JP2002240215A - Composite film and its manufacturing method - Google Patents

Composite film and its manufacturing method

Info

Publication number
JP2002240215A
JP2002240215A JP2001046477A JP2001046477A JP2002240215A JP 2002240215 A JP2002240215 A JP 2002240215A JP 2001046477 A JP2001046477 A JP 2001046477A JP 2001046477 A JP2001046477 A JP 2001046477A JP 2002240215 A JP2002240215 A JP 2002240215A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
surface
functional polymer
membrane
step
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001046477A
Other languages
Japanese (ja)
Other versions
JP2002240215A5 (en )
JP5156158B2 (en )
Inventor
Koichi Kono
Tetsuro Nogata
公一 河野
鉄郎 野方
Original Assignee
Tonen Chem Corp
東燃化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation

Abstract

PROBLEM TO BE SOLVED: To provide a composite film usable as a separator of a very high quality in a field of a chemical battery like a lithium battery and usable as a filtering filter remarkably improved in a filtering speed or the like, having good wettability even in a field of a separation membrane, and a method for manufacturing the same. SOLUTION: The composite film comprises a coating layer made of a porous material (B) of a functional polymer substance capable of being gelatinized on at least one surface of a polyolefin fine porous film (A) so that a mean particle size of the material (B) is larger than a maximum pore size of the porous film (A). The method for manufacturing the composite film comprises a step of coating the functional polymer substance solution on at least one surface of the polyolefin fine porous film (A), a step of phase separating the coating surface by contacting the coating surface with a poor solvent of the functional polymer substance, and a step of forming the coating layer made of the porous material (B) of the functional polymer substance by heating and drying the phase separated surface.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、複合膜およびその製造方法に関し、さらに詳しくは、リチウム電池のような化学電池の分野では、電池構成工程における電解液注入性、あるいは繰り返し充放電における構成部材間のズレ、すきま等による不都合がなく、界面抵抗も低減できる非常に高品質のセパレータとして使用でき、さらに分離膜の分野でも、分離対象となる薬液との濡れ性が良く、そのため濾過速度などが著しく改善された濾過フィルターとして使用することのできる複合膜およびその製造方法に関する。 BACKGROUND OF THE INVENTION The present invention relates to composite membranes and a method of manufacturing the same, and more particularly, in the field of electrochemical cells such as lithium batteries, the electrolyte injection property in the battery construction process, or structure in the repeating charge and discharge member deviation between, there is no inconvenience caused by the gap or the like, also the interface resistance can be used as a very high quality of the separator can be reduced, further in the field of separation membranes, good wettability with chemical liquid to be separated, and therefore the filtration rate a composite film and a manufacturing method thereof can be used as a filtration filter which is significantly improved.

【0002】 [0002]

【従来の技術】従来、様々な多孔膜が開発されており、 Conventionally, it has been developed various porous membrane,
フィルター、電解膜、非水溶媒型電池のセパレータとして使用されている。 Filter, electrolyte membrane, and is used as a separator for non-aqueous solvent type battery. 特に、リチウム二次電池、リチウムイオン電池の分野では、反応性の高い活物質を使用しているために、電池あるいは使用機器においては、各種の安全装置が設けられ、外部回路の短絡、過充電等により電池の発熱、発火、あるいは破裂事故等を防止するための一つの手段として、正極と負極を分離するセパレータにおいても、用いられているポリエチレン、ポリプロピレン製の微多孔性膜の孔が、異常時の発熱によって閉塞され、セパレータを通じた電池反応を停止する機能とともに、高温になってもセパレータとしての形状を維持し、正極物質と負極物質が直接反応する危険な事態を防止する機能を有することが要求されている。 In particular, a lithium secondary battery, in the field of lithium ion batteries, because of the use of highly reactive active material in the battery or use equipment, various kinds of safety devices are provided, short of an external circuit, overcharge as a means for preventing heat generation of the battery, fire, or explosion accident by such, even in the separator for separating the positive electrode and the negative electrode, polyethylene is used, holes of a polypropylene microporous membrane, abnormal is closed by the heat generation of the time, along with the ability to stop the battery reaction through a separator, to maintain the shape as a separator even at a high temperature, it has a function of preventing a dangerous situation in which the positive electrode material and negative electrode material is directly reacted There has been requested. さらに、現在、広く用いられている延伸によって製造した微多孔性のセパレータは、高温での膜形状維持特性が低く、高温での膜形状維持特性が大きなセパレータが求められていた。 Furthermore, currently, microporous separator produced by stretching widely used, low film shape retention properties at high temperatures, the film shape retention characteristics at a high temperature is large separator has been demanded.

【0003】一方、分離膜の分野でも、ポリオレフィン微多孔膜は、その特性である微細孔構造を活かし、従来からガス分離、液液分離、固液分難などの分離膜として使用されてきたが、近年の分離操作で重要視されるようになってきた耐溶剤性、耐薬品性等の要求される用途においては、分離機能を維持したままで十分な耐性を示せない面があり、分離膜としてのポリオレフィン微多孔膜の性能を改良すべく要請が高まっていた。 On the other hand, in the field of separation membranes, microporous polyolefin membrane, taking advantage of the microporous structure which is a characteristic, gas separated from the conventional liquid-liquid separation, it has been used as a separation membrane such as a solid-liquid separation flame Recently separation operations in importance is the way it came solvent resistance, in the required applications, such as chemical resistance, there is a surface not Shimese sufficient resistance while maintaining separation capabilities, the separation membrane request in order to improve the performance of the microporous polyolefin film as had been growing.

【0004】こうした従来のポリオレフィン微多孔膜のもつ問題点を解消するために、これまで種々の試みがなされ、その1つとして、ポリオレフィン微多孔膜を基材としてその上に他の樹脂層を積層して複合膜にする検討もなされたが、いずれも強度や機能性の面で十分に目的を達成したものとはいえなかった。 [0004] In order to solve the problems of these conventional polyolefin microporous membrane, which Various attempts have been made to, deposited as one, the other resin layer on the polyolefin microporous membrane as the substrate and it was made also considered that the composite membrane, was said to be both achieved sufficiently objective in terms of strength and functionality.

【0005】例えば、特開平7−22014号では、低温での閉塞性が高く、高温での膜形状維持特性を有するセパレータとして、超高分子量ポリエチレンからなる多孔膜と、外層がポリエチレンで、中芯がポリエチレンより融点が20℃以上高い樹脂からなる多層の繊維を含有する不織布から用いた高温膜形状維持特性が大きなセパレータが提案されているが、求められている機能の面、 [0005] For example, in JP-A-7-22014, a high blockage at low temperatures, as a separator having a film shape retention properties at high temperatures, and the porous membrane made of ultra high molecular weight polyethylene, the outer layer of polyethylene, the central core surface of but is hot film shape retention characteristics using a nonwoven fabric containing multiple layers of fibers having a melting point of polyethylene is made of 20 ° C. or more higher than the resin has been proposed a large separator, are demanded function,
例えば高温での特性や安全性の面で、十分とはいえなかった。 For example in terms of characteristics and safety at high temperatures, it was not sufficient. また、特開平9−161756号では、延伸処理によってフィブリル化した多孔性のフッ素樹脂フイルムの一方の面に、超高分子量ポリエチレンまたは高密度ポリエチレンからなる多孔性膜を積層し、他方の面に高密度ポリエチレン多孔性膜を設けたセパレータが提案されているが、上記の場合と同様に十分な特性のものとはいえなかった。 Further, in JP-A-9-161756, on one surface of the porous fluororesin film that is fibrillated by stretching treatment, laminating a porous film made of ultra high molecular weight polyethylene or high density polyethylene, high on the other surface Although a separator having a density polyethylene porous film have been proposed, not be said of sufficient characteristics as in the case of the.

【0006】こうした状況下、近年では、ポリオレフィン微多孔膜のもつ電池用セパレータとしての性能や分離膜としての性能を拡充、向上させるために、ポリオレフィン微多孔膜の上に他の機能性高分子物質からなる多孔質被覆層を形成した複合膜およびその製造方法の開発が切望されている。 [0006] Under these circumstances, in recent years, expanding the performance of the performance and the separation membrane as a battery separator having a polyolefin microporous membrane, in order to improve, other functional polymer material on the polyolefin microporous membrane development of the composite film and a manufacturing method thereof to form a porous coating layer made of is desired.

