、高分子膜の孔が閉塞した後、固化するま
での間は、高分子膜が溶融状態にあるため、前記した重
要なパラメータである形状保持力に劣るという問題点が
あった。
However, in a non-aqueous electrolyte battery using such a polymer electrolyte, the polymer reacts with the organic solvent or lithium salt in the electrolyte solution to close the pores of the polymer membrane, and then the electrode group. It is said that it solidifies as a whole and prevents a short circuit between the positive and negative electrodes, but since the polymer film is in a molten state until it solidifies after the pores of the polymer film are closed, the above-mentioned important parameter However, there is a problem that the shape retention power is poor.

【0015】[0015]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたものであり、電池温度が異常に上昇した
場合に速やかにかつ効果的に電池を失活させ、温度上昇
がさらに継続した場合でも、セパレータの形状破壊を起
こしにくいセパレータを用いた電池を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and when the battery temperature rises abnormally, the battery is quickly and effectively deactivated, and the temperature rise continues. Even in such a case, it is an object to provide a battery using a separator that is less likely to cause shape breakage of the separator.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、請求項1に記載したように、正極、負
極、電解液及びセパレータからなる電池に用いる多孔性
の電池用セパレータであって、前記セパレータは、多孔
性基材シートと、微細孔構造を有する有機ポリマー層と
からなり、前記有機ポリマー層は、前記多孔性基材シー
トの表面、裏面及び孔内壁面からなる基材表面の少なく
とも一部に形成されており、前記有機ポリマー層を形成
するポリマーは、100℃以上120℃以下の温度範囲
に、前記電解液に対して溶解を開始する溶解開始点を有
することを特徴とする電池用セパレータである。
In order to solve the above-mentioned problems, the present invention provides a porous battery separator for use in a battery comprising a positive electrode, a negative electrode, an electrolytic solution and a separator as described in claim 1. The separator is composed of a porous base material sheet and an organic polymer layer having a fine pore structure, and the organic polymer layer is a surface of the porous base material sheet, a back surface and a surface of the base material including inner wall surfaces of the pores. The polymer forming the organic polymer layer has a dissolution starting point for starting the dissolution in the electrolytic solution in a temperature range of 100 ° C. or higher and 120 ° C. or lower. It is a battery separator for.

【0017】このような構成によれば、電池用セパレー
タを構成する多孔性基材によって、機械的強度や高温や
温度変化の繰り返しに対する耐久性に優れ、ハンドリン
グが容易な電池用セパレータを得ることが可能となり、
有機ポリマー層が、微細孔構造を有し、前記多孔性基材
シートの表面、裏面及び孔内壁面からなる基材表面の少
なくとも一部に形成されていることによって、このよう
な構成の電池用セパレータを電池に適用すれば、電解液
との親和性が高く保たれるため、高いイオン伝導度を確
保し、且つリチウムイオンのスムーズな移動を実現し、
電解液保持性に優れるセパレータとして機能する。ここ
で、前記微細孔構造を有する有機ポリマー層は前記多孔
性基材の孔に充填されていてもよいが、前記多孔性基材
シートの表面、裏面及び孔内壁面からなる基材表面上に
ごく薄く形成されてあり、多孔性基材の孔の分布状態が
そのまま維持されている状態とすれば、充分に低抵抗の
セパレータとすることができるので、好ましく、このよ
うな状態であっても、このとき、多孔性基材の孔径を適
当なものとすることで、充分な電解液保持能力を付与す
ることができる。
According to this structure, the porous base material forming the battery separator makes it possible to obtain a battery separator which is excellent in mechanical strength and durability against repeated high temperature and temperature changes and is easy to handle. Becomes possible,
The organic polymer layer has a fine pore structure and is formed on at least a part of the surface of the porous base material sheet, which is composed of the surface, the back surface and the inner wall surface of the pores. If the separator is applied to a battery, the affinity with the electrolytic solution is kept high, ensuring high ionic conductivity and realizing smooth movement of lithium ions.
It functions as a separator with excellent electrolyte retention. Here, the organic polymer layer having the fine pore structure may be filled in the pores of the porous substrate, but on the surface of the porous substrate sheet, the back surface and the substrate surface consisting of the inner wall surface of the holes. It is preferable that the separator is formed to be very thin and the distribution state of the pores of the porous substrate is maintained as it is, so that the separator having a sufficiently low resistance can be obtained. At this time, by setting the pore size of the porous substrate to an appropriate value, it is possible to impart sufficient electrolytic solution holding ability.

【0018】さらに、有機ポリマー層を形成するポリマ
ーが、100℃以上120℃以下の温度範囲に、前記電
解液に対して溶解を開始する溶解開始点を有することに
より、電池温度が前記溶解開始点に到達した時、有機ポ
リマー層が電解液に溶解して、電解液の抵抗を急激に上
昇させるため、従来に比べ比較的低い適切な温度でシャ
ットダウン特性を発現させることができる。このため、
従来電池にみられたような、前記した電池温度の加速度
的な上昇を極めて効率的に避けることができる。即ち、
従来技術のように溶融により無孔化する微多孔膜を用い
るのではなく、有機ポリマー層の電解液への溶解によ
り、セパレータに含浸された電解質の抵抗値を上昇さ
せ、実質的にシャットダウン機能を発現させることを特
徴としている。
Further, since the polymer forming the organic polymer layer has a melting start point for starting the melting in the electrolytic solution in a temperature range of 100 ° C. or higher and 120 ° C. or lower, the battery temperature becomes the melting start point. When the temperature reaches, the organic polymer layer is dissolved in the electrolytic solution and the resistance of the electrolytic solution is rapidly increased, so that the shutdown characteristic can be expressed at an appropriate temperature which is relatively lower than in the conventional case. For this reason,
It is possible to very efficiently avoid the above-described accelerated increase in battery temperature that has been found in conventional batteries. That is,
Rather than using a microporous membrane that becomes non-porous by melting as in the prior art, by dissolving the organic polymer layer in the electrolytic solution, the resistance value of the electrolyte impregnated in the separator is increased, and the shutdown function is substantially achieved. It is characterized by being expressed.

【0019】また、本発明は、請求項2に記載したよう
に、正極、負極、電解液及びセパレータからなる電池に
用いる多孔性の電池用セパレータであって、前記セパレ
ータは、多孔性基材シートと、微細孔構造を有する有機
ポリマー層とからなり、前記有機ポリマー層は、前記多
孔性基材シートの表面、裏面及び孔内壁面からなる基材
表面の少なくとも一部に形成されており、前記有機ポリ
マー層を形成するポリマーは、100℃以上120℃以
下の温度範囲において、前記電解液のうち、少なくとも
前記多孔性基材シートの孔内に存在する電解液が前記有
機ポリマー層を形成するポリマーを含んでゲル化するこ
とを特徴とする電池用セパレータである。
The present invention also provides a porous battery separator for use in a battery comprising a positive electrode, a negative electrode, an electrolytic solution and a separator, as described in claim 2, wherein the separator is a porous substrate sheet. And an organic polymer layer having a fine pore structure, wherein the organic polymer layer is formed on at least a part of the surface of the porous substrate sheet, the back surface and the substrate surface consisting of the inner wall surface of the pores, The polymer forming the organic polymer layer is a polymer in which, in the temperature range of 100 ° C. or higher and 120 ° C. or lower, at least the electrolytic solution present in the pores of the porous substrate sheet forms the organic polymer layer in the electrolytic solution. It is a battery separator characterized by including and gelling.

