WO2006123811A1 - Separator for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Separator for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
WO2006123811A1
WO2006123811A1 PCT/JP2006/310094 JP2006310094W WO2006123811A1 WO 2006123811 A1 WO2006123811 A1 WO 2006123811A1 JP 2006310094 W JP2006310094 W JP 2006310094W WO 2006123811 A1 WO2006123811 A1 WO 2006123811A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
lithium ion
ion secondary
secondary battery
nonwoven fabric
Prior art date
Application number
PCT/JP2006/310094
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Nishikawa
Hiroyuki Honmoto
Takahiro Daido
Hiroki Sano
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to CN200680017331XA priority Critical patent/CN101180751B/en
Priority to KR1020077029336A priority patent/KR101340357B1/en
Priority to JP2007516360A priority patent/JP4832430B2/en
Publication of WO2006123811A1 publication Critical patent/WO2006123811A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator used for a lithium ion secondary battery.
  • it relates to a separator technology for the purpose of improving the safety of lithium ion secondary batteries.
  • Lithium ion doping 'Lithium ion secondary batteries that obtain an electromotive force by undoping have a high energy density and are widely used as power sources for portable electronic devices such as mobile phones and laptop computers. In addition, it has been applied to power applications such as electric tools with higher output.
  • HEV hybrid electric vehicles
  • nickel-metal hydride batteries are generally used as batteries, but lithium-ion secondary batteries have less memory effect than nickel-metal hydride batteries. It is considered as a power source for HEV because it is easy to use and has the advantages of being able to be downsized due to its high energy and high power density.
  • batteries used in HEVs the requirements are naturally different from those of portable electronic devices. For example, in HEV, batteries are highly likely to be exposed to high temperatures, and ensuring safety in high-temperature environments is one of the very important characteristics. In this way, the characteristics required for batteries differ between portable electronic devices and HEVs, so the characteristics required for battery components naturally differ.
  • a polyethylene microporous membrane is used as a separator.
  • This separator has a shutdown function and contributes to ensuring the safety of the battery.
  • This shutdown function utilizes the fact that the microporous membrane melts and closes the pores due to heat, and is characterized by the thermal fuse temperature and short circuit temperature. heat
  • the fuse temperature is the temperature at which the separator resistance begins to increase due to hole closure
  • the showroom temperature is the temperature at which the separator breaks down and the separator resistance drops rapidly. Between this thermal fuse temperature and short circuit temperature, the separator resistance can shut out very high currents. This function is said to be effective for ensuring safety such as external short circuit.
  • Japanese Patent No. 31 42693 has proposed a non-woven sheet made of highly heat-resistant fibers such as aromatic polyamide fibers.
  • the shape of the non-woven fabric has a large opening. ⁇ To prevent the short circuit between the positive and negative electrodes and retain the electrolyte, the characteristics related to the nature of the separator are insufficient.
  • a porous film made of a polymer having high heat resistance such as aromatic polyamide has also been proposed in WO01 Z 01 9906 and the like.
  • This system has sufficient heat resistance in terms of short-circuiting due to membrane breakage.
  • the battery may catch fire due to a runaway reaction.
  • the countermeasure becomes complicated.
  • a porous membrane made of an aromatic polyamide has a problem that productivity is low from the viewpoint of strength.
  • a technique for providing a shutdown function to a porous film made of a polymer having high heat resistance as described above has also been proposed.
  • shut down in JP 2001-23602 A technique for coating a porous film made of a highly heat-resistant resin on a porous film having a function is disclosed.
  • the resistance after the thermal fuse rises only about 10 times the resistance before the thermal fuse, and it is difficult to say that the shutdown function is sufficient to ensure the safety of the battery.
  • Japanese Patent Laid-Open No. 10-6453 proposes a structure in which fine particles made of polyethylene are mixed in a porous film made of a heat resistant resin. Similarly, this system does not have a sufficient shutdown function.
  • WO01 Z067536 proposes a configuration in which a non-woven fabric made of highly heat-resistant fibers is coated with a porous layer made of a polyvinylidene fluoride copolymer.
  • This specification describes technical elements that can prevent the overcharge prevention function by appropriately controlling the morphology of the separate evening. Further, a manufacturing method suitable for this morphology control is disclosed in Japanese Patent Laid-Open No. 2003-171 495.
  • the polyvinylidene fluoride copolymer swollen in the electrolyte solution is not high in heat resistance and melts at high temperatures, so it is considered that the heat resistance of this system is ensured by the nonwoven fabric. Similar to the discussion in Japanese Patent No. 31 42693, there is a problem that the prevention of short-circuiting of the positive and negative electrodes with a non-woven fabric is not reliable.
  • Japanese Patent Application Laid-Open No. 10-324758 discloses a separator in which the surface and voids of a substrate made of fiber or pulp are covered with a porous pararamide polymer.
  • Japanese Patent No. 31 75730 is a system in which ceramic is dispersed in a porous layer in addition to the system disclosed in JP-A-10-324758.
  • a non-woven cloth is placed on a carrier sheet, and a paraamide polymer dope is applied from above, and the paraamide polymer is deposited in an appropriate humidity and temperature environment.
  • a porous membrane is obtained by the method of In this method, porous para- amide polymer can not be coated substantially on both sides of the non-woven fabric, and apparently a single-sided coating.
  • the deposition rate differs on the front and back, the morphology of the porous layer on the front and back is also largely asymmetric.
  • Such a separator with a significant difference between the front and the back is not practical because it is difficult to form an appropriate electrode-separator interface and there are problems in battery performance.
  • curling and handling There is also a title.
  • pararamid polymer is difficult to adjust and mold. Specifically, it is difficult to form the holes continuously, and since only very small holes are formed, sufficient ion permeability cannot be obtained.
  • this technique has a problem that the manufacturing method is complicated. Disclosure of the invention
  • an object of the present invention is to provide a separator having sufficiently high heat resistance ⁇ effective for overcharge countermeasures and good handling characteristics.
  • the present invention provides a separator for a lithium ion secondary battery, characterized in that a porous layer mainly composed of a metaaromatic polyamide is formed on both front and back surfaces of a nonwoven fabric.
  • the present invention also provides the following inventions.
  • Lithium ion secondary battery according to the invention characterized in that the film thickness force of the separator ⁇ 15 to 40 jum, the Gurley value (JIS P81 17) force ⁇ 10 to 50 seconds Z 1 OOcc Separator for use.
  • a surfactant containing at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant is attached to the porous layer.
  • the porous layer contains ceramic fine particles having an average particle size of 0.05-2 ⁇ m, and the ceramic fine particles are 30-80% by weight with respect to the weight of the porous material layer.
  • a polymer solution mainly composed of a metaaromatic polyamide and a solvent that is a good solvent for the metaaromatic polyamide is applied to both front and back surfaces of the nonwoven fabric, and the coated nonwoven fabric is then applied to the metaaromatic polyamide.
  • a method for producing a separator for a lithium ion secondary battery comprising coagulating in a mixed liquid mainly composed of a solvent that is a poor solvent and a solvent that is a good solvent, and then washing and drying.
  • a lithium ion secondary battery having a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and obtaining an electromotive force by doping and detaching lithium ions
  • the separator is made of non-woven fabric.
  • a lithium ion secondary battery characterized in that a porous layer mainly composed of a metaaromatic polyamide is formed on both front and back surfaces.
  • Lithium ion according to 1 1 characterized in that the film thickness force of the separator ⁇ 15 to 40 ⁇ m, Gurley value (JIS P81 1 F) force ⁇ 10 to 50 seconds Z 1 OOcc Secondary battery.
  • a surfactant containing at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant is attached to the porous layer.
  • a surfactant containing at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant is attached to the porous layer.
  • Figure 1 shows the results of the overcharge test. BEST MODE FOR CARRYING OUT THE INVENTION
  • embodiments of the present invention will be described.
  • the separator for a lithium ion secondary battery of the present invention is characterized in that a porous layer mainly made of a metaaromatic polyamide is formed on both the front and back surfaces of a nonwoven fabric.
  • a nonwoven fabric By using a nonwoven fabric, the strength and dimensional stability of the porous membrane made of aromatic polyamide can be improved, and the handling property and productivity can be improved.
  • the porous layer mainly made of meta-aromatic polyamide is formed on the front and back surfaces of the nonwoven fabric.
  • the entire front and back surfaces are covered with the porous layer made of aromatic polyamide.
  • the fibers that make up the nonwoven fabric are not visible. This can be easily observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the bonding interface between the electrode and the separator becomes non-uniform, causing a problem in battery performance. This is due to insufficient electrolyte retention at the electrode Z separator interface, and as the cycle progresses, the electrolyte present at the electrode separator interface is depleted, causing cycle characteristics and cycle discharge characteristics. Becomes defective.
  • the layer formed on the surface of the nonwoven fabric is a porous layer made of metaaromatic polyamide.
  • the porous layer it is necessary that pores are continuously formed, and the structure of this porous layer can be determined by using a galley value (JIS P81 17) as an index.
  • the Gurley value of the seno ⁇ lator of the present invention is preferably 10 to 50 seconds. If the Gurley value is lower than 10 seconds Z1 00 cc, it is not preferable because there is a high probability that there will be a defect part where the re-pin hole where the nonwoven fabric forming fibers are exposed.
  • the film thickness is preferably 15 to 40 Um. If the film thickness is less than 1 5, the function of preventing the short circuit inherent to the separator will be insufficient. Also thicker than 40 m If this is the case, there will be problems such as insufficient relay characteristics with high resistance due to ionic conduction, and insufficient battery energy density.
  • the thickness of the nonwoven fabric is 10 to 39 mm, and the thickness of the porous layer made of the metaaromatic polyamide is about 1 to 10 mm in total. preferable.
  • the substantial strength of the separator of the present invention is determined by the nonwoven fabric ⁇ , if the nonwoven fabric thickness force is less than 10 // m, it is difficult to ensure sufficient strength as a lithium ion battery separator. On the other hand, if it is thicker than 39 im, it is difficult to make the separator thickness 40 m or less. Moreover, if the thickness of the porous layer is less than 1 m in total, it is difficult to substantially cover the entire surface of the nonwoven fabric.
  • the porous layer is not preferable from the viewpoint of ensuring sufficient discharge performance when the ion conduction resistance of the separator is generally rate-determined and becomes thicker.
  • the non-woven fabric used in the separator of the present invention is preferably as fine as possible, and the fiber diameter is preferably fine in order to obtain such a non-woven fabric. From such a viewpoint, the fiber diameter of the fibers constituting the nonwoven fabric is preferably 10 m or less, and more preferably 5 m or less.
  • a binder for binding the main fibers to the main fibers is required.
  • the binder for forming the nonwoven fabric is preferably fiber or pulp.
  • a known method can be applied to the method for producing the nonwoven fabric.
  • Specific examples include a dry method, a water needle method, a wet papermaking method, a spunbond method, a melt blow method, and an electrospinning method.
  • the wet papermaking method is particularly suitable in view of the thinning and uniformity of the openings.
  • the material constituting the nonwoven fabric is not particularly limited as long as it has sufficient heat resistance and resistance to an electrolytic solution, and specifically, polyester, aromatic polyamide, polysulfone, represented by polyethylene terephthalate (PET), Examples include polyethersulfone, polyph: i: dilensulfide, polyimide and the like.
  • PET is preferable from the viewpoint of facilitating molding of finer fibers and high heat resistance.
  • aromatic polyamid In particular, from the viewpoint of moldability, polymetaphenylene sophthalamide is preferred.
  • the amount of polyolefin fiber added is preferably 30% by weight or less based on the weight of the nonwoven fabric.
  • non-woven fabric using short fibers made of meta-aromatic polyamide and para-aromatic polyamide pulp is preferable.
  • the nonwoven fabric can be combined with a metaaromatic polyamide that forms a porous layer and has a high affinity to obtain a high strength.
  • the nonwoven fabric of said structure is easy to make thin film.
  • the material for forming the porous layer is preferably metaaromatic polyamide.
  • Aromatic polyamides include para-aromatic polyamides typified by polyparaphenylene terephthalamide and meta-aromatic polyamides typified by polymeta-phenylene isophthalamide. Isophthalamide is preferred. Since the para-aromatic polyamide has low solubility in a solvent and high viscosity even at a low concentration, it is very difficult to form the porous layer with sufficient strength and ion permeability. Specifically, only small pores are formed, and these are discontinuous, resulting in insufficient ion permeability.
  • the metaaromatic polyamide is sufficiently dissolved in the solvent, and it is easy to prepare an appropriate polymer solution in terms of concentration and viscosity. Further, the pore diameter can be easily controlled and sufficient ion permeability can be ensured. In particular, in order to develop the overcharge prevention function of WO01 No. 06 7536, it is necessary to appropriately control the pore diameter of the porous layer. From the viewpoint of adding such a function, the metaaromatic polyamide is a paraffin. It is more suitable than aromatic polyamide.
  • the material for forming the porous layer is preferably a metaaromatic polyamide.
  • Other materials are mixed in a category that does not impair the heat resistance and the structural control of the porous layer, which are the characteristics of a metaaromatic polyamide. It does n’t matter.
  • para aromatic polyamide, polysulfone, polyethersulfone, polyvinylidene fluoride, polyvinylidene fluoride copolymer, polyacrylo Nido J, polymethyl methacrylate include polyethylene oxide, polypropylene oxide, polyvinyl pyrrolidone, etc. These components are preferably 30% by weight or less based on the meta-aromatic polyamide forming the porous layer. is there.
  • the weight of the metaaromatic polyamide forming the porous layer is preferably 4 to 10 gZm 2 .
  • PET is used as a separator material for lithium ion secondary batteries, there is a problem with durability in special environments, but this durability can be remarkably improved by compounding with metaaromatic polyamide. it can.
  • the weight of the metaaromatic polyamide is less than 4 gZm 2 , the durability is not improved sufficiently, which is not preferable. If the weight is greater than 1 Og Zm 2, the problem of deteriorating ion permeability occurs.
  • the metaaromatic polyamide in the present invention When the metaaromatic polyamide in the present invention is dissolved in N-methyl-1-pyrrolidone, it is represented by the logarithmic viscosity of the following formula (1): 0.8 to 2.5 dlZg, preferably 1.0 to A polymer in the range of 2, 2 dlZ g is preferred.
  • the logarithmic viscosity When the logarithmic viscosity is lower than 0.8 dlZg, sufficient mechanical strength cannot be obtained, and when the logarithmic viscosity exceeds 2.5 dlZg, it becomes difficult to obtain a stable polymer solution, which is preferable for forming a uniform porous layer. Absent.
  • T Flow time of capillary viscometer at 30 ° C in a solution of 0.5 g of metaaromatic polyamide dissolved in 100 ml of N-methizole 2-pyrrolidone
  • one having a surfactant attached to the porous layer is also preferable from the viewpoint of antistatic.
  • the surfactant is not particularly limited, and for example, a cationic, anionic, zwitterionic or nonionic surfactant can be used.
  • cationic surfactants include higher amine halogenates, halogenated alkyl pyridines, and quaternary ammonium salts.
  • anionic surfactants include higher fatty acid alkali salts, polyoxyethylene alkyl ether sulfonate esters, polyoxyethylene alkyl ether phosphonates, alkyl sulfates, alkyls.
  • Examples include sulfonates, alkylaryl sulfonates, and sulfosuccinate esters.
  • Examples of zwitterionic surfactants include alkylbetaine compounds, imidazoline compounds, alkylamine oxides, and bisoxyborate compounds.
  • Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl aryl ethers.
  • cationic surfactants In particular, cationic surfactants, anionic surfactants, and zwitterionic surfactants have a strong antistatic effect, so that the amount used can be kept low and it is desirable to use them. Also, by mixing these, the affinity between the aromatic amide and the surfactant can be increased, and the antistatic effect can be improved.
  • the amount of the surfactant is desirably 0.005 to 0.750 Zm 2 . Sufficient antistatic effect is less than 0. 005gZ m 2 can not be obtained, which may adversely affect the performance of the battery is more than 0. 750 g Roh m 2.
  • the amount of the surfactant was determined after the surfactant was applied and vacuum-dried at 90 ° C for 10 hours and then immersed in a surfactant-soluble solvent.
  • the frictional voltage measurement method of JIS L 1 084 is used as a method for evaluating static electricity. It is preferable that the half-life of static electricity is 30 seconds or less by the frictional voltage measurement method. If the half-life is 30 seconds or more, the antistatic effect is not sufficient because the decay of static electricity is slow.
  • the separator for a lithium ion secondary battery of the present invention can be produced by various methods, and is not limited by the production method.
  • a method of pressing a meta-aromatic polyamide porous film on both sides of a nonwoven fabric by press working and a method using a meta-aromatic polyamide on both surfaces of a nonwoven fabric.
  • a polymer solution mainly composed of a metaaromatic polyamide and a solvent that is a good solvent for the metaaromatic polyamide is applied to both front and back surfaces of the cloth, and then the coated non-woven fabric is applied to the metaaromatic polyamide.
  • a production method (wet microphase separation method) in which the mixture is coagulated in a mixed liquid (coagulating liquid) mainly composed of a solvent that is a poor solvent and a solvent that is a good solvent, then washed with water and dried (wet microphase separation method) is preferable.
  • Patent Document 6 the manufacturing apparatus and concept described in Patent Document 6 can be applied to the above manufacturing method.
  • a coating method in which a polymer solution is applied to both the front and back surfaces of a nonwoven fabric, an excess polymer solution is supplied from both sides of the nonwoven fabric, and the nonwoven fabric is placed between a pair of opposed Meyer bars and dies.
  • an amide solvent is suitable as the good solvent, and for example, dimethylacetamide, N-methyl-2-pyrrolidone and the like are preferable.
  • Specific examples of the poor solvent include alcohols and water, and water is particularly preferable.
  • the polymer concentration of the polymer solution is largely determined depending on the type and degree of polymerization of the metaaromatic polyamide used. However, for example, when using polymetaphenylene isophthalamide, it is 5 to 20 weights. % Range is preferred.