【0007】 [0007]

【発明が解決しようとする課題】本発明の課題は、リチウム電池のような化学電池の分野では、電池構成工程における電解液注入性、あるいは繰り返し充放電における構成部材間のズレ、すきま等による不都合がなく、界面抵抗も低減できる非常に高品質のセパレータとして使用でき、さらに、分離膜の分野でも、分離対象となる薬液との濡れ性が良く、そのため濾過速度などが著しく改善された濾過フィルターとして使用することのできる複合膜およびその製造方法を提供することにある。 The object of the present invention is to provide a, in the field of electrochemical cells such as lithium batteries, misalignment between the components in the electrolytic solution absorbability, or repeated charging and discharging in the battery construction process, inconveniences due to the gap or the like no, also interface resistance can be used as a very high quality of the separator can be reduced, further, in the field of separation membranes, good wettability with chemical liquid to be separated, as a filtration filter etc. has been significantly improved Consequently filtration rate It can be used to provide a composite film and a manufacturing method thereof.

【0008】 [0008]

【課題を解決するための手段】本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ポリオレフィン微多孔膜の少なくとも1面にゲル化可能な機能性高分子物質の多孔質体からなる被覆層を形成してなる複合膜において、多孔質体の平均孔径を特定の範囲に調整したところ、従来にない高品質な電池用セパレータとしても分離膜としても利用できる複合膜が得られることを見出し、本発明を完成するに至った。 The present inventors Means for Solving the Problems] As a result of extensive studies to solve the above problems, a porous gellable functional polymer material on at least one surface of the polyolefin microporous membrane in the composite film obtained by forming a coating layer comprising a body, was adjusted average pore diameter of the porous body to a specific range, the composite membrane is obtained both be used as the separation membrane as a high-quality cell separator unprecedented It found that to be, and have completed the present invention.

【0009】すなわち、本発明の第1の発明によれば、 [0009] That is, according to the first aspect of the present invention,
ポリオレフィン微多孔膜(A)の少なくとも1面にゲル化可能な機能性高分子物質の多孔質体(B)からなる被覆層を形成してなる複合膜において、多孔質体(B)の平均孔径がポリオレフィン微多孔膜(A)の最大孔径よりも大きいことを特徴とする複合膜が提供される。 In the composite film obtained by forming a coating layer comprising a porous body (B) of the gelable functional polymer material on at least one surface of the microporous polyolefin membrane (A), the average pore diameter of the porous body (B) There the composite membrane is provided which being larger than the maximum pore size of the microporous polyolefin membrane (a).

【0010】また、本発明の第2の発明によれば、第1 [0010] According to the second aspect of the present invention, the first
の発明において、膜厚がポリオレフィン微多孔膜(A) In the invention, thickness of the polyolefin microporous film (A)
の1.01倍〜10倍で、かつ透気度がポリオレフィン微多孔膜(A)の1.01倍〜10倍であることを特徴とする複合膜が提供される。 1.01 to 10 times of, and air permeability composite membrane is provided which is a 1.01 to 10 times of the polyolefin microporous film (A).

【0011】さらに、本発明の第3の発明によれば、ポリオレフィン微多孔膜(A)の少なくとも1面に機能性高分子物質溶液を塗布する工程と、該塗布面を該機能性高分子物質の貧溶剤に接触させることにより相分離させる工程と、該相分離した面を加熱、乾燥させることにより機能性高分子物質の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする第1又は第2の発明に記載の複合膜の製造方法が提供される。 Furthermore, the third according to the invention, the microporous polyolefin membrane (A) of the process and, the functional polymer material coating surface for applying the functional polymer material solution on at least one surface of the present invention a step of phase separation by contact with a poor solvent, said phase heating the separated surface, it comprises the step a for forming a porous cover layer made of (B) of the functional polymer materials by drying method for producing a composite film according to the first or second invention is characterized is provided.

【0012】また、本発明の第4の発明によれば、ポリオレフィン微多孔膜(A)の少なくとも1面に機能性高分子物質をその良溶剤と貧溶剤との混合物に溶解した溶液を塗布する工程と、該塗布面から良溶剤を選択的に蒸発飛散させることにより相分離させる工程と、該相分離した面に残留する貧溶剤を除去することにより機能性高分子物質の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする第1又は第2の発明に記載の複合膜の製造方法が提供される。 [0012] According to the fourth aspect of the present invention, applying a solution of a functional polymer material on at least one side to a mixture of the good solvent and a poor solvent for the polyolefin microporous film (A) a step, a step of phase separation by selectively evaporating scattered good solvent from the coating surface, the porous body of the functional polymer material by removing the poor solvent remaining on the surface were said phase separation (B method for producing a composite film according to the first or second invention is provided, characterized in that it consists of a step of the coating layer is formed made of).

【0013】さらに、本発明の第5の発明によれば、ポリオレフィン微多孔膜(A)の少なくとも1面に機能性高分子物質溶液を塗布する工程と、該塗布面を冷却させることにより相分離させる工程と、該相分離した面を加熱、乾燥させることにより機能性高分子物質の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする第1又は第2の発明に記載の複合膜の製造方法が提供される。 Furthermore, according to the fifth aspect of the present invention, a step of applying a functional polymer material solution on at least one surface of the microporous polyolefin membrane (A), phase separation by cooling the coating surface a step of, said phase heating the separated surface, by drying the functional polymeric material porous body (B) from becoming a coating layer and the step of forming the first or second, characterized in comprising method for producing a composite membrane according to the invention is provided.

【0014】本発明は、上述したように複合膜およびその製造方法に関するものであるが、その好ましい態様としては、以下に示すものも包含される。 [0014] The present invention is concerned with the composite film and a manufacturing method thereof as described above, as the preferred embodiments thereof, it is also encompassed those shown below. (1)ポリオレフィン微多孔膜(A)に用いられるポリオレフィンが、重量平均分子量1×10 〜15×10 (1) polyolefin used in the microporous polyolefin membrane (A) is a weight average molecular weight 1 × 10 6 ~15 × 10 6
であることを特徴とする請求項1又は2に記載の複合膜。 The composite membrane of claim 1 or 2, characterized in that. (2)ポリオレフィン微多孔膜(A)に用いられるポリオレフィン又はポリオレフィン組成物の重量平均分子量/ (2) The weight average molecular weight of the polyolefin microporous polyolefin or polyolefin composition used in the membrane (A) /
数平均分子量(Mw/Mn)が5〜300であることを特徴とする前記複合膜。 It said composite membrane having a number average molecular weight (Mw / Mn), characterized in that 5 to 300. (3)ポリオレフィン微多孔膜(A)に用いられるポリオレフィン又はポリオレフィン組成物に使用されるポリオレフィンが、ポリプロピレン又はポリエチレンであることを特徴とする前記複合膜。 (3) the composite membrane polyolefins used in the polyolefin or polyolefin composition used in the microporous polyolefin membrane (A), characterized in that it is polypropylene or polyethylene. (4)ポリオレフィン微多孔膜(A)に用いられるポリオレフィンが、重量平均分子量50万以上のポリオレフィンを含有するポリオレフィン組成物である前記複合膜。 (4) the composite membrane polyolefin used in the microporous polyolefin membrane (A) is a polyolefin composition containing a weight average molecular weight of 500,000 or more polyolefins. (5)ポリオレフィン微多孔膜(A)に用いられる重量平均分子量50万以上のポリオレフィンを含有するポリオレフィン組成物が、重量平均分子量50万以上の超高分子畳ポリエチレンと重量平均分子量1万以上50万未満の高密度ポリエチレンからなる組成物であることを特徴とする前記複合膜。 (5) a polyolefin microporous membrane polyolefin composition containing a weight average molecular weight of 500,000 or more polyolefins used in (A) is a weight average molecular weight of 500,000 or more ultra-high-molecular-tatami polyethylene and the weight average molecular weight of 10,000 to 500,000 the composite film which is a composition consisting of high density polyethylene below. (6)ポリオレフィン微多孔膜(A)に用いられる重量平均分子量50万以上のポリオレフィンを含有するポリオレフィン組成物が. (6) a polyolefin composition comprising a polyolefin microporous film (A) a weight average molecular weight of 500,000 or more polyolefins used in the. 重量平均分子量50万以上の超高分子量ポリエチレンと重量平均分子量1万以上50万未満の高密度ポリエチレンとシャットダウン機能を付与するポリオレフィンとからなり、一方、該シャットダウン機能を付与するポリオレフィンが、低密度ポリエチレン、 Consists of a weight-average molecular weight of 500,000 or more ultra-high molecular weight polyethylene and the weight average molecular weight of 10,000 to 500,000 less than the polyolefin which imparts a high density polyethylene and shutdown functions, whereas, the polyolefin which imparts the shutdown function, low density polyethylene ,
線状低密度ポリエチレン、分子量1000〜4000の低分子量ポリエチレン又はシングルサイト触媒を用いて製造されたエチレン−αーオレフィン共重合体の中から選ばれる少なくとも1種であることを特徴とする前記複合膜。 The composite film which is characterized in that at least one selected from linear low density polyethylene, low molecular weight polyethylene or ethylene -α-olefin copolymer produced using a single site catalyst having a molecular weight of 1000 to 4000. (7)ポリオレフィン微多孔膜(A)の透気度が800秒/100cc以下であることを特徴とする前記複合膜。 (7) the composite membrane permeability of the polyolefin microporous film (A) is equal to or less than 800 seconds / 100 cc. (8)ポリオレフィン微多孔膜(A)の引張強度が、80 (8) Tensile strength of the polyolefin microporous film (A) is 80
MPa以上で、突刺強度が3000mN/25μm以上であることを特徴とする前記複合膜。 In MPa or more, the composite film puncture strength is equal to or is 3000mN / 25μm or more. (9)多孔質体(B)を構成する機能性高分子物質が、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリオキシエチレン、ポリオキシプロピレン又はこれらポリマーのモノマーを共重合したものであることを特徴とする前記複合膜。 (9) a functional polymer material constituting the porous body (B), characterized in that the polyacrylonitrile, polyvinylidene fluoride, polyoxyethylene, monomeric polyoxypropylene or these polymers is obtained by copolymerizing the composite membrane. (10)多孔質体(B)の最大孔径が1μm以上であることを特徴とする前記複合膜。 (10) the composite film maximum pore size of the porous body (B) is characterized in that at 1μm or more.