【0020】このような構成の電池用セパレータを電池
に適用した場合の作用効果は請求項1に記載された発明
によるものと同種のものであり、前記シャットダウン特
性をより効果的に発現させることができる。
When the battery separator having such a structure is applied to a battery, the operation and effect are the same as those of the invention according to claim 1, and the shutdown characteristics can be more effectively exhibited. it can.

【0021】また、本発明は、請求項3に記載したよう
に、前記多孔性基材シートは、少なくとも135℃未満
の温度において融点を有さないものであることを特徴と
している。
Further, according to the present invention, as described in claim 3, the porous substrate sheet has no melting point at a temperature of at least less than 135 ° C.

【0022】ここで、「少なくとも135℃未満の温度
において融点を有さない」とは、いかなる温度にも融点
を有さないか、又は、135℃以上の温度において融点
を有することをいう。
Here, "having no melting point at least at a temperature lower than 135 ° C." means having no melting point at any temperature, or having a melting point at a temperature of 135 ° C. or higher.

【0023】このような構成の電池用セパレータを電池
に適用すれば、従来に比べ比較的低い適切な温度でシャ
ットダウン特性が発現することに加え、セパレータの形
状が少なくとも135℃まで保持されるため、シャット
ダウン特性発現温度と形状破壊温度との差が拡大したこ
とにより、前記したような、熱暴走等により電池温度が
セパレータの前記形状破壊温度を突破して重大な問題を
引き起こす虞を大幅に低減できる。
When the battery separator having such a structure is applied to a battery, in addition to exhibiting shutdown characteristics at an appropriate temperature which is relatively lower than in the past, the shape of the separator is maintained up to at least 135 ° C. Since the difference between the shutdown characteristic expression temperature and the shape destruction temperature is widened, it is possible to greatly reduce the possibility that the battery temperature may exceed the shape destruction temperature of the separator and cause a serious problem due to thermal runaway as described above. .

【0024】また、本発明は、請求項4に記載したよう
に、前記多孔性基材シートは、厚さ25μm以下であ
り、かつ、開孔率40%以上の微多孔膜であることを特
徴としている。
Further, according to the present invention, as described in claim 4, the porous substrate sheet is a microporous film having a thickness of 25 μm or less and a porosity of 40% or more. I am trying.

【0025】このような構成の電池用セパレータを電池
に適用すれば、開孔率や空孔径の大きい多孔性基材を用
いることにより、より高いイオン伝導度を確保し、且つ
イオンのスムーズな移動を実現できるため、上記作用を
より効果的に得ることができる。
When the battery separator having such a structure is applied to a battery, higher ion conductivity is ensured and smooth movement of ions is achieved by using a porous base material having a large opening ratio and a large pore diameter. Since the above can be realized, the above-mentioned action can be obtained more effectively.

【0026】また、本発明は、請求項5に記載したよう
に、前記有機ポリマー層は、ポリフッ化ビニリデン又は
ポリアクリロニトリルを原料として含むことを特徴とし
ている。
Further, according to the present invention, as described in claim 5, the organic polymer layer contains polyvinylidene fluoride or polyacrylonitrile as a raw material.

【0027】このような構成によれば、上記した優れた
機能を持ったセパレータを安価な材料で実現させること
ができる。
According to this structure, the separator having the above-mentioned excellent function can be realized with an inexpensive material.

【0028】また、本発明は、請求項6に記載したよう
に、前記電池用セパレータを用いた電池である。
Further, the present invention is a battery using the battery separator as described in claim 6.

【0029】本発明の応用として、135℃未満で溶解
または溶融することがない多孔性基材と、100〜12
0℃で電解液に溶解または電解液をゲル化する有機ポリ
マー層に加え、120〜140℃付近で溶融して孔を塞
ぐ微孔膜を併せてセパレータを構成しても良い。セパレ
ータをこのような構成とすることにより、抵抗上昇段階
を2段階とすることができるので、より安全性の高い電
池を提供することができる。
As an application of the present invention, a porous base material which does not melt or melt below 135 ° C. and 100 to 12
In addition to the organic polymer layer that dissolves in the electrolyte solution or gels the electrolyte solution at 0 ° C., a separator may be formed by combining a microporous film that melts at around 120 to 140 ° C. to close the pores. With such a configuration of the separator, the resistance increasing stage can be set to two stages, so that a battery with higher safety can be provided.

【0030】[0030]

【発明の実施の形態】以下に、本発明をリチウム電池に
適用した例によって詳細に説明するが、本発明はこれら
の記述により限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail by way of examples applied to a lithium battery, but the present invention is not limited to these descriptions.

【0031】本発明の電池用セパレータに使用すること
ができる多孔性基材としては、一般に液系の各種電池用
セパレータとして使用される微多孔膜や不織布、織布な
どが挙げられる。多孔性基材の材質は、溶媒や電解液に
対して化学的に安定であり、且つ電気化学的に安定であ
るものが使用できる。例えば、ポリエチレンやポリプロ
ピレンなどのポリオレフィンを主原料とするものや、ポ
リエチレンテレフタレートやポリブチレンテレフタレー
トなどのポリエステルを主原料とするもの、セルロース
を主原料とするものなどが挙げられる。
Examples of the porous base material that can be used in the battery separator of the present invention include microporous membranes, non-woven fabrics and woven fabrics which are generally used as liquid type battery separators. As the material of the porous base material, a material that is chemically stable to a solvent or an electrolytic solution and electrochemically stable can be used. For example, those containing polyolefin such as polyethylene or polypropylene as a main raw material, those containing polyester such as polyethylene terephthalate or polybutylene terephthalate as a main raw material, those containing cellulose as a main raw material and the like can be mentioned.

【0032】このうち、シャットダウン開始後、適切な
温度まで形状保持させるためには、多孔性基材を形成す
る樹脂の融点が、135℃以上であることが必要であ
り、特に、135〜180℃であることが望ましい。具
体的にはポリオレフィン、特にポリエチレンやポリプロ
ピレンを主原料とするものが適している。ここで、ポリ
エチレンとしては、高密度、中密度、低密度の各種直鎖
ポリエチレン、分枝ポリエチレンなど何れのポリエチレ
ンも使用できる。
Of these, the melting point of the resin forming the porous base material must be 135 ° C. or higher, and particularly 135 to 180 ° C., in order to maintain the shape up to an appropriate temperature after the start of shutdown. Is desirable. Specifically, polyolefins, particularly those containing polyethylene or polypropylene as a main raw material are suitable. Here, as the polyethylene, any of high-density, medium-density, low-density linear polyethylene, branched polyethylene, and the like can be used.