  • the ceramic fine particles include silica, alumina, zirconia, magnesia, titanium; a, barium titanate, aluminum nitride, calcium oxide, calcium carbonate, lithium fluoride, lithium oxide, and the like.
  • alumina, zirconia, and magnesia are suitable.
  • the average particle size of the ceramic fine particles is preferably 0.05 to 2 m, particularly preferably in the range of 0. "! To 1 mm. From the viewpoint of aggregation and the like, when the ceramic fine particles are 0.05 m or less, the handling property is good. In addition, when the length is 2 m or more, die streaks are more likely to occur during coating, and it is preferable. ⁇ No.
  • the average particle size can be measured by the laser diffraction measurement method.
  • the average particle size in the present invention is the average particle size of primary particles.
  • the amount of the ceramic fine particles to be added is suitably determined in view of the polymer concentration of the polymer solution, but is generally a metaaromatic polyamide that forms the porous material (if other organic polymers are included, this is not the case). 30 to 80% by weight with respect to the weight of the ceramic fine particles. If the amount of ceramic fine particles is less than 30% by weight, a sufficient thickening effect cannot be obtained and the effect is insufficient. Also, if the amount of ceramic fine particles is larger than 80% by weight, problems such as powder falling off when molding the separator are not preferable.
  • the effect of addition of ceramic fine particles in this production method is particularly suitable when the polymer concentration in the polymer solution is 10% by weight or less.
  • the effect of adding ceramic fine particles is not limited to the effect of the above manufacturing method, but also has structural features as described below. Ceramic fine particles generally have higher heat resistance than metaaromatic polyamides, and even when the battery temperature rises to around 400 ° C where the metaaromatic polyamide thermally decomposes, the ceramic fine particles function as a separator. Furthermore, the ceramic fine particles also function as a lubricant and contribute to an antistatic effect or improved handling when static electricity is generated.
  • a phase separation agent may be added to the polymer solution for the purpose of controlling the porous structure. The phase separation agent is a poor solvent for the metaaromatic polyamide and can be used as long as it is compatible with the coagulation liquid.
  • water and alcohols are suitable, and in particular, propylene glycol, ethylene glycol, diethylene glycol, tripropylene glycol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol mono, including polymerization holiday.
  • Polyhydric alcohols such as ethyl ether, methanol, ethanol and glycerin are preferably selected.
  • concentration of the phase separation agent in the polymer solution is suitably selected in the range of 0 to 40% by weight with respect to the mixture of the good solvent and the phase separation agent.
  • the coagulation liquid is preferably a mixed liquid of the aforementioned good solvent and poor solvent.
  • the phase separation agent when applied to the polymer solution, it is preferable in terms of process management to mix the phase separation agent into the coagulation liquid at an appropriate ratio. Specifically, it is preferable that the ratio of the coagulating liquid matches the ratio of the good solvent and the phase separating agent in the polymer solution.
  • the ratio of the poor solvent in the coagulation bath is suitably selected from the range of 10 to 80% by weight when water is applied to the poor solvent.
  • the nonwoven fabric on which the solidified porous layer is formed is then transferred to a water washing step, and then the water is dried in the drying step to obtain the separator of the present invention.
  • a method of drying by contacting with a heating roll is preferably selected.
  • the method is not particularly limited, but the surfactant is dissolved in a solvent, sprayed onto the porous film and dried, or the porous film is immersed.
  • the method of drying etc. are mentioned.
  • a lithium ion secondary battery has a structure in which a battery element in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween is impregnated with an electrolytic solution and sealed in an exterior.
  • the lithium ion secondary battery of the present invention is characterized by the use of the separator of the present invention described above, and a known technique can be applied to other components, which are essentially limited to other components. It is not something.
  • a negative electrode is generally used in which a layer formed from a negative electrode active material, a binder, and a conductive additive is coated on a current collector.
  • This is prepared by adding a solvent to a negative electrode active material, a binder, and a conductive additive to knead to prepare a slurry, which is applied onto a current collector and dried and pressed.
  • a solvent to a negative electrode active material, a binder, and a conductive additive to knead to prepare a slurry, which is applied onto a current collector and dried and pressed.
  • the negative electrode active material is 80 to 98% by weight
  • the binder is 2 to 20% by weight
  • the conductive auxiliary is 0 to 10% by weight.
  • the range of is preferable.
  • Examples of the negative electrode active material include carbon materials, silicon, and tin.
  • Examples of the carbon material include those obtained by using, as a precursor, pitches that are easily graphitized, such as mesocarbon microbeads and microcarbon fibers, and those that are difficult to graphitize, such as phenol resin.
  • Examples of the binder include polyvinylidene fluoride and carboxymethylcellulose.
  • As the conductive aid graphite powder, acetylene black, ketjen black, vapor grown carbon fiber, and the like are preferably used.
  • the current collector is preferably copper foil, stainless steel, or the like.
  • a positive electrode in which a layer formed of a positive electrode active material, a binder, and a conductive additive is coated on a current collector is generally used.
  • This is prepared by adding a solvent to a positive electrode active material, a binder, and a conductive aid, kneading to prepare a slurry, applying the slurry onto a current collector, and drying and pressing.
  • the positive electrode active material, the binder, and the conductive additive is 100%
  • the positive electrode active material is 80 to 98% by weight
  • the binder is 2 to 20% by weight
  • the conductive auxiliary is 0 to 10%.
  • a range of weight percent is preferred.
  • the positive electrode active material examples include LiCo0 2 , LiNi 0 2 , spinel type LiMn 2 0 4 , olivine type LiFeP0 4, and the like, and those in which different elements are dissolved, and these may be used in combination.
  • the binder polyvinylidene fluoride is preferably used.
  • the conductive additive graphite powder, acetylene black, ketjen black, vapor growth power, one-bon fiber, etc. are preferably used.
  • aluminum foil, stainless steel or the like is suitable.
  • a non-aqueous electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent is used.
  • the lithium salt LiPF 6 , LiBF 4. , LiCI 0 4 and the like are preferably used.
  • Non-aqueous solvents are propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), Examples include jetyl carbonate (DEC) and ethyl methyl carbonate (EMC). These lithium salts and non-aqueous solvents may be used alone or in combination of two or more.
  • the concentration of the lithium salt is preferably in the range of 0.5 to 2. OM.
  • the battery element composed of the positive electrode, the negative electrode, and the separator is wound into a cylindrical or flat shape or a laminated structure and enclosed in an exterior. From the viewpoint of satisfactorily expressing the overcharge prevention function, it is preferable to have a folded structure, and it is particularly preferable to have a wound flat structure.
  • the exterior can be implemented in any form such as a metal case or an aluminum laminated film case.
  • the separator 1 of the present invention had a film thickness of 21 mm, a basis weight of 14.7 gZm 2 and a galley value (JIS P8117) of 23 seconds Z1 OOcc.
  • the nonwoven fabric Using the nonwoven fabric, a polymer solution was used in the same manner as in Example 1, and the lithium ion secondary battery separator of the present invention was obtained in the same manner. This is the separator 2 of the present invention.
  • the present invention snorator 2 had a film thickness, a basis weight of 18.1 gZm 2 and a Gurley value (JIS P8117) of 35 seconds Z1 OOcc.
  • Example 1 A nonwoven fabric similar to that in Example 1 was fixed on a PET film, and the polymer solution used in Example 1 was coated thereon. The film was immersed in the same coagulation liquid as in Example 1 to obtain a coagulated film. This coagulated film was washed with water in a 50 ° C. water bath for 10 minutes and then dried. Thereafter, the PET film was peeled off to obtain comparative separator 1.
  • the comparative separator 1 has a film thickness of 20 mm, a basis weight of 13.9 gm 2 , and a galley value (JIS P8117) 153 ⁇ 4Z100ccT fc "Dfc.
  • the film was prepared in 2 and calendered at 200 ° C. to obtain a PET non-woven fabric having a thickness of 18 mm.
  • the polymer solution was prepared by dissolving in a mixed solvent of 30 (weight ratio) to 12% by weight.
  • Comparative Separator 2 has a film thickness 24 ⁇ m, basis weight 1 7. 3GZm 2, Gurley value (JI S P81 1 7) 1 2 seconds, 1 00 ( ⁇ Deatta.
  • each of the above separators 1 and 2 of the present invention, comparative separators 1 and 2, and a microporous membrane made of polypropylene that is a separator for commercially available lithium ion secondary batteries is 1 Ocm each. Cut into X 1 Ocm. The electrolyte was placed in a 70cc sample bottle. Here, 1 M LiBF 4 PCZEC (1 Z1 weight ratio) was used as the electrolyte. The cut separator was placed in the sample bottle and treated at 150 ° C. for 2 hours. Then, the separator was taken out from the sample bottle and the separator was observed. The results are shown in Table 1.
  • Each of the above separators 1 and 2 of the present invention, comparative separators 1 and 2, and a microporous membrane made of polypropylene that is a separator for commercially available lithium ion secondary batteries is 1 Ocm each. Cut into x 1 Ocm. This was fixed to a frame that could be fixed in four directions and heat-treated at 200 ° C for 30 minutes. The form and dimensions after heat treatment were measured. The results are shown in Table 1.
  • the positive electrode and the negative electrode were opposed to each other through the separator 1 of the present invention produced in Example 1. This was impregnated with an electrolytic solution and sealed in an outer package made of an aluminum laminate film to produce a lithium ion secondary battery of the present invention.
  • 1 M LiPF 6 EC / EMC C3 Z7 weight ratio was used as the electrolyte. This battery is referred to as “the battery of the present invention”!
  • a lithium ion secondary battery was produced in the same manner as in Example 1 using Comparative Separator 1 as the separator. This lithium ion secondary battery is referred to as comparative battery 1.
  • a lithium ion secondary battery was prepared in the same manner as in Example 1 using a polypropylene microporous membrane (Celgard; trade name “Celguard # 2400”), which is a commercially available lithium ion secondary battery separator. did.
  • the secondary battery is referred to as Comparative Battery 2 for this lithium ion.
  • Inventive battery 1 and comparative batteries 1 and 2 were subjected to 100 cycles of 1 C, 4.2 V, constant current and constant voltage charging for 2 hours, and 1 C, 2.75 V constant current discharge.
  • (capacity maintenance ratio) (discharge capacity at the 100th cycle) / (discharge capacity at the first cycle) was obtained. This is shown in Table 2. Only the comparative battery 1 using the comparative separator 1 in which the nonwoven fabric was exposed was significantly poor in cycle characteristics, and the inventive battery 1 using the separator 1 of the present invention coated on both sides is equivalent to a commercial separator. It is a characteristic.
  • Inventive battery 1 and comparative battery 2 Constant current charging at 1 C for 10 hours (for original charging)
  • an overcharge test in which 10 times the charge was performed was conducted. However, when the voltage reached 6V, the power reception was forcibly terminated. The overcharge characteristics were considered insufficient when charging was forcibly terminated 10 hours after the voltage reached 6V, and the overcharge characteristics were sufficient when it was not.
  • the results of the overcharge test shown in FIG. 1 ⁇ the power of the present invention battery 1 using the separator of the present invention 1 is sufficient for overcharge characteristics ⁇ , the comparative battery 2 using a commercially available separator is insufficient .
  • Emargen 120 (manufactured by Kao; nonionic surfactant) was dissolved in methanol to prepare a 1% by weight solution.
  • the separator 1 of the present invention produced in Example 1 was immersed in the surfactant methanol solution and dried to attach the surfactant to obtain the separator 3 of the present invention.
  • the amount of the surfactant adhering to the separator 3 of the present invention was 0.15 g Zm 2 .
  • Electro stripper AC (made by Kao; amphoteric surfactant) was dissolved in methanol to prepare a 1% by weight solution.
  • the separator 1 of the present invention produced in Example 1 was immersed in the surfactant methanol solution and dried to attach the surfactant, whereby the separator 4 of the present invention was obtained.
  • the amount of the surfactant attached to the separator 4 of the present invention was 0.02 gZm 2 .
  • Cotamine 60W (manufactured by Kao; cationic surfactant) was dissolved in methanol to prepare a 1% by weight solution.
  • the separator 1 of the present invention produced in Example 1 was immersed in the surfactant methanol solution and dried to attach the surfactant, whereby a separator 5 of the present invention was obtained.
  • the amount of the surfactant adhered to the separator 5 of the present invention was 0.04 gZm 2 .
  • Electrosdritzba F (manufactured by Kao; anionic surfactant) was dissolved in methanol to prepare a 1 wt% solution.
  • the separator 1 of the present invention prepared in Example 1 was immersed in the surfactant methanol solution and dried: Z was attached to the surfactant to obtain the separator 6 of the present invention.
  • the amount of the surfactant adhering to the separator 6 of the present invention is 0.10 gZm 2 .
  • the charged voltage half-lives of the separators 1 and 3 to 6 of the present invention were measured using a static phone meter H-0110 (manufactured by Sisid electrostatic). The results are shown in Table 3. From Table 3, it can be seen that attaching a surfactant is effective in preventing static charge.
  • Polymetaphenylene isophthalamide short fiber with a fineness of 0.9 dtex (average fiber diameter of about 10 jum) is used as the main fiber
  • pulp made of paraamide is used as the binder
  • these are mixed in the main fiber binder (weight ratio).
  • a wet papermaking method was used to form a film with a basis weight of 29.9 gZm 2 and calendering to obtain an aramid nonwoven fabric (aramide paper) with a film thickness of 30 jw m.
  • the solidified film was immersed in a solidified bath at 40 ° C. for 60 seconds to obtain a solidified film, which was washed with water in a 30 ° C. water bath for 10 minutes and then dried to obtain the separator for the lithium ion secondary battery of the present invention. This was designated as the present separator 7.
  • the present separator 7 had a film thickness of 39 m, a basis weight of 34.5 gZm 2 , and a Gurley value (JIS P81 17) of 40 seconds Z1 OOcc.
  • the weight of the porous layer made of isophthalamide is 4.6 gZ It was m 2.
  • the separator 8 of the present invention had a film thickness of 29 ⁇ m, a basis weight of 18.3 gZm 2 , and a gauge value (JIS P8 "7) of 28 seconds Z1 OOcc.
  • a porous layer made of polymetaphenylene isophthalamide of weight was filed in the 5. 3gZm 2.
  • Example 9 In the same manner as in Example 9, the coating clearance was changed, the film thickness was 37 m, the basis weight was 22.1 g / m 2 , and the galley value (JIS P81 1 7) was 32 seconds / 1 OOcc. 9 In addition, poly-polyethylene isophthalamide made of many? Weight of the L protein layer 9. 1 gZm 2 der ivy.
  • Example 9 In the same manner as in Example 9, the coating clearance was changed, the film thickness was 22 m, the basis weight was 16.3 gZm 2 , the Gurley value (JIS P81 1 7) was 32 seconds Z1 OOcc. The weight of the porous layer made of polymetaphenylene isophthalamide was 3.3 gZm 2 .
  • the coating clearance was changed, the film thickness was 24 mm, the basis weight was 17.3 gZm 2 , the Gurley value (JIS P81 1 7) 32 seconds Z1 OOcc of the present invention separator 1 1
  • the weight of the porous layer made of polymetaphenylene isophthalamide was 4.3 gZm 2 .
  • the puncture strength of the present separators 2, 7 to 11 was measured.
  • the puncture strength was measured by setting a separator on a fixed frame of 11.3 ⁇ , pushing a needle with a tip radius of 0.5mm vertically into the center of the separator, and pushing the needle at a constant speed of 2mmZ seconds.
  • the maximum load applied to the separator while moving the needle force ⁇ 5 mm was defined as the puncture strength.
  • the results are shown in Table 4.
  • aramid materials are used as the nonwoven material, before and after coating
  • the increase in puncture strength is large.
  • Nonwoven fabric made of aramid material is effective in terms of obtaining a high-strength separator because it has a high affinity for polymetaphenylene isophthalamide forming the porous layer and provides a high reinforcing effect.
  • the present invention batteries 2 to 5 were obtained in the same manner as in Example 3 using the separators 8 to 11 of the present invention obtained in Examples 9 to 12.
  • This invention is the same as Example 3 except that the separators 8 to 11 of the present invention obtained in Examples 9 to 12 were used and 1 M LiPF 6 ECZEMCZVC (29Z70Z1 weight ratio) was used as the electrolyte. Batteries 6-9 were obtained.
  • This invention is the same as Example 3 except that the separators 8-11 of the present invention obtained in Examples 9-12 are used and 1 M LiPF 6 ECZEMCZVA (29Z70Z1 weight ratio) is used as the electrolyte. Batteries 10 0-13 were obtained.
  • a battery was produced in the same manner as in Example 3 except that the PET nonwoven fabric produced in Example 9 was used as the separator. This battery is referred to as comparative battery 3.
  • Example 1 The inventive batteries 2 to 13 and the comparative battery 3 prepared in 3 to 24 were charged to 4.2 V and stored at 80 ° C. for 4 days. Thereafter, the battery was disassembled and the separator inside was taken out and observed. The results are shown in Table 5. Table 5 shows that when the amount of polymetaphenylene isophthalamide applied is appropriate, PET deterioration is sufficiently suppressed. It can also be seen that adding VC or VA to the electrolyte is effective in preventing this PET deterioration.
  • Polymetaphenylene isophthalamide manufactured by Teijin Techno Products Co., Ltd .; trade name “Konex”
  • a mixed solvent of dimethylacetamide: tripropylene glycol 60: 30 (weight ratio) to be 6% by weight
  • the polymer solution was prepared.
  • one alumina fine particle SA-1 manufactured by Iwatani Chemical Industry Co., Ltd.
  • This coating slurry was applied to both sides of the PET nonwoven fabric, and this coating was applied to a 40 ° C.
  • separator 1 of the present invention had a film thickness of 23 ⁇ m, a mesh size of 6.6 gZm 2 , and a straight line (JIS ⁇ 81 1 7) for 20 seconds and 100 cc. As a result of visual observation of the separator 12 of the present invention, no pinhole was observed.
  • a polymer solution was prepared.
  • 1 M LiBF 4 PCZEC (1 Z1 weight ratio) was used as the electrolyte.
  • the resistance of one, two, and three separators was measured by the AC impedance method, and from the inclination when this resistance was plotted against the number of separators, one separator was measured. Resistance was sought.
  • the AC impedance measurement was performed using the 4-terminal method, with an amplitude of 1 OmV and a frequency of 1 OOkHz. The measurement temperature was 20 ° C.
  • the separator for a lithium ion secondary battery of the present invention has high heat resistance and is effective for overcharge countermeasures, the use of this separator can improve the safety of the lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention with the separator of the present invention is suitable for HEV applications that require safety and performance at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a membrane as a separator for lithium ion secondary batteries wherein a porous layer mainly composed of an aromatic polyamide is formed on both sides of a nonwoven fabric. This separator has sufficiently high heat resistance and good handling properties, and is an effective measure against overcharging. Safety of a lithium ion secondary battery can be improved by using such a separator.