【0015】 [0015]

【発明の実施の形態】以下、本発明の複合膜およびその製造方法について詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the composite film and a manufacturing method thereof of the present invention will be described in detail.

【0016】1. [0016] 1. ポリオレフィン微多孔膜(A) 本発明の複合膜の基材として用いられるポリオレフィン微多孔膜は、特に限定されるものではなく、公知のものならば、いかなる材質の、いかなる製法によるものであってもよい。 Microporous polyolefin membrane (A) a polyolefin microporous membrane used as the base material of the composite membranes of the present invention is not limited in particular, if a known, any material, be by any method good. ポリオレフィン微多孔膜に使用されるポリオレフィンとしては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した結晶性の単独重合体または共重合体が挙げられる。 The polyolefins used in the polyolefin microporous film, ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene crystalline homopolymer was polymerized and the like or copolymers thereof. その際、これらの単独重合体または共重合体は、単独で使用することができるが、2種以上のものを配合して用いてもよい。 At that time, these homopolymers or copolymers, can be used alone or may be used by blending of two or more kinds.

【0017】これらの中では、微多孔の形成性および機械的強度の観点などから、高分子量ポリエチレン、特に重量平均分子量が1×10 〜15×10 となるものを含有し、重量平均分子量/数平均分子量(Mw/M [0017] Among these, from such viewpoints of formability and mechanical strength of the microporous, contained the high molecular weight polyethylene, which is particularly weight-average molecular weight becomes 1 × 10 6 ~15 × 10 6 , a weight-average molecular weight / number average molecular weight (Mw / M
n)が5〜300の高密度の超高分子量ポリエチレンが好ましい。 n) is preferably a high-density ultra-high molecular weight polyethylene of 5 to 300. このようなポリエチレンは、単体または組成物のいずれであってもかまわない。 Such polyethylene may be either alone or composition.

【0018】ここで、2種以上のポリオレフィンを配合する好ましい態様としては、重量平均分子量50万以上の超高分子畳ポリエチレンと重量平均分子量1万以上5 [0018] Here, a preferred embodiment of blending two or more polyolefins, weight average molecular weight of 500,000 or more ultra-high-molecular-tatami polyethylene and the weight average molecular weight of 10,000 or more 5
0万未満の高密度ポリエチレンとからなる組成物がある。 0 there is a composition consisting of high density polyethylene of less than 250,000. その際、該組成物中に、さらに、シャットダウン機能を付与することのできる第3のポリオレフィン成分として、低密度ポリエチレン、線状低密度ポリエチレン、 At that time, in the composition, further, as a third polyolefin component capable of imparting a shutdown function, low density polyethylene, linear low density polyethylene,
分子量1000〜4000の低分子量ポリエチレン又はシングルサイト触媒を用いて製造されたエチレン−αーオレフィン共重合体の中から選ばれる少なくとも1種のポリオレフィンを配合してもよい。 At least one polyolefin selected from the produced using low molecular weight polyethylene or single site catalysts of the molecular weight 1000 to 4000 ethylene -α-olefin copolymer may be blended.

【0019】また、ポリオレフィン微多孔膜の製造方法は、限定されるものではないが、例えば、重量平均分子量が5×10 〜2.5×10 、重量平均分子量/数平均分子量が10未満のポリオレフィン5〜50重量% [0019] In the method of manufacturing microporous polyolefin membrane, but are not limited to, for example, a weight average molecular weight of 5 × 10 5 ~2.5 × 10 6 , a weight-average molecular weight / number average molecular weight of less than 10 of polyolefin 5 to 50 wt%
と、溶媒95〜50重量%からなる溶液を調製し、該溶液をダイより押出し、冷却してゲル状組成物を形成し、 When a solution comprising the solvent 95 to 50 wt% was prepared, the solution extruded from the die, cooling to form a gel composition,
該ゲル状組成物をポリオレフィンの融点+10℃以下の温度で延伸し、しかる後に残存溶媒を除去することにより製造したポリオレフィン微多孔膜を使用することが好ましい。 The gel composition was stretched at the melting point + 10 ° C. below the temperature of the polyolefin, it is preferred to use a polyolefin microporous membrane produced by removing the remaining solvent thereafter.

【0020】本発明に用いるポリオレフィン微多孔膜としては、通常、空孔率が30〜95%、膜厚25μmでの透気度が2000秒/100cc以下、好ましくは8 [0020] The polyolefin microporous membrane used in the present invention, usually, porosity 30 to 95% air permeability at a film thickness 25μm is 2000 sec / 100 cc or less, preferably 8
00秒/100cc以下、平均貫通孔径が0.005〜 00 sec / 100 cc or less, an average through-pore diameter of 0.005
1μm、引張破断強度が80MPa以上、好ましくは1 1 [mu] m, a tensile strength at break more than 80 MPa, preferably 1
00MPa以上、突刺強度が3000mN以上、好ましくは5500mN以上の機械物性を有する微多孔膜が望ましい。 00MPa or more, piercing strength is more 3000MN, preferably microporous membrane having the above mechanical properties 5500mN is desirable.

【0021】なお、ポリオレフィン微多孔膜の厚さは、 [0021] It should be noted that the thickness of the polyolefin microporous membrane,
適宜選択されるが、通常、0.1〜50μm、好ましくは1〜25μm程度である。 Is appropriately selected usually, 0.1 to 50 [mu] m, preferably about 1 to 25 m. 厚さが0.1μm未満では、膜の機械的強度不足から実用に供することが難しく、50μmを超えると、実効抵抗が大きくなり過ぎて好ましくない。 In less than 0.1μm in thickness, it is difficult to put into practical use from insufficient mechanical strength of the film, when it exceeds 50 [mu] m, undesirably effective resistance becomes too large.

【0022】2. [0022] 2. 多孔質体(B) 本発明の複合膜の被覆層として用いられる、ゲル化可能な機能性高分子物質の多孔質体(B)は、特に限定されるものではなく、公知のものならば、いかなる材質の、 Porous body (B) is used as the coating layer of the composite membrane of the present invention, the porous body of gelable functional polymer material (B) is not limited in particular, if known ones, of any material,
いかなる製法によるものであってもよい。 It may be by any method.