【0033】このとき、多孔性基材は、厚さ25μm以
下であり、かつ、開孔率40%以上の微多孔膜であるこ
とが望ましく、さらに言えば、厚さ5〜15μm、開孔
率45〜80%であることが望ましい。多孔性基材の厚
さが25μm以上、あるいは、開孔率40%未満では、
本来電気絶縁性である多孔性基材の電気抵抗が大きく、
このような電池用セパレータを用いた電池では、各種電
池性能を良好に保つことが困難となり、好ましくない。
このことから、厚さ25μm以下、かつ、開孔率40%
以上であり、さらに好ましくは、厚さ15μm以下、あ
るいは、開孔率45%以上である多孔性基材、特に微多
孔膜を用いることにより、多孔性基材の電気抵抗が充分
に低いため、本発明の電池用セパレータの作用が効果的
に得られる。しかし、厚さ5μm以下、あるいは、開孔
率80%以上の多孔性基材を用いた場合には、機械的強
度に劣ったり、ハンドリングが困難となる。さらに、こ
のような電池用セパレータを用いた電池では、電極間の
微小短絡が発生しやすくなるだけでなく、融点を超えて
電池の内部温度が上昇した場合に、微多孔膜が収縮や破
損し、正負極が直接接触して内部短絡を引き起こし、熱
暴走する可能性が高くなり、好ましくない。
At this time, the porous substrate is preferably a microporous film having a thickness of 25 μm or less and a porosity of 40% or more, and more specifically, a thickness of 5 to 15 μm and a porosity. It is preferably 45 to 80%. When the thickness of the porous substrate is 25 μm or more, or the porosity is less than 40%,
The electric resistance of the porous base material, which is originally electrically insulating, is large,
Batteries using such battery separators are not preferable because it is difficult to keep various battery performances good.
From this, the thickness is 25 μm or less, and the open area ratio is 40%.
Or more, more preferably, by using a porous substrate having a thickness of 15 μm or less, or a porosity of 45% or more, particularly a microporous membrane, the electric resistance of the porous substrate is sufficiently low, The effect of the battery separator of the present invention can be effectively obtained. However, when a porous substrate having a thickness of 5 μm or less or a porosity of 80% or more is used, the mechanical strength is poor and handling becomes difficult. Furthermore, in a battery using such a battery separator, not only is it easy for a micro short circuit to occur between the electrodes, but also when the internal temperature of the battery rises above the melting point, the microporous membrane contracts or breaks. The positive and negative electrodes are in direct contact with each other to cause an internal short circuit, which increases the possibility of thermal runaway, which is not preferable.

【0034】本発明の電池用セパレータに使用すること
ができる有機ポリマー層は、電池の通常の使用温度では
電解液に溶解せず、100〜120℃まで昇温されると
電解液に対する溶解性が現れるものである必要がある。
さらに、有機ポリマー層は、電解液に対する親和性が高
いものであれば好ましい。有機ポリマー層と電解液との
親和性が高いものであるためには、該有機ポリマーの少
なくとも表面が電解液に膨潤する性質を有していること
がさらに好ましい。
The organic polymer layer that can be used in the battery separator of the present invention does not dissolve in the electrolytic solution at the normal operating temperature of the battery, and has a solubility in the electrolytic solution when heated to 100 to 120 ° C. It has to appear.
Furthermore, it is preferable that the organic polymer layer has a high affinity for the electrolytic solution. In order for the organic polymer layer and the electrolytic solution to have a high affinity, it is more preferable that at least the surface of the organic polymer has a property of swelling in the electrolytic solution.

【0035】該親和性をさらに高いものとするために
は、該有機ポリマーの形態は微細孔構造を有するもので
あることが好ましい。
In order to further increase the affinity, the organic polymer preferably has a micropore structure.

【0036】該有機ポリマーの材料としては、電池内温
度の上昇に伴って、有機ポリマー層を形成するポリマー
が電解液に溶解し電解液の抵抗を急激に上昇させること
で、本発明電池用セパレータとしてのシャットダウン特
性を発現させるものであり、その溶解開始点が100〜
120℃であり、好ましくは110〜120℃であるも
のが好適に選択される。さらに、溶解したポリマーが電
解液をゲル化させるものであることがより好ましい。具
体的には各種物理架橋ポリマー、特にポリフッ化ビニリ
デンやポリアクリロニトリルを主原料とするものが好ま
しい。
As the material of the organic polymer, the polymer forming the organic polymer layer is dissolved in the electrolytic solution as the temperature inside the battery rises, and the resistance of the electrolytic solution is rapidly increased. The shut-down property is expressed as, and the melting start point is 100 to
A temperature of 120 ° C, preferably 110 to 120 ° C, is suitably selected. Further, it is more preferable that the dissolved polymer gels the electrolytic solution. Specifically, various physically cross-linked polymers, particularly those containing polyvinylidene fluoride or polyacrylonitrile as a main raw material are preferable.

【0037】有機ポリマー層を形成する際、該有機ポリ
マー骨格の緻密化や結晶化を防止し、微細孔構造をより
効果的に形成するために、無機フィラーを添加してもよ
い。無機フィラーとしては、多孔性基材同様、化学的、
電気化学的に安定であり、かつ、有機ポリマー骨格と共
にマトリックスを形成する微粒子状金属化合物が使用で
きる。例えば、酸化ケイ素、酸化チタン、酸化アルミニ
ウム、酸化マグネシウム、酸化ジルコニウム、酸化亜
鉛、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マ
グネシウムなどの金属炭酸塩などが挙げられるが、これ
らに限定されるものではない。これらは単独で用いても
よく、2種以上混合して用いてもよい。
When forming the organic polymer layer, an inorganic filler may be added in order to prevent the organic polymer skeleton from being densified or crystallized and more effectively form a fine pore structure. As the inorganic filler, similar to the porous substrate, chemical,
Particulate metal compounds that are electrochemically stable and that form a matrix with the organic polymer backbone can be used. Examples include, but are not limited to, silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, zirconium oxide, zinc oxide, metal oxides such as iron oxide, and metal carbonates such as calcium carbonate and magnesium carbonate. is not. These may be used alone or in combination of two or more.