Description

明 細 書 リチウムイオン二次電池用セパレ一タ及びリチウムイオン二次電池 技術分野  Description Lithium-ion secondary battery separator and lithium-ion secondary battery Technical Field
本発明はリチウムイオン二次電池に用いるセパレータに関するものである。特に、 リチウムイオン二次電池の安全性向上を目的としたセパレ一タ技術に関する。 背景技術  The present invention relates to a separator used for a lithium ion secondary battery. In particular, it relates to a separator technology for the purpose of improving the safety of lithium ion secondary batteries. Background art
リチウムイオンのドープ '脱ドープにより起電力を得るリチウムイオン二次電池は高 いエネルギー密度を有するという特徴があり、携帯電話、ノートパソコン等の携帯用 電子機器の電源として広く普及している。また、高出力化がなされ電動工具等のパ ヮー用途への適用も始まっている。  Lithium ion doping 'Lithium ion secondary batteries that obtain an electromotive force by undoping have a high energy density and are widely used as power sources for portable electronic devices such as mobile phones and laptop computers. In addition, it has been applied to power applications such as electric tools with higher output.
近年、地球環境問題からハイブリット電気自動車(HEV)の関心が高まっており、 現状は電池としてニッケル水素電池が一般に適用されているが、リチウムイオン二 次電池はニッケル水素電池に比べメモリー効果がないといった使い易さがあり、また 高エネルギー、高出力密度なので小型化が可能といった利点があるため HEV用電 源として検討されている。 HEVに用いる電池を考えた場合、当然携帯用'電子機器と はその要求が異なる。例えば、 HEVにおいては電池が高温に曝される可能性が高く 高温環境下における安全性確保も非常に重要な特性の 1つである。このように携帯 用電子機器と HEVで電池に求められる特性が異なるわけであるから、電池の構成 部材に求められる特性も当然異なってくる。  In recent years, interest in hybrid electric vehicles (HEV) has increased due to global environmental problems. Currently, nickel-metal hydride batteries are generally used as batteries, but lithium-ion secondary batteries have less memory effect than nickel-metal hydride batteries. It is considered as a power source for HEV because it is easy to use and has the advantages of being able to be downsized due to its high energy and high power density. When considering batteries used in HEVs, the requirements are naturally different from those of portable electronic devices. For example, in HEV, batteries are highly likely to be exposed to high temperatures, and ensuring safety in high-temperature environments is one of the very important characteristics. In this way, the characteristics required for batteries differ between portable electronic devices and HEVs, so the characteristics required for battery components naturally differ.
現状のリチウムイオン二次電池にはポリエチレン製微多孔膜がセパレータとして用 し、られている。このセパレ一タはシャットダウン機能を有しており、電池の安全性確 保に寄与している。このシャットダウン機能は熱で微多孔膜が溶融し孔が閉塞するこ とを利用したものであり、熱ヒューズ温度とショート温度によって特徴づけられる。熱 ヒューズ温度は孔閉塞によってセパレータ抵抗が上がり始める温度で、ショー卜温度 はセパレータが破膜し、セパレ一タ抵抗が急激に降下する温度である。この熱ヒュ一 ズ温度とショート温度の間ではセパレータ抵抗は非常に高 電流をシャットアウトす |)ことができる。この機能は外部短絡等の安全性確保に有効と言われている。 In current lithium ion secondary batteries, a polyethylene microporous membrane is used as a separator. This separator has a shutdown function and contributes to ensuring the safety of the battery. This shutdown function utilizes the fact that the microporous membrane melts and closes the pores due to heat, and is characterized by the thermal fuse temperature and short circuit temperature. heat The fuse temperature is the temperature at which the separator resistance begins to increase due to hole closure, and the showroom temperature is the temperature at which the separator breaks down and the separator resistance drops rapidly. Between this thermal fuse temperature and short circuit temperature, the separator resistance can shut out very high currents. This function is said to be effective for ensuring safety such as external short circuit.
HEVの場合、外部から積極的に加熱されるケースが想定される。このような用途 においてシャットダウン機能を考えた場合、熱ヒューズは高温に曝されたとき性能低 下につながる可能性があり、破膜は正極と負極の内部短絡による発火につながる 可能性がある。そのため、 HEVにおいてはシャットダウン機能を有するセパレータが 必ずしも有効とは言えないのが現状であり、十分な耐熱性を有するセパレータの方 が好適であるとも考えられる。  In the case of HEV, a case where it is actively heated from the outside is assumed. When considering the shutdown function in such applications, thermal fuses can lead to performance degradation when exposed to high temperatures, and film breakage can lead to ignition due to an internal short circuit between the positive and negative electrodes. For this reason, separators with a shutdown function are not necessarily effective in HEV, and it is considered that separators with sufficient heat resistance are more suitable.
耐熱性の高いセパレ一タの構成は既にいくつかの提案がなされている。例えば、 芳香族ポリアミド繊維のような耐熱性の高い繊維からなる不織布シートが日本国特 許第 31 42693号等で提案されている。ただし、不織布のような形態は目開きが大 き〈正負極の短絡を防止し電解液を保持するといつたセパレ一タの本質に関る特性 が不十分であり、目開きを小さくするためには細い繊維を用いればよいが、現状の 技術レベルにおいてはリチウムイオン二次電池用セパレータとして好適なものを得 ることは非常に困難であり実用化されていない。  Several proposals have already been made for the construction of a separator with high heat resistance. For example, Japanese Patent No. 31 42693 has proposed a non-woven sheet made of highly heat-resistant fibers such as aromatic polyamide fibers. However, the shape of the non-woven fabric has a large opening. <To prevent the short circuit between the positive and negative electrodes and retain the electrolyte, the characteristics related to the nature of the separator are insufficient. However, it is very difficult to obtain a suitable separator for a lithium ion secondary battery at the current technical level, and it has not been put into practical use.
また、芳香族ポリアミドのような耐熱性の高いポリマーからなる多孔膜も WO01 Z 01 9906号明細書等で提案されている。この系は破膜によるショートという観点で の耐熱性は十分である。ただし、過充電のような内部から積極的に発熱が起こるケ —スにおいて電池は暴走反応で発火する可能性がある力 このようなケースにおけ る安全性確保が不十分であり、別の安全対策が煩雑になるという課題を有している。 また芳香族ポリアミドからなる多孔膜は強度の観点から生産性が低いという課題も 有している。  A porous film made of a polymer having high heat resistance such as aromatic polyamide has also been proposed in WO01 Z 01 9906 and the like. This system has sufficient heat resistance in terms of short-circuiting due to membrane breakage. However, in a case where heat is actively generated from the inside such as overcharging, the battery may catch fire due to a runaway reaction. There is a problem that the countermeasure becomes complicated. In addition, a porous membrane made of an aromatic polyamide has a problem that productivity is low from the viewpoint of strength.
上記のような耐熱性の高いポリマーからなる多孔膜にシャットダウン機能を付与す るという技術も提案されている。例えば特開 2001— 23602号公報にシャットダウン 機能を有する多孔質フィルムに高耐熱性樹脂からなる多孔質層をコーティングする 技術が開示されている。しかし、熱ヒューズ前の抵抗に対し熱ヒューズ後の抵抗が 1 0倍程度までしか上昇しておらず、電池の安全性を確保する上で十分なシャットダウ 機能とは言い難い。また、特開平 1 0-6453号公報では耐熱性樹脂からなる多 孔膜中にポリエチレンからなる微粒子を混合させた構成が提案されている。この系も 同様に十分なシャットダウン機能は得られていない。 A technique for providing a shutdown function to a porous film made of a polymer having high heat resistance as described above has also been proposed. For example, shut down in JP 2001-23602 A technique for coating a porous film made of a highly heat-resistant resin on a porous film having a function is disclosed. However, the resistance after the thermal fuse rises only about 10 times the resistance before the thermal fuse, and it is difficult to say that the shutdown function is sufficient to ensure the safety of the battery. Japanese Patent Laid-Open No. 10-6453 proposes a structure in which fine particles made of polyethylene are mixed in a porous film made of a heat resistant resin. Similarly, this system does not have a sufficient shutdown function.
WO01 Z067536号明細書では耐熱性の高い繊維からなる不織布にポリフッ化 ビニリデン共重合体からなる多孔質層をコーティングした構成が提案されている。こ の明細書にはセパレー夕のモロホロジーを適切に制御することで過充電防止機能防 止を可能とする技術要素が記載されている。また、このモロホロジー制御に関して適 切な製造方法が特開 2003— 1 71 495号公報に開示されている。ただし、電解液に 膨潤したポリフッ化ビニリデン共重合体の耐熱性は決して高いものではな 高温で は溶融してしまうので、この系の耐熱性は不織布によって確保されていると考えられ るが、日本国特許第 31 42693号の議論と同様に不織布での正負極の短絡防止は 確実性に欠けるという課題がある。  WO01 Z067536 proposes a configuration in which a non-woven fabric made of highly heat-resistant fibers is coated with a porous layer made of a polyvinylidene fluoride copolymer. This specification describes technical elements that can prevent the overcharge prevention function by appropriately controlling the morphology of the separate evening. Further, a manufacturing method suitable for this morphology control is disclosed in Japanese Patent Laid-Open No. 2003-171 495. However, the polyvinylidene fluoride copolymer swollen in the electrolyte solution is not high in heat resistance and melts at high temperatures, so it is considered that the heat resistance of this system is ensured by the nonwoven fabric. Similar to the discussion in Japanese Patent No. 31 42693, there is a problem that the prevention of short-circuiting of the positive and negative electrodes with a non-woven fabric is not reliable.
特開平 1 0— 324758号公報では、繊維またはパルプからなる基材の表面及び空 隙が多孔質のパラァラミドポリマーで覆われたセパレ一タが開示されている。日本国 特許第 31 75730号は特開平 1 0— 324758号公報の系に加え多孔質層にセラミ ックを分散させた系である。これら特許文献で記載されているセパレ一タの製法は不 織布をキャリアーシ一ト上に置いてパラァラミドポリマードープを上から塗り、適切な 湿度、温度環境下でパラァラミドポリマーを析出させるという方法で多孔膜を得てい る。この方法では実質的に不織布の両面に多孔質のパラァラミドポリマーをコ一ティ ングすることは出来ず、明らかに片面コーティングである。また、析出速度も表裏で 異なるため表裏で多孔質層のモロホロジーも大きく非対称となっている。このような 顕著に表裏差があるセパレータは適切な電極 セパレータ界面の形成が困難で電 池性能上課題があり実用的ではない。また、カールしハンドリング性が悪いという課 題もある。さらに、パラァラミドポリマーはドープ調整や成形が難しいという課題もあ る。具体的には、孔が連続的に成形され難く、また非常に小さい孔しか成形されない ため、十分なイオン透過性が得られない。加えてこの技術は製造法方法が煩雑であ という課題も有している。 発明の開示 Japanese Patent Application Laid-Open No. 10-324758 discloses a separator in which the surface and voids of a substrate made of fiber or pulp are covered with a porous pararamide polymer. Japanese Patent No. 31 75730 is a system in which ceramic is dispersed in a porous layer in addition to the system disclosed in JP-A-10-324758. In the method of manufacturing a separator described in these patent documents, a non-woven cloth is placed on a carrier sheet, and a paraamide polymer dope is applied from above, and the paraamide polymer is deposited in an appropriate humidity and temperature environment. A porous membrane is obtained by the method of In this method, porous para- amide polymer can not be coated substantially on both sides of the non-woven fabric, and apparently a single-sided coating. In addition, since the deposition rate differs on the front and back, the morphology of the porous layer on the front and back is also largely asymmetric. Such a separator with a significant difference between the front and the back is not practical because it is difficult to form an appropriate electrode-separator interface and there are problems in battery performance. In addition, curling and handling There is also a title. In addition, there is a problem that pararamid polymer is difficult to adjust and mold. Specifically, it is difficult to form the holes continuously, and since only very small holes are formed, sufficient ion permeability cannot be obtained. In addition, this technique has a problem that the manufacturing method is complicated. Disclosure of the invention
前述のように、芳香族ポリアミド等の耐熱性樹脂を活用した耐熱性の高いセパレー タが提案はされている力 この耐熱性を特徴にして有意にリチウムイオン二次電池 の安全性を向上させ生産性良好なセパレ一タ構成は見出されておらず実用化に至 つていないのが現状である。十分に耐熱性の高いセパレータにおいて、リチウムィォ ン二次電池の安全性確保の観点から不足しているのは、内部からの自己発熱で暴 走反応に至る過充電対策であると本発明者らは考えた。そこで、耐熱性が十分に高 《過充電対策にも有効でハンドリング性の良好なセパレータを提供することを本発 明の目的とする。  As mentioned above, a separator with high heat resistance utilizing a heat resistant resin such as aromatic polyamide has been proposed. This heat resistance is a feature that significantly improves the safety of lithium ion secondary batteries and produces them. At present, no separator structure with good performance has been found and has not been put into practical use. In the sufficiently high heat-resistant separator, the present inventors believe that what is lacking from the viewpoint of ensuring the safety of lithium-ion secondary batteries is an overcharge countermeasure that leads to a runaway reaction due to self-heating from the inside. Thought. Accordingly, an object of the present invention is to provide a separator having sufficiently high heat resistance << effective for overcharge countermeasures and good handling characteristics.
本発明者らが上記に課題に対し鋭意検討した結果、不織布の表裏両面に主として 芳香族ポリアミドからなる多孔質層がコーティングされたセパレータがリチウムイオン 二次電池の安全性確保に有効であることを見出し本発明に至った。すなわち本発明 は、不織布の表裏両面に主としてメタ芳香族ポリアミドからなる多孔質層が形成され ていることを特徴とするリチウムイオン二次電池用セパレ一タを提供する。さらに本 発明は以下の発明も提供する。  As a result of intensive studies on the above problems by the present inventors, it has been confirmed that a separator in which a porous layer mainly made of an aromatic polyamide is coated on both front and back surfaces of a nonwoven fabric is effective in ensuring the safety of a lithium ion secondary battery. The headline has led to the present invention. That is, the present invention provides a separator for a lithium ion secondary battery, characterized in that a porous layer mainly composed of a metaaromatic polyamide is formed on both front and back surfaces of a nonwoven fabric. The present invention also provides the following inventions.
1 .該セパレータの膜厚力《1 5〜40 ju m、ガーレ値(JIS P81 1 7)力《1 0〜50秒 Z 1 OOccであることを特徴とする上記発明記載のリチウムイオン二次電池用セパレー タ。  1. Lithium ion secondary battery according to the invention, characterized in that the film thickness force of the separator << 15 to 40 jum, the Gurley value (JIS P81 17) force << 10 to 50 seconds Z 1 OOcc Separator for use.
2.該多孔質層に陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、 非イオン性界面活性剤からなる群から選ばれる少なくとも 1種を含む界面活性剤が . 付着されていることを特徴とする上記発明または 1のいずれかに記載のリチウムィ オン二次電池用セパレータ。 2. A surfactant containing at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant is attached to the porous layer. The lithium ion according to any one of the above invention and 1, wherein On-secondary battery separator.
3.該界面活性剤の付着量が 0. 005-0. 750gZm2であることを特徴とする 2記 載のリチウムイオン二次電池用セパレータ。 3. The separator for a lithium ion secondary battery according to 2, wherein the surfactant is attached in an amount of 0.005-0.750 gZm 2 .
4.該不織布が主としてポリエチレンテレフタレートからなる不織布であることを特徴 とする上記発明または 1から 3いずれかに記載のリチウムイオン二次電池用セパレ ータ。  4. The separator for a lithium ion secondary battery according to the above invention or any one of 1 to 3, wherein the nonwoven fabric is a nonwoven fabric mainly composed of polyethylene terephthalate.
5.該主としてメタ芳香族ポリアミドからなる多孔質層の重量が 4〜1 0gZm2である ことを特徴とする 4記載のリチウムイオン二次電池用セパレータ。 5. The separator for a lithium ion secondary battery according to 4, wherein the weight of the porous layer mainly composed of metaaromatic polyamide is 4 to 10 gZm 2 .
6.該不織布が主としてメタ芳香族ポリアミドからなる不織布であることを特徴とする 上記発明または 1から 3いずれかに記載のリチウムイオン二次電池用セパレータ。  6. The separator for a lithium ion secondary battery according to the above invention or any one of 1 to 3, wherein the nonwoven fabric is a nonwoven fabric mainly composed of a metaaromatic polyamide.
7.該不織布がメタ芳香族ポリアミド短繊維とパラ芳香族ポリアミドパルプからなるこ とを特徴とする上記発明または 1から 3いずれかに記載のリチウムイオン二次電池 用セパレータ。  7. The separator for a lithium ion secondary battery according to the above invention or any one of 1 to 3, wherein the non-woven fabric comprises metaaromatic polyamide short fibers and para aromatic polyamide pulp.
8.該メタ芳香族ポリアミドがポリメタフエ二レンイソフタルアミドであることを特徴とす る上記発明または 1力、ら 5いずれかに記載のリチウムイオン二次電池用セパレ一タ。  8. The separator for a lithium ion secondary battery according to the above invention or 1, wherein the metaaromatic polyamide is polymetaphenylene diisophthalamide.
9.該多孔質層に平均粒子径 0. 05〜2〃mのセラミック微粒子が含まれており、多 孔資質層の重量に対してセラミック微粒子が 30〜80重量%となっていることを特徴 とする上記発明または 1から 8いずれかに記載のリチウムイオン二次電池用セパレ ータ。  9. The porous layer contains ceramic fine particles having an average particle size of 0.05-2 μm, and the ceramic fine particles are 30-80% by weight with respect to the weight of the porous material layer. The separator for a lithium ion secondary battery according to any one of the above inventions or 1 to 8.
1 0.メタ芳香族ポリアミドと該メタ芳香族ポリアミドに対し良溶媒である溶媒を主成分 とする高分子溶液を不織布の表裏両面に塗工し、次いで塗工された不織布を該メタ 芳香族ポリアミドに対し貧溶媒である溶媒と良溶媒である溶媒から主としてなる混合 液中で凝固させ、次いで水洗、乾燥することを特徴とするリチウムイオン二次電池用 セパレータの製造方法。 1 0. A polymer solution mainly composed of a metaaromatic polyamide and a solvent that is a good solvent for the metaaromatic polyamide is applied to both front and back surfaces of the nonwoven fabric, and the coated nonwoven fabric is then applied to the metaaromatic polyamide. In contrast, a method for producing a separator for a lithium ion secondary battery, comprising coagulating in a mixed liquid mainly composed of a solvent that is a poor solvent and a solvent that is a good solvent, and then washing and drying.
1 1 .正極、負極、非水系電解液.、セパレ一タを具備し、リチウムイオンのドープ '脱ド —プにより起電力を得るリチウムイオン二次電池において、セパレ一タが不織布の 表裏両面に主としてメタ芳香族ポリアミドからなる多孔質層が形成されていることを 特徴とするリチウムイオン二次電池。 1 1. In a lithium ion secondary battery having a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and obtaining an electromotive force by doping and detaching lithium ions, the separator is made of non-woven fabric. A lithium ion secondary battery, characterized in that a porous layer mainly composed of a metaaromatic polyamide is formed on both front and back surfaces.
1 2.該セパレ一タの膜厚力《1 5〜40〃m、ガーレ値(JIS P81 1フ)力《1 0〜50秒 Z 1 OOccであることを特徴とする 1 1記載のリチウムイオン二次電池。  1 2. Lithium ion according to 1 1 characterized in that the film thickness force of the separator << 15 to 40 〃m, Gurley value (JIS P81 1 F) force << 10 to 50 seconds Z 1 OOcc Secondary battery.