【0023】多孔質体を構成する機能性高分子物質としては、種々の公知の樹脂が挙げられるが、例えば、本発明の複合膜をリチウム電池等の電池用セパレータに利用する場合は、電解液に対して親和性を有すると同時に電解液や電池反応に対しても安定である必要があって、しかも、ポリオレフィン徴多孔膜の透過抵抗に比べて低い透過抵抗である必要があるため、ポリエーテル、ポリエステル、ポリアミン、ポリスルフィドの他に、ポリ弗化ビニリデン、ポリアクリルニトリル、ポリ塩化ビニルなどが好適である。 Examples of the functional polymer material constituting the porous body, there may be mentioned various known resins, for example, when using the composite membranes of the present invention to a battery separator, such as a lithium battery, the electrolyte stable against simultaneously electrolyte and battery reaction to have an affinity that it is necessary against, moreover, it is necessary with low permeation resistance as compared with the permeation resistance of the polyolefin symptoms porous membrane, polyether , polyester, polyamine, in addition to the polysulfide, polyvinylidene fluoride, polyacrylonitrile, and polyvinyl chloride are preferred. その際、これらは直鎖状ポリマー単独でもよいし、モノマーやオリゴマーやプレポリマーの状態で加熱などの方法で後重合させて架橋体としてもよい。 In that case, it may be a linear polymer alone may be cross-linked by postpolymerization a method such as heating in the state of monomers and oligomers and prepolymers.

【0024】これらの機能性ポリマーの中では、電池用セパレータや分離膜としての性能、機械的強度などの観点から、ポリ弗化ビニリデン、ポリアクリルニトリル、 [0024] Among these functional polymers, performance as a separator or separation film battery, from the viewpoint of mechanical strength, polyvinylidene fluoride, polyacrylonitrile,
ポリエーテル(ポリオキシエチレン、ポリオキシプロピレン)などが特に好ましい。 Polyether (polyoxyethylene, polyoxypropylene) etc. are particularly preferred.

【0025】ポリオレフィン徴多孔膜の少なくとも片方の表面に、上記機能性高分子物質の多孔質体からなる被覆層を形成させる方法としては、特に制限されないが、 [0025] At least one surface of the polyolefin symptoms membrane, as a method for forming a coating layer comprising a porous body of the functional polymeric substance is not particularly limited,
分離膜の製法に一般的に用いられる製法である相分離法、抽出法、延伸法、荷電粒子照射法などを利用することができるが、その形成過程でポリオレフィン徴多孔膜に損傷を与えたり、その形成によりポリオレフィン徴多孔膜の特性を阻害することは好ましくない。 Phase separation method in process of the separation membrane is generally process used, extraction method, drawing method, may be utilized, such as a charged particle irradiation, damage the polyolefin symptoms porous membrane in its formation process, inhibiting properties of the polyolefin symptoms membrane by its formation is not desirable. そこで、ポリオレフィンの融点を越えるような温度に晒すことなく、化学劣化や放射線劣化を伴なわない、ポリオレフィン徴多孔膜の機械的特性や物質透過特性を損なわない方法として、例えば、以下の(a)〜(c)に示すような高分子物質の多孔化方法が選択的に利用できる。 Therefore, without exposing to a temperature that exceeds the melting point of the polyolefin, not accompanied chemical degradation and radiation degradation, as a method that does not impair the mechanical properties and Permeation Properties of polyolefin symptoms porous membrane, for example, the following (a) porosity method of polymeric material as shown in ~ (c) can be selectively used. すなわち、 That is,

【0026】(a)ポリオレフィン微多孔膜の少なくとも片方の表面に良溶剤に溶解した高分子物質を塗布し、 [0026] (a) a polymeric material dissolved in a good solvent to at least one surface of the polyolefin microporous film is applied,
貧溶剤に接触させることにより相分離した後、乾燥することにより多孔性高分子物質で少なくとも表面を被覆された複合膜を製造する方法。 After phase separation by contact with the poor solvent, a method of making a coated composite film at least the surface of a porous polymeric material by drying. (b)ポリオレフィン徴多孔膜の少なくとも片方の表面に良溶剤と貧溶剤の混合溶剤に溶解した高分子物質を塗布し、良溶剤が選択的に蒸発飛散することにより相分離した後、残留する溶剤を除去することにより多孔性高分子物質で少なくとも表面を被覆された複合膜を製造する方法。 (B) a polymeric material dissolved in a mixed solvent of a good solvent and a poor solvent to at least one surface of the polyolefin symptoms porous film is applied, after phase separation by a good solvent is scattered selectively evaporate the solvent remaining method of making a coated composite film at least the surface of a porous polymeric material by removing the. (c)ポリオレフィン徴多孔膜の少なくとも片方の表面に良溶剤に溶解した高分子物質を塗布し、冷却することにより相分離した後、乾燥することにより多孔性高分子物質で少なくとも表面を被覆された複合膜を製造する方法。 (C) applying a polymeric material dissolved in a good solvent to at least one surface of the polyolefin symptoms porous membrane, after phase separation by cooling, coated at least the surface of a porous polymeric material by drying method of making a composite membrane.

【0027】その際、(a)〜(c)における高分子物質の塗布は、通常、慣用の流延または塗布方法、例えば、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、バーコーター、コンマコーター、グラビアコーター、シルクスクリーンコーター、ダイコーター、マイクログラビアコーター法などにより行われる。 [0027] At that time, (a) ~ coated polymeric material in (c) is usually carried out in a conventional casting or coating method, for example, roll coater, air knife coater, a blade coater, a rod coater, a bar coater, comma coater , gravure coater, silk screen coater, die coater, it is carried out by a micro gravure coater method.

【0028】なお、塗布液中の高分子物質の含有量は、 [0028] It should be noted that the content of the polymer material in the coating liquid,
塗布方法および形成すべき薄膜の厚みによって適宜調整されるが、通常、1〜10重量%である。 Is adjusted appropriately depending on the thickness of the coating method and the thin film to be formed, usually, from 1 to 10 wt%. また、上記塗布液の溶剤としては、次に示すように、機能性ポリマーの材料に応じて適宜選択される。 As the solvent for the coating solution, as shown below, it is appropriately selected according to the material of the functional polymers.

【0029】例えば、ポリフッ化ビニリデンの場合、良溶剤としては、シクロヘキサノン、γ−ブチロラクトン、エチレンカーボネート、ジメチルアセトアミド、N [0029] For example, in the case of polyvinylidene fluoride, as a good solvent, cyclohexanone, .gamma.-butyrolactone, ethylene carbonate,-dimethylacetamid, N
−メチルピロリドン、ジメチルスルホキシド等が挙げられ、一方、貧溶剤としては、ベンゼン、メチルイソブチルケトン、ジメチルホルムアミド等が挙げられる。 - methylpyrrolidone, dimethyl sulfoxide and the like, whereas, as the poor solvent, benzene, methyl isobutyl ketone, dimethylformamide and the like. また、ポリアクリルニトリルの場合、良溶剤としては、フェニレンジアミン、N−ホルミルヘキサメチルアミン、 Also, in the case of polyacrylonitrile, Examples of the good solvent, phenylenediamine, N- formyl Hexamethylamine,
N−ニトロソピペリジン、無水マレイン酸、無水酢酸、 N- nitrosopiperidine, maleic anhydride, acetic anhydride,
γ−ブチロラクトン、ジオキサノン、エチレンオキサレート、エチレンカーボネート、2−オキサゾリドン、1 γ- butyrolactone, dioxanone, ethylene oxalate, ethylene carbonate, 2-oxazolidone, 1
−メチル−2−ピロリドン、ε−カプロラクタム、ジメチルホルムアミド、2−メチル−β−シアノエチルホルムアミド、シアノ酢酸、ジメチルアセトアミド、N、N - methyl-2-pyrrolidone, .epsilon.-caprolactam, dimethylformamide, 2-methyl -β- cyanoethyl formamide, cyanoacetate, dimethyl acetamide, N, N
−ジメチル−α、α、α−トリフルオロアセトアミド、 - dimethyl-.alpha., alpha, alpha-trifluoro-acetamide,
ヒドロアセトニトリル、クロロアセトニトリル、マロニトリル、フマロニトリル、ビス(2−シアノエチル)エーテル、ビス(4−シアノブチル)スルホン、1,3, Hydro acetonitrile, chloroacetonitrile, malonitrile, fumaronitrile, bis (2-cyanoethyl) ether, bis (4-cyanobutyl) sulfone, 1, 3,
3,5−テトラシアノペンタン、ニトロメタン/水(9 3,5 tetracyanoethylene pentane, nitromethane / water (9
4/6)(重量部/重量部)、1,1,1−トリクロロ−3−ニトロ−2−プロパン、3−ニトロフェノール、 4/6) (parts by weight / parts by weight), 1,1,1-trichloro-3-nitro-2-propane, 3-nitrophenol,
メチルジチオシアネート、ジメチルスルホキシド、テトラメチレンスルホキシド、2−ヒドロキシエチルメチルスルホン、ジメチルホスファイト、p−フェノールスルホン酸等が挙げられ、一方、貧溶剤としては、メタノール、エタノール等のアルコール類、ジエチルエーテル、 Methyl dithiocyanate, dimethyl sulfoxide, tetramethylene sulfoxide, 2-hydroxyethyl methyl sulfone, dimethyl phosphite, p- phenolsulfonic acid and the like, whereas, as the poor solvent, methanol, alcohols, diethyl ether and ethanol,
メチルエチルケトン等のケトン類、1,6−ヘキサンジアミン、蝶酸プロピル、ホルムアミド、N,N−ジメチルホルムアミド、ジエチルホルムアミド、ジメチルオキサミド、アセトニトリル、アクリロニトリル、1−ヒドロキシプロピオンニトリル、メチルチオジアネート、ヘキサメチレンジチオシアネート、1−ニトロフェノール、ジエチルスルホキシド、ジエチルスルホン、3,4 Ketones such as methyl ethyl ketone, 1,6-hexanediamine, Chosan propyl, formamide, N, N- dimethylformamide, diethylformamide, dimethyl oxamide, acetonitrile, acrylonitrile, 1-hydroxy-propionitrile, methylthio Zia sulfonates, hexamethylene thiocyanate, 1-nitro-phenol, diethyl sulfoxide, diethyl sulfone, 3,4
−ジメチルスルホン等が挙げられる。 - dimethyl sulfone and the like. さらに、ポリオキシエチレン場合、良溶剤としては、ベンゼン、クロロホルム、メタノール、エタノール等のアルコール類、シクロヘキサノン、N,N−ジメチルホルムアミド、アセトニトリル等が挙げられ、一方、貧溶剤としては、ジメチルエーテル、ジエチルエーテル等のエーテル剤、ジオキサン等が挙げられる。 Furthermore, if polyoxyethylene, as the good solvent, benzene, chloroform, alcohols such as methanol and ethanol, cyclohexanone, N, N- dimethylformamide, acetonitrile and the like, whereas, as the poor solvent, dimethyl ether, diethyl ether ethers agents etc. and dioxane.