【0038】本発明電池に用いる電解液としては、例え
ば非水電解質電池であれば、前記電解液を構成する溶媒
として、リチウム電池に一般に使用される化学的に安定
であるものが使用できる。例えば、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート、γ
−ブチロラクトン、プロピオラクトン、バレロラクト
ン、テトラヒドロフラン、ジメトキシエタン、ジエトキ
シエタン、メトキシエトキシエタンなどが挙げられる
が、これらに限定されるものではない。これらは単独で
用いてもよく、2種以上混合して用いてもよい。このと
き、電解液を構成する電解質塩としては、リチウム電池
に一般に使用される広電位領域において安定であるリチ
ウム塩が使用できる。例えば、LiBF4、LiPF6
LiClO4、LiSO3CF3、LiN(SO2
32、LiN(SO2252、LiN(SO2
3)(SO2 49)などが挙げられるが、これらに限
定されるものではない。これらは単独で用いてもよく、
2種以上混合して用いてもよい。
As the electrolytic solution used in the battery of the present invention, for example,
For example, if it is a non-aqueous electrolyte battery, the solvent that constitutes the electrolytic solution.
Chemically stable as commonly used in lithium batteries
Anything that is can be used. For example, ethylene carbon
G, propylene carbonate, dimethyl carbonate,
Diethyl carbonate, methyl ethyl carbonate, γ
-Butyrolactone, propiolactone, valerolacto
Amine, tetrahydrofuran, dimethoxyethane, dietoki
Ciethane, methoxyethoxyethane, etc.
However, it is not limited thereto. These alone
They may be used, or two or more kinds may be mixed and used. This and
As the electrolyte salt that constitutes the electrolytic solution, a lithium battery
Lithium that is stable in a wide potential range commonly used in
Um salts can be used. For example, LiBFFour, LiPF6,
LiClOFour, LiSO3CF3, LiN (SO2C
F3)2, LiN (SO2C2FFive)2, LiN (SO2C
F3) (SO2C FourF9), Etc., but not limited to these
It is not fixed. These may be used alone,
You may use it in mixture of 2 or more types.

【0039】[0039]

【実施例】以下に、本発明について、実施例によりさら
に詳細に説明するが、本発明はこれらの記述により限定
されるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these descriptions.

【0040】(実施例1)本発明電池用セパレータa ポリフッ化ビニリデン粉末3g及びN−メチル−2−ピ
ロリドン22gを混合し、完全に溶解させた。この溶液
をポリエチレン製微多孔膜(厚さ16μm、開孔率45
%)表面に塗布し、水中に浸漬させた。この過程で、N
−メチル−2−ピロリドンが水と置換することによって
ポリフッ化ビニリデンからなる微細孔構造が形成され
る。次に水分を乾燥させ、膜厚20μmの本発明電池用
セパレータaを得た。この本発明電池用セパレータaの
表面および断面を走査型電子顕微鏡にて観察したとこ
ろ、平均孔径約0.5μmの微細孔構造が形成されたポ
リフッ化ビニリデンポリマーのみからなる層が微多孔膜
表面に平均厚さ2.5μmずつ形成されており、かつ、
微多孔膜の孔内には、平均孔径約0.8μmの微細孔構
造が形成されたポリフッ化ビニリデンポリマーのみから
なる層がごく薄く形成されていることが確認された。
Example 1 Separator a for battery of the present invention 3 g of polyvinylidene fluoride powder and 22 g of N-methyl-2-pyrrolidone were mixed and completely dissolved. This solution was added to a polyethylene microporous membrane (thickness 16 μm, porosity 45
%) Applied to the surface and immersed in water. In the process, N
The replacement of methyl-2-pyrrolidone with water forms a microporous structure composed of polyvinylidene fluoride. Next, the water content was dried to obtain a battery separator a of the present invention having a film thickness of 20 μm. When the surface and the cross section of the battery a of the present invention were observed with a scanning electron microscope, a layer consisting only of polyvinylidene fluoride polymer having a fine pore structure with an average pore diameter of about 0.5 μm was formed on the surface of the microporous membrane. The average thickness is 2.5 μm each, and
It was confirmed that in the pores of the microporous membrane, a very thin layer made of polyvinylidene fluoride polymer having a micropore structure having an average pore diameter of about 0.8 μm was formed.

【0041】(実施例2)本発明電池用セパレータb ポリフッ化ビニリデン粉末3g、酸化ケイ素1g及びN
−メチル−2−ピロリドン22gを混合し、完全に溶解
させた。この溶液をポリエチレン製微多孔膜(厚さ16
μm、開孔率45%)表面に塗布し、水中に浸漬させた
後、乾燥させ、膜厚20μmの本発明電池用セパレータ
bを得た。この本発明電池用セパレータaの表面および
断面を走査型電子顕微鏡にて観察したところ、平均孔径
約0.7μmの微細孔構造が形成されたポリフッ化ビニ
リデンポリマーのみからなる層が微多孔膜表面に平均厚
さ2.5μmずつ形成されており、かつ、微多孔膜の孔
内には、平均孔径約0.8μmの微細孔構造が形成され
たポリフッ化ビニリデンポリマーのみからなる層がごく
薄く形成されていることが確認された。
(Example 2) Battery separator b of the present invention 3 g of polyvinylidene fluoride powder, 1 g of silicon oxide and N
22 g of -methyl-2-pyrrolidone were mixed and completely dissolved. This solution was added to a polyethylene microporous membrane (thickness 16
μm, porosity of 45%), and was immersed in water and dried to obtain a battery separator b of the present invention having a film thickness of 20 μm. Observation of the surface and cross section of the battery a of the present invention with a scanning electron microscope revealed that a layer consisting only of polyvinylidene fluoride polymer having a fine pore structure with an average pore diameter of about 0.7 μm was formed on the surface of the microporous membrane. An average thickness of 2.5 μm each is formed, and in the pores of the microporous membrane, a layer made only of polyvinylidene fluoride polymer having a micropore structure with an average pore diameter of about 0.8 μm is formed very thinly. Was confirmed.

【0042】(実施例3)本発明電池用セパレータc ポリアクリロニトリル3g及びN−メチル−2−ピロリ
ドン2gを混合し、完全に溶解させた。この溶液をポリ
エチレン製微多孔膜(厚さ16μm、開孔率45%)表
面に塗布し、水中に浸漬させた後、乾燥させ、膜厚20
μmの本発明電池用セパレータcを得た。この本発明電
池用セパレータbの表面および断面を走査型電子顕微鏡
にて観察したところ、平均孔径約0.2μmの微細孔構
造が形成されたポリアクリロニトリルポリマーのみから
なる層が微多孔膜片面に平均厚さ4μm形成されてお
り、かつ、微多孔膜の孔内には、平均孔径約0.5μm
の微細孔構造が形成されたポリアクリロニトリルポリマ
ーのみからなる層がごく薄く形成されていることが確認
された。
(Example 3) Battery separator c of the present invention 3 g of polyacrylonitrile and 2 g of N-methyl-2-pyrrolidone were mixed and completely dissolved. This solution was applied to the surface of a polyethylene microporous membrane (thickness 16 μm, porosity 45%), immersed in water, and then dried to a film thickness of 20.
A μm-thick battery separator c of the present invention was obtained. Observation of the surface and cross section of the battery separator b of the present invention with a scanning electron microscope revealed that a layer consisting only of polyacrylonitrile polymer having a micropore structure with an average pore diameter of about 0.2 μm was formed on one side of the microporous membrane. It has a thickness of 4 μm and the average pore diameter is about 0.5 μm in the pores of the microporous membrane.
It was confirmed that the layer composed of only the polyacrylonitrile polymer in which the micropore structure was formed was extremely thin.