1 3.該多孔質層に陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性 剤、非イオン性界面活性剤からなる群から選ばれる少なくとも 1種を含む界面活性 剤が付着されていることを特徴とする 1 1または 1 2いずれかに記載のリチウムィォ ン二次電池。 1 3. A surfactant containing at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant is attached to the porous layer. 11. The lithium-ion secondary battery according to any one of 1 1 and 1 2 above.
1 4.該界面活性剤の付着量が 0. 005-0. 750gZm2であることを特徴とする 1 3 記載のリチウムイオン二次電池用セパレータ。 1 4. The separator for a lithium ion secondary battery according to 1 3, wherein the surfactant is attached in an amount of 0.005-0.750 gZm 2 .
1 5.該不織布が主としてポリエチレンテレフタレートからなる不織布であることを特 徴とする 1 1から 1 4いずれかに記載のリチウムイオン二次電池。  1 5. The lithium ion secondary battery according to any one of 1 1 to 14, wherein the nonwoven fabric is a nonwoven fabric mainly composed of polyethylene terephthalate.
1 6.該主としてメタ芳香族ポリアミドからなる多孔質層の重量が 4〜1 0gZm2であ ることを特徴とする 1 5記載のリチウムイオン二次電池。 1 6. The lithium ion secondary battery according to 15, wherein the weight of the porous layer mainly composed of metaaromatic polyamide is 4 to 10 gZm 2 .
1 7.電解液の電解質が LiPF6を主体とし、溶媒全重量に対しビニレンカーボネート またはビニルアセテートを 0· 5〜5重量%含むことを特徴とする 1 5記載のリチウム イオン二次電池。 1 7. The lithium ion secondary battery according to 15, wherein the electrolyte of the electrolytic solution is mainly composed of LiPF 6 and contains 0.5 to 5% by weight of vinylene carbonate or vinyl acetate with respect to the total weight of the solvent.
1 8.該不織布が主としてメタ芳香族ポリアミドからなる不織布であることを特徴とす る 1 1から 1 4いずれかに記載のリチウムイオン二次電池。  1 8. The lithium ion secondary battery according to any one of 1 1 to 14, wherein the nonwoven fabric is a nonwoven fabric mainly composed of a metaaromatic polyamide.
1 9.該メタ芳香族ポリアミドがポリメタフエ二レンイソフタルアミドであることを特徴と する 1 1から 1 8いずれかに記載のリチウムイオン二次電池。 図面の簡単な説明 1 9. The lithium ion secondary battery according to any one of 1 1 to 18, wherein the metaaromatic polyamide is polymetaphenylene diisophthalamide. Brief Description of Drawings
図 1は過充電試験の結果である。 発明を実施するための最良の形態 以下、本発明の形態について説明する。 Figure 1 shows the results of the overcharge test. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
[セパレータ] [Separator]
本発明リチウムイオン二次電池用セパレ一タは、不織布の表裏両面に主として、メ タ芳香族ポリアミドからなる多孔質層が形成されていることを特徴とする。不織布を 用いることで芳香族ポリアミドからなる多孔膜の強度及び寸法安定性を改善し、ハン ドリング性及び生産性を向上させることができる。  The separator for a lithium ion secondary battery of the present invention is characterized in that a porous layer mainly made of a metaaromatic polyamide is formed on both the front and back surfaces of a nonwoven fabric. By using a nonwoven fabric, the strength and dimensional stability of the porous membrane made of aromatic polyamide can be improved, and the handling property and productivity can be improved.
ここで、不織布の表裏表面に主としてメタ芳香族ポリアミドからなる多孔質層が形 成されているとは、セパレータの表裏を観察したとき表裏全面が芳香族ポリアミドか らなる多孔質層に覆われていることであり、不織布を構成する繊維が見えないことで ある。これは走査型電子顕微鏡 (SEM)で容易に観察できる。表及び裏どちらか一 方もしくは両方において不織布を構成する繊維が露出しているようなセパレータでは、 電極とセパレータとの接合界面が不均一になり電池性能に不具合が生じる。これは 電極 Zセパレータ界面における電解液保持性が不十分であることが要因であり、サ ィクル経過に伴い電極 セパレ一タ界面に存在する電解液が枯渴し、サイクル特性 やサイクル経過の放電特性が不良になる。  Here, the porous layer mainly made of meta-aromatic polyamide is formed on the front and back surfaces of the nonwoven fabric. When the front and back surfaces of the separator are observed, the entire front and back surfaces are covered with the porous layer made of aromatic polyamide. The fibers that make up the nonwoven fabric are not visible. This can be easily observed with a scanning electron microscope (SEM). In a separator in which the fibers constituting the nonwoven fabric are exposed on one or both of the front and back surfaces, the bonding interface between the electrode and the separator becomes non-uniform, causing a problem in battery performance. This is due to insufficient electrolyte retention at the electrode Z separator interface, and as the cycle progresses, the electrolyte present at the electrode separator interface is depleted, causing cycle characteristics and cycle discharge characteristics. Becomes defective.
本発明セパレータでは不織布表面に形成する層はメタ芳香族ポリアミドからなる多 孔質層である。多孔質層においては空孔が連続的に形成されている必要があり、こ の多孔質層の構造はガ一レ値 (JIS P81 1 7)を指標とすることができる。本発明セ ノ《レータのガーレ値は 1 0〜50秒ノ 1 0Occが好適である。ガーレ値が 1 0秒 Z1 00 ccより低いと不織布形成繊維が露出していたリピンホールがあつたりする欠陥部分 が存在する確率が高く好ましくない。また、 50秒 Z 1 OOccより大きいとイオン透過性 が十分でなくレート特性が低下するので好ましくない。さらに、 WO01 Z067536号 明細書記載の過充電防止機能を良好に得ることが困難となり、過充電時の安全性 確保の観点から好ましくない。  In the separator of the present invention, the layer formed on the surface of the nonwoven fabric is a porous layer made of metaaromatic polyamide. In the porous layer, it is necessary that pores are continuously formed, and the structure of this porous layer can be determined by using a galley value (JIS P81 17) as an index. The Gurley value of the seno << lator of the present invention is preferably 10 to 50 seconds. If the Gurley value is lower than 10 seconds Z1 00 cc, it is not preferable because there is a high probability that there will be a defect part where the re-pin hole where the nonwoven fabric forming fibers are exposed. On the other hand, if it is larger than 50 seconds Z 1 OOcc, the ion permeability is not sufficient, and the rate characteristics are deteriorated. Furthermore, it becomes difficult to obtain the overcharge prevention function described in the specification of WO01 Z067536, which is not preferable from the viewpoint of ensuring safety during overcharge.
本発明セパレ一タにおいて膜厚は 1 5〜40 U mが好適である。膜厚が 1 5 より 薄いとセパレ一タ本来の短絡防止という機能が不十分となる。また、 40 mより厚 いとイオン伝導に伴う抵抗が高くなリレー卜特性が十分でなくなったり、電池のェネル ギ一密度が高くならなかったりという問題が生じ好ま L ない。 In the separator of the present invention, the film thickness is preferably 15 to 40 Um. If the film thickness is less than 1 5, the function of preventing the short circuit inherent to the separator will be insufficient. Also thicker than 40 m If this is the case, there will be problems such as insufficient relay characteristics with high resistance due to ionic conduction, and insufficient battery energy density.
上記のようなセパレ一タ厚みを実現するためには不織布厚みとしては 1 0〜39〃 rriであり、メタ芳香族ポリアミドからなる多孔質層の厚みは表裏合計で 1〜 1 0〃 m 程度が好ましい。本発明セパレータの実質的な強度は不織布によって決定される力《、 不織布厚み力 1 0 // mより薄いとリチウムイオン電池用セパレータとして十分な強度 を確保することが困難となる。また 39 i mより厚いとセパレ一タ厚みを 40 m以下 とすることが実質的に困難となる。また、該多孔質層の厚みが表裏合計で 1 mより 薄いと実質的に不織布表裏全面を覆うことが困難となり好ましくない。該多孔質層は セパレータのイオン伝導抵抗を概ね律速し より厚くなると十分な放電性確保 という観点から好ま L ない。  In order to realize the separator thickness as described above, the thickness of the nonwoven fabric is 10 to 39 mm, and the thickness of the porous layer made of the metaaromatic polyamide is about 1 to 10 mm in total. preferable. The substantial strength of the separator of the present invention is determined by the nonwoven fabric <<, if the nonwoven fabric thickness force is less than 10 // m, it is difficult to ensure sufficient strength as a lithium ion battery separator. On the other hand, if it is thicker than 39 im, it is difficult to make the separator thickness 40 m or less. Moreover, if the thickness of the porous layer is less than 1 m in total, it is difficult to substantially cover the entire surface of the nonwoven fabric. The porous layer is not preferable from the viewpoint of ensuring sufficient discharge performance when the ion conduction resistance of the separator is generally rate-determined and becomes thicker.
本発明セパレータに用いる不織布は目開きが出来る限り細かい方が好ましく、この ような不織布を得るためには繊維径は細かい方が好ましい。このような観点から、不 織布を構成する繊維の繊維径は 1 0 m以下が好適であり、さらに 5 m以下が好 ましい。  The non-woven fabric used in the separator of the present invention is preferably as fine as possible, and the fiber diameter is preferably fine in order to obtain such a non-woven fabric. From such a viewpoint, the fiber diameter of the fibers constituting the nonwoven fabric is preferably 10 m or less, and more preferably 5 m or less.
不織布を成形する場合、主繊維と主繊維を結着するためのバインダーが必要であ る。この不織布を成形するためのバインダーは繊維またはパルプが好ましい。  When forming a non-woven fabric, a binder for binding the main fibers to the main fibers is required. The binder for forming the nonwoven fabric is preferably fiber or pulp.
該不織布を製造する方法は公知の方法を適用することが可能である。具体的には 乾式法、ウォーターニ一ドル法、湿式抄造法、スパンボンド法、メルトブロー法、エレ クトロスピニング法等が挙げられる。薄葉化と目開きの均一性を考えると湿式抄造 法が特に好適である。  A known method can be applied to the method for producing the nonwoven fabric. Specific examples include a dry method, a water needle method, a wet papermaking method, a spunbond method, a melt blow method, and an electrospinning method. The wet papermaking method is particularly suitable in view of the thinning and uniformity of the openings.
該不織布を構成する材質は十分な耐熱性と電解液に対する耐性があれば特に限 定はされず、具体的にはポリエチレン亍レフタレー卜(PET)に代表されるポリエステ ル、芳香族ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリフ: i:二レンサルファ イド、ポリイミド等が挙げられる。.特に、より細い繊維を成形し易く耐熱性が高いとし、 う観点から PETが好ましい。また、高強度'高耐熱性という観点では芳香族ポリアミ ド、特にメタ芳香族ポリアミドが好ましぐ特に成形性の観点からポリメタフヱニレンィ ソフタルアミドが好適である。該不織布において不織布の耐熱性を損ねない範疇で ポリエチレン、ポリプロピレン等のポリオレフイン系繊維を混合させても問題な《これ ら材料を少量混入させると安全性が向上する場合もある。この場合のポリオレフイン 繊維の添加量は該不織布の重量に対し、 30重量%以下が好ましい。 The material constituting the nonwoven fabric is not particularly limited as long as it has sufficient heat resistance and resistance to an electrolytic solution, and specifically, polyester, aromatic polyamide, polysulfone, represented by polyethylene terephthalate (PET), Examples include polyethersulfone, polyph: i: dilensulfide, polyimide and the like. In particular, PET is preferable from the viewpoint of facilitating molding of finer fibers and high heat resistance. Also, from the viewpoint of high strength and high heat resistance, aromatic polyamid In particular, from the viewpoint of moldability, polymetaphenylene sophthalamide is preferred. Even if polyolefin fibers such as polyethylene and polypropylene are mixed within the range in which the heat resistance of the nonwoven fabric is not impaired in the nonwoven fabric, there is a case where safety is improved by adding a small amount of these materials. In this case, the amount of polyolefin fiber added is preferably 30% by weight or less based on the weight of the nonwoven fabric.
特に、薄膜'高強度という観点ではメタ芳香族ポリアミドからなる短繊維とパラ芳香 族ポリアミドパルプを用いた不織布が好適である。該不織布は多孔質層を形成する メタ芳香族ポリアミドと親和性が高ぐ複合化することで高い強度が得られる。また、 上記の構成の不織布は薄膜化が容易である。  In particular, from the viewpoint of thin film and high strength, non-woven fabric using short fibers made of meta-aromatic polyamide and para-aromatic polyamide pulp is preferable. The nonwoven fabric can be combined with a metaaromatic polyamide that forms a porous layer and has a high affinity to obtain a high strength. Moreover, the nonwoven fabric of said structure is easy to make thin film.
本発明セパレータにおいて、多孔質層を形成する材質は主にメタ芳香族ポリアミド が好適である。芳香族ポリアミドはポリパラフエ二レン亍レフタルアミドに代表される パラ芳香族ポリアミドとポリメタフエ二レンイソフタルアミドに代表されるメタ芳香族ポ リアミドがあるが、本発明セパレータにおいてはメタ芳香族ポリアミド、特にポリメタフ ェニレンイソフタルアミドが好ましい。パラ芳香族ポリアミドは溶媒への溶解性が低 低濃度においても高粘度となるため該多孔質層を強度、イオン透過性が十分なもの に形成することが非常に難しい。具体的には小さい孔しか形成せず、これらが非連 続となるので、イオン透過性が不十分となる。それに対し、メタ芳香族ポリアミドは溶 媒に十分溶解し、濃度 '粘度の観点で適切な高分子溶液を調整することが容易であ る。また、孔径制御も容易で十分なイオン透過性を確保できる。特に、 WO01ノ 06 7536号明細書の過充電防止機能を発現させるためには該多孔層の孔径を適切に 制御する必要があり、このような機能を付加するという観点からメタ芳香族ポリアミド はパラ芳香族ポリアミドに比べ好適である。  In the separator of the present invention, the material for forming the porous layer is preferably metaaromatic polyamide. Aromatic polyamides include para-aromatic polyamides typified by polyparaphenylene terephthalamide and meta-aromatic polyamides typified by polymeta-phenylene isophthalamide. Isophthalamide is preferred. Since the para-aromatic polyamide has low solubility in a solvent and high viscosity even at a low concentration, it is very difficult to form the porous layer with sufficient strength and ion permeability. Specifically, only small pores are formed, and these are discontinuous, resulting in insufficient ion permeability. On the other hand, the metaaromatic polyamide is sufficiently dissolved in the solvent, and it is easy to prepare an appropriate polymer solution in terms of concentration and viscosity. Further, the pore diameter can be easily controlled and sufficient ion permeability can be ensured. In particular, in order to develop the overcharge prevention function of WO01 No. 06 7536, it is necessary to appropriately control the pore diameter of the porous layer. From the viewpoint of adding such a function, the metaaromatic polyamide is a paraffin. It is more suitable than aromatic polyamide.
該多孔質層を形成する材質は主にメタ芳香族ポリアミドが好まし《メタ芳香族ポリ アミドの特徴である耐熱性と多孔質層の構造制御を損ねない範疇で他の材質が混 合されていても構わなし、。具体的には、パラ芳香族ポリアミド、ポリスルホン、ポリエ 一テルスルホン、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体、ポリアクリロ ニド Jル、ポリメチルメタクリレーにポリエチレンオキサイド、ポリプロピレンォキサイ ド、ポリビニルピロリドン等が挙げられ、これらの成分は多孔質層を形成するメタ芳 香族ポリアミドに対して、 30重量%以下が好適である。 The material for forming the porous layer is preferably a metaaromatic polyamide. Other materials are mixed in a category that does not impair the heat resistance and the structural control of the porous layer, which are the characteristics of a metaaromatic polyamide. It does n’t matter. Specifically, para aromatic polyamide, polysulfone, polyethersulfone, polyvinylidene fluoride, polyvinylidene fluoride copolymer, polyacrylo Nido J, polymethyl methacrylate include polyethylene oxide, polypropylene oxide, polyvinyl pyrrolidone, etc. These components are preferably 30% by weight or less based on the meta-aromatic polyamide forming the porous layer. is there.
..該不織布に PETを用いる場合、該多孔質層を形成するメタ芳香族ポリアミドの重 量は 4〜1 0gZm2が好適である。 PETをリチウムイオン二次電池用セパレ一タの材 質に用いる場合、特殊な環境における耐久性に課題があるが、メタ芳香族ポリアミド と複合化させることでこの耐久性を顕著に改善することができる。メタ芳香族ポリアミ ドの重量が 4gZm2未満であると耐久性改善が十分でなく好ましくなし、。重量が 1 Og Zm2より多いとイオン透過性を悪化させるといった問題が生じる。 When PET is used for the nonwoven fabric, the weight of the metaaromatic polyamide forming the porous layer is preferably 4 to 10 gZm 2 . When PET is used as a separator material for lithium ion secondary batteries, there is a problem with durability in special environments, but this durability can be remarkably improved by compounding with metaaromatic polyamide. it can. When the weight of the metaaromatic polyamide is less than 4 gZm 2 , the durability is not improved sufficiently, which is not preferable. If the weight is greater than 1 Og Zm 2, the problem of deteriorating ion permeability occurs.
本発明におけるメタ芳香族ポリアミドは、 N—メチル一2—ピロリドンに溶解した場 合に、下式(1 )の対数粘度で表して、 0. 8〜2. 5dlZg、好まし ま 1 . 0〜2, 2dlZ gの範囲のポリマーであることが好ましい。対数粘度が 0. 8dlZgより低いと十分な 機械強度が得られず、対数粘度が 2. 5dlZgを超えると安定なポリマー溶液を得る ことが困難となり、均一な多孔質層を形成するためには好ましくない。  When the metaaromatic polyamide in the present invention is dissolved in N-methyl-1-pyrrolidone, it is represented by the logarithmic viscosity of the following formula (1): 0.8 to 2.5 dlZg, preferably 1.0 to A polymer in the range of 2, 2 dlZ g is preferred. When the logarithmic viscosity is lower than 0.8 dlZg, sufficient mechanical strength cannot be obtained, and when the logarithmic viscosity exceeds 2.5 dlZg, it becomes difficult to obtain a stable polymer solution, which is preferable for forming a uniform porous layer. Absent.
対数粘度 (単位: dlZg) =ln (TZTO)ZC ( 1 )  Logarithmic viscosity (unit: dlZg) = ln (TZTO) ZC (1)
T:メタ芳香族ポリアミド 0. 5gを N—メチゾレー 2—ピロリドン 1 00mlに溶解した溶液 の 30°Cにおける毛細管粘度計の流動時間  T: Flow time of capillary viscometer at 30 ° C in a solution of 0.5 g of metaaromatic polyamide dissolved in 100 ml of N-methizole 2-pyrrolidone
TO : N—メチルー 2—ピロリドンの 30°Cにける毛細管粘度計の流動時間  TO: N-methyl-2-pyrrolidone flow time at 30 ° C in capillary viscometer
C:ポリマー溶液中のポリマー濃度(gZdl)  C: Polymer concentration in polymer solution (gZdl)
本発明のセパレータにおいて、帯電防止の観点から該多孔質層に界面活性剤を 付着させたものも好適である。該界面活性剤は特に限定されないが、例えば陽ィォ ン系、陰イオン系、両性イオン系、非イオン系の界面活性剤を使用することができる。 陽イオン系界面活性剤としては、高級アミンハロゲン酸塩、ハロゲン化アルキルピリ ジニゥ厶、第四級アンモニゥム塩等が挙げられる。陰イオン系界面活性剤としては、 高級脂肪酸アルカリ塩、ポリオ午シエチレンアルキルエーテルスルホン酸エステル 塩、ポリオキシエチレンアルキルエーテルホスホン酸塩、アルキル硫酸塩、アルキル スルホン酸塩、アルキルァリールスルホン酸塩、スルホコハク酸エステル塩等が挙 げられる。両性イオン系界面活性剤としては、アルキルべタイン系化合物、イミダゾリ ン系化合物、アルキルアミンオキサイド、ビスォキシボレート系化合物等が挙げられ る。非イオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリ ォキシエチレンアルキルフエニルエーテル類、ポリオキシエチレンアルキルァリルェIn the separator of the present invention, one having a surfactant attached to the porous layer is also preferable from the viewpoint of antistatic. The surfactant is not particularly limited, and for example, a cationic, anionic, zwitterionic or nonionic surfactant can be used. Examples of cationic surfactants include higher amine halogenates, halogenated alkyl pyridines, and quaternary ammonium salts. Examples of anionic surfactants include higher fatty acid alkali salts, polyoxyethylene alkyl ether sulfonate esters, polyoxyethylene alkyl ether phosphonates, alkyl sulfates, alkyls. Examples include sulfonates, alkylaryl sulfonates, and sulfosuccinate esters. Examples of zwitterionic surfactants include alkylbetaine compounds, imidazoline compounds, alkylamine oxides, and bisoxyborate compounds. Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl aryl ethers.