【0030】また、塗布により得られた塗膜は、通常、 [0030] In addition, the coating film obtained by the application is, usually,
熱処理により乾燥されるが、該熱処理温度は、60〜9 While being dried by heat treatment, the heat treatment temperature is from 60 to 9
0℃の範囲であり、熱処理時間は、1〜10分の範囲であることが好ましい。 0 in the range of ° C., the heat treatment time is preferably from 1 to 10 minutes.

【0031】このようにしてポリオレフィン微多孔膜の少なくとも一方の面に形成される、多孔質体からなる被覆層の厚みは、ポリオレフィン微多孔膜の孔径や空孔率によっても異なるが、通常、0.001〜50μmである。 [0031] In this manner is formed on at least one surface of the polyolefin microporous membrane, the thickness of the coating layer made of a porous material varies depending pore size and porosity of the polyolefin microporous membrane, typically, 0 it is .001~50μm. 被覆層の厚みが0.001μmよりも少ないと、欠陥の発生を避けることが困難となり、一方、50μmを超えると、物質透過抵抗が無視できなくなるので望ましくない。 When the thickness of the coating layer is less than 0.001 [mu] m, it is difficult to avoid the occurrence of defects, while when it exceeds 50 [mu] m, undesirably can not be ignored Permeation resistance.

【0032】本発明の複合膜の最も特徴とするところは、多孔質体(B)の平均孔径がポリオレフィン微多孔膜(A)の最大孔径よりも大きくなければならないという点にある。 [0032] the most significant characteristics of the composite membrane of the present invention is that the average pore diameter of the porous body (B) must be greater than the maximum pore size of the microporous polyolefin membrane (A). 本発明では、この要件は技術的に重要な意義をもち、この要件を満たすと、物質透過抵抗の大きな増大をきたすことなく複合膜に所望の機能を賦与することが可能となるのに対し、この要件を満たさなければ、 In the present invention, this requirement has a technical significance, satisfies this requirement, whereas it is possible to impart a desired function to the composite film without causing a large increase in the material permeability resistance, if not meet this requirement,
物質透過抵抗が大きくなり目的を達成することができない。 It can not Permeation resistance to achieve increased and interest. ところで、被覆層を構成する多孔質体の最大孔径は、通常、0.1μm以上、好ましくは1μm以上である。 Incidentally, the maximum pore diameter of the porous material constituting the coating layer is usually, 0.1 [mu] m or more, preferably 1μm or more.

【0033】3. [0033] 3. 複合膜 以上のようにして得られた複合膜は、ポリオレフィン微多孔膜(A)の少なくとも片面に機能性高分子物質の多孔質体(B)からなる被覆層を具備することにより、ポリオレフィン微多孔膜自体の特性を維持したまま、その問題点が是正されるため、ニッケル−水素電池、ニッケル−カドミウム電池、ニッケル−亜鉛電池、銀−亜鉛電池、リチウム2次電池、リチウムポリマー2次電池などのような2次電池の分野では、電池構成工程における電解液注入性、あるいは繰り返し充放電における構成部材間のズレ、すきま等による不都合がなく、界面抵抗も低減できる非常に高品質のセパレータとして使用できるばかりでなく、さらには、分離膜の分野でも、分離対象となる薬液との濡れ性が良く、そのため濾過速度などが著しく改善さ Composite membrane obtained as described above composite film, by having at least porous body one surface functional polymer material consisting (B) a coating layer of a polyolefin microporous film (A), the polyolefin microporous while maintaining the characteristics of the film itself, because the problem is corrected, nickel - hydrogen batteries, nickel - cadmium battery, a nickel - zinc battery, a silver - zinc batteries, lithium secondary batteries, such as lithium polymer secondary battery in the field of secondary batteries such as, deviation between the components in the electrolytic solution absorbability, or repeated charging and discharging in the battery construction process, there is no inconvenience caused by the gap or the like, can be used as a very high quality of the separator also interface resistance can be reduced as well, and further, in the field of separation membranes, good wettability with chemical liquid to be separated, such as it is of significantly improving Accordingly filtration rate れた濾過フィルターとしても有効に使用することのできる。 Even filtration filter that can be effectively used.

【0034】なお、本発明の複合膜の膜厚は、使用用途、対象等によって幾分異なるが、通常は、基材として用いられるポリオレフィン微多孔膜の1.01〜10 [0034] The thickness of the composite membrane of the present invention, intended use, somewhat differ depending on the target or the like, usually, the microporous polyolefin film used as a substrate 1.01
倍、好ましくは、1.05〜5倍であることが望ましく、一方、その透気度も、ポリオレフィン微多孔膜の1.01〜10倍、好ましくは、1.05〜5倍であることが望ましい。 Fold, preferably, desirably it is 1.05 to 5 times, while also its air permeability, 1.01 times of the polyolefin microporous film, preferably, it is 1.05 to 5 times desirable.

【0035】 [0035]

【実施例】以下に、実施例に基づき本発明を具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, a detailed explanation of the present invention based on examples, the present invention is not limited by these examples. なお、実施例、比較例における測定は下記方法に依った。 In Examples, the measurement in the comparative example was based on the following method.

【0036】[1. [0036] [1. 多孔体の平均孔径] 試験片となる被覆層の表面を走査型電子顕微鏡(SEM)で500倍の倍率で観察し、無作為に10箇所の空隙の間隔を測定し、それらの平均値を求めた後、その数値を平均孔径とした。 The average pore diameter] surface of the coating layer serving as a test piece of the porous body was observed with a 500-fold magnification scanning electron microscope (SEM), randomly measures the gap spacing of 10 points, obtains the average value thereof after was that number and the average pore diameter.

【0037】[2. [0037] [2. 透気度]JIS P8117に準拠して測定した。 Air permeability] was measured according to JIS P8117. (単位:sec/100cc) (Unit: sec / 100cc)

【0038】実施例1〜4 ポリエチレン微多孔膜(東燃化学(株)社製、膜厚2 [0038] Examples 1-4 microporous polyethylene film (Tonen Co., Ltd., thickness 2
3.5μm、平均孔径0.03μm、最大孔径0.05 3.5 [mu] m, an average pore diameter of 0.03 .mu.m, a maximum pore diameter of 0.05
μm、空孔率38%、透気度878sec/100c μm, a porosity of 38%, an air permeability of 878sec / 100c
c)をガラス板に貼り付け、室温にてコントロールコーターを用いて、ポリフッ化ビニリデン(呉羽化学工業(株)社製、商品名:KFポリマー#1120)のN− The c) attached to a glass plate, using a control coater at room temperature, polyvinylidene fluoride (Kureha Chemical Industry Co., Ltd., trade name: KF polymer # 1120) of N-
メチルピロリドン溶液を下記の表1に記載したとおりの条件で塗布した後、室温にてエタノールに浸漬し、次いで室温にて風乾してから、80℃のエアーオーブンで乾燥した。 After coating under the conditions of as described methylpyrrolidone solution in Table 1 below, it was immersed in ethanol at room temperature, then the air dried at room temperature and dried at 80 ° C. in an air oven. 得られた複合膜上に形成されたポリフッ化ビニリデン被覆層を5000倍の走査型電子顕微鏡(SE The resulting composite polyvinylidene fluoride coating layer formed on the film 5000 times the scanning electron microscope (SE
M)で観測したところ、図1に示すように、ロッド状のエッジが連結した数μm単位の空隙からなる疎な多孔性構造であることが確認できた。 It was observed at M), as shown in FIG. 1, a rod-like edges it was confirmed that a sparse porous structure consisting of the air gap of a few μm units linked. さらに、得られた複合膜の膜厚、被覆層の平均孔径、および複合膜の透気度を測定したところ、下記の表1に示すとおりであった。 Further, the film thickness of the obtained composite film were measured air permeability of the average pore size, and the composite film of the coating layer were as shown in Table 1 below.

【0039】比較例1 ポリエチレン微多孔膜(東燃化学(株)社製、膜厚2 [0039] Comparative Example 1 Polyethylene microporous membrane (Tonen Co., Ltd., thickness 2
3.5μm、平均孔径0.03μm、最大孔径0.05 3.5 [mu] m, an average pore diameter of 0.03 .mu.m, a maximum pore diameter of 0.05
μm、空孔率38%、透気度878sec/100c μm, a porosity of 38%, an air permeability of 878sec / 100c
c)をガラス板に貼り付け、室温にてコントロールコーターを用いて、ポリフッ化ビニリデン(呉羽化学工業(株)社製、商品名:KFポリマー#1300)の10 The c) attached to a glass plate, using a control coater at room temperature, polyvinylidene fluoride (Kureha Chemical Industry Co., Ltd., trade name: 10 KF polymer # 1300)
重量%アセトン溶液を75μmの厚さに塗布した後、室温にて風乾してから、80℃のエアーオーブンで乾燥した。 After applying the wt% acetone solution to a thickness of 75 [mu] m, and dried at from air dried at room temperature, 80 ° C. air oven. 得られた複合膜上に形成されたポリフッ化ビニリデン被覆層を5000倍の走査型電子顕微鏡(SEM)で観測したところ、多孔性構造は確認されなかった。 The resulting polyvinylidene fluoride coating layer formed on the composite film was observed at 5000 times the scanning electron microscope (SEM), the porous structure was not confirmed. また、得られた複合膜の膜厚は33.5μmであったが、 Although the film thickness of the obtained composite film was 33.5Myuemu,
透気度は測定不能であり、有効な透過性は認められなかった。 Air permeability is not measurable, effective permeability was observed.

【0040】 [0040]

【表1】 [Table 1]

【0041】上記表1に示すように、実施例1〜4で得られた本発明の複合膜では、塗布層の平均孔径がポリエチレン微多孔膜の最大孔径よりも大きく、その結果、透気度がポリエチレン微多孔膜の透気度の1.08〜1. As shown in Table 1, the composite film of the present invention obtained in Examples 1 to 4, larger than the maximum pore size of the average pore diameter microporous polyethylene membrane of the coating layer, as a result, air permeability There 1.08 to 1 of the air permeability of the microporous polyethylene membrane.
9倍に抑えられているのに対し、比較例では、塗布層に実質的に孔が観測されず、透過性が妨げられている。 While is suppressed to 9 times, in the comparative example, not substantially observed pores in the coating layer, permeability is hindered. このことから、本発明の複合膜によれば、透過性を大きく妨げることなく、機能性を賦与できることが容易に判る。 Therefore, according to the composite membrane of the present invention, without disturbing the permeability increases, it is easy to see that the functionality can be imparted.

【0042】 [0042]

【発明の効果】本発明によれば、ポリオレフィン微多孔膜の少なくとも1面にゲル化可能な機能性高分子物質の多孔質体からなる被覆層を形成してなる複合膜において、多孔質体の平均孔径をポリオレフィン微多孔膜の最大孔径よりも大きくなるように調整することにより、リチウム電池のような化学電池の分野では、電池構成工程における電解液注入性、あるいは繰り返し充放電における構成部材間のズレ、すきま等による不都合がなく、界面抵抗も低減できる非常に高品質のセパレータとして使用でき、さらに分離膜の分野でも、分離対象となる薬液との濡れ性が良く、そのため濾過速度などが著しく改善された濾過フィルターとして使用することのできる複合膜が得られ、その工業的価値は極めて大きい。 According to the present invention, the composite film obtained by forming a coating layer comprising a porous body of gelable functional polymer material on at least one surface of the polyolefin microporous membrane, a porous material by adjusting the average pore diameter to be greater than the maximum pore size of the polyolefin microporous membrane, in the field of electrochemical cells such as lithium batteries, the electrolyte injection property in the battery construction process, or between the components in the repeating charge and discharge deviation, no inconvenience due to gaps and the like, also the interface resistance can be used as a very high quality of the separator can be reduced, further in the field of separation membranes, good wettability with chemical liquid to be separated, the like because the filtration rate is significantly improved obtained composite film which can be used as a filtration filter which is, its industrial value is extremely large.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の複合膜上に形成されたポリフッ化ビニリデン被覆層を5000倍の走査型電子顕微鏡(SE [1] The polyvinylidene fluoride coating layer formed on the composite film of the present invention 5000 times the scanning electron microscope (SE
M)で観察した写真である。 It is a photograph that was observed in M).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H01M 2/16 H01M 2/16 P // C08L 23:00 C08L 23:00 Fターム(参考) 4D006 GA41 HA41 JA02C MA03 MB09 MC22 MC22X MC23 NA03 NA45 NA64 PA01 PB17 4F074 AA38 AA49 AA76 CB32 CB37 CB47 CC29Y DA03 DA14 DA20 DA43 DA49 DA54 4F100 AK01B AK03A AK04 AK19 BA02 BA25 DJ00A DJ00B EH462 GB41 GB56 JD02 JM10B 5H021 BB01 BB12 BB13 CC04 CC08 EE03 EE04 EE06 EE08 EE10 HH00 HH03 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) H01M 2/16 H01M 2/16 P // C08L 23:00 C08L 23:00 F -term (reference) 4D006 GA41 HA41 JA02C MA03 MB09 MC22 MC22X MC23 NA03 NA45 NA64 PA01 PB17 4F074 AA38 AA49 AA76 CB32 CB37 CB47 CC29Y DA03 DA14 DA20 DA43 DA49 DA54 4F100 AK01B AK03A AK04 AK19 BA02 BA25 DJ00A DJ00B EH462 GB41 GB56 JD02 JM10B 5H021 BB01 BB12 BB13 CC04 CC08 EE03 EE04 EE06 EE08 EE10 HH00 HH03

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 ポリオレフィン微多孔膜(A)の少なくとも1面にゲル化可能な機能性高分子物質の多孔質体(B)からなる被覆層を形成してなる複合膜において、 1. A microporous polyolefin membrane (A) of by forming a coating layer made of a porous material gellable functional polymer material (B) on at least one surface composite film,
    多孔質体(B)の平均孔径がポリオレフィン微多孔膜(A)の最大孔径よりも大きいことを特徴とする複合膜。 Composite membrane average pore diameter of the porous body (B) is and greater than the maximum pore size of the microporous polyolefin membrane (A).
  2. 【請求項2】 膜厚がポリオレフィン微多孔膜(A)の1.01倍〜10倍で、かつ透気度がポリオレフィン微多孔膜(A)の1.01倍〜10倍であることを特徴とする請求項1記載の複合膜。 Wherein said film thickness is 1.01 to 10 times of the polyolefin microporous film (A), and is 1.01 to 10 times the air permeability microporous polyolefin membrane (A) the composite membrane of claim 1 wherein.
  3. 【請求項3】 ポリオレフィン微多孔膜(A)の少なくとも1面に機能性高分子物質溶液を塗布する工程と、該塗布面を該機能性高分子物質の貧溶剤に接触させることにより相分離させる工程と、該相分離した面を加熱、乾燥させることにより機能性高分子物質の多孔質体(B) 3. A process for coating a functional polymer material solution on at least one surface of the microporous polyolefin membrane (A), is a phase separation by causing the coating surface into contact with a poor solvent of the functional polymer materials a step, said phase separated surface heating, porous body of the functional polymeric material by drying (B)
    からなる被覆層を形成させる工程とからなることを特徴とする請求項1又は2に記載の複合膜の製造方法。 Method for producing a composite membrane according to claim 1 or 2, characterized in that it consists of a step of forming a coating layer made of.
  4. 【請求項4】 ポリオレフィン微多孔膜(A)の少なくとも1面に機能性高分子物質をその良溶剤と貧溶剤との混合物に溶解した溶液を塗布する工程と、該塗布面から良溶剤を選択的に蒸発飛散させることにより相分離させる工程と、該相分離した面に残留する貧溶剤を除去することにより機能性高分子物質の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする請求項1又は2に記載の複合膜の製造方法。 Select a step of applying a solution of a functional polymer material on at least one side to a mixture of the good solvent and a poor solvent, a good solvent from the coating surface of 4. A microporous polyolefin membrane (A) from specifically a step of phase separation by evaporation scattered in a step of forming a coating layer comprising a porous body of the functional polymer material (B) by removing the poor solvent remaining on the surface and said phase separation method for producing a composite membrane according to claim 1 or 2, characterized in that.
  5. 【請求項5】 ポリオレフィン微多孔膜(A)の少なくとも1面に機能性高分子物質溶液を塗布する工程と、該塗布面を冷却させることにより相分離させる工程と、該相分離した面を加熱、乾燥させることにより機能性高分子物質の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする請求項1又は2に記載の複合膜の製造方法。 5. A process for coating a functional polymer material solution on at least one surface of the microporous polyolefin membrane (A), a step of phase separation by cooling the coating surface, a surface which is said phase separated heating the method of producing a composite membrane according to claim 1 or 2, characterized in that it consists of a step of forming a coating layer comprising a porous body of the functional polymer material (B) by drying.
JP2001046477A 2001-02-22 2001-02-22 Composite film and a production method thereof Active JP5156158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046477A JP5156158B2 (en) 2001-02-22 2001-02-22 Composite film and a production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046477A JP5156158B2 (en) 2001-02-22 2001-02-22 Composite film and a production method thereof

Publications (3)

Publication Number Publication Date
JP2002240215A true true JP2002240215A (en) 2002-08-28
JP2002240215A5 true JP2002240215A5 (en) 2002-08-28
JP5156158B2 JP5156158B2 (en) 2013-03-06

Family

ID=18908095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046477A Active JP5156158B2 (en) 2001-02-22 2001-02-22 Composite film and a production method thereof

Country Status (1)

Country Link
JP (1) JP5156158B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356102A (en) * 2003-05-28 2004-12-16 Celgard Inc Separator for lithium polymer battery
WO2004112183A1 (en) * 2003-06-17 2004-12-23 Samshin Creation Co., Ltd. A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
JP2005019156A (en) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd Separator for electronic component, and electronic component
WO2005049318A1 (en) * 2003-11-19 2005-06-02 Tonen Chemical Corporation Composite microporous film, and production method and use thereof
JP2005268095A (en) * 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2006066355A (en) * 2004-08-30 2006-03-09 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2006525624A (en) * 2003-05-30 2006-11-09 エルジー・ケム・リミテッド Lithium secondary battery using the separator film was partially coated with a gel polymer
JP2006331759A (en) * 2005-05-25 2006-12-07 Tomoegawa Paper Co Ltd Separator for electronic component and method of manufacturing the same
US7311994B2 (en) 2002-09-17 2007-12-25 Tomoegawa Paper Co., Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP2008504650A (en) * 2004-06-25 2008-02-14 セルガード,インコーポレイテッド Li / MnO2 cell separator with selective ion transport
EP2025020A1 (en) * 2006-04-28 2009-02-18 LG Chem, Ltd. Separator for battery with gel polymer layer
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
JP2011501773A (en) * 2007-10-11 2011-01-13 スリーエム イノベイティブ プロパティズ カンパニー Microporous membrane and a manufacturing method thereof having a relatively large average pore size
JP2012048918A (en) * 2010-08-25 2012-03-08 Sony Corp Separator and nonaqueous electrolyte battery prepared therewith
KR101389779B1 (en) * 2005-09-16 2014-04-29 도레이 배터리 세퍼레이터 필름 주식회사 Polyethylene microporous membrane, process for production thereof, and battery separator
US9269937B2 (en) 2006-04-28 2016-02-23 Lg Chem, Ltd. Method for preparing separator for battery with gel polymer layer
WO2016031466A1 (en) * 2014-08-29 2016-03-03 住友化学株式会社 Layered body, separator, and non-aqueous secondary battery
JPWO2014021292A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Non-aqueous electrolyte battery separator and a non-aqueous electrolyte battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953241A (en) * 1970-03-12 1976-04-27 Westinghouse Electric Corporation Heat resistant substrates and battery separators made therefrom
JPH06198146A (en) * 1992-10-13 1994-07-19 Millipore Corp Composite microporous membrane
JPH0753748A (en) * 1993-08-19 1995-02-28 Asahi Chem Ind Co Ltd Covered microporous film
JPH08236093A (en) * 1995-02-27 1996-09-13 Mitsubishi Chem Corp Battery separator
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JPH1044348A (en) * 1996-08-02 1998-02-17 Tonen Chem Corp Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane
JPH10106528A (en) * 1996-09-26 1998-04-24 Toray Ind Inc Manufacture of separator
JPH1116561A (en) * 1997-06-23 1999-01-22 Elf Atochem Japan Kk Battery separator, its manufacture and nonaqueous secondary battery
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JPH11329392A (en) * 1998-05-11 1999-11-30 Nitto Denko Corp Nonaqueous electrolyte separator and manufacture thereof
JPH11354162A (en) * 1998-06-08 1999-12-24 Teijin Ltd Polymer electrolyte secondary battery, and manufacture thereof
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2000108249A (en) * 1998-10-08 2000-04-18 Tonen Chem Corp Laminated composite film
JP2000138048A (en) * 1998-10-30 2000-05-16 Denso Corp Separator and its manufacture
US20020110732A1 (en) * 2000-12-20 2002-08-15 Polystor Corporation Battery cell fabrication process

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953241A (en) * 1970-03-12 1976-04-27 Westinghouse Electric Corporation Heat resistant substrates and battery separators made therefrom
JPH06198146A (en) * 1992-10-13 1994-07-19 Millipore Corp Composite microporous membrane
JPH0753748A (en) * 1993-08-19 1995-02-28 Asahi Chem Ind Co Ltd Covered microporous film
JPH08236093A (en) * 1995-02-27 1996-09-13 Mitsubishi Chem Corp Battery separator
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JPH1044348A (en) * 1996-08-02 1998-02-17 Tonen Chem Corp Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane
JPH10106528A (en) * 1996-09-26 1998-04-24 Toray Ind Inc Manufacture of separator
JPH1116561A (en) * 1997-06-23 1999-01-22 Elf Atochem Japan Kk Battery separator, its manufacture and nonaqueous secondary battery
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JPH11329392A (en) * 1998-05-11 1999-11-30 Nitto Denko Corp Nonaqueous electrolyte separator and manufacture thereof
JPH11354162A (en) * 1998-06-08 1999-12-24 Teijin Ltd Polymer electrolyte secondary battery, and manufacture thereof
JP2000108249A (en) * 1998-10-08 2000-04-18 Tonen Chem Corp Laminated composite film
JP2000138048A (en) * 1998-10-30 2000-05-16 Denso Corp Separator and its manufacture
US20020110732A1 (en) * 2000-12-20 2002-08-15 Polystor Corporation Battery cell fabrication process

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311994B2 (en) 2002-09-17 2007-12-25 Tomoegawa Paper Co., Ltd. Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP2004356102A (en) * 2003-05-28 2004-12-16 Celgard Inc Separator for lithium polymer battery
JP2011119276A (en) * 2003-05-28 2011-06-16 Celgard Inc Battery separator for lithium polymer battery
US7794511B2 (en) 2003-05-28 2010-09-14 Celgard Inc. Battery separator for lithium polymer battery
JP2006525624A (en) * 2003-05-30 2006-11-09 エルジー・ケム・リミテッド Lithium secondary battery using the separator film was partially coated with a gel polymer
US8003263B2 (en) 2003-05-30 2011-08-23 Lg Chem, Ltd. Rechargeable lithium battery using separator partially coated with gel polymer
JP2006527911A (en) * 2003-06-17 2006-12-07 ナノフィル カンパニー リミテッド Electrochemical element composite film, manufacturing method thereof and an electrochemical device comprising the same
WO2004112183A1 (en) * 2003-06-17 2004-12-23 Samshin Creation Co., Ltd. A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
US7875380B2 (en) 2003-06-17 2011-01-25 Nanophil Co., Ltd. Complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
JP2005019156A (en) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd Separator for electronic component, and electronic component
JP5057419B2 (en) * 2003-11-19 2012-10-24 東レバッテリーセパレータフィルム株式会社 Composite microporous membrane and its preparation and uses
US7781094B2 (en) 2003-11-19 2010-08-24 Tonen Chemical Corporation Microporous composite membrane and its production method and use
WO2005049318A1 (en) * 2003-11-19 2005-06-02 Tonen Chemical Corporation Composite microporous film, and production method and use thereof
KR101110264B1 (en) * 2003-11-19 2012-03-13 도레이 도넨 기노마쿠 고도가이샤 Composite microporous film, and production method and use thereof
JP2005268095A (en) * 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP4705334B2 (en) * 2004-03-19 2011-06-22 株式会社巴川製紙所 Separator and a method of manufacturing an electronic component
JP2008504650A (en) * 2004-06-25 2008-02-14 セルガード,インコーポレイテッド Li / MnO2 cell separator with selective ion transport
JP2006019146A (en) * 2004-07-01 2006-01-19 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP4676728B2 (en) * 2004-08-30 2011-04-27 株式会社巴川製紙所 Separator and a method of manufacturing an electronic component
JP2006066355A (en) * 2004-08-30 2006-03-09 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2006331759A (en) * 2005-05-25 2006-12-07 Tomoegawa Paper Co Ltd Separator for electronic component and method of manufacturing the same
US8802273B2 (en) 2005-09-16 2014-08-12 Toray Battery Separator Film Co., Ltd Microporous polyethylene membrane, its production method, and battery separator
KR101389779B1 (en) * 2005-09-16 2014-04-29 도레이 배터리 세퍼레이터 필름 주식회사 Polyethylene microporous membrane, process for production thereof, and battery separator
EP2025020A4 (en) * 2006-04-28 2011-07-20 Lg Chemical Ltd Separator for battery with gel polymer layer
JP2015028942A (en) * 2006-04-28 2015-02-12 エルジー・ケム・リミテッド Separation membrane for battery with gel polymer layer
EP2025020A1 (en) * 2006-04-28 2009-02-18 LG Chem, Ltd. Separator for battery with gel polymer layer
EP2741345A3 (en) * 2006-04-28 2014-12-17 LG Chem, Ltd. Separator for battery with gel polymer layer
JP2009535764A (en) * 2006-04-28 2009-10-01 エルジー・ケム・リミテッド Cell separation membrane comprising a gel polymer layer
EP2541645A3 (en) * 2006-04-28 2013-08-28 LG Chem, Ltd. Separator for battery with gel polymer layer
US9269937B2 (en) 2006-04-28 2016-02-23 Lg Chem, Ltd. Method for preparing separator for battery with gel polymer layer
KR101408473B1 (en) * 2007-10-11 2014-06-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Microporous membranes having a relatively large average pore size and methods of making the same
JP2011501773A (en) * 2007-10-11 2011-01-13 スリーエム イノベイティブ プロパティズ カンパニー Microporous membrane and a manufacturing method thereof having a relatively large average pore size
US8231999B2 (en) 2008-02-06 2012-07-31 Sony Corporation Separator and battery using the same
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
JP2012048918A (en) * 2010-08-25 2012-03-08 Sony Corp Separator and nonaqueous electrolyte battery prepared therewith
US9692028B2 (en) 2012-07-30 2017-06-27 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2014021292A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Non-aqueous electrolyte battery separator and a non-aqueous electrolyte battery
JP2016051696A (en) * 2014-08-29 2016-04-11 住友化学株式会社 Separator for nonaqueous secondary battery, laminate, method for manufacturing laminate, and nonaqueous secondary battery
JP2016049774A (en) * 2014-08-29 2016-04-11 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery including laminate and nonaqueous electrolyte secondary battery including separator for nonaqueous electrolyte secondary battery
JP5932161B1 (en) * 2014-08-29 2016-06-08 住友化学株式会社 Stack, separators and a non-aqueous secondary battery
KR20160086977A (en) * 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 Laminated body, nonaqueous electrolyte secondary battery separator, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016051695A (en) * 2014-08-29 2016-04-11 住友化学株式会社 Laminate, separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20160096536A (en) * 2014-08-29 2016-08-16 스미또모 가가꾸 가부시키가이샤 Laminated body, separator and nonaqueous secondary battery
CN106163806A (en) * 2014-08-29 2016-11-23 住友化学株式会社 Layered body, separator, and non-aqueous secondary battery
KR101689494B1 (en) 2014-08-29 2016-12-23 스미또모 가가꾸 가부시키가이샤 Laminated body, separator and nonaqueous secondary battery
KR101713534B1 (en) 2014-08-29 2017-03-08 스미또모 가가꾸 가부시키가이샤 Laminated body, nonaqueous electrolyte secondary battery separator, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN106876640A (en) * 2014-08-29 2017-06-20 住友化学株式会社 Laminated body, separator, and nonaqueous secondary battery
WO2016031466A1 (en) * 2014-08-29 2016-03-03 住友化学株式会社 Layered body, separator, and non-aqueous secondary battery
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
CN107093689A (en) * 2014-08-29 2017-08-25 住友化学株式会社 Laminated body, separator, and nonaqueous secondary battery
US9865857B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
CN106163806B (en) * 2014-08-29 2018-01-16 住友化学株式会社 Laminate, the spacer member and the nonaqueous secondary battery
CN106876640B (en) * 2014-08-29 2018-04-20 住友化学株式会社 Laminate, the spacer member and the nonaqueous secondary battery
US10014506B2 (en) 2014-08-29 2018-07-03 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery

Also Published As

Publication number Publication date Type
JP5156158B2 (en) 2013-03-06 grant

Similar Documents

Publication Publication Date Title
US4359510A (en) Hydrophilic polymer coated microporous membranes capable of use as a battery separator
US6245272B1 (en) Polyolefin microporous film and method for preparing the same
US6566012B1 (en) Polyolefin microporous film and method for preparing the same
Lee et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries
JP3347854B2 (en) Microporous polyolefin membrane, a manufacturing method thereof, battery separator and a filter using the same
US20090274955A1 (en) Multi-layer microporous polyolefin membrane and battery separator
US20080057389A1 (en) Microporous membrane, battery separator and battery
US20050208383A1 (en) Electronic component separator and method for producing the same
US20090269672A1 (en) Production method of microporous polyethylene membrane and battery separator
US20080057388A1 (en) Multi-layer, microporous membrane, battery separator and battery
WO2007052663A1 (en) Polyolefin microporous membrane, separator for battery using the membrane, and battery
WO2007132942A1 (en) Microporous polyolefin membrane, its production method, battery separator and battery
US20090148761A1 (en) Multi-layer, microporous polyethylene membrane, battery separator formed thereby and battery
JP2004196870A (en) Polyolefin fine porous membrane and method for producing the same and use
JP2004196871A (en) Polyolefin fine porous membrane and method for producing the same and use
JP2002338730A (en) Microporous film made of polyethylene and cell obtained using the same
WO2005049318A1 (en) Composite microporous film, and production method and use thereof
US20110027642A1 (en) Microporous polyolefin composite film with a thermally stable porous layer at high temperature
JPH1160789A (en) Production of microporous film
JP2001118558A (en) Partially coated separator
US20080096102A1 (en) Microporous Polyolefin Film and Separator for Storage Cell
JP2002355938A (en) Composite film, its manufacturing method, and separator for battery using the same or filter
JP2005302341A (en) Separator for electronic component and its manufacturing method
JP2000248093A (en) Microporous polyolefin membrane and its production
US20100129720A1 (en) Polyolefin microporous membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350