【0043】(比較例1)比較電池用セパレータd (化1)で示される構造を持つ2官能アクリレートモノ
マー3g及びエタノール12gを混合し、完全に溶解さ
せ、モノマー液を得た。前記モノマー液をポリプロピレ
ン製微多孔膜(厚さ16μm、開孔率45%)に含浸
し、電子線照射によりモノマーを重合させて有機ポリマ
ー骨格を形成させた後、エタノールを乾燥させ、膜厚2
0μmの比較電池用セパレータdを得た。この比較電池
用セパレータdの表面および断面を走査型電子顕微鏡に
て観察したところ、平均孔径約0.5μmの微細孔構造
が形成された有機ポリマーのみからなる層が微多孔膜表
面に平均厚さ2.5μmずつ形成されており、かつ、微
多孔膜の孔内には、平均孔径約0.8μmの微細孔構造
が形成された有機ポリマーのみからなる層がごく薄く形
成されていることが確認された。
Comparative Example 1 Comparative Battery Separator d 3 g of a bifunctional acrylate monomer having the structure shown in Chemical formula 1 and 12 g of ethanol were mixed and completely dissolved to obtain a monomer liquid. A polypropylene microporous film (thickness: 16 μm, open area ratio: 45%) was impregnated with the monomer solution, and the monomer was polymerized by electron beam irradiation to form an organic polymer skeleton. Then, ethanol was dried to obtain a film thickness of 2
A 0 μm comparative battery separator d was obtained. Observation of the surface and cross-section of this comparative battery separator d with a scanning electron microscope revealed that a layer consisting of only an organic polymer having a fine pore structure with an average pore diameter of about 0.5 μm was formed on the surface of the microporous membrane. It was confirmed that 2.5 μm each was formed, and that a layer consisting only of an organic polymer having a micropore structure with an average pore diameter of about 0.8 μm was formed very thin in the pores of the microporous membrane. Was done.

【0044】[0044]

【化1】 (比較例2)比較電池用セパレータe ポリフッ化ビニリデン粉末3g及びN−メチル−2−ピ
ロリドン22gを混合し、完全に溶解させた。この溶液
をポリエチレンテレフタレートフィルム上にキャスト
し、水中に浸漬させた後、水を乾燥させ、ポリエチレン
テレフタレートフィルムを除去することにより、膜厚2
0μmの比較電池用セパレータeを得た。この比較電池
用セパレータeの開孔率は45%であり、その表面およ
び断面を走査型電子顕微鏡にて観察したところ、平均孔
径約0.5μmの微細孔構造が形成されていることが確
認された。
[Chemical 1] Comparative Example 2 Comparative Battery Separator e Polyvinylidene fluoride powder (3 g) and N-methyl-2-pyrrolidone (22 g) were mixed and completely dissolved. This solution was cast on a polyethylene terephthalate film, immersed in water, and then dried to remove the polyethylene terephthalate film to give a film thickness of 2
A 0 μm comparative battery separator e was obtained. The porosity of this comparative battery separator e was 45%, and its surface and cross section were observed by a scanning electron microscope, and it was confirmed that a fine pore structure having an average pore diameter of about 0.5 μm was formed. It was

【0045】(比較例3)比較電池用セパレータf ポリプロピレン/ポリエチレン/ポリプロピレン3層積
層微多孔膜(厚さ25μm、開孔率38%)を比較電池
用セパレータfとした。
Comparative Example 3 Separator f for Comparative Battery A polypropylene / polyethylene / polypropylene 3-layer laminated microporous membrane (thickness 25 μm, porosity 38%) was used as a separator f for comparative battery.

【0046】表1に、これら本発明電池用セパレータa
〜cおよび比較電池用セパレータd〜fの、20℃にお
けるイオン伝導度をまとめて示す。
Table 1 shows these battery separators a of the present invention.
˜c and comparative battery separators df are collectively shown at 20 ° C. for ionic conductivity.

【0047】[0047]

【表1】 表1より、本発明電池用セパレータはいずれも、比較電
池用セパレータに比較して、同程度または高いイオン伝
導度が得られていることがわかる。
[Table 1] From Table 1, it can be seen that each of the battery separators of the present invention has the same or higher ionic conductivity as compared with the comparative battery separator.

【0048】(実施例4)本発明電池A 本発明にかかるリチウム電池の断面図を図1に示す。Example 4 Battery A of the present invention A cross-sectional view of a lithium battery according to the present invention is shown in FIG.

【0049】本発明におけるリチウム電池は、正極1、
負極2、およびセパレータ3からなる極群4と、非水電
解質と、金属樹脂複合フィルム5から構成されている。
正極1は、正極合剤11が正極集電体12上に塗布され
てなる。また、負極2は、負極合剤21が負極集電体2
2上に塗布されてなる。非水電解質は極群4に含浸され
ている。金属樹脂複合フィルム5は、極群4を覆い、そ
の周囲が熱溶着により封止されている。
The lithium battery according to the present invention comprises the positive electrode 1,
The negative electrode 2 and the electrode group 4 including the separator 3, the non-aqueous electrolyte, and the metal-resin composite film 5 are included.
The positive electrode 1 is formed by coating the positive electrode mixture 11 on the positive electrode current collector 12. In the negative electrode 2, the negative electrode mixture 21 is the negative electrode current collector 2
2 is applied on top. The non-aqueous electrolyte is impregnated in the pole group 4. The metal-resin composite film 5 covers the pole group 4 and the periphery thereof is sealed by heat welding.

【0050】次に、上記構成の電池の製造方法を説明す
る。
Next, a method of manufacturing the battery having the above structure will be described.

【0051】正極1は次のようにして得た。まず、Li
CoO2と、導電剤であるアセチレンブラックを混合
し、さらに結着剤としてポリフッ化ビニリデンのN−メ
チル−2−ピロリドン溶液を混合し、この混合物をアル
ミ箔からなる正極集電体12の片面に塗布した後、乾燥
し、正極合剤11の厚みが0.1mmとなるようにプレ
スした。以上の工程により正極1を得た。
The positive electrode 1 was obtained as follows. First, Li
CoO 2 and acetylene black, which is a conductive agent, are mixed, and then a polyvinylidene fluoride N-methyl-2-pyrrolidone solution is mixed as a binder, and this mixture is applied to one surface of the positive electrode current collector 12 made of aluminum foil. After coating, it was dried and pressed so that the thickness of the positive electrode mixture 11 was 0.1 mm. The positive electrode 1 was obtained through the above steps.

【0052】また、負極2は、次のようにして得た。ま
ず、負極活物質であるグラファイトと、結着剤であるポ
リフッ化ビニリデンのN−メチル−2−ピロリドン溶液
を混合し、この混合物を銅箔からなる負極集電体22の
片面に塗布した後、乾燥し、負極合剤21厚みが0.1
mmとなるようにプレスした。以上の工程により負極2
を得た。
The negative electrode 2 was obtained as follows. First, graphite, which is a negative electrode active material, and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride, which is a binder, are mixed, and this mixture is applied to one surface of a negative electrode current collector 22 made of a copper foil. It is dried and the negative electrode mixture 21 has a thickness of 0.1.
It was pressed to have a size of mm. Through the above steps, the negative electrode 2
Got

【0053】一方、セパレータ5には本発明電池用セパ
レータaを用いた。
On the other hand, as the separator 5, the battery separator a of the present invention was used.