—テル類、グリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、 ソルビタン脂肪酸エステル等が挙げられる。 —Tells, glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sorbitan fatty acid esters and the like.
特に、陽イオン系界面活性剤、陰イオン系界面活性剤、両性イオン系界面活性剤 は帯電防止効果が強いため、使用量を低く抑えることができ、使用が望ましい。また、 これらを混合することによって、芳香族アミドと界面活性剤の親和性を高め、帯電防 止効果を向上させることもできる。  In particular, cationic surfactants, anionic surfactants, and zwitterionic surfactants have a strong antistatic effect, so that the amount used can be kept low and it is desirable to use them. Also, by mixing these, the affinity between the aromatic amide and the surfactant can be increased, and the antistatic effect can be improved.
界面活性剤の付量は 0. 005〜0. 750Zm2であることが望ましい。 0. 005gZ m2より少ないと充分な帯電防止効果が得られず、 0. 750gノ m2より多いと電池の 性能に悪影響が出ることがある。界面活性剤の付量は、界面活性剤塗工後 90°Cで 1 0時間真空乾燥した電池用セパレータと、界面活性剤可溶溶媒に浸漬させた後 9The amount of the surfactant is desirably 0.005 to 0.750 Zm 2 . Sufficient antistatic effect is less than 0. 005gZ m 2 can not be obtained, which may adversely affect the performance of the battery is more than 0. 750 g Roh m 2. The amount of the surfactant was determined after the surfactant was applied and vacuum-dried at 90 ° C for 10 hours and then immersed in a surfactant-soluble solvent.
0°Cで 1 0時間真空乾燥した電池用セパレータの質量差や、界面活性剤可溶溶媒で 抽出した溶液を乾固させた抽出成分を H— NMRやガスクロマトグラフィーなどにより 分析し質量を測定することなどから求めることができる。 Analyze the mass difference of battery separators vacuum-dried at 0 ° C for 10 hours or extract components obtained by drying a solution extracted with a surfactant-soluble solvent by H-NMR or gas chromatography to measure mass. You can ask for it.
静電気を評価する手法としては、 JIS L 1 084の摩擦帯電圧測定法を用いる。 摩擦帯電圧測定法によって静電気の半減期が 30秒以下であることが好適である。 半減期が 30秒以上であると、静電気の減衰が遅いため、帯電防止効果が充分とは 言えない。  As a method for evaluating static electricity, the frictional voltage measurement method of JIS L 1 084 is used. It is preferable that the half-life of static electricity is 30 seconds or less by the frictional voltage measurement method. If the half-life is 30 seconds or more, the antistatic effect is not sufficient because the decay of static electricity is slow.
[セパレータの製造法]  [Separator manufacturing method]
本発明のリチウムイオン二次電池用セパレータはさまざまな方法で製造でき、製造 法により限定されるものではなし.、。例えば、不織布の両面にメタ芳香族ポリアミド多 孔膜をプレス加工で圧着させる方法、不織布の両表面にメタ芳香族ポリアミドからな る高分子溶液を塗工し、該塗工層を乾式法、乾湿式法、湿式法いずれかの方法でミ クロ相分離させる方法等が挙げられる。 The separator for a lithium ion secondary battery of the present invention can be produced by various methods, and is not limited by the production method. For example, a method of pressing a meta-aromatic polyamide porous film on both sides of a nonwoven fabric by press working, and a method using a meta-aromatic polyamide on both surfaces of a nonwoven fabric. For example, there is a method in which a polymer solution is applied and the coating layer is subjected to microphase separation by any one of a dry method, a dry wet method, and a wet method.
特に、メタ芳香族ポリアミドとこれに対し良溶媒である溶媒を主成分とする高分子 溶液を不^!布の表裏両面に塗工し、次いで塗工された不織布をメタ芳香族ポリアミ ドに対し貧溶媒である溶媒と良溶媒である溶媒から主としてなる混合液 (凝固液)中 で凝固させ、次いで水洗、乾燥する製造法 (湿式ミクロ相分離法)が好適である。該 製造法を採用することによってメタ芳香族ポリアミド多孔質層の多孔質層の構造制 御が容易となる。また、表裏両面に塗工することによって高分子溶液の含浸不良に よる不織布構成繊維の露出を無くすことで品位のよいセパレ一タを製造することが 可能となる。  In particular, a polymer solution mainly composed of a metaaromatic polyamide and a solvent that is a good solvent for the metaaromatic polyamide is applied to both front and back surfaces of the cloth, and then the coated non-woven fabric is applied to the metaaromatic polyamide. A production method (wet microphase separation method) in which the mixture is coagulated in a mixed liquid (coagulating liquid) mainly composed of a solvent that is a poor solvent and a solvent that is a good solvent, then washed with water and dried (wet microphase separation method) is preferable. By adopting this production method, the structural control of the porous layer of the metaaromatic polyamide porous layer becomes easy. Moreover, it is possible to manufacture a high-quality separator by eliminating the exposure of the non-woven fabric constituting fiber due to poor impregnation of the polymer solution by coating on both the front and back surfaces.
上記の製造法について具体的には特許文献 6記載の製造装置や概念が適用でき る。具体的には、不織布の表裏両面に高分子溶液を塗工する塗工方式として不織 布の両面から過剰な高分子溶液を供給し、対峙した 1対のマイヤーバーやダイの間 に不織布を通過させることで計量する方式が挙げられ、さらにこの高分子溶液が塗 ェされた不織布を表裏両面が凝固液と接するように凝固液に浸漬することで凝固さ れた多孔質層が不織布の表裏両面に成形される。  Specifically, the manufacturing apparatus and concept described in Patent Document 6 can be applied to the above manufacturing method. Specifically, as a coating method in which a polymer solution is applied to both the front and back surfaces of a nonwoven fabric, an excess polymer solution is supplied from both sides of the nonwoven fabric, and the nonwoven fabric is placed between a pair of opposed Meyer bars and dies. There is a method to measure by passing, and further, the porous layer solidified by immersing the nonwoven fabric coated with this polymer solution in the coagulation liquid so that both front and back surfaces are in contact with the coagulation liquid Molded on both sides.
該製造法において、該良溶媒はアミド系溶媒が適切であり、例えばジメチルァセト アミド、 N—メチルー 2_ピロリドン等が好ましい。また、該貧溶媒は具体的にアルコ ール類、水等が挙げられ、特に水が好適である。  In the production method, an amide solvent is suitable as the good solvent, and for example, dimethylacetamide, N-methyl-2-pyrrolidone and the like are preferable. Specific examples of the poor solvent include alcohols and water, and water is particularly preferable.
該高分子溶液の高分子濃度としては、使用するメタ芳香族ポリアミドの種類や重 合度に大きく依存するため一概には決められなし、が、例えばポリメタフエ二レンイソフ タルアミドを使用する場合は 5〜20重量%の範囲が好適である。  The polymer concentration of the polymer solution is largely determined depending on the type and degree of polymerization of the metaaromatic polyamide used. However, for example, when using polymetaphenylene isophthalamide, it is 5 to 20 weights. % Range is preferred.
高分子濃度が低い場合はイオン透過性に特に優れたセパレータが得られるが、高 分子溶液の粘度が低いため不織布に塗工するときピンホール等の観点から生産性 は十分なものでなし、。高分子溶液の高分子濃度を下げイオン透過性に特に優れた ものを得ようとする場合は該高分子溶液にセラミック微粒子を添加する手法が好適 である。セラミック微粒子の添加によって該高分子溶液の粘度が増加し低高分子濃 度であっても不織布へ容易に塗工できるようになる。 When the polymer concentration is low, a separator with particularly excellent ion permeability can be obtained. However, since the viscosity of the high molecular solution is low, the productivity is not sufficient from the viewpoint of pinholes when applied to a nonwoven fabric. In order to obtain a polymer solution with particularly high ion permeability by reducing the polymer concentration, it is preferable to add ceramic fine particles to the polymer solution. It is. The addition of the ceramic fine particles increases the viscosity of the polymer solution, so that it can be easily applied to the nonwoven fabric even at a low polymer concentration.
該セラミック微粒子として具体的に、シリカ、アルミナ、ジルコニァ、マグネシア、チタ ;ァ、チタン酸バリウム、窒化アルミニウム、酸化カルシウム、炭酸カルシウム、フッ 化リチウム、酸化リチウム等が挙げられる。特に、アルミナ、ジルコニァ、マグネシア が好適である。  Specific examples of the ceramic fine particles include silica, alumina, zirconia, magnesia, titanium; a, barium titanate, aluminum nitride, calcium oxide, calcium carbonate, lithium fluoride, lithium oxide, and the like. In particular, alumina, zirconia, and magnesia are suitable.
該セラミック微粒子の平均粒子径は 0. 05〜2 mが好適であり、特に 0. "!〜 1〃 mの範囲が好ましい。セラミック微粒子が 0. 05 m以下となると凝集等の観点から ハンドリング性が難しくなる。また、 2 m以上となると塗工の際にダイ筋を発生しや すくなり好まし〈なし、。ここで平均粒子径はレーザー回折測定法にて測定可能であり、 体積粒度分布における中心粒径(D50)を意味する。また、本発明での平均粒子径 とは 1次粒子の平均粒子径のことである。  The average particle size of the ceramic fine particles is preferably 0.05 to 2 m, particularly preferably in the range of 0. "! To 1 mm. From the viewpoint of aggregation and the like, when the ceramic fine particles are 0.05 m or less, the handling property is good. In addition, when the length is 2 m or more, die streaks are more likely to occur during coating, and it is preferable. <No. Here, the average particle size can be measured by the laser diffraction measurement method. The average particle size in the present invention is the average particle size of primary particles.
該セラミック微粒子の添加量は高分子溶液の高分子濃度との兼ね合いで好適に 決定されるものであるが、概ね該多孔質を形成するメタ芳香族ポリアミド (他の有機 高分子を含む場合はこれも含む)とセラミック微粒子の重量に対し 30〜80重量%が 好ましい。 30重量%よりセラミック微粒子の量が少ないと十分な増粘効果が得られ ず効果が不十分である。また、 80重量%よりセラミック微粒子の量が多いとセパレ ータを成形した際に粉落ち等の問題が生じ好まし〈ない。  The amount of the ceramic fine particles to be added is suitably determined in view of the polymer concentration of the polymer solution, but is generally a metaaromatic polyamide that forms the porous material (if other organic polymers are included, this is not the case). 30 to 80% by weight with respect to the weight of the ceramic fine particles. If the amount of ceramic fine particles is less than 30% by weight, a sufficient thickening effect cannot be obtained and the effect is insufficient. Also, if the amount of ceramic fine particles is larger than 80% by weight, problems such as powder falling off when molding the separator are not preferable.
この製造法上のセラミック微粒子添加の効果は該高分子溶液中の高分子濃度が 1 0重量%以下のときに特に好適である。  The effect of addition of ceramic fine particles in this production method is particularly suitable when the polymer concentration in the polymer solution is 10% by weight or less.
また、セラミック微粒子添加の効果は上記の製造法における効果だけではなぐ以 下に述べるように構成上の特徴も有する。セラミック微粒子は一般にメタ芳香族ポリ アミドに比べ耐熱性が高く、メタ芳香族ポリアミドが熱分解する 400°C付近まで電池 温度が上昇したときにもセラミック微粒子を添加した構成ではセパレータとして機能 する。さらに、セラミック微粒子は滑剤としても機能し帯電防止効果または静電気が 発生した場合のハンドリング性向上にも寄与する。 該高分子溶液に多孔構造を制御する目的で、相分離剤を添加しても良い。相分離 剤はメタ芳香族ポリアミドに対して貧溶媒であり、凝固液に相溶化するものであれば 用いることが可能である。具体的には、水やアルコール類が好適であり、特に重合 休を含むプロピレングリコール、エチレングリコール、ジエチレングリコール、トリプロ ピレングリコ一ル、 1 , 3—ブタンジオール、 1 , 4—ブタンジオール、ポリエチレングリ コールモノェチルエーテル、メタノール、エタノール、グリセリン等多価アルコール等 が好適に選ばれる。該高分子溶液中の相分離剤の濃度は、該良溶剤と相分離剤の 混合液中に対して 0~40重量%の範囲で好適に選ばれる。 In addition, the effect of adding ceramic fine particles is not limited to the effect of the above manufacturing method, but also has structural features as described below. Ceramic fine particles generally have higher heat resistance than metaaromatic polyamides, and even when the battery temperature rises to around 400 ° C where the metaaromatic polyamide thermally decomposes, the ceramic fine particles function as a separator. Furthermore, the ceramic fine particles also function as a lubricant and contribute to an antistatic effect or improved handling when static electricity is generated. A phase separation agent may be added to the polymer solution for the purpose of controlling the porous structure. The phase separation agent is a poor solvent for the metaaromatic polyamide and can be used as long as it is compatible with the coagulation liquid. Specifically, water and alcohols are suitable, and in particular, propylene glycol, ethylene glycol, diethylene glycol, tripropylene glycol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol mono, including polymerization holiday. Polyhydric alcohols such as ethyl ether, methanol, ethanol and glycerin are preferably selected. The concentration of the phase separation agent in the polymer solution is suitably selected in the range of 0 to 40% by weight with respect to the mixture of the good solvent and the phase separation agent.
該凝固液は前述の良溶媒と貧溶媒の混合液が好ましい。ここで高分子溶液に相 分離剤を適用した場合においては適切な比率で凝固液中へ該相分離剤を混合した 方がプロセス管理上好ましい。具体的には、該高分子溶液における該良溶媒と相分 離剤の比率に凝固液での比率も一致させるのが好適である。  The coagulation liquid is preferably a mixed liquid of the aforementioned good solvent and poor solvent. Here, when the phase separation agent is applied to the polymer solution, it is preferable in terms of process management to mix the phase separation agent into the coagulation liquid at an appropriate ratio. Specifically, it is preferable that the ratio of the coagulating liquid matches the ratio of the good solvent and the phase separating agent in the polymer solution.
該凝固浴における該貧溶媒の比率は、該貧溶媒に水を適用した場合、 1 0〜80重 量%の範囲から好適に選ばれる。  The ratio of the poor solvent in the coagulation bath is suitably selected from the range of 10 to 80% by weight when water is applied to the poor solvent.
凝固させた多孔質層が形成された不織布は次に水洗工程に移され、次いで乾燥 工程において水を乾燥することで本発明セパレータを得ることができる。ここで、乾 燥工程は加熱ロールに接触させて乾燥させる方式が好適に選ばれる。  The nonwoven fabric on which the solidified porous layer is formed is then transferred to a water washing step, and then the water is dried in the drying step to obtain the separator of the present invention. Here, as the drying step, a method of drying by contacting with a heating roll is preferably selected.
本発明セパレータの製造法において界面活性剤を付着させる場合は、その方法は 特に限定されないが、界面活性剤を溶媒に溶かし、多孔膜にスプレーして乾燥させ る方法や、多孔膜を浸潰させ乾燥させる方法などが挙げられる。  In the production method of the separator of the present invention, when the surfactant is adhered, the method is not particularly limited, but the surfactant is dissolved in a solvent, sprayed onto the porous film and dried, or the porous film is immersed. The method of drying etc. are mentioned.
[リチウムイオン二次電池] [Lithium ion secondary battery]
一般にリチウムイオン二次電池はセパレータを介して正極と負極とが対向し接合さ れた電池エレメントに電解液が含浸され外装に封入された構成となっている。本発 明のリチウムイオン二次電池は前述した本発明セパレータを用いることが特徴であ リ、他の構成要素においては公知技術を適用することができ、他の構成要素におい て本質的に限定されるものではない。 負極は、負極活物質、バインダー、導電助剤から成形された層が集電体上に塗工 されたものが一般的に用いられる。これは負極活物質、バインダー、導電助剤に溶 剤を加え混練してスラリーを作製し、これを集電体上へ塗工し、乾燥'プレスを行うこ とで作製する。負極活物質、バインダー、導電助剤の合計重量を 1 00%としたとき、 負極活物質の重量は 80〜98重量%、バインダーは 2〜20重量%、導電助剤は 0 〜1 0重量%の範囲が好適である。負極活物質としては炭素材料、シリコン、スズ等 が挙げられる。炭素材料としてはメソカーボンマイクロビーズやマイクロカーポンファ ィバーのような黒鉛化し易いピッチ等を前駆体として得たもの、フエノール樹脂のよう な黒鉛化し難いものを前駆体としたものが挙げられる。バインダ一としてはポリフッ 化ビニリデンゃカルポキシメチルセルロース等が挙げられる。導電助剤は黒鉛粉末、 アセチレンブラック、ケッチェンブラック、気相成長カーボンファイバー等が好適に用 いられる。集電体には銅箔、ステンレススチール等が好適である。 In general, a lithium ion secondary battery has a structure in which a battery element in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween is impregnated with an electrolytic solution and sealed in an exterior. The lithium ion secondary battery of the present invention is characterized by the use of the separator of the present invention described above, and a known technique can be applied to other components, which are essentially limited to other components. It is not something. A negative electrode is generally used in which a layer formed from a negative electrode active material, a binder, and a conductive additive is coated on a current collector. This is prepared by adding a solvent to a negative electrode active material, a binder, and a conductive additive to knead to prepare a slurry, which is applied onto a current collector and dried and pressed. When the total weight of the negative electrode active material, the binder, and the conductive additive is 100%, the negative electrode active material is 80 to 98% by weight, the binder is 2 to 20% by weight, and the conductive auxiliary is 0 to 10% by weight. The range of is preferable. Examples of the negative electrode active material include carbon materials, silicon, and tin. Examples of the carbon material include those obtained by using, as a precursor, pitches that are easily graphitized, such as mesocarbon microbeads and microcarbon fibers, and those that are difficult to graphitize, such as phenol resin. Examples of the binder include polyvinylidene fluoride and carboxymethylcellulose. As the conductive aid, graphite powder, acetylene black, ketjen black, vapor grown carbon fiber, and the like are preferably used. The current collector is preferably copper foil, stainless steel, or the like.
正極も負極同様に、正極活物質、バインダー、導電助剤から形成された層が集電 体上に塗工されたものが一般的に用いられる。これは正極活物質、バインダー、導 電助剤に溶剤を加え混練してスラリーを作製し、これを集電体上へ塗工し、乾燥-プ レスを行うことで作製する。正極活物質、バインダー、導電助剤の合計重量を 1 0 0%としたとき、正極活物質の重量は 80〜98重量%、バインダ一は 2〜20重量%、 導電助剤は 0〜 1 0重量%の範囲が好適である。正極活物質としては LiCo02、 LiNi 02、スピネルタイプの LiMn204、オリビンタイプの LiFeP04等及びこれらに異種元 素を固溶化したものが挙げられ、これらは混合して用いてもよい。バインダーとして はポリフッ化ビニリデンが好適に用いられる。導電助剤は黒鉛粉末、アセチレンブラ ック、ケッチェンブラック、気相成長力一ボンファイバ一等が好適に用いられる。集電 体にはアルミ箔、ステンレススチール等が好適である。 As in the case of the negative electrode, a positive electrode in which a layer formed of a positive electrode active material, a binder, and a conductive additive is coated on a current collector is generally used. This is prepared by adding a solvent to a positive electrode active material, a binder, and a conductive aid, kneading to prepare a slurry, applying the slurry onto a current collector, and drying and pressing. When the total weight of the positive electrode active material, the binder, and the conductive additive is 100%, the positive electrode active material is 80 to 98% by weight, the binder is 2 to 20% by weight, and the conductive auxiliary is 0 to 10%. A range of weight percent is preferred. Examples of the positive electrode active material include LiCo0 2 , LiNi 0 2 , spinel type LiMn 2 0 4 , olivine type LiFeP0 4, and the like, and those in which different elements are dissolved, and these may be used in combination. . As the binder, polyvinylidene fluoride is preferably used. As the conductive additive, graphite powder, acetylene black, ketjen black, vapor growth power, one-bon fiber, etc. are preferably used. For the current collector, aluminum foil, stainless steel or the like is suitable.