【0054】極群4は、正極合剤11と負極合剤21と
を対向させ、その間にセパレータ3を配し、正極1、セ
パレータ3、負極2の順に積層することにより、構成し
た。非水電解質は、γ−ブチロラクトンとエチレンカー
ボネートを体積比3:2の割合で混合した混合溶媒1リ
ットルに、1モルのLiBF4を溶解させることにより
得た。次に、非水電解質中に極群4を浸漬させることに
より、極群4に非水電解質を含浸させ、た。さらに、金
属樹脂複合フィルム5で極群4を覆い、その四方を熱溶
着により封止した。
The electrode group 4 was constructed by placing the positive electrode mixture 11 and the negative electrode mixture 21 facing each other, disposing the separator 3 therebetween, and laminating the positive electrode 1, the separator 3 and the negative electrode 2 in this order. The non-aqueous electrolyte was obtained by dissolving 1 mol of LiBF 4 in 1 liter of a mixed solvent in which γ-butyrolactone and ethylene carbonate were mixed at a volume ratio of 3: 2. Next, the electrode group 4 was immersed in the non-aqueous electrolyte to impregnate the electrode group 4 with the non-aqueous electrolyte. Further, the electrode group 4 was covered with the metal-resin composite film 5, and its four sides were sealed by heat welding.

【0055】以上の製法により得られた電池を本発明電
池Aとする。なお、本発明電池Aの設計容量は、10m
Ahである。
The battery obtained by the above production method is referred to as Battery A of the present invention. The designed capacity of the battery A of the present invention is 10 m.
It is Ah.

【0056】(実施例5)本発明電池B セパレータ5に、本発明電池用セパレータbを用いた以
外は、本発明電池Aと同一の原料および製法により、容
量10mAhの電池を作製し、本発明電池Bとした。
(Example 5) Battery B of the present invention A battery having a capacity of 10 mAh was produced by the same raw material and manufacturing method as the battery A of the present invention except that the separator b for the battery of the present invention was used as the separator 5. Battery B was used.

【0057】(実施例6)本発明電池C セパレータ5に、本発明電池用セパレータcを用いた以
外は、本発明電池Aと同一の原料および製法により、容
量10mAhの電池を作製し、本発明電池Cとした。
(Example 6) Battery C of the present invention A battery having a capacity of 10 mAh was produced by the same raw material and manufacturing method as the battery A of the present invention except that the separator c for the battery of the present invention was used as the separator 5. Battery C was used.

【0058】(比較例4)比較電池D セパレータ5に、比較電池用セパレータdを用いた以外
は、本発明電池Aと同一の原料および製法により、容量
10mAhの電池を作製し、比較電池Dとした。
(Comparative Example 4) Comparative Battery D A battery having a capacity of 10 mAh was prepared by using the same raw material and manufacturing method as the battery A of the present invention except that the separator d for the comparative battery was used as the separator 5. did.

【0059】(比較例5)比較電池E セパレータ5に、比較電池用セパレータeを用いた以外
は、本発明電池Aと同一の原料および製法により、容量
10mAhの電池を作製し、比較電池Eとした。
(Comparative Example 5) Comparative Battery E A battery having a capacity of 10 mAh was prepared by the same raw material and manufacturing method as the battery A of the present invention except that the separator e for the comparative battery was used as the separator 5. did.

【0060】(比較例6)比較電池F セパレータ5に、比較電池用セパレータfを用いた以外
は、本発明電池Aと同一の原料および製法により、容量
10mAhの電池を作製し、比較電池Fとした。
Comparative Example 6 Comparative Battery F A battery having a capacity of 10 mAh was prepared by the same raw material and manufacturing method as the battery A of the present invention except that the separator f for the comparative battery was used as the separator 5. did.

【0061】(電池性能試験)次に、これらの本発明電
池A、B、Cおよび比較電池D、E、Fについて、放電
レート特性を取得した。試験温度は20℃とした。充電
は電流2mA、終止電圧4.2Vの定電流定電圧充電と
し、放電は種々の電流値で定電流放電を行い、終止電圧
は2.7Vとした。得られた放電容量の電池設計容量に
対する比率を放電容量(%)とした。結果を図2に示
す。
(Battery Performance Test) Next, the discharge rate characteristics of these batteries A, B and C of the present invention and comparative batteries D, E and F were obtained. The test temperature was 20 ° C. The charging was a constant-current constant-voltage charge with a current of 2 mA and a final voltage of 4.2 V, and the discharging was a constant-current discharge with various current values, and the final voltage was 2.7 V. The ratio of the obtained discharge capacity to the battery design capacity was defined as the discharge capacity (%). The results are shown in Figure 2.

【0062】図2において、放電電流30mAにおける
放電容量を比較すると、比較電池Dでは設計容量の45
%前後、比較電池Eでは設計容量の55%前後、比較電
池Fでは設計容量の60%前後の放電容量しか得られな
いのに対し、本発明電池Aでは設計容量の80%前後、
本発明電池Bでは設計容量の85%前後、本発明電池C
では設計容量の70%前後の放電容量が得られることが
わかった。 (シャットダウン特性評価)さらに、これらの本発明電
池A、B、Cおよび比較電池D、E、Fについて、シャ
ットダウン特性評価を実施した。オーブン中に、電流2
mA、終止電圧4.2Vの定電流定電圧充電をした電池
を設置し、電池電圧及び内部抵抗を測定しながら1℃/
分の速度で140℃まで昇温し、内部抵抗が急激に上昇
する温度を測定し、シャットダウン開始温度とした。そ
の後、オーブンから電池を取り出して電池を解体し、取
り出したセパレータの収縮、破膜の有無、閉塞の程度を
観察した。結果を表2に示す。
In FIG. 2, comparing the discharge capacities at a discharge current of 30 mA, the comparative battery D has a design capacity of 45.
%, About 50% of the designed capacity of the comparative battery E and about 60% of the designed capacity of the comparative battery F, whereas the discharge capacity of the battery A of the present invention is about 80% of the designed capacity.
In the battery B of the present invention, about 85% of the designed capacity, the battery C of the present invention
It was found that a discharge capacity of about 70% of the designed capacity can be obtained. (Shutdown Characteristic Evaluation) Further, the shutdown characteristic evaluation was carried out on the batteries A, B and C of the present invention and the comparative batteries D, E and F. In the oven, current 2
Install a battery charged with constant current and constant voltage of mA and final voltage of 4.2V, and measure the battery voltage and internal resistance at 1 ℃ /
The temperature was raised to 140 ° C. at a rate of minutes, and the temperature at which the internal resistance sharply increased was measured and used as the shutdown start temperature. After that, the battery was taken out from the oven and disassembled, and the contraction of the taken-out separator, the presence or absence of film rupture, and the degree of blockage were observed. The results are shown in Table 2.

【0063】[0063]

【表2】 表2より、比較電池D、Fは形状保持力は優れている
が、シャットダウン開始温度がポリエチレンの融点であ
る約135℃付近にあり、比較的高いことが分かった。
また、比較電池Eはシャットダウン開始温度が比較的低
かったが、形状保持力に欠けることが分かった。これに
対し、本発明電池A、B、Cはシャットダウン開始温度
が比較的低く、かつ、良好な形状保持力を示すことが分
かった。
[Table 2] From Table 2, it was found that the comparative batteries D and F have excellent shape retention, but the shutdown start temperature is around 135 ° C. which is the melting point of polyethylene, and is relatively high.
Further, it was found that the comparative battery E had a relatively low shutdown start temperature, but lacked shape retention. On the other hand, it was found that the batteries A, B, and C of the present invention had a relatively low shutdown start temperature and exhibited good shape retention.

【0064】以上の結果を総合すると、本発明電池用セ
パレータa、b、cおよびそれを用いた本発明電池A、
B、Cは、比較電池用セパレータd、e、fおよびそれ
を用いた比較電池D、E、Fに比較して、良好な性能と
安全性を兼備していると言える。
Summarizing the above results, the present invention battery separators a, b and c and the present invention battery A using the same are
It can be said that B and C have good performance and safety in comparison with the comparative battery separators d, e and f and the comparative batteries D, E and F using the separators.

【0065】以上、リチウム電池を例に挙げて説明した
が、本発明の電池用セパレータはリチウム電池に限定さ
れるものではなく、ニッケル水素電池をはじめ水系電解
液を用いる種々の電池系においても用いることができ
る。
Although the lithium battery has been described above as an example, the battery separator of the present invention is not limited to the lithium battery, and may be used in various battery systems including an aqueous electrolyte such as a nickel hydrogen battery. be able to.

【0066】[0066]

【発明の効果】本発明は上記の如く構成されているの
で、このような構成の電池用セパレータを電池に適用す
れば、高いイオン伝導度を確保し、且つリチウムイオン
のスムーズな移動を実現し、電解液保持性に優れ、電池
温度が前記溶解開始点に到達した時、有機ポリマー層が
電解液に溶解して、電解液の抵抗を急激に上昇させ、ま
たは電解液がゲル化するため、従来に比べ比較的低い適
切な温度でシャットダウン特性を発現させることができ
る。また、熱暴走等により電池温度が形状破壊温度を突
破して重大な問題を引き起こす虞を大幅に低減できる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, if the battery separator having such a configuration is applied to a battery, a high ionic conductivity is ensured and smooth movement of lithium ions is realized. , Excellent in electrolyte retention, when the battery temperature reaches the melting start point, the organic polymer layer is dissolved in the electrolyte, to rapidly increase the resistance of the electrolyte, or because the electrolyte gels, The shutdown characteristic can be expressed at an appropriate temperature that is relatively low compared to the conventional one. Further, it is possible to greatly reduce the risk that the battery temperature will exceed the shape destruction temperature due to thermal runaway and cause a serious problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム電池の断面図である。FIG. 1 is a cross-sectional view of a lithium battery of the present invention.

【図2】本発明電池および比較電池の放電レート特性を
示した図である。
FIG. 2 is a diagram showing discharge rate characteristics of a battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

1 正極 11 正極合剤 12 正極集電体 2 負極 21 負極合剤 22 負極集電体 3 セパレータ 4 極群 5 金属樹脂複合フィルム 1 positive electrode 11 Positive electrode mixture 12 Positive electrode current collector 2 Negative electrode 21 Negative electrode mixture 22 Negative electrode current collector 3 separator 4 pole group 5 Metal resin composite film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H021 CC04 EE02 EE04 EE06 EE10 EE23 HH03 HH06 5H029 AJ12 AK03 AL07 AM02 AM03 AM04 AM05 AM07 BJ03 BJ27 DJ04 DJ14 EJ12 HJ04 HJ14   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H021 CC04 EE02 EE04 EE06 EE10                       EE23 HH03 HH06                 5H029 AJ12 AK03 AL07 AM02 AM03                       AM04 AM05 AM07 BJ03 BJ27                       DJ04 DJ14 EJ12 HJ04 HJ14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、電解液及びセパレータから
なる電池に用いる多孔性の電池用セパレータであって、
前記セパレータは、多孔性基材シートと、微細孔構造を
有する有機ポリマー層とからなり、前記有機ポリマー層
は、前記多孔性基材シートの表面、裏面及び孔内壁面か
らなる基材表面の少なくとも一部に形成されており、前
記有機ポリマー層を形成するポリマーは、100℃以上
120℃以下の温度範囲に、前記電解液に対して溶解を
開始する溶解開始点を有することを特徴とする電池用セ
パレータ。
1. A porous battery separator for use in a battery, comprising a positive electrode, a negative electrode, an electrolytic solution and a separator,
The separator comprises a porous substrate sheet and an organic polymer layer having a fine pore structure, the organic polymer layer is at least the surface of the porous substrate sheet, the back surface and at least the substrate surface consisting of the inner wall surface of the pores. A battery which is partially formed and has a dissolution starting point at which the polymer for forming the organic polymer layer starts to dissolve in the electrolyte solution in a temperature range of 100 ° C. or higher and 120 ° C. or lower. Separator.
【請求項2】 正極、負極、電解液及びセパレータから
なる電池に用いる多孔性の電池用セパレータであって、
前記セパレータは、多孔性基材シートと、微細孔構造を
有する有機ポリマー層とからなり、前記有機ポリマー層
は、前記多孔性基材シートの表面、裏面及び孔内壁面か
らなる基材表面の少なくとも一部に形成されており、前
記有機ポリマー層を形成するポリマーは、100℃以上
120℃以下の温度範囲において、前記電解液のうち、
少なくとも前記多孔性基材シートの孔内に存在する電解
液が前記有機ポリマー層を形成するポリマーを含んでゲ
ル化することを特徴とする電池用セパレータ。
2. A porous battery separator for use in a battery, comprising a positive electrode, a negative electrode, an electrolytic solution and a separator,
The separator comprises a porous substrate sheet and an organic polymer layer having a fine pore structure, the organic polymer layer is at least the surface of the porous substrate sheet, the back surface and at least the substrate surface consisting of the inner wall surface of the pores. The polymer which is formed in a part and forms the organic polymer layer has a temperature range of 100 ° C. or higher and 120 ° C. or lower.
A battery separator, wherein at least the electrolytic solution present in the pores of the porous substrate sheet contains the polymer forming the organic polymer layer and gels.
【請求項3】 前記多孔性基材シートは、少なくとも1
35℃未満の温度において融点を有さないものであるこ
とを特徴とする請求項1または2に記載の電池用セパレ
ータ。
3. The porous substrate sheet is at least 1
The battery separator according to claim 1 or 2, which has no melting point at a temperature lower than 35 ° C.
【請求項4】 前記多孔性基材シートは、厚さ25μm
以下であり、かつ、開孔率40%以上の微多孔膜である
ことを特徴とする請求項1〜3のいずれかに記載の電池
用セパレータ。
4. The porous substrate sheet has a thickness of 25 μm.
The separator for a battery according to any one of claims 1 to 3, which is a microporous membrane having a porosity of 40% or more, which is the following.
【請求項5】 前記有機ポリマー層は、ポリフッ化ビニ
リデン又はポリアクリロニトリルを原料として含むこと
を特徴とする請求項1〜4のいずれかに記載の電池用セ
パレータ。
5. The battery separator according to claim 1, wherein the organic polymer layer contains polyvinylidene fluoride or polyacrylonitrile as a raw material.
【請求項6】 請求項1〜5のいずれかに記載の電池用
セパレータを用いた電池。
6. A battery using the battery separator according to claim 1.
JP2001246887A 2001-08-16 2001-08-16 Battery separator and battery using the same Expired - Fee Related JP5082177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246887A JP5082177B2 (en) 2001-08-16 2001-08-16 Battery separator and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246887A JP5082177B2 (en) 2001-08-16 2001-08-16 Battery separator and battery using the same