電解液はリチウム塩を非水系溶媒に溶解させた非水系電解液が用いられる。リチ ゥ厶塩としては、 LiPF6、 LiBF4.、 LiCI04等が好適に用いられる。非水溶媒はプロピ レンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカ一ボネート(DMC)、 ジェチルカーボネート(DEC)、ェチルメチルカーボネート(EMC)等が挙げられる。こ れらリチウム塩及び非水溶媒は単独で用いても 2種類以上混合して用いても構わな し、。リチウム塩の濃度は 0. 5〜2. OMの範囲が好適である。また、電解液にビニレ ンカーボネート (VC)、ビニルアセテート (VA)を添加した方が耐久性の観点から好 適である。 As the electrolytic solution, a non-aqueous electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent is used. As the lithium salt, LiPF 6 , LiBF 4. , LiCI 0 4 and the like are preferably used. Non-aqueous solvents are propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), Examples include jetyl carbonate (DEC) and ethyl methyl carbonate (EMC). These lithium salts and non-aqueous solvents may be used alone or in combination of two or more. The concentration of the lithium salt is preferably in the range of 0.5 to 2. OM. In addition, it is preferable to add vinylene carbonate (VC) or vinyl acetate (VA) to the electrolyte from the viewpoint of durability.
本発明のリチウムイオン二次電池において、上記正極、負極、セパレ一タからなる 電池エレメントは捲回して円筒状または扁平状にしたり、積層構造としたりして外装 中に封入される。過充電防止機能を良好に発現させるという観点では、折り曲げ構 造を有していた方がよぐ特に捲回し扁平状の構成とすることが好ましい。  In the lithium ion secondary battery of the present invention, the battery element composed of the positive electrode, the negative electrode, and the separator is wound into a cylindrical or flat shape or a laminated structure and enclosed in an exterior. From the viewpoint of satisfactorily expressing the overcharge prevention function, it is preferable to have a folded structure, and it is particularly preferable to have a wound flat structure.
外装は金属ケース、アルミラミネートフィルムケース等の如何なる形態において実 施可能である。  The exterior can be implemented in any form such as a metal case or an aluminum laminated film case.
【実施例】 【Example】
以下、実施例により本発明を詳述する。ただし、本発明は以下の実施例に限定さ れるものではない。  Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples.
[実施例 1 ] [Example 1]
繊度 0. "M dtex (平均繊維径約 3. 2 m)の PET短繊維と繊度 0. 33dtex (平均 繊維径約 5. 5 m)の PET短繊維、および繊度 0. 22dtex (平均繊維径約 4. 5〃 m)のバインダー用 PET短繊維を 3Z2Z5の重量比でブレンドし、湿式抄造法によ リ目付 1 2. 6gZm2で製膜し、 1 40°Cでカレンダーを施し、膜厚 1 8〃mの PET不織 布を得た。 PET staple fibers with a fineness of 0.2 "M dtex (average fiber diameter approx. 3.2 m) and PET short fibers with a fineness of 0.33 dtex (average fiber diameter approx. 5.5 m), and fineness of 0.22 dtex (average fiber diameter approx. 4. 5mm m) binder PET short fiber was blended at a weight ratio of 3Z2Z5, and weighed by wet papermaking method 1 2. 6 gZm 2 was formed, 1 40 ° C was calendered, film thickness 1 An 8 mm PET non-woven fabric was obtained.
ポリメタフエ二レンイソフタルアミド (帝人テクノプロダクツ株式会社製;商品名 Γコー ネックス」)をジメチルァセトアミド:トリプロピレングリコール =85 : 1 5 (重量比)であ る混合溶媒に 9重量%となるように溶解し、高分子溶液を調整した。この高分子溶液 を該 PET不織布の両面に塗工し、この塗工物をジメチルァセトアミド:水 =55: 45 (重量比)の組成である 30°Cの凝固浴に 60秒間浸潰し凝固膜を得た。この凝固膜 を 50°Cの水浴中で 1 0分間水洗し、次いで乾燥することで本発明のリチウムイオン 二次電池用セパレータを得た。これを本発明セパレータ 1とする。本発明セパレータ 1は、膜厚 21〃m、目付 14.7gZm2、ガ一レ値(JIS P8117)23秒 Z1 OOccで あった。 Polymetaphenylene isophthalamide (manufactured by Teijin Techno Products Ltd .; trade name Γ Cornex)) is 9% by weight in a mixed solvent of dimethylacetamide: tripropylene glycol = 85: 1 5 (weight ratio). And the polymer solution was prepared. This polymer solution was coated on both sides of the PET nonwoven fabric, and the coated material was solidified by immersing in a 30 ° C coagulation bath with a composition of dimethylacetamide: water = 55:45 (weight ratio) for 60 seconds. A membrane was obtained. This solidified film is washed with water in a 50 ° C. water bath for 10 minutes, and then dried to obtain the lithium ion of the present invention. A separator for a secondary battery was obtained. This is the separator 1 of the present invention. The separator 1 of the present invention had a film thickness of 21 mm, a basis weight of 14.7 gZm 2 and a galley value (JIS P8117) of 23 seconds Z1 OOcc.
本サンプルを走査型電子顕微鏡 (SEM)で表裏表面を観察した結果、不織布を構 成する繊維の露出は認められなかった。  As a result of observing the front and back surfaces of this sample with a scanning electron microscope (SEM), exposure of fibers constituting the nonwoven fabric was not observed.
[実施例 2]  [Example 2]
繊度 0.9dtex (平均繊維径約 10 m)のポリメタフエ二レンイソフタルアミド短繊維 を用し、、乾式法により目付 15. OgZm2で製膜して、 320°Cにてカレンダ一を施し、 膜厚 30〃 mの不織布を得た。 Using polymetaphenylene isophthalamide short fibers with a fineness of 0.9dtex (average fiber diameter of about 10 m), weighed by dry method with a basis weight of 15. OgZm 2 and calendered at 320 ° C. A 30 mm non-woven fabric was obtained.
該不織布を用い、実施例 1と同様に高分子溶液を用い、同様の方法で本発明のリ チウムイオン二次電池用セパレータを得た。これを本発明セパレータ 2とする。本発 明セノ レータ 2は、膜厚 、目付 18. 1 gZm2、ガーレ値(JIS P8117)35秒 Z1 OOccであった。 Using the nonwoven fabric, a polymer solution was used in the same manner as in Example 1, and the lithium ion secondary battery separator of the present invention was obtained in the same manner. This is the separator 2 of the present invention. The present invention snorator 2 had a film thickness, a basis weight of 18.1 gZm 2 and a Gurley value (JIS P8117) of 35 seconds Z1 OOcc.
[比較例 1] [Comparative Example 1]
実施例 1と同様の不織布を PETフィルム上に固定し、その上から実施例 1で用いた 高分子溶液を塗工した。実施例 1と同様の凝固液中に浸潰し凝固膜を得た。この凝 固膜を 50°Cの水浴中で 10分間水洗し、次いで乾燥した。その後、 PETフィルムを剥 がし、比較セパレータ 1を得た。比較セパレータ 1は、膜厚 20〃 m、目付け 13.9g m2、ガ一レ値(JIS P8117)15¾Z100ccT fc"Dfc。 A nonwoven fabric similar to that in Example 1 was fixed on a PET film, and the polymer solution used in Example 1 was coated thereon. The film was immersed in the same coagulation liquid as in Example 1 to obtain a coagulated film. This coagulated film was washed with water in a 50 ° C. water bath for 10 minutes and then dried. Thereafter, the PET film was peeled off to obtain comparative separator 1. The comparative separator 1 has a film thickness of 20 mm, a basis weight of 13.9 gm 2 , and a galley value (JIS P8117) 15¾Z100ccT fc "Dfc.
本サンプルを走査型電子顕微鏡(SEM)で表裏表面を観察した結果、 PETフィル ムと接していた方の面では有意に不織布を構成する繊維の露出が認められた。  As a result of observing the front and back surfaces of this sample with a scanning electron microscope (SEM), exposure of fibers constituting the nonwoven fabric was significantly observed on the side that was in contact with the PET film.
[比較例 2] [Comparative Example 2]
繊度 0.33dtex (平均繊維径 5.5 /m)の PET短繊維と繊度 0.22dtex (平均繊 維径 4.5;Um)のバインダー用 PET繊維を 6Z4の重量比でブレンドし、湿式抄造法 により目付 12. OgZm2で製膜レて、 200°Cでカレンダーを施し、膜厚 18〃mの PE T不織布を得た。 フッ化ビニリデン:へキサフロロプロピレン:クロ口トリフロロエチレン = 95. 5 : 2. 3 : 2. 2 (重量比)であるポリフッ化ビニリデン共重合体を、ジメチルァセトアミド:トリプロ ピレングリコール = 70 : 30 (重量比)である混合溶媒に 1 2重量%となるように溶解 し高分子溶液を調整した。 Blends PET short fibers with a fineness of 0.33dtex (average fiber diameter 5.5 / m) and PET fibers for binder with a fineness of 0.22dtex (average fiber diameter 4.5; Um) at a weight ratio of 6Z4, and has a basis weight of 12.OgZm The film was prepared in 2 and calendered at 200 ° C. to obtain a PET non-woven fabric having a thickness of 18 mm. Polyvinylidene fluoride copolymer: vinylidene fluoride: hexafluoropropylene: black trifluoroethylene = 95.5: 2.3: 2.2 (weight ratio), dimethylacetamide: tripropylene glycol = 70 The polymer solution was prepared by dissolving in a mixed solvent of 30 (weight ratio) to 12% by weight.
この高分子溶液を該 PET不織布の両面に塗工し、この塗工物をジメチルァセトアミ ド:水 = 55 : 45 (重量比)の組成である 30°Cの凝固浴に 60秒間浸潰し凝固膜を得 た。この凝固膜を 50°Cの水浴中で 1 0分間水洗し、次いで乾燥することで比較セパ レ一タ 2を得た。比較セパレータ 2は、膜厚 24〃 m、目付 1 7. 3gZm2、ガーレ値(JI S P81 1 7) 1 2秒,1 00(^でぁった。 This polymer solution was coated on both sides of the PET nonwoven fabric, and the coated material was immersed in a coagulation bath of 30 ° C having a composition of dimethylacetamide: water = 55: 45 (weight ratio) for 60 seconds. A coagulated film was obtained. This coagulated film was washed with water in a 50 ° C. water bath for 10 minutes and then dried to obtain Comparative Separator 2. Comparative separator 2 has a film thickness 24〃 m, basis weight 1 7. 3GZm 2, Gurley value (JI S P81 1 7) 1 2 seconds, 1 00 (^ Deatta.
[耐熱性評価 1 ] [Heat resistance evaluation 1]
上記、本発明セパレータ 1及び 2、比較セパレータ 1及び 2、市販のリチウムイオン 二次電池用セパレ一タであるポリプロピレン製微多孔膜 (セルガード社製;商品名 「セルガード #2400」)をそれぞれ 1 Ocm X 1 Ocmに切り出した。電解液を 70ccサ ンプル瓶にとった。ここで電解液は 1 M LiBF4 PCZEC( 1 Z1重量比)を用いた。 切り出したセパレータを該サンプル瓶に入れ、 1 50°Cにて 2時間処理した。その後、 サンプル瓶からセパレ一タを取り出しセパレータを観察した。結果を表 1に示す。 Each of the above separators 1 and 2 of the present invention, comparative separators 1 and 2, and a microporous membrane made of polypropylene that is a separator for commercially available lithium ion secondary batteries (manufactured by Celgard; trade name “Celguard # 2400”) is 1 Ocm each. Cut into X 1 Ocm. The electrolyte was placed in a 70cc sample bottle. Here, 1 M LiBF 4 PCZEC (1 Z1 weight ratio) was used as the electrolyte. The cut separator was placed in the sample bottle and treated at 150 ° C. for 2 hours. Then, the separator was taken out from the sample bottle and the separator was observed. The results are shown in Table 1.
[耐熱性評価 2] [Heat resistance evaluation 2]
上記、本発明セパレータ 1及び 2、比較セパレータ 1及び 2、市販のリチウムイオン 二次電池用セパレ一タであるポリプロピレン製微多孔膜 (セルガード社製;商品名 「セルガード #2400」)をそれぞれ 1 Ocm x 1 Ocmに切り出した。これを 4方向固定 できる枠に固定し、 200°Cにて 30分間熱処理した。熱処理後の形態及び寸法を測 定した。結果を表 1に示す。  Each of the above separators 1 and 2 of the present invention, comparative separators 1 and 2, and a microporous membrane made of polypropylene that is a separator for commercially available lithium ion secondary batteries (manufactured by Celgard; trade name “Celguard # 2400”) is 1 Ocm each. Cut into x 1 Ocm. This was fixed to a frame that could be fixed in four directions and heat-treated at 200 ° C for 30 minutes. The form and dimensions after heat treatment were measured. The results are shown in Table 1.
[実施例 3] [Example 3]
コバルト酸リチウム(LiCo02 ;日本化学工業社製)粉末 89. 5重量部、アセチレン ブラック 4. 5重量部、ポリフッ化 ( 二リデン 6重量部となるように N—メチル一2ピロリ ドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが 20 μ mのアルミ箔上に塗布乾燥後プレスし、 1 00 μ mの正極を得た。 Lithium cobaltate (LiCoO 2 ; manufactured by Nippon Chemical Industry Co., Ltd.) powder 89.5 parts by weight, acetylene black 4.5 parts by weight, polyfluoride (using N-methyl-2-pyrrolidone solvent to be 6 parts by weight of bilidene) These were kneaded to prepare a slurry, and the resulting slurry had a thickness of 20 It was coated on a μm aluminum foil, dried and pressed to obtain a 100 μm positive electrode.
メソフェーズ力一ボンマイクロビーズ(MCMB :大阪瓦斯化学社製)粉末 87重量部、 アセチレンブラック 3重量部、ポリフッ化ビニリデン 1 0重量部となるように N—メチル —2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを 厚さ力《1 8 mの銅箔上に塗布乾燥後プレスし、 90〃 mの負極を得た。  These are kneaded using N-methyl-2pyrrolidone solvent to 87 parts by weight of Mesophase Microbon beads (MCMB: Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black, and 10 parts by weight of polyvinylidene fluoride. Thus, a slurry was prepared. The obtained slurry was applied onto a copper foil having a thickness of << 18 m, dried and pressed to obtain a 90 m negative electrode.
上記正極及び負極を実施例 1で作製した本発明セパレータ 1を介して対向させた。 これに電解液を含浸させアルミラミネートフイルムからなる外装に封入して本発明リ チウムイオン二次電池を作製した。ここで、電解液には 1 M LiPF6 EC/EMC C3 Z7重量比)を用いた。この電池を本発明電池"!とする。 The positive electrode and the negative electrode were opposed to each other through the separator 1 of the present invention produced in Example 1. This was impregnated with an electrolytic solution and sealed in an outer package made of an aluminum laminate film to produce a lithium ion secondary battery of the present invention. Here, 1 M LiPF 6 EC / EMC C3 Z7 weight ratio) was used as the electrolyte. This battery is referred to as “the battery of the present invention”!
[比較例 3] [Comparative Example 3]
セパレータに比較セパレ一タ 1を用い実施例 1と同様の方法にてリチウムイオン二 次電池を作製した。本リチウムイオン二次電池を比較電池 1とする。  A lithium ion secondary battery was produced in the same manner as in Example 1 using Comparative Separator 1 as the separator. This lithium ion secondary battery is referred to as comparative battery 1.
[比較例 4] [Comparative Example 4]
セパレータに市販のリチウムイオン二次電池用セパレータであるポリプロピレン製 微多孔膜 (セルガード社製;商品名「セルガード #2400」)を用い、実施例 1と同様 の方法にてリチウムイオン二次電池を作製した。本リチウムイオンに二次電池を比 較電池 2とする。  A lithium ion secondary battery was prepared in the same manner as in Example 1 using a polypropylene microporous membrane (Celgard; trade name “Celguard # 2400”), which is a commercially available lithium ion secondary battery separator. did. The secondary battery is referred to as Comparative Battery 2 for this lithium ion.
[サイクル試験] [Cycle test]
本発明電池 1及び比較電池 1、 2について、 1 C、 4. 2V、 2時間の定電流定電圧充 電、 1 C、 2. 75Vの定電流放電を 1 00サイクル行った。それぞれの電池に対し、(容 量維持率) = ( 100サイクル目の放電容量) / ( 1サイクル目の放電容量)を求めた。 これを表 2に示す。不織布の露出が確認された比較セパレータ 1を用いた比較電池 1のみ有意にサイクル特性が悪く、両面にコーティングを施してある本発明セパレー タ 1を用いた本発明電池 1は巿販セパレータと同等の特性である。  Inventive battery 1 and comparative batteries 1 and 2 were subjected to 100 cycles of 1 C, 4.2 V, constant current and constant voltage charging for 2 hours, and 1 C, 2.75 V constant current discharge. For each battery, (capacity maintenance ratio) = (discharge capacity at the 100th cycle) / (discharge capacity at the first cycle) was obtained. This is shown in Table 2. Only the comparative battery 1 using the comparative separator 1 in which the nonwoven fabric was exposed was significantly poor in cycle characteristics, and the inventive battery 1 using the separator 1 of the present invention coated on both sides is equivalent to a commercial separator. It is a characteristic.
[過充電試験] [Overcharge test]
本発明電池 1及び比較電池 2について 1 Cで 1 0時間の定電流充電(本来の充電に 対し 10倍の充電を行う過充電試験)を行った。ただし、電圧が 6Vに到達したら強制 的に受電終了とした。電圧が 6Vに到達し 10時間経つ前に充電が強制的に終了した 場合を過充電特性不十分とし、そうでなかった場合を過充電特性十分とした。過充 電試験の結果を図 1に示す力《、本発明セパレ一タを用いた本発明電池 1では過充電 特性十分である力《、市販のセパレータを用いた比較電池 2では不十分である。 Inventive battery 1 and comparative battery 2 Constant current charging at 1 C for 10 hours (for original charging) On the other hand, an overcharge test in which 10 times the charge was performed was conducted. However, when the voltage reached 6V, the power reception was forcibly terminated. The overcharge characteristics were considered insufficient when charging was forcibly terminated 10 hours after the voltage reached 6V, and the overcharge characteristics were sufficient when it was not. The results of the overcharge test shown in FIG. 1 << the power of the present invention battery 1 using the separator of the present invention 1 is sufficient for overcharge characteristics <<, the comparative battery 2 using a commercially available separator is insufficient .
[実施例 4]  [Example 4]
ェマルゲン 1 20(花王製;非イオン系界面活性剤)をメタノールに溶解し、 1重量% 溶液を作製した。実施例 1で作製した本発明セパレータ 1を該界面活性剤メタノール 溶液に浸潰し乾燥させることで界面活性剤を付着させ、本発明セパレータ 3を得た。 ここで本発明セパレ一タ 3に付着した界面活性剤の量は 0. 1 5gZm2であった。 Emargen 120 (manufactured by Kao; nonionic surfactant) was dissolved in methanol to prepare a 1% by weight solution. The separator 1 of the present invention produced in Example 1 was immersed in the surfactant methanol solution and dried to attach the surfactant to obtain the separator 3 of the present invention. Here, the amount of the surfactant adhering to the separator 3 of the present invention was 0.15 g Zm 2 .
[実施例 5] [Example 5]
エレクトロストリッパ一 AC (花王製;両イオン系界面活性剤)をメタノールに溶解し、 1重量%溶液を作製した。実施例 1で作製した本発明セパレータ 1を該界面活性剤メ タノール溶液に浸潰し乾燥させることで界面活性剤を付着させ、本発明セパレータ 4 を得た。ここで本発明セパレータ 4に付着した界面活性剤の量は 0. 02gZm2であつ た。 Electro stripper AC (made by Kao; amphoteric surfactant) was dissolved in methanol to prepare a 1% by weight solution. The separator 1 of the present invention produced in Example 1 was immersed in the surfactant methanol solution and dried to attach the surfactant, whereby the separator 4 of the present invention was obtained. Here, the amount of the surfactant attached to the separator 4 of the present invention was 0.02 gZm 2 .
[実施例 6]  [Example 6]
コ一タミン 60W (花王製;陽イオン系界面活性剤)をメタノールに溶解し、 1重量% 溶液を作製した。実施例 1で作製した本発明セパレータ 1を該界面活性剤メタノール 溶液に浸潰し乾燥させることで界面活性剤を付着させ、本発明セパレ一タ 5を得た。 ここで本発明セパレータ 5に付着した界面活性剤の量は 0. 04gZm2であった。 Cotamine 60W (manufactured by Kao; cationic surfactant) was dissolved in methanol to prepare a 1% by weight solution. The separator 1 of the present invention produced in Example 1 was immersed in the surfactant methanol solution and dried to attach the surfactant, whereby a separator 5 of the present invention was obtained. Here, the amount of the surfactant adhered to the separator 5 of the present invention was 0.04 gZm 2 .
[実施例 7] [Example 7]
エレクトロスドリツバ一 F (花王製;陰イオン系界面活性剤)をメタノールに溶解し、 1 重量%溶液を作製した。実施例 1で作製した本発明セパレータ 1を該界面活性剤メタ ノール溶液に浸潰し乾燥させる: Zとで界面活性剤を付着させ、本発明セパレータ 6を 得た。ここで本発明セパレータ 6に付着した界面活性剤の量は 0. 10gZm2であつ [帯電圧測定] Electrosdritzba F (manufactured by Kao; anionic surfactant) was dissolved in methanol to prepare a 1 wt% solution. The separator 1 of the present invention prepared in Example 1 was immersed in the surfactant methanol solution and dried: Z was attached to the surfactant to obtain the separator 6 of the present invention. Here, the amount of the surfactant adhering to the separator 6 of the present invention is 0.10 gZm 2 . [Measurement of charged voltage]
本発明セパレータ 1、 3〜6の帯電圧半減期をスタティックォネストメータ H— 01 1 0 (シシド静電気製)を用いて測定した。その結果を表 3に示す。表 3より界面活性剤を 付着させることが帯電防止に有効であることが分かる。  The charged voltage half-lives of the separators 1 and 3 to 6 of the present invention were measured using a static phone meter H-0110 (manufactured by Sisid electrostatic). The results are shown in Table 3. From Table 3, it can be seen that attaching a surfactant is effective in preventing static charge.
[実施例 8] [Example 8]
繊度 0. 9dtex (平均繊維径約 1 0 ju m)のポリメタフエ二レンイソフタルアミド短繊 維を主繊維とし、パラァラミドからなるパルプをバインダーとし、これらを主繊維 バ インダー (重量比)で混合させ、湿式抄造法により目付 29. 9gZm2で製膜 して、カレンダ一を施し、膜厚 30 jw mのァラミド不織布 (ァラミドペーパー)を得た。 ポリメタフエ二レンイソフタルアミド (帝人テクノプロダクツ株式会社製;商品名「コ一 ネックス J)をジメチルァセトアミド:トリプロピレングリコール = 85 : 1 5 (重量比)であ る混合溶媒に 9重量%となるように溶解し、高分子溶液を調整した。この高分子溶液 を該ァラミド不織布の両面に塗工し、この塗工物をジメチルァセトアミド:水 =60 : 40 (重量比)の組成である 40°Cの凝固浴に 60秒間浸潰し凝固膜を得た。この凝固膜 を 30°Cの水浴中で 1 0分間水洗し、次いで乾燥することで本発明のリチウムイオン 二次電池用セパレータを得た。これを本発明セパレータ 7とする。本発明セパレータ 7は、膜厚 39 m、目付 34. 5gZm2、ガーレ値(JIS P81 1 7) 40秒 Z1 OOccで あった。なお、ポリメタフエ二レンイソフタルアミドからなる多孔質層の重量は 4. 6gZ m2であった。 Polymetaphenylene isophthalamide short fiber with a fineness of 0.9 dtex (average fiber diameter of about 10 jum) is used as the main fiber, pulp made of paraamide is used as the binder, and these are mixed in the main fiber binder (weight ratio). A wet papermaking method was used to form a film with a basis weight of 29.9 gZm 2 and calendering to obtain an aramid nonwoven fabric (aramide paper) with a film thickness of 30 jw m. Polymetaphenylene isophthalamide (manufactured by Teijin Techno Products Co., Ltd .; trade name “Konex J”) is 9% by weight in a mixed solvent of dimethylacetamide: tripropylene glycol = 85: 1 5 (weight ratio) The polymer solution was coated on both sides of the aramid nonwoven fabric, and the coated product had a composition of dimethylacetamide: water = 60: 40 (weight ratio). The solidified film was immersed in a solidified bath at 40 ° C. for 60 seconds to obtain a solidified film, which was washed with water in a 30 ° C. water bath for 10 minutes and then dried to obtain the separator for the lithium ion secondary battery of the present invention. This was designated as the present separator 7. The present separator 7 had a film thickness of 39 m, a basis weight of 34.5 gZm 2 , and a Gurley value (JIS P81 17) of 40 seconds Z1 OOcc. The weight of the porous layer made of isophthalamide is 4.6 gZ It was m 2.
[実施例 9] [Example 9]
繊度 0. 1 1 dtex (平均繊維怪約 3. 2 ju m)の PET短繊維と繊度 0. 33dtex (平均 繊維径約 5. 5 m)の PET短繊維、および繊度 0. 22dtex (平均繊維径約 4. 5 ^ m)のバインダー用 PET短繊維を 3Z2Z5の重量比でブレンドし、湿式抄造法によ リ目付 1 3. OgZm2で製膜し、カレンダーを施し、膜厚 1 8 i mの PET不織布を得 た。 該 PET不織布を用いて実施例 8と同様の手法で本発明のリチウムイオン二次電池 用セパレ一タを得た。これを本発明セパレータ 8とする。本発明セパレータ 8は、膜厚 29 ^ m,目付 1 8. 3gZm2、ガ一レ値(JIS P8 " 7) 28秒 Z1 OOccであった。な お、ポリメタフエ二レンイソフタルアミドからなる多孔質層の重量は 5. 3gZm2であつ た。 PET short fibers with fineness of 0.1 1 dtex (average fiber defect 3.2 jum) and PET short fibers with fineness 0.33 dtex (average fiber diameter approx. 5.5 m), and fineness 0.22 dtex (average fiber diameter) About 4.5 ^ m) binder short PET fiber for 3Z2Z5 weight ratio, wet paper-making method to fabricate 1 3. OgZm 2 film, calendered, 18 im thick PET A nonwoven was obtained. Using the PET nonwoven fabric, a separator for a lithium ion secondary battery of the present invention was obtained in the same manner as in Example 8. This is designated as separator 8 of the present invention. The separator 8 of the present invention had a film thickness of 29 ^ m, a basis weight of 18.3 gZm 2 , and a gauge value (JIS P8 "7) of 28 seconds Z1 OOcc. A porous layer made of polymetaphenylene isophthalamide of weight was filed in the 5. 3gZm 2.
[実施例 1^]  [Example 1 ^]
実施例 9と同様の手法で、塗工クリアランスを変化させ、膜厚 37 m、目付け 22. 1 g/m2、ガ一レ値(JIS P81 1 7) 32秒/ 1 OOccである本発明セパレータ 9を得た なお、ポリメタフエ二レンイソフタルアミドからなる多? L質層の重量は 9. 1 gZm2であ つた。 In the same manner as in Example 9, the coating clearance was changed, the film thickness was 37 m, the basis weight was 22.1 g / m 2 , and the galley value (JIS P81 1 7) was 32 seconds / 1 OOcc. 9 In addition, poly-polyethylene isophthalamide made of many? Weight of the L protein layer 9. 1 gZm 2 der ivy.
[実施例 1 1 ]  [Example 1 1]
実施例 9と同様の手法で、塗工クリアランスを変化させ、膜厚 22 m、目付け 1 6. 3gZm2、ガーレ値(JIS P81 1 7) 32秒 Z1 OOccである本発明セパレ一タ 1 0を得 たなお、ポリメタフエ二レンイソフタルアミドからなる多孔質層の重量は 3. 3gZm2で あった。 In the same manner as in Example 9, the coating clearance was changed, the film thickness was 22 m, the basis weight was 16.3 gZm 2 , the Gurley value (JIS P81 1 7) was 32 seconds Z1 OOcc. The weight of the porous layer made of polymetaphenylene isophthalamide was 3.3 gZm 2 .
[実施例 1 2]  [Example 1 2]
実施例 9と同様の手法で、塗工クリアランスを変化させ、膜厚 24〃 m、目付け 1 7. 3gZm2、ガーレ値(JIS P81 1 7) 32秒 Z1 OOccである本発明セパレ一タ 1 1を得 たなお、ポリメタフエ二レンイソフタルアミドからなる多孔質層の重量は 4. 3gZm2で あった。 In the same manner as in Example 9, the coating clearance was changed, the film thickness was 24 mm, the basis weight was 17.3 gZm 2 , the Gurley value (JIS P81 1 7) 32 seconds Z1 OOcc of the present invention separator 1 1 In addition, the weight of the porous layer made of polymetaphenylene isophthalamide was 4.3 gZm 2 .
[突刺強度測定]  [Puncture strength measurement]
本発明セパレータ 2、 7〜1 1について突刺強度の測定を行った。突刺強度は 1 1 . 3ΓΠΓΤΙ Φの固定枠にセパレータをセットし、先端部半径 0. 5mmの針をセパレータの 中央に垂直に突き立て、 2mmZ秒の一定速度で針を押し込むことで測定した。針 力《5mm移動する間でセパレータにかかっている最大荷重を突刺強度とした。その 結果を表 4に示す。不織布の材質としてァラミド系材料を適用した場合、塗工前後に おける突刺強度の増加量が大きい。ァラミド系材料からなる不織布は多孔質層を形 成するポリメタフエ二レンイソフタルアミドと親和性が高《高い補強効果が得られる ため高強度のセパレータを得るとう観点において有効である。 The puncture strength of the present separators 2, 7 to 11 was measured. The puncture strength was measured by setting a separator on a fixed frame of 11.3ΓΠΓΤΙΦ, pushing a needle with a tip radius of 0.5mm vertically into the center of the separator, and pushing the needle at a constant speed of 2mmZ seconds. The maximum load applied to the separator while moving the needle force << 5 mm was defined as the puncture strength. The results are shown in Table 4. When aramid materials are used as the nonwoven material, before and after coating The increase in puncture strength is large. Nonwoven fabric made of aramid material is effective in terms of obtaining a high-strength separator because it has a high affinity for polymetaphenylene isophthalamide forming the porous layer and provides a high reinforcing effect.
[実施例 1 3〜"! 6] [Example 1 3 ~ "! 6]
実施例 9〜1 2で得られた本発明セパレ一タ 8〜1 1を用いて実施例 3と同様に本発 明電池 2〜5を得た。  The present invention batteries 2 to 5 were obtained in the same manner as in Example 3 using the separators 8 to 11 of the present invention obtained in Examples 9 to 12.
[実施例 1 7~20] [Example 1 7-20]
実施例 9〜1 2で得られた本発明セパレータ 8〜1 1を用し、、電解液に 1 M LiPF6 ECZEMCZVC (29Z70Z1重量比)を用いたこと以外は実施例 3と同様に本発 明電池 6〜9を得た。 This invention is the same as Example 3 except that the separators 8 to 11 of the present invention obtained in Examples 9 to 12 were used and 1 M LiPF 6 ECZEMCZVC (29Z70Z1 weight ratio) was used as the electrolyte. Batteries 6-9 were obtained.
[実施例 21〜24] [Examples 21 to 24]
実施例 9〜1 2で得られた本発明セパレ一タ 8〜1 1を用い、電解液に 1 M LiPF6 ECZEMCZVA(29Z70Z1重量比)を用いたこと以外は実施例 3と同様に本発 明電池 1 0〜1 3を得た。 This invention is the same as Example 3 except that the separators 8-11 of the present invention obtained in Examples 9-12 are used and 1 M LiPF 6 ECZEMCZVA (29Z70Z1 weight ratio) is used as the electrolyte. Batteries 10 0-13 were obtained.
[比較例 5] [Comparative Example 5]
セパレータに実施例 9で作製した PET不織布を用いた以外は実施例 3と同様の方 法で電池を作製した。この電池を比較電池 3とする。  A battery was produced in the same manner as in Example 3 except that the PET nonwoven fabric produced in Example 9 was used as the separator. This battery is referred to as comparative battery 3.
[電池耐久性評価] [Battery durability evaluation]
実施例 1 3〜24で作製した本発明電池 2〜1 3と比較電池 3を 4. 2Vまで充電し、 8 0°Cで 4日間保存した。その後電池を解体し中のセパレータを取り出して観察した。 その結果を表 5に示す。.表 5より、ポリメタフエ二レンイソフタルアミドの塗布量を適切 なものとした場合に PETの劣化を十分に抑制する効果があることが分かる。また、こ の PET劣化を防止するためには電解液中に VCや VAを添加することも有効であるこ とが分かる。  Example 1 The inventive batteries 2 to 13 and the comparative battery 3 prepared in 3 to 24 were charged to 4.2 V and stored at 80 ° C. for 4 days. Thereafter, the battery was disassembled and the separator inside was taken out and observed. The results are shown in Table 5. Table 5 shows that when the amount of polymetaphenylene isophthalamide applied is appropriate, PET deterioration is sufficiently suppressed. It can also be seen that adding VC or VA to the electrolyte is effective in preventing this PET deterioration.
[実施例 25] [Example 25]
繊度 0. 1 1 dtex (平均繊維径約 3. 2 m)の PET短繊維と繊度 0. 33dtex (平均 繊維径約 5. 5〃m)の PET短繊維、および繊度 0. 22dtex (平均繊維径約 4. 5〃 m)のバインダー用 PET短繊維を 3 2ノ 5の重量比でブレンドし、湿式抄造法によ リ目付 1 2. 6gZm2で製膜し、 1 40°Cでカレンダーを施し、膜厚 1 8 U mの PET不織 布を得た。 PET short fibers with fineness of 0.1 1 dtex (average fiber diameter of about 3.2 m) and fineness of 0.33 dtex (average Wet paper making by blending PET short fibers with a fiber diameter of about 5.5 mm and PET short fibers for binder with a fineness of 0.22 dtex (average fiber diameter of about 4.5 mm) at a weight ratio of 3 2 to 5 According to the method, a fabric weight of 12.6 gZm 2 was formed and calendered at 140 ° C to obtain a PET nonwoven fabric with a film thickness of 18 Um.
ポリメタフエ二レンイソフタルアミド(帝人テクノプロダクツ株式会社製;商品名「コ一 ネックス」)をジメチルァセトアミド:トリプロピレングリコール = 60 : 30 (重量比)であ る混合溶媒に 6重量%となるように溶解し、高分子溶液を調整した。この高分子溶液 へ平均粒子径 0. 8 mのひ一アルミナ微粒子(岩谷化学工業社製 SA— 1 )をポリ メタフエ二レンイソフタルアミドと同重量部分散させ塗工用スラリーを作製した。この 塗工用スラリーを該 PET不織布の両面に塗工し、この塗工物をジメチルァセトアミ ド:水 = 50': 50 (重量比)の組成である 40°Cの凝固浴に 60秒間浸潰し凝固膜を得 た。この凝固膜を 50°Cの水浴中で 1 0分間水洗し、次いで乾燥することで本発明の リチウムイオン二次電池用セパレータを得た。これを本発明セパレータ 1 2とする。本 発明セメ レータ 1は、膜厚 23〃 m、目^ 6. 6gZm2、ガ一レ ί直(JIS Ρ81 1 7) 20 秒 1 00ccであった。なお、本発明セパレータ 1 2を目視で観察した結果、ピンホ一 ルは見られなかった。 Polymetaphenylene isophthalamide (manufactured by Teijin Techno Products Co., Ltd .; trade name “Konex”) in a mixed solvent of dimethylacetamide: tripropylene glycol = 60: 30 (weight ratio) to be 6% by weight And the polymer solution was prepared. In this polymer solution, one alumina fine particle (SA-1 manufactured by Iwatani Chemical Industry Co., Ltd.) having an average particle size of 0.8 m was dispersed in the same weight part as poly (meta-phenylene isophthalamide) to prepare a coating slurry. This coating slurry was applied to both sides of the PET nonwoven fabric, and this coating was applied to a 40 ° C. coagulation bath having a composition of dimethylacetamide: water = 50 ′: 50 (weight ratio) for 60 seconds. A pulverized solidified film was obtained. This solidified film was washed with water in a 50 ° C. water bath for 10 minutes and then dried to obtain a separator for a lithium ion secondary battery of the present invention. This is designated as separator 1 of the present invention. The separator 1 of the present invention had a film thickness of 23 μm, a mesh size of 6.6 gZm 2 , and a straight line (JIS Ρ81 1 7) for 20 seconds and 100 cc. As a result of visual observation of the separator 12 of the present invention, no pinhole was observed.
[参考例 1 ] [Reference Example 1]
ポリメタフ I二レンイソフタルアミド(帝人テクノプロダクツ株式会社製;商品名 Γコ一 ネックス」)をジメチルァセトアミド:トリプロピレングリコール = 60 : 30 (重量比)であ る混合溶媒に 6重量%となるように溶解し、高分子溶液を調整した。  Polymetaph I diene isophthalamide (manufactured by Teijin Techno Products Co., Ltd .; trade name Γ Kohinex) is 6% by weight in a mixed solvent of dimethylacetamide: tripropylene glycol = 60:30 (weight ratio) Thus, a polymer solution was prepared.
この高分子溶液を実施例 25で得た PET不織布の両面に塗工し、この塗工物をジ メチルァセトアミド:水 = 50 : 50 (重量比)の組成である 40°Cの凝固浴に 60秒間浸 潰し凝固膜を得た。この凝固膜を 50°Cの水浴中で 1 0分間水洗し、次いで乾燥する ことで本発明セパレータを作製した力、ピンホールが多発し十分なものが得られなか つた。  This polymer solution was applied to both sides of the PET nonwoven fabric obtained in Example 25, and this coated product was coagulated at 40 ° C. having a composition of dimethylacetamide: water = 50: 50 (weight ratio). For 60 seconds to obtain a coagulated film. The solidified film was washed with water in a 50 ° C. water bath for 10 minutes, and then dried, so that the force and pinholes produced the separator of the present invention were frequently generated, and a sufficient product could not be obtained.
[参考例 2] a—アルミナ微粒子の量をポリメタフエ二レンイソフタルアミドに対して 1 0重量%と し 以外は実施例 25と同様に本発明セパレータを作製したが、ピンホールが多発し 十分なものを得ることができなかった。 [Reference Example 2] The separator of the present invention was produced in the same manner as in Example 25 except that the amount of a-alumina fine particles was 10% by weight with respect to polymetaphenylene isophthalamide, but sufficient pinholes were generated and a sufficient product could be obtained. There wasn't.
[参考例 3] [Reference Example 3]
a—アルミナ微粒子の量をポリメタフエ二レンイソフタルアミドに対して 900重量% とした以外は実施例 25と同様に本発明セハ°レータを作製した力 凝固'水洗工程に おいてひ一アルミナ微粒子が欠け落ちハンドリング性十分なセパレータを得ることが できなかった。  a—Alumina fine particles lacked in the force coagulation / water washing process in which the separator of the present invention was produced in the same manner as in Example 25 except that the amount of fine alumina particles was 900% by weight with respect to polymetaphenylene isophthalamide. A separator with sufficient handleability could not be obtained.
[膜抵抗測定] [Membrane resistance measurement]
電解液をセパレータに含浸させこれをアルミ箔からなる一対の電極 (サイズ: 2cm X 1 . 4cm = 2. 8cm2)挟み、アルミラミネ一トフイルム中へ封入することで測定用セ ルを作製した。ここで電解液には 1 M LiBF4 PCZEC ( 1 Z1重量比)を用いた。該 セルにおいてセパレータを 1枚、 2枚、 3枚としたものをそれぞれの抵抗を交流インピ —ダンス法により測定し、この抵抗をセパレータの枚数に対してプロットしたときの傾 きからセパレータ 1枚の抵抗を求めた。なお交流インピーダンス測定は 4端子法で行 し、、振幅 1 OmV、周波数 1 OOkHzとした。また、測定温度は 20°Cとした。 A measurement cell was prepared by impregnating an electrolyte into a separator, sandwiching the electrode in a pair of aluminum foil (size: 2 cm × 1.4 cm = 2.8 cm 2 ), and enclosing it in an aluminum laminated film. Here, 1 M LiBF 4 PCZEC (1 Z1 weight ratio) was used as the electrolyte. For each cell, the resistance of one, two, and three separators was measured by the AC impedance method, and from the inclination when this resistance was plotted against the number of separators, one separator was measured. Resistance was sought. The AC impedance measurement was performed using the 4-terminal method, with an amplitude of 1 OmV and a frequency of 1 OOkHz. The measurement temperature was 20 ° C.
上記の膜抵抗測定を本発明セパレータ 1及び 1 2について行った結果、膜抵抗は それぞれ 6. 026ohrrv cm2、 5. 21 1 ohrrv cm2であった。 The above membrane resistance measurements performed on the present invention the separator 1 and 1 2, film resistors is 6. 026ohrrv cm 2, 5. was 21 1 ohrrv cm 2.
上記膜抵抗の測定結果より高分子溶液中のポリメタフエ二レンイソフタルアミド濃 度を低減することが有効であることが分かる。しかし、このような高分子溶液を用い て塗工する場合、参考例 1、 2にあるように粘度が低すぎてピンホールが多発し十分 なものを得ることが困難である。実施例 25にあるように適切にセラミック微粒子を添 加することでこの課題を解決することができる。ただし、参考例 3にあるようにセラミツ ク微粒子を添加しすぎると粉落ちの問題から十分な塗膜を得ることが困難となる。 【表 1】 From the measurement results of the membrane resistance, it can be seen that it is effective to reduce the concentration of polymetaphenylene isophthalamide in the polymer solution. However, when coating using such a polymer solution, as shown in Reference Examples 1 and 2, the viscosity is too low, and pinholes frequently occur and it is difficult to obtain a sufficient one. As described in Example 25, this problem can be solved by appropriately adding ceramic fine particles. However, as shown in Reference Example 3, if too much ceramic fine particles are added, it becomes difficult to obtain a sufficient coating film due to the problem of powder falling. 【table 1】
Figure imgf000028_0001
Figure imgf000028_0001
【表 2】  [Table 2]
Figure imgf000028_0002
Figure imgf000028_0002
セパレータ 半減期 秒 本発明セパレ一タ 1 1600 本発明セパレータ 3 12 本発明セパレータ 4 15 本発明セパレータ 5 8 本発明セパレータ 6 20 【表 4】Separator Half-life Second Separator of the invention 1 1600 Separator of the invention 3 12 Separator of the invention 4 15 Separator of the invention 5 8 Separator of the invention 6 20 [Table 4]
Figure imgf000029_0002
Figure imgf000029_0002
Figure imgf000029_0003
Figure imgf000029_0003
Figure imgf000029_0001
Figure imgf000029_0001
夜 C:1 M IiPFe EC EMC/VA(29/70/1 Brnt ) 【産業上の利用可能性】 Night C: 1 M IiPFe EC EMC / VA (29/70/1 Brnt) [Industrial applicability]
本発明リチウムイオン二次電池用セパレ一タは耐熱性が高く過充電対策にも有効 であるためこれを用いることでリチウムイオン二次電池の安全性を向上させることが できる。本発明セパレ一タを甩いた本発明リチウムイオン二次電池は、高温での安 全性や性能の確保が要求される HEV用途に適する。  Since the separator for a lithium ion secondary battery of the present invention has high heat resistance and is effective for overcharge countermeasures, the use of this separator can improve the safety of the lithium ion secondary battery. The lithium ion secondary battery of the present invention with the separator of the present invention is suitable for HEV applications that require safety and performance at high temperatures.

Claims

請 求 の 範 囲 The scope of the claims
1 .不織布の表裏両面に主としてメタ芳香族ポリアミドからなる多孔質層が形成され τいることを特徴とするリチウムイオン二次電池用セパレ一タ。 1. A separator for a lithium ion secondary battery, characterized in that a porous layer mainly composed of a metaaromatic polyamide is formed on both the front and back surfaces of a nonwoven fabric.
2.該セパレータの膜厚カ《1 5〜40 、ガ一レ値(」15 P81 1 7)力《1 0〜50秒 Z1 OOccであることを特徴とする請求項 1記載のリチウムイオン二次電池用セパレー タ。 2. Lithium ion secondary according to claim 1, characterized in that the film thickness of the separator << 15 to 40, galley value ("15 P81 17) force << 10 to 50 seconds Z1 OOcc Battery separator.
3.該多孔質層に陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、 非イオン性界面活性剤からなる群から選ばれる少なくとも 1種を含む界面活性剤が 付着されていることを特徴とする請求項 1または 2のいずれか 1項に記載のリチウム イオン二次電池用セパレ一タ。  3. A surfactant containing at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant is attached to the porous layer. The separator for a lithium ion secondary battery according to any one of claims 1 and 2.
4.該界面活性剤の付着量が 0. 005-0. 750gZm2であることを特徴とする請求 項 3記載のリチウムイオン二次電池用セパレータ。 4. The separator for a lithium ion secondary battery according to claim 3, wherein the adhesion amount of the surfactant is 0.005-0.750 g Zm 2 .
5.該不織布が主としてポリエチレンテレフタレートからなる不織布であることを特徴 とする請求項 1から 4のいずれか 1項に記載のリチウムイオン二次電池用セパレータ。  5. The separator for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the nonwoven fabric is a nonwoven fabric mainly composed of polyethylene terephthalate.
6.該主としてメタ芳香族ポリアミドからなる多孔質層の重量が 4~ 1 0gZm2である ことを特徴とする請求項 5記載のリチウムイオン二次電池用セパレータ。 6. The separator for a lithium ion secondary battery according to claim 5, wherein the weight of the porous layer mainly composed of metaaromatic polyamide is 4 to 10 gZm 2 .
7.該不織布が主としてメタ芳香族ポリアミドからなる不織布であることを特徴とする 請求項 1か 4のいずれか 1項に記載のリチウムイオン二次電池用セパレ一タ。  7. The separator for a lithium ion secondary battery according to claim 1, wherein the nonwoven fabric is a nonwoven fabric mainly composed of a metaaromatic polyamide.
8.該不織布力《メタ芳香族ポリアミド短繊維とパラ芳香族ポリアミドパルプからなるこ とを特徴とする請求項 1からの 4いずれか 1項に記載のリチウムイオン二次電池用セ パレ一タ。 8. The separator for a lithium ion secondary battery according to any one of claims 1 to 4, characterized in that the nonwoven fabric is composed of a meta-aromatic polyamide short fiber and a para-aromatic polyamide pulp.
9.該メタ芳香族ポリアミドがポリメタフエ二レンイソフタルアミドであることを特徴とす る請求項 1から 6のいずれか 1項に記載のリチウムイオン二次電池用セパレータ。  9. The separator for a lithium ion secondary battery according to any one of claims 1 to 6, wherein the metaaromatic polyamide is polymetaphenylene diisophthalamide.
1 0.該多孔質層に平均粒子径 0. 05〜2 jw mのセラミック微粒子が含まれており、 多孔質層の重量に対してセラミック微粒子が 30〜80重量0 /0となっていることを特徴 とする請求項 1から 9のいずれか 1項に記載のリチウムイオン二次電池用セパレ一 タ。 1 0. includes a ceramic particulate average porous layer particle diameter 0.5 from 05 to 2 jw m, the ceramic particles is in the 30 to 80 weight 0/0 by weight of the porous layer Features The separator for a lithium ion secondary battery according to any one of claims 1 to 9.
1 1 .メタ芳香族ポリアミドと該メタ芳香族ポリアミドに対し良溶媒である溶媒を主成分 とする高分子溶液を不織布の表裏両面に塗工し、次いで塗工された不織布を該メタ 芳香族ポリアミドに対し貧溶媒である溶媒と良溶媒である溶媒から主としてなる混合 液中で凝固させ、次いで水洗、乾燥することを特徴とするリチウムイオン二次電池用 セパレータの製造方法。  1 1. A polymer solution mainly composed of a metaaromatic polyamide and a solvent that is a good solvent for the metaaromatic polyamide is applied to both the front and back surfaces of the nonwoven fabric, and then the coated nonwoven fabric is applied to the metaaromatic polyamide. In contrast, a method for producing a separator for a lithium ion secondary battery, comprising coagulating in a mixed liquid mainly composed of a solvent that is a poor solvent and a solvent that is a good solvent, and then washing and drying.
1 2.正極、負極、非水系電解液、セパレータを具備し、リチウムイオンのド一プ'脱ド ープにより起電力を得るリチウムイオン二次電池において、セパレータが不織布の 表裏両面に主としてメタ芳香族ポリアミドからなる多孔質層が形成されていることを 特徴とするリチウムイオン二次電池。  1 2. In a lithium ion secondary battery that has a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and obtains an electromotive force by doping and detaching lithium ions, the separator is mainly meta-aromatic on both sides of the nonwoven fabric. A lithium ion secondary battery characterized in that a porous layer made of an aromatic polyamide is formed.
1 3.該セパレータの膜厚力《1 5〜40〃m、ガ一レ値(JIS P81 1 7)力《1 0~50秒 Z 1 OOccであることを特徴とする請求項 1 2記載のリチウムイオン二次電池。  1 3. Thickness force of the separator << 15 to 40 〃m, galley value (JIS P81 1 7) force << 1 0 to 50 seconds Z 1 OOcc Lithium ion secondary battery.
1 4.該多孔質層に陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性 剤、非イオン性界面活性剤からなる群から選ばれる少なくとも 1種を含む界面活性 剤が付着されていることを特徴とする請求項 1 2または 1 3いずれかに記載のリチウ ムイオン二次電池。  1 4. A surfactant containing at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant is attached to the porous layer. The lithium ion secondary battery according to any one of claims 12 and 13.
1 5.該界面活性剤の付着量が 0. 005-0. 750gZm2であることを特徴とする請 求項 1 4記載のリチウムイオン二次電池用セパレータ。 1 5. The separator for a lithium ion secondary battery according to claim 14, wherein the adhesion amount of the surfactant is 0.005-0.750 gZm 2 .
1 6.該不織布が主としてポリエチレンテレフタレ一卜からな.る不織布であることを特 徴とする請求項 1 2から 1 5のいずれか 1項に記載のリチウムイオン二次電池。 1 6. The lithium ion secondary battery according to any one of claims 12 to 15, wherein the nonwoven fabric is a nonwoven fabric mainly made of polyethylene terephthalate.
1 7.該主としてメタ芳香族ポリアミドからなる多孔質層の重量が 4〜1 OgZm2であ ることを特徴とする請求項 1 6記載のリチウムイオン二次電池。 1 7. The lithium ion secondary battery according to claim 16, wherein the weight of the porous layer mainly composed of metaaromatic polyamide is 4 to 1 OgZm 2 .
1 8.該非水系電解液は電解質とこれを溶解する溶媒から構成され、該電解質が Li PF6を主体とし、該溶媒は溶媒拿重量に対しビニレン力一ボネートまたはビニルァセ テートを 0. 5〜5重量%含むことを特徴とする請求項 1 6(?)記載のリチウムイオン二 次電池。 1 8. The non-aqueous electrolyte is composed of an electrolyte and a solvent that dissolves the electrolyte. The electrolyte is mainly composed of Li PF 6 , and the solvent contains vinylene sulfonate or vinyl carbonate in a solvent weight of 0.5 to 5 The lithium ion secondary battery according to claim 16 (?), Next battery.
1 9.該不織布が主としてメタ芳香族ポリアミドからなる不織布であることを特徴とす る請求項 1 2から 1 5のいずれ力、 1項に記載のリチウムイオン二次電池。  1 9. The lithium ion secondary battery according to any one of claims 12 to 15, wherein the nonwoven fabric is a nonwoven fabric mainly composed of a metaaromatic polyamide.
20.該 タ芳香族ポリアミドがポリメタフエ二レンイソフタルアミドであることを特徴と する請求項 1 2から 1 9のいずれか 1項に記載のリチウムイオン二次電池。  20. The lithium ion secondary battery according to any one of claims 12 to 19, characterized in that the aromatic polyamide is polymetaphenylene isophthalamide.
PCT/JP2006/310094 2005-05-17 2006-05-16 Separator for lithium ion secondary battery and lithium ion secondary battery WO2006123811A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680017331XA CN101180751B (en) 2005-05-17 2006-05-16 Separator for lithium ion secondary battery and lithium ion secondary battery
KR1020077029336A KR101340357B1 (en) 2005-05-17 2006-05-16 Separator for lithium ion secondary battery and lithium ion secondary battery
JP2007516360A JP4832430B2 (en) 2005-05-17 2006-05-16 Lithium ion secondary battery separator and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-143838 2005-05-17
JP2005143838 2005-05-17

Publications (1)

Publication Number Publication Date
WO2006123811A1 true WO2006123811A1 (en) 2006-11-23

Family

ID=37431374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310094 WO2006123811A1 (en) 2005-05-17 2006-05-16 Separator for lithium ion secondary battery and lithium ion secondary battery

Country Status (4)

Country Link
JP (1) JP4832430B2 (en)
KR (1) KR101340357B1 (en)
CN (1) CN101180751B (en)
WO (1) WO2006123811A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227231A (en) * 2006-02-24 2007-09-06 Teijin Ltd Separator for battery, lithium-ion secondary battery, and electric double-layer capacitor
EP1978587A1 (en) 2007-03-27 2008-10-08 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
WO2008156033A1 (en) * 2007-06-19 2008-12-24 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
JP2009231281A (en) * 2008-02-28 2009-10-08 Teijin Ltd Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP2010050024A (en) * 2008-08-25 2010-03-04 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2010067358A (en) * 2008-09-08 2010-03-25 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2013514609A (en) * 2009-12-17 2013-04-25 リ−テック・バッテリー・ゲーエムベーハー Lithium Ion Battery
JP2013203894A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Polyolefin microporous membrane
JP2014060123A (en) * 2012-09-19 2014-04-03 Asahi Kasei Corp Lithium ion secondary battery
JP2014060122A (en) * 2012-09-19 2014-04-03 Asahi Kasei Corp Lithium ion secondary battery
WO2014104005A1 (en) * 2012-12-27 2014-07-03 日東電工株式会社 Nonaqueous electrolyte secondary battery
JP2014186942A (en) * 2013-03-25 2014-10-02 Mitsubishi Paper Mills Ltd Separator base material for lithium battery
US10193117B2 (en) 2011-04-08 2019-01-29 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
EP3441135A4 (en) * 2016-02-03 2019-05-29 Microvast Power Systems Co., Ltd. Method for preparing aromatic polyamide porous film and aromatic polyamide porous film
EP3447822A4 (en) * 2016-04-19 2020-01-01 Microvast Power Systems Co., Ltd. Composite separator containing aromatic polyamide and manufacturing method thereof, and secondary battery
US10944088B2 (en) 2014-04-09 2021-03-09 Sumitomo Chemical Company, Limited Layered porous film, and non-aqueous electrolyte secondary battery
US11437685B2 (en) * 2018-03-27 2022-09-06 Grst International Limited Lithium-ion battery

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815435B2 (en) * 2008-08-19 2014-08-26 Teijin Limited Separator for nonaqueous secondary battery
JP5650955B2 (en) * 2010-08-26 2015-01-07 旭化成せんい株式会社 Composite membrane
KR101377476B1 (en) * 2011-12-23 2014-03-26 웅진케미칼 주식회사 Menufacturing Method of Meta-Aramid Based Porous Membrane for Secondary Battery and Porous Membrane thereby
CN106103592A (en) * 2014-01-03 2016-11-09 现代自动车株式会社 High heat-resisting composite with excellent formability and preparation method thereof
CN103943806B (en) * 2014-05-06 2016-02-24 烟台民士达特种纸业股份有限公司 A kind of battery diaphragm be made up of aramid fiber and preparation method thereof
CN106025149A (en) * 2016-06-30 2016-10-12 深圳中兴创新材料技术有限公司 High-temperature-resistant composite lithium battery diaphragm and preparation method for same
JP6579383B2 (en) * 2016-08-10 2019-09-25 荒川化学工業株式会社 Lithium ion secondary battery separator, method for producing lithium ion secondary battery separator, and lithium ion secondary battery
WO2019085899A1 (en) * 2017-10-31 2019-05-09 Shanghai Energy New Materials Technology Co., Ltd. Methods for preparing polymer solutions, separators, electrochemical devices and products thereof
CN108565379B (en) * 2018-03-19 2020-06-23 上海恩捷新材料科技股份有限公司 Lithium battery diaphragm and preparation method thereof
CN108717964B (en) * 2018-06-04 2021-05-14 珠海恩捷新材料科技有限公司 Lithium ion battery diaphragm slurry, preparation method thereof and lithium ion battery diaphragm
CN108847470A (en) * 2018-07-03 2018-11-20 河北金力新能源科技股份有限公司 A kind of lithium electric separator and preparation method thereof of mixed coating coating
JP7198041B2 (en) * 2018-10-24 2022-12-28 株式会社エンビジョンAescジャパン battery
CN111584797A (en) * 2019-07-16 2020-08-25 河北金力新能源科技股份有限公司 Preparation method and application of non-woven fabric coated diaphragm
KR102196914B1 (en) * 2019-08-22 2020-12-31 지머터리얼즈 주식회사 Composite separator for lithium secondary battery and method of manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170153A (en) * 1995-12-21 1997-06-30 Tonen Chem Corp Heat stable nonwoven fabric
JPH09213296A (en) * 1996-02-05 1997-08-15 Sony Corp Separator for battery and battery
JPH10284040A (en) * 1997-04-03 1998-10-23 Oji Paper Co Ltd Battery separator
JPH1181123A (en) * 1997-09-04 1999-03-26 Tounen Tapirusu Kk Melt-blown polyamide nonwoven fabric and molded product using the same
JPH11354162A (en) * 1998-06-08 1999-12-24 Teijin Ltd Polymer electrolyte secondary battery, and manufacture thereof
JP2001023602A (en) * 1999-07-13 2001-01-26 Sumitomo Chem Co Ltd Manufacture of nonaqueous electrolyte secondary battery separator, and nonaqueous electropolyte secondary battery
JP2003123723A (en) * 2001-10-17 2003-04-25 Oji Paper Co Ltd Laminated separator for battery and its manufacturing method
JP2003187867A (en) * 2001-12-21 2003-07-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170153A (en) * 1995-12-21 1997-06-30 Tonen Chem Corp Heat stable nonwoven fabric
JPH09213296A (en) * 1996-02-05 1997-08-15 Sony Corp Separator for battery and battery
JPH10284040A (en) * 1997-04-03 1998-10-23 Oji Paper Co Ltd Battery separator
JPH1181123A (en) * 1997-09-04 1999-03-26 Tounen Tapirusu Kk Melt-blown polyamide nonwoven fabric and molded product using the same
JPH11354162A (en) * 1998-06-08 1999-12-24 Teijin Ltd Polymer electrolyte secondary battery, and manufacture thereof
JP2001023602A (en) * 1999-07-13 2001-01-26 Sumitomo Chem Co Ltd Manufacture of nonaqueous electrolyte secondary battery separator, and nonaqueous electropolyte secondary battery
JP2003123723A (en) * 2001-10-17 2003-04-25 Oji Paper Co Ltd Laminated separator for battery and its manufacturing method
JP2003187867A (en) * 2001-12-21 2003-07-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227231A (en) * 2006-02-24 2007-09-06 Teijin Ltd Separator for battery, lithium-ion secondary battery, and electric double-layer capacitor
US8263269B2 (en) 2007-03-27 2012-09-11 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
EP1978587A1 (en) 2007-03-27 2008-10-08 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
US7862933B2 (en) 2007-03-27 2011-01-04 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
WO2008156033A1 (en) * 2007-06-19 2008-12-24 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US9029002B2 (en) 2007-06-19 2015-05-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US8597816B2 (en) 2007-06-19 2013-12-03 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US7976987B2 (en) 2007-06-19 2011-07-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
JP2009231281A (en) * 2008-02-28 2009-10-08 Teijin Ltd Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP2010050024A (en) * 2008-08-25 2010-03-04 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2010067358A (en) * 2008-09-08 2010-03-25 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2013514609A (en) * 2009-12-17 2013-04-25 リ−テック・バッテリー・ゲーエムベーハー Lithium Ion Battery
US10193117B2 (en) 2011-04-08 2019-01-29 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013203894A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Polyolefin microporous membrane
JP2014060122A (en) * 2012-09-19 2014-04-03 Asahi Kasei Corp Lithium ion secondary battery
JP2014060123A (en) * 2012-09-19 2014-04-03 Asahi Kasei Corp Lithium ion secondary battery
WO2014104005A1 (en) * 2012-12-27 2014-07-03 日東電工株式会社 Nonaqueous electrolyte secondary battery
JP2014186942A (en) * 2013-03-25 2014-10-02 Mitsubishi Paper Mills Ltd Separator base material for lithium battery
US10944088B2 (en) 2014-04-09 2021-03-09 Sumitomo Chemical Company, Limited Layered porous film, and non-aqueous electrolyte secondary battery
EP3441135A4 (en) * 2016-02-03 2019-05-29 Microvast Power Systems Co., Ltd. Method for preparing aromatic polyamide porous film and aromatic polyamide porous film
US11205821B2 (en) 2016-02-03 2021-12-21 Microvast Power Systems Co., Ltd. Method for preparing aromatic polyamide porous membrane and aromatic polyamide porous membrane prepared thereby
EP3447822A4 (en) * 2016-04-19 2020-01-01 Microvast Power Systems Co., Ltd. Composite separator containing aromatic polyamide and manufacturing method thereof, and secondary battery
US11437685B2 (en) * 2018-03-27 2022-09-06 Grst International Limited Lithium-ion battery

Also Published As

Publication number Publication date
JP4832430B2 (en) 2011-12-07
CN101180751B (en) 2010-05-19
KR101340357B1 (en) 2013-12-13
CN101180751A (en) 2008-05-14
KR20080019621A (en) 2008-03-04
JPWO2006123811A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4832430B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
KR101577383B1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
TWI422091B (en) Non-water battery separator and non-water storage battery
JP5643465B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
TWI321860B (en) Organic/inorganic composite porous film and electrochemical device using the same
JP5717723B2 (en) Production and use of ceramic composites based on polymer carrier films
JP4163894B2 (en) Separator for lithium ion secondary battery
KR101602867B1 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5356878B2 (en) Non-aqueous secondary battery separator
WO2014021292A1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR20180042831A (en) Laminated separator for non-aqueous secondary battery, non-aqueous secondary battery member, and non-aqueous secondary battery
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2011216318A (en) Separator for nonaqueous secondary battery
JP2011028947A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012129116A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2012049018A (en) Separator for nonaqueous electrolyte battery
JP2011134563A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014026947A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2011190307A (en) Microporous polyolefin film, separator for nonaqueous secondary battery and nonaqueous secondary battery
JP6762089B2 (en) Laminated separator for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery member and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017331.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007516360

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077029336

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732668

Country of ref document: EP

Kind code of ref document: A1