Publications (2)

Publication Number Publication Date
JP2003059480A true JP2003059480A (en) 2003-02-28
JP5082177B2 JP5082177B2 (en) 2012-11-28

Family

ID=19076333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246887A Expired - Fee Related JP5082177B2 (en) 2001-08-16 2001-08-16 Battery separator and battery using the same

Country Status (1)

Country Link
JP (1) JP5082177B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004366A1 (en) 2004-07-07 2006-01-12 Lg Chem, Ltd. New organic/inorganic composite porous film and electrochemical device prepared thereby
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2007287677A (en) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US7311994B2 (en) 2002-09-17 2007-12-25 Tomoegawa Paper Co., Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
US7399556B2 (en) 2003-12-30 2008-07-15 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
EP1947138A1 (en) * 2005-11-01 2008-07-23 Tonen Chemical Corporation Polyolefin microporous membrane, separator for battery using the membrane, and battery
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
WO2015141477A1 (en) * 2014-03-18 2015-09-24 積水化学工業株式会社 Heat resistant synthetic resin microporous film, method for manufacturing same, nonaqueous electrolyte secondary cell separator, and nonaqueous electrolyte secondary cell
JP2017224634A (en) * 2014-03-14 2017-12-21 東京応化工業株式会社 Porous separator for secondary battery and secondary battery using the same
CN114447520A (en) * 2021-12-22 2022-05-06 河北金力新能源科技股份有限公司 Functional gradient coating lithium battery diaphragm and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323910A (en) * 1995-06-02 1996-12-10 Kureha Chem Ind Co Ltd Laminated porous film and separator for non-aqueous solvent type battery composed thereof
JPH1064503A (en) * 1996-06-12 1998-03-06 Toyo Cloth Kk Lithium ion battery
JPH1140132A (en) * 1997-05-21 1999-02-12 Showa Denko Kk Separator for electrochemical element, and use thereof
WO1999036981A1 (en) * 1998-01-19 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Battery
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323910A (en) * 1995-06-02 1996-12-10 Kureha Chem Ind Co Ltd Laminated porous film and separator for non-aqueous solvent type battery composed thereof
JPH1064503A (en) * 1996-06-12 1998-03-06 Toyo Cloth Kk Lithium ion battery
JPH1140132A (en) * 1997-05-21 1999-02-12 Showa Denko Kk Separator for electrochemical element, and use thereof
WO1999036981A1 (en) * 1998-01-19 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Battery
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311994B2 (en) 2002-09-17 2007-12-25 Tomoegawa Paper Co., Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
US7399556B2 (en) 2003-12-30 2008-07-15 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
USRE44264E1 (en) * 2003-12-30 2013-06-04 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
WO2006004366A1 (en) 2004-07-07 2006-01-12 Lg Chem, Ltd. New organic/inorganic composite porous film and electrochemical device prepared thereby
EP3739668A1 (en) * 2004-07-07 2020-11-18 Lg Chem, Ltd. New organic/inorganic composite porous film and electrochemical device prepared thereby
EP1782489A4 (en) * 2004-07-07 2011-01-05 Lg Chemical Ltd New organic/inorganic composite porous film and electrochemical device prepared thereby
EP3322000A1 (en) * 2004-09-02 2018-05-16 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP5250261B2 (en) * 2005-11-01 2013-07-31 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and battery separator and battery using the same
EP1947138A4 (en) * 2005-11-01 2010-05-19 Tonen Sekiyukagaku Kk Polyolefin microporous membrane, separator for battery using the membrane, and battery
EP1947138A1 (en) * 2005-11-01 2008-07-23 Tonen Chemical Corporation Polyolefin microporous membrane, separator for battery using the membrane, and battery
JP2007287677A (en) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
JP2017224634A (en) * 2014-03-14 2017-12-21 東京応化工業株式会社 Porous separator for secondary battery and secondary battery using the same
WO2015141477A1 (en) * 2014-03-18 2015-09-24 積水化学工業株式会社 Heat resistant synthetic resin microporous film, method for manufacturing same, nonaqueous electrolyte secondary cell separator, and nonaqueous electrolyte secondary cell
JP5934438B2 (en) * 2014-03-18 2016-06-15 積水化学工業株式会社 Heat-resistant synthetic resin microporous film and method for producing the same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2015141477A1 (en) * 2014-03-18 2017-04-06 積水化学工業株式会社 Heat-resistant synthetic resin microporous film and method for producing the same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN114447520A (en) * 2021-12-22 2022-05-06 河北金力新能源科技股份有限公司 Functional gradient coating lithium battery diaphragm and preparation method thereof
CN114447520B (en) * 2021-12-22 2024-03-19 河北金力新能源科技股份有限公司 Functional gradient coating lithium battery diaphragm and preparation method thereof

Also Published As

Publication number Publication date
JP5082177B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
KR101923787B1 (en) Protective film, separator using same, and secondary battery
JP4570271B2 (en) High energy rechargeable lithium battery separator
JP5611505B2 (en) Battery separator and lithium secondary battery
JP5099938B1 (en) Nonaqueous electrolyte secondary battery separator, method for producing the same, and nonaqueous electrolyte secondary battery
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
JP2001043897A (en) Solid electrolyte battery
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2002054524A1 (en) Nonaqueous electrolytic secondary battery
JP2001135359A (en) Nonaqueous electrolyte battery
JP2010044935A (en) Compound porous film, battery separator using the same, and nonaqueous electrolyte secondary battery
JP2007317675A (en) Separator for lithium ion secondary battery
JP5015474B2 (en) Battery separator, lithium ion secondary battery, electric double layer capacitor
KR20040084981A (en) Nonaqueous electrolyte battery
JP2004111157A (en) Secondary battery and its manufacturing method
JP2005056800A (en) Separator for electronic parts and electronic parts
JP5082177B2 (en) Battery separator and battery using the same
JP2005093078A (en) Nonaqueous electrolyte secondary battery
JP2005019157A (en) Separator for electronic component, and electronic component
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JP2007087958A (en) Solid electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JPH05190208A (en) Lithium secondary battery
JP4739492B2 (en) Ionic conductor and method for producing the same, battery using the same, and method for producing the same
JP5113944B1 (en) Electrochemical element separator, method for producing the same, and electrochemical element
KR20040042749A (en) Porous Polymer-Coated Gelling Separators and Electrochemical Cells Using the Same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5082177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees