JP2006066355A - Separator for electronic component and its manufacturing method - Google Patents

Separator for electronic component and its manufacturing method Download PDF

Info

Publication number
JP2006066355A
JP2006066355A JP2004251048A JP2004251048A JP2006066355A JP 2006066355 A JP2006066355 A JP 2006066355A JP 2004251048 A JP2004251048 A JP 2004251048A JP 2004251048 A JP2004251048 A JP 2004251048A JP 2006066355 A JP2006066355 A JP 2006066355A
Authority
JP
Japan
Prior art keywords
separator
solvent
sheet
average particle
filler particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004251048A
Other languages
Japanese (ja)
Other versions
JP4676728B2 (en
Inventor
Hiromi Totsuka
博己 戸塚
Masanori Takahata
正則 高畑
Hitohide Sugiyama
仁英 杉山
Kazuhiko Fukaya
和彦 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2004251048A priority Critical patent/JP4676728B2/en
Publication of JP2006066355A publication Critical patent/JP2006066355A/en
Application granted granted Critical
Publication of JP4676728B2 publication Critical patent/JP4676728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for an electronic component never causing a short circuit although being formed of a thin film and having high ion conductivity, extremely excellent in workability and productivity, and capable of realizing extremely high safety; and to provide its manufacturing method. <P>SOLUTION: This separator for an electronic component includes a porous structure and contains two or more kinds of filler particles different in average particle diameter. When it is assumed that the average diameters of the filler particles are a, b, c, ..., m and n in descending order, a relationship between the average particle diameters adjacent to each other is b≥ä(2√3-3)/3}a, c≥ä(2√3-3)/3}b, ..., n≥ä(2√3-3)/3}m, and the separator preferably includes a sheet-like porous base material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子部品、例えば、リチウムイオン二次電池、ポリマーリチウム二次電池等のリチウム二次電池または電気二重層キャパシタに使用されるセパレータおよびその製造方法に関する。   The present invention relates to a separator used for an electronic component, for example, a lithium secondary battery such as a lithium ion secondary battery or a polymer lithium secondary battery, or an electric double layer capacitor, and a method for producing the separator.

近年、産業機器、民生機器に関わらず、電気・電子機器の需要増加、及びハイブリッド自動車の開発により、電子部品であるリチウムイオン二次電池及びポリマーリチウム二次電池の需要が著しく増加している。また、上記用途の多様化に伴って、より容量の高いリチウム電池や急速充放電が可能な電気二重層キャパシタなどへのニーズも高まっている。 これらの電気・電子機器は小型化、高機能化が日進月歩で進行しており、特にリチウムイオン二次電池及びポリマーリチウム二次電池においても、小型化、高機能化が要求されている。   In recent years, regardless of industrial equipment and consumer equipment, demand for electrical / electronic equipment and development of hybrid vehicles has greatly increased demand for lithium-ion secondary batteries and polymer lithium secondary batteries, which are electronic components. In addition, with the diversification of the above uses, there is an increasing need for higher capacity lithium batteries and electric double layer capacitors capable of rapid charge / discharge. These electric and electronic devices are steadily becoming smaller and more functional, and in particular, lithium ion secondary batteries and polymer lithium secondary batteries are also required to be smaller and more functional.

リチウムイオン二次電池及びポリマーリチウム二次電池は、活物質とリチウム含有酸化物とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンと混合してアルミニウム製集電体上にシート化した正極と、リチウムイオンを吸蔵放出し得る炭素質材料とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンと混合して銅製集電体上にシート化した負極と、多孔質電解質膜とを、正極、電解質膜、負極の順に捲回もしくは積層して形成された電極体に駆動用電解液を含浸させ、アルミニウムケースにより封止された構造のものである。従来、上記リチウムイオン二次電池及びポリマーリチウム二次電池のセパレータとしてはポリフッ化ビニリデン、ポリエチレン等のポリオレフィン系の多孔質膜や不織布が使用されている。   The lithium ion secondary battery and the polymer lithium secondary battery are a positive electrode in which an active material, a lithium-containing oxide, and a binder such as polyvinylidene fluoride are mixed with 1-methyl-2-pyrrolidone to form a sheet on an aluminum current collector. A negative electrode formed by mixing a carbonaceous material capable of inserting and extracting lithium ions and a binder such as polyvinylidene fluoride with 1-methyl-2-pyrrolidone into a sheet on a copper current collector, and a porous electrolyte membrane, An electrode body formed by winding or laminating a positive electrode, an electrolyte membrane, and a negative electrode in this order is impregnated with a driving electrolyte and sealed with an aluminum case. Conventionally, polyolefin-based porous membranes and nonwoven fabrics such as polyvinylidene fluoride and polyethylene have been used as separators for the lithium ion secondary battery and polymer lithium secondary battery.

ところで、上記リチウムイオン二次電池及びポリマーリチウム二次電池は、前述の通り小型化が進んでいるためにセパレータも薄膜化が要求されている。しかしながら、従来のセパレータを薄膜化すると、正極、負極間で内部短絡が発生したり、電池の安全性に寄与するシャットダウン効果が発現できなくなったり、或いは電子部品を駆動させるために必要である駆動用電解液を十分保持できなくなるという問題が発生するのみならず、機械的強度の低下により製造工程での作業性、生産性を損ない、製品の信頼性の低下などの問題が発生する。なお、ここでいうシャットダウンとは、電池内温度が何らかの異常によって上昇した際に、140℃乃至150℃付近でセパレータの微細孔が閉塞されて電流の流れを止めてしまう現象である。   By the way, since the lithium ion secondary battery and the polymer lithium secondary battery are miniaturized as described above, the separator is also required to be thin. However, when a conventional separator is made thin, an internal short circuit occurs between the positive electrode and the negative electrode, a shutdown effect that contributes to the safety of the battery cannot be realized, or driving that is necessary for driving electronic components In addition to the problem that the electrolytic solution cannot be sufficiently retained, problems such as a decrease in mechanical strength and a decrease in product reliability due to loss of workability and productivity in the manufacturing process occur. The shutdown here is a phenomenon in which when the temperature in the battery rises due to some abnormality, the fine pores of the separator are closed at around 140 ° C. to 150 ° C. and the current flow is stopped.

これらの問題を解決する目的で、従来種々の提案がなされている。例えば、特許文献1には、電池が異常発熱する環境下および過充電時での安全性を確保する目的で、複合膜中にポリエチレン粒子等のフィラーを混合してシャットダウン機能をもたせることが提案されている。そして具体的には、ポリエチレン粒子が付着した不織布にフッ化ビニリデン樹脂含有塗布液を含浸塗布した後、溶媒水溶液中に浸漬して凝固させ、溶媒を除去することによって製造することが記載されている。しかしながら、特許文献1には、微粒子の粒子径については何等考慮されていなく、十分なシャットダウン効果の発現は期待できない他、フィラー粒子間の空隙に関しては考慮されておらず、従って特にセパレータを薄膜化し、更には粒子間の空隙が大きい場合にはマイクロショートなどの不具合を起こす問題があった。   Various proposals have been made for the purpose of solving these problems. For example, Patent Document 1 proposes that a composite film is mixed with a filler such as polyethylene particles to have a shutdown function in order to ensure safety in an environment where the battery abnormally generates heat and overcharge. ing. And specifically, it is described that after impregnating and applying a vinylidene fluoride resin-containing coating solution to a nonwoven fabric to which polyethylene particles are adhered, it is immersed in a solvent aqueous solution to solidify, and the solvent is removed. . However, in Patent Document 1, no consideration is given to the particle size of the fine particles, and a sufficient shutdown effect cannot be expected. In addition, the voids between the filler particles are not considered. Furthermore, when the voids between the particles are large, there is a problem of causing problems such as micro shorts.

また、フィラー粒子を含む複合膜よりなるセパレータを製造するために、可塑剤を有機溶剤で抽出除去する方法があるが、形成される多孔質構造体樹脂の細孔は孔径が小さいものとなるために、フィラー粒子により孔が閉塞されるという問題があった。また、可塑材を用いず、有機溶媒を別の溶媒で置換する方法の場合は、複合体内部の空隙が大きくなりやすいために、ポリエチレン等のフィラー粒子が一定の温度域で溶融しても、その空隙を満遍なく埋めることができず、シャットダウン機能が十分に発現されない等の問題がある他、マイクロショートを発生しやすい等の問題があった。したがって、フィラー粒子を含有させる場合には、溶融時には、素早く孔を埋める必要があり、フィラー粒子間の空隙を十分に考慮する必要がある。   In addition, there is a method of extracting and removing a plasticizer with an organic solvent in order to produce a separator made of a composite film containing filler particles, but the pores of the formed porous structure resin have a small pore size. Furthermore, there is a problem that the pores are blocked by the filler particles. Also, in the case of a method of replacing the organic solvent with another solvent without using a plasticizer, because the voids inside the composite are likely to be large, even if filler particles such as polyethylene melt in a certain temperature range, In addition to the problems that the gaps cannot be filled evenly and the shutdown function is not sufficiently exhibited, there are problems such as the occurrence of micro-shorts. Therefore, when the filler particles are contained, it is necessary to quickly fill the holes at the time of melting, and it is necessary to sufficiently consider the gaps between the filler particles.

また、近年、大型のリチウム系電池や電気二重層キャパシタでは、上記のようなシャットダウン機能は求められない場合がある。このような電子部品では、必ずしも上記の熱可塑性を有する樹脂粒子を用いる必要はないが、本質的には、薄膜セパレータでフィラー粒子間の空隙が大きい場合は、上記のマイクロショートが発生しやすい場合があり問題となる。このような観点からも、前述のように、フィラー粒子間の空隙は十分に考慮する必要がある。   In recent years, a shutdown function as described above may not be required for large lithium batteries and electric double layer capacitors. In such an electronic component, it is not always necessary to use the resin particles having the thermoplasticity described above, but in essence, when the gap between the filler particles is large in the thin film separator, the above-described micro-short is likely to occur. There is a problem. From this point of view, it is necessary to sufficiently consider the voids between the filler particles as described above.

特開2003−317693号公報JP 2003-317893 A

本発明は、上記のような実状に鑑みて提案されたものであり、その目的は、薄膜であるにもかかわらず短絡を起こさず、作業性、生産性が極めて良好であり、優れたシャットダウン効果を有する電子部品用セパレータ及びその製造方法を提供することにある。   The present invention has been proposed in view of the actual situation as described above, and its purpose is not to cause a short circuit even though it is a thin film, workability and productivity are extremely good, and an excellent shutdown effect. It is providing the separator for electronic components which has these, and its manufacturing method.

本発明の電子部品用セパレータは、多孔質構造体及び平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含有した電子部品用セパレータであって、前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
また、本発明の電子部品用セパレータの製造方法は、上記の電子部品用セパレータを製造するためのものであって、その第1の製造方法は、樹脂フィルムの一面に、シート状多孔質基材を載置する工程、該シート状多孔質基材の上に、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液を塗工する工程、形成された塗工層を乾燥して溶媒を除去することによってシート状多孔質基材の表面及び/又は内部に多孔質構造体を形成した積層体を得る工程、その後該積層体から樹脂フィルムを剥離する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
また、第2の製造方法は、樹脂フィルム上の一面に、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液を塗工する工程、シート状多孔質基材を前記工程で得られた塗工層に重ね合わせる工程、その後、乾燥して溶媒を除去することによってシート状多孔質基材の表面及び/又は内部に多孔質構造体を形成した積層体を得る工程、その後該積層体から樹脂フィルムを剥離する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
また、第3の製造方法、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液に、シート状多孔質基材を含浸した後に余剰な塗布液を除去する工程、その後、乾燥して溶媒を除去するか、又は前記良溶媒及び貧溶媒を置換する液体中に浸漬して前記良溶媒及び貧溶媒を除去した後に更に乾燥により該良溶媒及び貧溶媒を置換する液体を除去する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
The separator for electronic parts of the present invention is a separator for electronic parts containing at least two kinds of filler particles having different porous structures and average particle diameters, and the average particle diameters of the filler particles are increased in the order of a, b , C,..., M, n, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3}. b,... n ≧ {(2√3-3) / 3} m.
Moreover, the manufacturing method of the separator for electronic components of this invention is for manufacturing said separator for electronic components, The 1st manufacturing method is a sheet-like porous base material on one surface of the resin film. A coating solution containing a resin that forms a porous structure and at least a good solvent that dissolves the resin, or both a good solvent and a poor solvent, is applied on the sheet-like porous substrate. A step of drying the formed coating layer and removing the solvent to obtain a laminate in which a porous structure is formed on the surface and / or inside of the sheet-like porous substrate, and then a resin from the laminate A step of peeling the film, and including at least two kinds of filler particles having different average particle diameters in the sheet-like porous substrate and / or the coating solution in order of increasing the average particle diameter of the filler particles a, b , C, ... When m and n are set, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3} b,. ≧ {(2√3-3) / 3} m.
In addition, the second production method is a step of applying, on one surface of a resin film, a resin that forms a porous structure and at least a good solvent that dissolves the resin or a coating solution that includes both a good solvent and a poor solvent. A step of superimposing the sheet-like porous substrate on the coating layer obtained in the above step, and then drying to remove the solvent to remove the solvent on the surface and / or inside of the sheet-like porous substrate. At least two or more types of filler particles having an average particle size different from that of the sheet-like porous substrate and / or the coating liquid. When the average particle size of the filler particles is a, b, c,..., M, n, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3} b,... n ≧ {(2√3-3) / 3} m.
In addition, the third manufacturing method, a surplus after impregnating the sheet-like porous substrate with a coating solution containing a resin forming a porous structure and at least a good solvent or a good solvent and a poor solvent for dissolving the resin A step of removing the coating solution, and then drying to remove the solvent, or immersing it in a liquid that replaces the good solvent and the poor solvent to remove the good solvent and the poor solvent, followed by further drying. A step of removing a solvent and a liquid for substituting the poor solvent, wherein the average particle size of the filler particles includes at least two kinds of filler particles having different average particle diameters in the sheet-like porous substrate and / or the coating liquid. When the diameters are a, b, c,..., M, n, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√ 3-3) / 3} b, ... n ≧ {(2√3-3) / 3} m It is characterized in.

本発明の電子部品用セパレータは、薄膜で且つ高イオン伝導性であり、粒子径を適度に設計したフィラー粒子を含有することで、薄膜であってもマイクロショートを起こしにくい電気化学素子を製造することが可能であり、特にリチウム系二次電池に用いた場合においては、必要に応じて過充電に対する良好なシャットダウン機能の付与を有することができる。   The separator for electronic components of the present invention is a thin film and has high ion conductivity, and contains filler particles having an appropriately designed particle size, thereby producing an electrochemical element that is unlikely to cause a micro short even if it is a thin film. In particular, when used in a lithium secondary battery, it can have a good shutdown function against overcharge as required.

以下、本発明を詳細に説明する。
本発明の電子部品用セパレータは、多孔質構造体及び平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含有した電子部品用セパレータであって、前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
互いに隣接するこのような2種類の平均粒子径の関係を有するフィラー粒子を図示すると図1の通りである。すなわち、図1に示すように平均粒子径がaのフィラー粒子A3個によって形成される間隙の面積Sよりも平均粒子径がbのフィラー粒子B1個の面積Sの方が大きい。そのためフィラー粒子A間にフィラー粒子Bが入り込まなくなる。その結果、フィラー粒子Aとフィラー粒子Bとの間で生じた間隙がフィラー粒子Aのみから構成される間隙よりも小さくなるため、マイクロショートに繋がる貫通孔の発生を抑えることが可能となる。また、フィラー粒子間の間隙が小さいため溶融されたフィラー粒子がその間隙を十分に埋めることができ良好なシャットダウン性を有する。平均粒子径がbのフィラー粒子が、{2√3−3}/3}aよりも小さい場合では、平均粒子径がaのフィラー粒子によって形成される間隙に、平均粒子径のbのフィラー粒子が入り込んでしまうため、平均粒子径がaのフィラー粒子によって形成される間隙がそのまま電子部品用セパレータに生じてフィラー粒子間の間隙が大きく貫通孔が生じてマイクロショートが発生する。
また、本発明においては、上記平均粒子径がaのフィラー粒子及び平均粒子径がbのフィラー粒子に加えて更に、平均粒子径が異なる第3のフィラー粒子や第4のフィラー粒子を加えてもよい。このような場合では、平均粒子径が異なるフィラー粒子を大きい順に対比して、隣り合うフィラー粒子の関係が前記関係を有すればよい。すなわち、複数のフィラー粒子の平均粒子径の関係がa>b>c>・・・m>nであった場合は、b≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b・・・n≧{(2√3−3)/3}mでなければならない。平均粒子径が異なる第3のフィラー粒子や第4のフィラー粒子を加えた場合では、更にフィラー粒子間の間隙が小さくなるため、マイクロショートに繋がる貫通孔の発生を抑えることが可能となり、また、フィラー粒子間の間隙が小さいため溶融されたフィラー粒子がその間隙を十分に埋めることができ良好なシャットダウン性を有する。本発明におけるフィラー粒子の平均粒子径とは、一次粒子の平均値をいう。
Hereinafter, the present invention will be described in detail.
The separator for electronic parts of the present invention is a separator for electronic parts containing at least two kinds of filler particles having different porous structures and average particle diameters, and the average particle diameters of the filler particles are increased in the order of a, b , C,..., M, n, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3}. b,... n ≧ {(2√3-3) / 3} m.
The filler particles having such a relationship of two kinds of average particle diameters adjacent to each other are illustrated in FIG. That is, the larger the average particle diameter of the gap area S A mean particle diameter B1 or filler particles b area S B than that formed by the A3 or filler particles a, as shown in figure 1. Therefore, the filler particles B do not enter between the filler particles A. As a result, the gap generated between the filler particles A and the filler particles B is smaller than the gap formed only by the filler particles A, and thus it is possible to suppress the generation of through holes that lead to microshorts. In addition, since the gap between the filler particles is small, the melted filler particles can sufficiently fill the gap and have a good shutdown property. When the filler particles having an average particle diameter of b are smaller than {2√3-3} / 3} a, the filler particles having an average particle diameter of b are placed in a gap formed by the filler particles having an average particle diameter of a. Therefore, a gap formed by the filler particles having an average particle diameter of a is generated in the electronic component separator as it is, a gap between the filler particles is large, and a through hole is generated to generate a micro short.
In the present invention, in addition to the filler particles having an average particle diameter of a and the filler particles having an average particle diameter of b, a third filler particle or a fourth filler particle having a different average particle diameter may be added. Good. In such a case, the filler particles having different average particle diameters are compared in the descending order, and the relationship between adjacent filler particles may have the above relationship. That is, when the relationship between the average particle diameters of the plurality of filler particles is a>b>c>...M> n, b ≧ {(2√3-3) / 3} a, c ≧ {( 2√3-3) / 3} b... N ≧ {(2√3-3) / 3} m. In the case where the third filler particles and the fourth filler particles having different average particle diameters are added, the gap between the filler particles is further reduced, so that it is possible to suppress the generation of through-holes that lead to micro-shorts. Since the gap between the filler particles is small, the melted filler particles can sufficiently fill the gap and have a good shutdown property. The average particle diameter of the filler particles in the present invention refers to the average value of primary particles.

本発明においては、前記フィラー粒子の少なくとも1種類の融点が80℃以上であることが好ましい。融点が80℃以上のフィラー粒子を用いた場合には、良好なシャットダウン効果を発現することができる。この原因については必ずしも明らかではないが、従来の技術では、不織布の目開きは時として数十μm以上である場合があり、この間隙を十数μmの粒子が溶融しても均一に目を埋めることが難しいのに対して、本発明の構造のように、互いに異粒子径を持つ粒子を配することで、フィラー粒子が熱溶融時に埋めるべき間隙が狭くなるためにシャットダウン効果が発現しやすいものと考えられる。かかる融点のフィラー粒子は、フィラー粒子を構成する少なくとも1種類であればよく、他のフィラー粒子は実質上融点を有さないものであっても何ら構わない。即ち、フィラー粒子の一部が熱溶融すれば、他のフィラー粒子間にできる間隙、あるいは、フィラー粒子とシート状多孔質基材との間隙をかかる融点のフィラー粒子が簡単に埋めることが可能である。   In the present invention, it is preferable that at least one melting point of the filler particles is 80 ° C. or higher. When filler particles having a melting point of 80 ° C. or higher are used, a good shutdown effect can be exhibited. The cause of this is not necessarily clear, but in the conventional technology, the opening of the nonwoven fabric is sometimes several tens of μm or more, and even if particles of several tens of μm melt, the eyes are uniformly filled. In contrast to the structure of the present invention, when particles having different particle sizes are arranged, the gap that should be filled when filler particles are melted becomes narrow, so that the shutdown effect is likely to appear. it is conceivable that. The filler particles having such a melting point may be at least one kind constituting the filler particles, and the other filler particles may be those having substantially no melting point. That is, if a part of the filler particles is melted by heat, the filler particles having such a melting point can easily fill the gap formed between the other filler particles or the gap between the filler particles and the sheet-like porous substrate. is there.

前記フィラー粒子としては、ポリエチレン粒子、ポリプロピレン粒子、ポリテトラフルオロエチレン粒子、スチレン粒子等の樹脂粒子からなるフィラーや実質上融点を有さないシリカなどの無機粒子を挙げることができる。また、フィラー粒子は、樹脂粒子のみで構成してもよいし、無機粒子のみで構成してもよいし、樹脂粒子と無機粒子を併用して構成してもよい。   Examples of the filler particles include fillers made of resin particles such as polyethylene particles, polypropylene particles, polytetrafluoroethylene particles, and styrene particles, and inorganic particles such as silica having substantially no melting point. The filler particles may be composed only of resin particles, may be composed only of inorganic particles, or may be composed of resin particles and inorganic particles in combination.

本発明の電子部品用セパレータには、機械的強度を向上させるためにシート状多孔質基材を含むことが好ましい。シート状多孔質基材としては不織布を挙げることができる。不織布の構成材料である繊維は、セルロースパルプからなる紙の他、綿、大麻、黄麻等の靭皮繊維、マニラ麻等の葉脈繊維等からなる紙、あるいはレーヨン、キュプラ等の再生セルロース繊維及び再生タンパク繊維等の再生繊維、酢酸セルロース繊維及びプロミックス等の半合成繊維、ナイロンアラミド繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、アクリル繊維、ポリエチレン及びポリプロピレン等のポリオレフィン繊維、ポリビニルアルコール繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、塩化ビニル系繊維、ポリウレタン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、ポリパラフェニレンベンズビスチアゾール繊維、ポリイミド繊維、ポリアミド繊維、ガラス繊維、セラミックス繊維、金属繊維等からなる不織布、織布及び網状物(メッシュ)を挙げることができる。   The separator for electronic parts of the present invention preferably includes a sheet-like porous substrate in order to improve mechanical strength. A nonwoven fabric can be mentioned as a sheet-like porous base material. The fiber that is the constituent material of the nonwoven fabric is paper made of cellulose pulp, paper made of bast fibers such as cotton, cannabis, and jute, leaf vein fibers such as manila hemp, etc., or regenerated cellulose fibers and regenerated proteins such as rayon and cupra Recycled fibers such as fibers, semi-synthetic fibers such as cellulose acetate fibers and promix, nylon aramid fibers, polyethylene terephthalate fibers, polyester fibers, acrylic fibers, polyolefin fibers such as polyethylene and polypropylene, polyvinyl alcohol fibers, polyvinyl chloride fibers, poly Vinylidene chloride fiber, vinyl chloride fiber, polyurethane fiber, polyoxymethylene fiber, polytetrafluoroethylene fiber, polyparaphenylenebenzbisthiazole fiber, polyimide fiber, polyamide fiber, glass fiber, ceramic fiber, gold Nonwoven fabric made of fibers or the like, can be mentioned woven and net product (mesh).

不織布は、公知の技術を用いて製造することができる。すなわち、湿式、乾式、乾式パルプ式、スパンボンド式、メルトブロー式、フラッシュ紡糸式、トウ開繊式等により製造することができる。不織布の目開きは、短絡防止の目的からできるだけ小さい方が好ましい。その目的から、不織布に使用する繊維の繊維径は、できるだけ細いものが望ましい。
すなわち、本発明では0.15デニール以下の繊維を少なくとも1重量%以上、より好ましくは5重量%以上含むことが好ましい。0.15デニール以下の繊維が1重量%未満の場合は、目開きを小さくする効果が薄れるので好ましくないが、不織布の目開きが比較的大きい場合においても、本発明のフィラー粒子を用いる場合は、0.15デニール以下の繊維が必ずしも含まれていなくても、短絡の発生を抑えることが可能である。
A nonwoven fabric can be manufactured using a well-known technique. That is, it can be produced by a wet method, a dry method, a dry pulp method, a spun bond method, a melt blow method, a flash spinning method, a tow opening method, or the like. The opening of the nonwoven fabric is preferably as small as possible for the purpose of preventing a short circuit. For that purpose, the fiber diameter of the fibers used for the nonwoven fabric is desirably as thin as possible.
That is, in the present invention, it is preferable to contain at least 1% by weight, more preferably 5% by weight or more of fibers having a denier of 0.15 or less. When the fiber having a denier of 0.15 or less is less than 1% by weight, the effect of reducing the opening is reduced, which is not preferable. However, even when the opening of the nonwoven fabric is relatively large, the filler particles of the present invention are used. Even if a fiber of 0.15 denier or less is not necessarily contained, occurrence of a short circuit can be suppressed.

シート状多孔質基材の膜厚としては、特に規定はないが、電子部品のうち、特にリチウムイオン二次電池及びポリマーリチウム二次電池あるいは電気二重層キャパシタ等に使用する場合は、小型化を可能にするために、セパレータの膜厚が50μm以下、特に5〜30μmの範囲になるように選択するのが好適である。但し、セパレータの膜厚が50μm以上であってもプレス処理を施すことによって薄膜化が十分可能である。一方、上記以外の電子部品によっては必ずしも薄膜である必要はなく、セパレータの膜厚は50μm以上であっても構わない。また、厚膜として用いる用途の場合は、50μm以下の薄膜のセパレータを2枚以上重ねて用いることも可能である。   The film thickness of the sheet-like porous substrate is not particularly specified, but it is necessary to reduce the size of the electronic component, particularly when used for a lithium ion secondary battery, a polymer lithium secondary battery or an electric double layer capacitor. In order to make it possible, it is preferable to select the film thickness of the separator to be 50 μm or less, particularly in the range of 5 to 30 μm. However, even if the film thickness of the separator is 50 μm or more, the film thickness can be sufficiently reduced by performing the press treatment. On the other hand, some electronic components other than those described above do not necessarily need to be a thin film, and the thickness of the separator may be 50 μm or more. In the case of use as a thick film, two or more thin film separators of 50 μm or less can be used in an overlapping manner.

本発明の別のシート状多孔質基材として、フィルム面の垂直方向に貫通した実質上遮蔽構造を有しない平均孔径が50μm以下の貫通孔を有し、隣接する貫通孔間の最短距離の平均が100μm以下である微多孔樹脂フィルムを用いることができる。微多孔樹脂フィルムは、その材質がポリオレフィン、ポリエステル、ポリエチレンナフタレート、ポリイミド、ポリイミドアミド、ポリフェニルスルフォン、ポリテトラフルオロエチレン等が望ましいが、必ずしもこれらに限定されるものではなく、熱収縮が少なく、また電解液に用いる有機溶媒やイオン性液体に対して溶解しないものであれば、いずれのものも用いることができる。ポリオレフィン系樹脂では、特にポリエチレンやポリプロピレンが好適に用いられる。これらの樹脂は、過充電や過熱時において、電気化学反応の暴走を抑制するための所定温度域で熱溶融し、微多孔樹脂フィルムの貫通孔を塞ぐために安全性において良好な特性をもたらすものである。ポリエステルのうち、特にポリエチレンテレフタレートは、上記所定温度域においては溶けないものの、耐熱収縮が少なく、比較的高温域においても電極間の短絡を生じないために好適に用いられる。また、ポリエチレンナフタレートや、ポリテトラフルオロエチレン、ポリイミド、ポリアミドイミド等は、電解液やイオン性流体への耐性が良好であり、耐熱収縮性も良好なことから、本発明では好適に用いることができる。   As another sheet-like porous substrate of the present invention, there is a through hole having an average pore diameter of 50 μm or less that does not substantially have a shielding structure penetrating in the direction perpendicular to the film surface, and the average of the shortest distance between adjacent through holes A microporous resin film having a thickness of 100 μm or less can be used. The material of the microporous resin film is preferably polyolefin, polyester, polyethylene naphthalate, polyimide, polyimideamide, polyphenylsulfone, polytetrafluoroethylene, etc., but is not necessarily limited to these, and heat shrinkage is small. Moreover, as long as it does not melt | dissolve with respect to the organic solvent and ionic liquid which are used for electrolyte solution, any thing can be used. In the polyolefin resin, polyethylene and polypropylene are particularly preferably used. These resins are heat-melted in a predetermined temperature range to suppress electrochemical runaway during overcharging and overheating, and provide good safety characteristics to close the through-holes in the microporous resin film. is there. Among polyesters, polyethylene terephthalate is particularly preferably used because it does not melt in the predetermined temperature range, but has little heat shrinkage and does not cause a short circuit between electrodes even in a relatively high temperature range. In addition, polyethylene naphthalate, polytetrafluoroethylene, polyimide, polyamideimide and the like are preferably used in the present invention because they have good resistance to electrolytes and ionic fluids and good heat shrinkage resistance. it can.

図2に微多孔樹脂フィルムの一例を示した。図2において、(イ)は微多孔樹脂フィルムの平面図を示し、(ロ)は(イ)におけるZ−Z線の断面図を示す。
本発明においては、図2に示す微多孔樹脂フィルム1を形成する貫通孔2の直径Xが0.01〜50μm、より好ましくは0.1〜30μmであることが好ましい。Xが0.01μm未満であるとイオン伝導性を阻害しやすい。一方、Xが50μmを越える範囲であると、後述する多孔質構造体と複合しても電子部品の通常使用環境化でも短絡を起こしやすく望ましくない。
本発明に用いる微多孔樹脂フィルムは、隣接する前記貫通孔どうしの周囲間の最短距離Yが0.01〜100μmが好ましく、より好ましくは0.1〜50μmである。Yが0.01μm未満の場合は、微多孔樹脂フィルムの機械的強度が劣る場合があり捲回時に破断しやすくなるなどの不都合を生じる場合がある。一方、Yが50μmを越す場合には、上記の機械的強度は問題ないものの、貫通孔の孔径が小さい場合には、イオン伝導性が低下する不都合が生じる場合がある。
FIG. 2 shows an example of the microporous resin film. 2, (a) shows a plan view of the microporous resin film, and (b) shows a cross-sectional view taken along line ZZ in (a).
In the present invention, the diameter X of the through hole 2 forming the microporous resin film 1 shown in FIG. 2 is preferably 0.01 to 50 μm, more preferably 0.1 to 30 μm. When X is less than 0.01 μm, ionic conductivity tends to be hindered. On the other hand, when X is in a range exceeding 50 μm, it is not desirable because it is likely to cause a short circuit even in a normal use environment of an electronic component even if it is combined with a porous structure described later.
In the microporous resin film used in the present invention, the shortest distance Y between the adjacent through holes is preferably 0.01 to 100 μm, more preferably 0.1 to 50 μm. When Y is less than 0.01 μm, the mechanical strength of the microporous resin film may be inferior, which may cause inconveniences such as easy breakage during winding. On the other hand, when Y exceeds 50 μm, the above-mentioned mechanical strength is not a problem, but when the hole diameter of the through hole is small, there may be a disadvantage that the ion conductivity is lowered.

本発明に用いる微多孔樹脂フィルムの膜厚は電池用途であれば20μm以下であることが望ましい。これは、近年の電池の大容量の要求にともなって、電極をできる限り厚くすることが望ましく、その容量増加分はセパレータをできるだけ薄くすることが求められているためである。また、電気二重層キャパシタ等の電子部品では、電解液を多量に保持する必要がある場合は、更に膜厚をあげることも必要な場合があるため、本発明においては、セパレータ用途に応じて膜厚設計を決めればよい。   The film thickness of the microporous resin film used in the present invention is desirably 20 μm or less for battery use. This is because it is desirable to make the electrode as thick as possible in accordance with the recent demand for large capacity batteries, and the increase in capacity is required to make the separator as thin as possible. In addition, in an electronic component such as an electric double layer capacitor, when it is necessary to hold a large amount of electrolyte, it may be necessary to further increase the film thickness. The thickness design should be decided.

また、本発明では、図3に例示するように、貫通孔2が垂直方向に直接的に貫通しない位置に2枚の微多孔樹脂フィルム1を配する構成を採用することができる。このような構成をとることによって、過充電や充放電サイクル時において発生するデンドライトを上記の微多孔樹脂フィルムの少なくともソリッドな樹脂部分においてその成長を確実に止めることが可能であり、リチウムイオン二次電池やリチウムポリマー二次電池のみならず、リチウム金属を用いた場合に発生するデンドライトによる充放電サイクル早期の短絡をも防止することが可能となる。但し、本発明においては、2枚の微多孔樹脂フィルムを重ねる場合に貫通孔の位相が同じとなってセパレータ表面に対して垂直方向に貫通孔が同時に存在していてもなんらかまわない。なお、複数枚の微多孔樹脂フィルムを用いる場合は、図3に例示するように、微多孔樹脂フィルム1の間に、多孔質構造体3及び平均粒子径が異なる少なくとも2種類以上のフィラー粒子A及びBを構成することで、イオンの流通路を形成するなどの工夫を施すことが電池性能上はより望ましい。   In the present invention, as illustrated in FIG. 3, a configuration in which two microporous resin films 1 are arranged at a position where the through hole 2 does not directly penetrate in the vertical direction can be employed. By adopting such a configuration, it is possible to reliably stop the growth of dendrites generated during overcharge and charge / discharge cycles in at least the solid resin portion of the microporous resin film. It becomes possible to prevent not only a battery and a lithium polymer secondary battery but also a short circuit in the early stage of the charge / discharge cycle caused by dendrite generated when lithium metal is used. However, in the present invention, when two microporous resin films are stacked, the phase of the through holes may be the same and the through holes may exist simultaneously in the direction perpendicular to the separator surface. In the case of using a plurality of microporous resin films, as illustrated in FIG. 3, at least two or more types of filler particles A having a different porous structure 3 and different average particle diameters are provided between the microporous resin films 1. It is more desirable in terms of battery performance to make a contrivance such as forming an ion flow path by configuring A and B.

なお、本発明で用いる微多孔樹脂フィルムの作製方法は、例えば、レーザーで微少な貫通孔を連続的に形成する方法や、予め、断続的な微細スリットをフィルム上に形成しておき、該スリットの方向と垂直方向に延伸することで微多孔樹脂フィルムを形成することが可能であるが、必ずしも上記の方法によらなくてもよい。   The microporous resin film used in the present invention can be prepared by, for example, a method of continuously forming minute through holes with a laser, or by forming intermittent fine slits on the film in advance. It is possible to form a microporous resin film by stretching in a direction perpendicular to this direction, but it is not always necessary to use the above method.

また、本発明においては、前記シート状多孔質基材の融点は180℃を超すことが望ましい。シート状多孔質基材の融点が180℃以下であると、加熱時に熱溶融し収縮しやすいために、電極間での短絡を起こすことがあり問題となる場合がある。また、本発明においては、該シート状多孔質基材である不織布または微多孔樹脂フィルムを構成する材質の少なくとも1種類の融点が180℃を超すものであれば、上記の過熱時における収縮は防止できるために、本発明では好適に使用することが可能である。不織布の場合には、これを構成する繊維の一部の融点が180℃を超すものであれば収縮は問題なく、また、微多孔樹脂フィルムの場合においては、特に、複数枚の微多孔樹脂フィルムを重ねて用いる場合は、そのうちの例えば1枚の材質の融点が180℃を超すものであれば、過熱時の収縮が起きしにくくなり好適である。   In the present invention, it is desirable that the melting point of the sheet-like porous substrate exceeds 180 ° C. If the melting point of the sheet-like porous substrate is 180 ° C. or less, it is likely to cause a short circuit between the electrodes because it is easily melted and contracted during heating, which may be a problem. In the present invention, if the material constituting the nonwoven fabric or microporous resin film, which is the sheet-like porous substrate, has a melting point exceeding 180 ° C., the above-described shrinkage during overheating is prevented. Therefore, it can be preferably used in the present invention. In the case of a non-woven fabric, there is no problem with shrinkage if the melting point of a part of the fibers constituting it exceeds 180 ° C. In the case of a microporous resin film, in particular, a plurality of microporous resin films For example, if one of the materials has a melting point of more than 180 ° C., shrinkage during overheating is less likely to occur.

また、本発明においては、多孔質構造体が溶媒可溶型樹脂であり、前記シート状多孔質基材及び前記フィラー粒子が有機電解液に対して70℃までの範囲で実質上膨潤しない素材を含むことが好ましい。70℃までの範囲で有機電解液に全ての多孔質構造体が溶解またはゲル化してしまうと、電池の高温使用環境下においてイオン伝導性が阻害される場合があり好ましくない。膨潤する温度が70℃を超える範囲の素材を一部用いて多孔質を構成した場合、70℃までの高温使用環境下においても、少なくとも多孔質体構造体が残存するために、イオン伝導性が極端に低下することはなく好適である。   In the present invention, the porous structure is a solvent-soluble resin, and the sheet-like porous base material and the filler particles are made of a material that does not substantially swell up to 70 ° C. with respect to the organic electrolyte. It is preferable to include. If all the porous structures are dissolved or gelled in the organic electrolyte in the range up to 70 ° C., the ion conductivity may be inhibited under the high temperature use environment of the battery, which is not preferable. When a porous material is partially formed using a material whose swelling temperature exceeds 70 ° C., at least the porous body structure remains even under a high temperature use environment up to 70 ° C. It is preferable because it does not extremely decrease.

該多孔質構造体を形成する樹脂は、実質的に溶媒可溶型の樹脂であることが本発明においては望ましい。更には、多孔質構造体の材質としていわゆるポリマー電解質に用いられる樹脂を選択することで、電解液の保持性や電解液の抽液性が向上するほか、安全性の向上やサイクル特性の向上をも図ることができ好適である。特に、前記溶媒可溶型の樹脂は、上記の様々な特性から、ポリフッ化ビニリデンまたは及びフッ化ビニリデン共重合体であることが最も望ましい。ポリフッ化ビニリデン樹脂を用いた場合は、一般的な電解液に対する耐性が良好であるために、電解液に濡れても多孔質を維持しやすいことから、イオン伝導を阻害せず、しかも電解液を保持しやすいために安全性やサイクル特性の向上に対しても効果的であり好適に用いられる。また、この樹脂の共重合体である例えばフッ化ビニリデン−ヘキサフロロプロピレンの共重合体を混合して用いれば、通常使用環境下で該樹脂が膨潤するために電極との密着性を適度に与えることも可能であり、サイクル特性を更に向上することが可能となる。共重合体としては上記の例示に必ずしも限定されるものではなく、上記の様々な特性を考慮して種々選択して用いればよく、上記の例のように複数種を複合して用いても何らかまわない。また本発明では、用いる溶媒可溶型の樹脂は、上記のフッ化ビニリデン系のものに限らず、上記の利点を発現するものであれば、いずれも好適に使用でき、例えば、ポリアクリトニトリルや、ポリエチレンオキサイド等のゲル電解質と称されるような樹脂は、いずれも好適に用いることができる。   In the present invention, the resin forming the porous structure is desirably a solvent-soluble resin. Furthermore, by selecting the resin used for the so-called polymer electrolyte as the material of the porous structure, the retention of the electrolyte and the extraction of the electrolyte are improved, and safety and cycle characteristics are improved. This is also preferable. In particular, the solvent-soluble resin is most preferably polyvinylidene fluoride or a vinylidene fluoride copolymer because of the various characteristics described above. When polyvinylidene fluoride resin is used, since it has good resistance to general electrolytes, it is easy to maintain porosity even when wet with electrolytes. Since it is easy to hold, it is effective in improving safety and cycle characteristics and is preferably used. In addition, if a resin copolymer such as a vinylidene fluoride-hexafluoropropylene copolymer is mixed and used, the resin swells under normal use environment, so that adhesion to the electrode is appropriately given. This also makes it possible to further improve the cycle characteristics. The copolymer is not necessarily limited to the above examples, and may be selected and used in consideration of the various characteristics described above. A plurality of types may be used in combination as in the above examples. It doesn't matter. In the present invention, the solvent-soluble resin to be used is not limited to the above-mentioned vinylidene fluoride type, and any resin that exhibits the above-mentioned advantages can be suitably used. For example, polyacrylonitrile, Any of the resins called gel electrolytes such as polyethylene oxide can be suitably used.

上記ポリフッ化ビニリデンとしては、フッ化ビニリデンホモポリマー又はフッ化ビニリデンを含むコポリマーを挙げることができる。フッ化ビニリデンホモポリマーは、フッ化ビニリデンのモノマーの付加重合反応によりえられ、その重合方法としては、ラジカル重合、カチオン重合、アニオン重合、光・放射線重合、懸濁重合、乳化重合、溶液重合、塊状重合等を挙げることができる。また、フッ化ビニリデンを含むコポリマーは、フッ化ビニリデンと他のモノマーを共重合させた樹脂であり、他のモノマーとしては、例えばエチレン、プロピレン等の炭化水素系単量体、フッ化ビニル、3フッ化エチレン、3フッ化塩化エチル、4フッ化エチレン、6フッ化プロピレン、フルオロアルキルビニルエーテル等の含フッ素単量体、マレイン酸モノメチル、シトラコン酸モノメチル等のカルボキシル基含有単量体、又はアリルグリシジンエーテル、クロトン酸グリシジルエステル等のエポキシ基含有ビニル単量体、等を挙げることができる。この中でも特に、フッ化ビニリデンと4フッ化エチレン又は6フッ化プロピレンのいずれか1種類以上とからなるコポリマーが好ましい。   Examples of the polyvinylidene fluoride include a vinylidene fluoride homopolymer or a copolymer containing vinylidene fluoride. The vinylidene fluoride homopolymer is obtained by the addition polymerization reaction of vinylidene fluoride monomer. The polymerization methods include radical polymerization, cationic polymerization, anionic polymerization, light / radiation polymerization, suspension polymerization, emulsion polymerization, solution polymerization, Examples thereof include bulk polymerization. The copolymer containing vinylidene fluoride is a resin obtained by copolymerizing vinylidene fluoride and other monomers. Examples of other monomers include hydrocarbon monomers such as ethylene and propylene, vinyl fluoride, 3 Fluorine-containing monomers such as fluorinated ethylene, ethyl trifluoride, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether, carboxyl group-containing monomers such as monomethyl maleate and monomethyl citraconic acid, or allylglycol And epoxy group-containing vinyl monomers such as sidine ether and glycidyl crotonic acid ester. Among these, in particular, a copolymer comprising vinylidene fluoride and one or more of tetrafluoroethylene or hexafluoropropylene is preferable.

多孔質構造体を構成する樹脂としては、前記のポリフッ化ビニリデンやフッ化ビニリデン共重合体の他に、ポリアクリロニトリル、アクリロニトリルを含む共重合体、ポリメタクリル酸メチル、メタクリル酸メチルを含む共重合体、ポリスチレン、スチレンを含む共重合体、ポリエチレンオキサイド、エチレンオキサイド、ポリイミドアミド、ポリフェニルスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレンの少なくとも1種類以上を含む共重合体などを挙げることができる。それぞれのホモポリマーは、それぞれの樹脂のモノマーの付加重合反応により得られ、その重合方法としては、公知の技術を用いることができる。すなわちラジカル重合、カチオン重合、アニオン重合、光・放射線重合、縣濁重合法、乳化重合泡、塊状重合法などにより得ることができる。また、それぞれの樹脂を含むコポリマーは、それぞれの樹脂のモノマーと他のモノマーを共重合させた樹脂であり、他のモノマーとしては特に規定はない。これらのコポリマーも前記ホモポリマーと同様な重合方法で得ることができる。   As the resin constituting the porous structure, in addition to the above-mentioned polyvinylidene fluoride and vinylidene fluoride copolymer, polyacrylonitrile, a copolymer containing acrylonitrile, a polymethyl methacrylate, a copolymer containing methyl methacrylate , Copolymers containing polystyrene, styrene, polyethylene oxide, ethylene oxide, polyimide amide, polyphenyl sulfone, polyether sulfone, polyether ether ketone, and a copolymer containing at least one of polytetrafluoroethylene Can do. Each homopolymer is obtained by an addition polymerization reaction of monomers of each resin, and a known technique can be used as the polymerization method. That is, it can be obtained by radical polymerization, cationic polymerization, anionic polymerization, light / radiation polymerization, suspension polymerization, emulsion polymerization foam, bulk polymerization and the like. Moreover, the copolymer containing each resin is resin which copolymerized the monomer of each resin, and another monomer, and there is no prescription | regulation in particular as another monomer. These copolymers can also be obtained by the same polymerization method as the homopolymer.

本発明においては多孔質構造体を構成する樹脂がアミド系溶媒またはケトン系溶媒またはフラン系溶媒に可溶であることが望ましい。本発明で特に好適に用いられるフッ化ビニリデン系樹脂はアミド系溶媒で溶解した場合において、成膜性が非常に良好であるため、特に好適に用いることができるが、塗工面の乾燥効率を向上する上では、ケトン系溶媒やフラン系溶媒に可溶である樹脂を用いることが望ましい。本発明では、乾燥速度や成膜状態を見ながら、上記の溶媒を適宜混合して用いてもよい。   In the present invention, it is desirable that the resin constituting the porous structure is soluble in an amide solvent, a ketone solvent, or a furan solvent. The vinylidene fluoride resin particularly preferably used in the present invention has a very good film formability when dissolved in an amide solvent, and can be used particularly preferably, but improves the drying efficiency of the coated surface. Therefore, it is desirable to use a resin that is soluble in a ketone solvent or a furan solvent. In the present invention, the above solvents may be appropriately mixed and used while observing the drying rate and the film formation state.

本発明においては、電子部品用セパレータの厚さは1〜30μmであることが望ましい。1μm以下であると、本発明のフィラー粒子の存在下であっても微少なピンホールが生じやすく、マイクロショートを発生しやすい。一方、30μmよりも厚いと、電子部品用セパレータの内部抵抗が上昇し、電池性能やキャパシタ性能を低下せしめる原因となり望ましくない。   In the present invention, the thickness of the electronic component separator is desirably 1 to 30 μm. When it is 1 μm or less, even in the presence of the filler particles of the present invention, minute pinholes are likely to occur, and microshorts are likely to occur. On the other hand, if it is thicker than 30 μm, the internal resistance of the separator for electronic parts increases, which is undesirable because it causes the battery performance and the capacitor performance to deteriorate.

本発明の電子部品用セパレータを適用できる電気化学素子は、通常のリチウム系電池のほか、キャパシタでも良好に用いることができる。本発明の電子部品用セパレータは、いずれのものも、透気度が低く、従って、電子部品用セパレータとしての内部抵抗を低く抑えることが可能であるため、特に、高いレート特性が必要な場合、あるいは、低温における特性が必要な場合は、電池であっても、キャパシタであってもこれらの特性において同様の効果が期待できるためである。また、本発明の電子部品用セパレータは、極めて薄膜であってもマイクロショートを起こさないために、電極部分の体積をより多くすることが可能であるために、電池であれキャパシタであれ容量を大きくすることが可能である。   The electrochemical element to which the separator for electronic parts of the present invention can be applied can be satisfactorily used for capacitors as well as ordinary lithium batteries. Any of the separators for electronic parts of the present invention has low air permeability, and therefore, it is possible to suppress the internal resistance as a separator for electronic parts, particularly when high rate characteristics are required. Alternatively, when characteristics at a low temperature are required, similar effects can be expected in these characteristics regardless of whether it is a battery or a capacitor. In addition, since the separator for electronic parts of the present invention does not cause a micro short even if it is a very thin film, it is possible to increase the volume of the electrode portion. Is possible.

次に、本発明の電子部品用セパレータの製造方法について述べる。
本発明の第1の製造方法は、樹脂フィルムの一面に、シート状多孔質基材を載置する工程、該シート状多孔質基材の上に、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液を塗工する工程、形成された塗工層を乾燥して溶媒を除去することによってシート状多孔質基材の表面及び/又は内部に多孔質構造体を形成した積層体を得る工程、その後該積層体から樹脂フィルムを剥離する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
また、第2の製造方法は、樹脂フィルム上の一面に、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液を塗工する工程、シート状多孔質基材を前記工程で得られた塗工層に重ね合わせる工程、その後、乾燥して溶媒を除去することによってシート状多孔質基材の表面及び/又は内部に多孔質構造体を形成した積層体を得る工程、その後該積層体から樹脂フィルムを剥離する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
また、第3の製造方法は、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液に、シート状多孔質基材を含浸した後に余剰な塗布液を除去する工程、その後、乾燥して溶媒を除去するか、又は前記良溶媒及び貧溶媒を置換する液体中に浸漬して前記良溶媒及び貧溶媒を除去した後に更に乾燥により該良溶媒及び貧溶媒を置換する液体を除去する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする。
Next, the manufacturing method of the separator for electronic components of this invention is described.
The first production method of the present invention includes a step of placing a sheet-like porous substrate on one surface of a resin film, a resin that forms a porous structure on the sheet-like porous substrate, and at least the A step of applying a good solvent for dissolving the resin or a coating solution containing both a good solvent and a poor solvent, the surface of the sheet-like porous substrate by drying the formed coating layer and removing the solvent, and / or Alternatively, the method includes a step of obtaining a laminate in which a porous structure is formed inside, and then a step of peeling a resin film from the laminate, and the average particle diameter is different from that of the sheet-like porous substrate and / or the coating solution. When at least two types of filler particles are included and the average particle size of the filler particles is a, b, c,..., M, n in order of decreasing size, the relationship between adjacent average particle sizes is b ≧ {(2√ 3-3) / 3} a, c ≧ {(2√3-3) / 3} b ,..., N ≧ {(2√3-3) / 3} m.
In addition, the second production method is a step of applying, on one surface of a resin film, a resin that forms a porous structure and at least a good solvent that dissolves the resin or a coating solution that includes both a good solvent and a poor solvent. A step of superimposing the sheet-like porous substrate on the coating layer obtained in the above step, and then drying to remove the solvent to remove the solvent on the surface and / or inside of the sheet-like porous substrate. At least two or more types of filler particles having an average particle size different from that of the sheet-like porous substrate and / or the coating liquid. When the average particle size of the filler particles is a, b, c,..., M, n, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3} b,... n ≧ {(2√3-3) / 3} m.
In addition, the third production method may include a step of impregnating a sheet-like porous substrate with a coating solution containing a resin that forms a porous structure and at least a good solvent that dissolves the resin or both a good solvent and a poor solvent. The step of removing the excess coating solution, and then drying to remove the solvent, or immersing in a liquid that replaces the good solvent and the poor solvent to remove the good solvent and the poor solvent, followed by further drying. It has the process of removing the liquid which substitutes a good solvent and a poor solvent, and contains the at least 2 or more types of filler particle from which an average particle diameter differs in the said sheet-like porous base material and / or the said coating liquid. When the particle diameters are a, b, c,..., M, n in order of increasing particle size, the relationship between adjacent average particle diameters is b ≧ {(2√3-3) / 3} a, c ≧ {(2 √3-3) / 3} b,... N ≧ {(2√3-3) / 3} m And wherein the Rukoto.

前記第1及び第2の製造方法に用いられる樹脂フィルムとしては、ポリオレフィンフィルム、ポリエステルフィルム等を挙げることができる。樹脂フィルムには離型処理、易接着処理等の表面処理を施したものでもよい。樹脂フィルムは電子部品用セパレータの表面保護膜の機能を有し、樹脂フィルムに電子部品用セパレータを保持させたままの状態で積層物を巻き取って保管・搬送することもできる。   Examples of the resin film used in the first and second manufacturing methods include a polyolefin film and a polyester film. The resin film may be subjected to surface treatment such as mold release treatment or easy adhesion treatment. The resin film has a function of a surface protective film of the electronic component separator, and the laminate can be wound and stored and transported while the electronic component separator is held on the resin film.

上記樹脂フィルムの選択は、樹脂フィルム上に塗工される塗布液との親和性及び形成される多孔質構造体との剥離性に関連して形成される電子部品用セパレータの性状に影響を及ぼす。本発明では、第1及び第2の製造方法において、積層体から樹脂フィルムを剥離する剥離強度が0.1〜75g/20mmが好ましく、より好ましくは0.1〜40g/20mmである。すなわち、塗工、乾燥後の樹脂フィルム上に形成された多孔質構造体を20mmの幅で切り出したテープ状の試験片を準備し、その試験片に端部における多孔質構造体の一部を剥離し、その端部における多孔質構造体の端部と、もう一方の剥離していない端部とをテンシロンの上下のチャックにそれぞれ固定し、50mm/secの速度で引っ張り測定した場合に得られる剥離の引っ張り荷重を5点測定し、その平均値を、上記切り出し幅である20mmの幅で割った値を剥離強度として評価値とする。   The selection of the resin film affects the properties of the separator for electronic parts formed in relation to the affinity with the coating liquid applied on the resin film and the peelability from the formed porous structure. . In the present invention, in the first and second production methods, the peel strength for peeling the resin film from the laminate is preferably from 0.1 to 75 g / 20 mm, more preferably from 0.1 to 40 g / 20 mm. That is, a tape-shaped test piece obtained by cutting out the porous structure formed on the resin film after coating and drying to a width of 20 mm was prepared, and a part of the porous structure at the end portion was prepared on the test piece. It is obtained when peeling and fixing the end of the porous structure at the end and the other non-peeled end to the upper and lower chucks of Tensilon and measuring the tension at a speed of 50 mm / sec. The tensile load for peeling is measured at five points, and the average value divided by the width of 20 mm, which is the cutout width, is taken as the evaluation value as the peeling strength.

本発明において、第2の製造方法の場合には、前記の如くシート状多孔質基材を重ね合わせる前に樹脂フィルム上に塗布液を塗工するが、樹脂フィルムの剥離強度が0.1g/20mm未満のような比較的離型性が良好な樹脂フィルムでは、塗布液粘度が低い場合に塗工直後の湿潤状態にある塗工面が安定せず、塗布液の単位面積あたりの塗布量が、塗工直後からシート状多孔質基材をウェット状態の塗工層に重ね合わせる間で変動してしまい、セパレータの面方向で多孔質構造体の単位面積あたりの重量が変動してしまう。この現象は本質的には、樹脂フィルムの表面張力に由来するものである。また、これとは別に、樹脂フィルムの剥離強度が0.1g/20mm未満の場合には、乾燥工程において電子部品用セパレータが樹脂フィルムから剥離する場合があり好ましくない。一方、75g/20mmを超すような接着性が高いフィルムでは、上記のような変動は認められないが、樹脂フィルムから電子部品用セパレータを効率的に剥離し取り出すことが困難となるため好ましくない。一方、樹脂フィルム上にシート状多孔質基材を載置して重ねた後、その上に塗布液を塗工する本発明の第1の製造方法においては、塗布液が直接的にシート状多孔質基材上に塗工されるために塗布液は塗工後においてシート状多孔質基材に絡むため流動しにくく、樹脂フィルムの剥離強度が0.1g/20mm未満の場合であっても、上記のような塗布量のバラツキは発生しないが、乾燥工程において電子部品用セパレータが樹脂フィルムから剥離する場合があり好ましくない。一方、剥離強度が75g/20mmを超す樹脂フィルムを用いる場合には、樹脂フィルムから電子部品用セパレータを効率的に剥離し取り出すことが困難となるため好ましくない。   In the present invention, in the case of the second production method, the coating liquid is applied onto the resin film before the sheet-like porous substrate is overlaid as described above, but the peel strength of the resin film is 0.1 g / In a resin film having a relatively good releasability such as less than 20 mm, when the coating solution viscosity is low, the coating surface in a wet state immediately after coating is not stable, and the coating amount per unit area of the coating solution is Since the sheet-like porous base material is overlapped with the wet coating layer immediately after coating, the weight per unit area of the porous structure varies in the surface direction of the separator. This phenomenon is essentially derived from the surface tension of the resin film. Apart from this, when the peel strength of the resin film is less than 0.1 g / 20 mm, the separator for electronic parts may peel from the resin film in the drying step, which is not preferable. On the other hand, in a film having high adhesiveness exceeding 75 g / 20 mm, the above fluctuation is not observed, but it is not preferable because it is difficult to efficiently peel and take out the separator for electronic parts from the resin film. On the other hand, in the first production method of the present invention in which a sheet-like porous substrate is placed on a resin film and stacked, and then a coating liquid is applied thereon, the coating liquid is directly sheet-like porous. Since the coating liquid is entangled with the sheet-like porous substrate after coating because it is coated on the porous substrate, even if the peel strength of the resin film is less than 0.1 g / 20 mm, Although the coating amount variation as described above does not occur, the separator for electronic parts may be peeled off from the resin film in the drying step, which is not preferable. On the other hand, when a resin film having a peel strength exceeding 75 g / 20 mm is used, it is difficult to efficiently peel and remove the electronic component separator from the resin film, which is not preferable.

また、剥離強度が上記範囲にある樹脂フィルムを用いる別の利点として、以下に述べる内容が多孔質構造体の細孔の孔径を制御する上で重要である。すなわち、上記のいずれの製造方法においても共通するが、剥離強度を0.1g/20mmに近い低い範囲にした場合は、樹脂フィルムの接するセパレータ面の細孔の孔径が、塗工表層にあたるセパレータ面のものに比べて大きくなり、逆に75g/20mmに近い高い範囲に設計した場合は、樹脂フィルムに接するセパレータ面の細孔の孔径が、塗工表層にあたるセパレータ面のものに比べて小さくなる。また、0.1g/20mm未満の場合は、樹脂フィルムに接する側のセパレータ面の細孔が閉塞する場合があり、75g/20mmを超す場合は、塗工表層にあたるセパレータ面の細孔が閉塞しやすくなる。これらの現象の原因は必ずしも明らかではないが、シート状多孔質基材の表面張力が異なる材質を用いた場合でも同様の孔径の表裏非対称性が生ずることから、表面張力の強さによって生ずるものと考えられる。したがって、本発明では、電池設計からの要求からシート状多孔質基材の材質を固定しても、そのシート状多孔質基材に複合される多孔質構造体を含むセパレータの表裏両面における孔径の対称性を、樹脂フィルムの表面性で制御することが可能となる。つまり、本発明では、従来はシート状多孔質基材の材質によって必ずしも上記の表裏両面の細孔の孔径の対称性が制御できなかったことに比較して、樹脂フィルムの剥離強度の設定によって、孔径の対称性を制御が可能である。   Further, as another advantage of using a resin film having a peel strength in the above range, the following contents are important in controlling the pore diameter of the porous structure. That is, although it is common to any of the above manufacturing methods, when the peel strength is set to a low range close to 0.1 g / 20 mm, the pore diameter of the pores of the separator surface in contact with the resin film is the separator surface corresponding to the coating surface layer. In contrast, when designed in a high range close to 75 g / 20 mm, the pore diameter of the pores on the separator surface in contact with the resin film is smaller than that on the separator surface corresponding to the coating surface layer. In addition, if it is less than 0.1 g / 20 mm, the pores on the separator surface on the side in contact with the resin film may be blocked, and if it exceeds 75 g / 20 mm, the pores on the separator surface corresponding to the coating surface layer may be blocked. It becomes easy. The cause of these phenomena is not always clear, but even when materials with different surface tensions are used for the sheet-like porous substrate, the same surface asymmetry of the same pore diameter occurs, so it is caused by the strength of the surface tension. Conceivable. Therefore, in the present invention, even if the material of the sheet-like porous substrate is fixed due to the demand from the battery design, the pore diameters on both the front and back sides of the separator including the porous structure composited with the sheet-like porous substrate are determined. The symmetry can be controlled by the surface property of the resin film. In other words, in the present invention, compared to the conventional method of controlling the symmetry of the pore diameter of the pores on both the front and back surfaces by the material of the sheet-like porous substrate, by setting the peel strength of the resin film, The symmetry of the hole diameter can be controlled.

前記本発明の第1、第2及び第3の製造方法における良溶媒とは、多孔質構造体を形成する樹脂が溶解する溶媒である。該樹脂としてポリフッ化ビニリデン樹脂を用いた場合は、良溶媒の例として、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、N,N−ジメチルスルホキシド等が挙げられる。フッ化ビニリデン樹脂の良溶媒中の分散、溶解は、市販の攪拌機を使用して行うことができる。また、貧溶媒とは多孔質構造体を形成する樹脂が溶解しない溶媒である。貧溶媒としては、良溶媒より沸点の高い溶媒を選択する。貧溶媒の例として、フタル酸ジブチル、エチレングリコール、ジエチレングリコール、グリセリン等が挙げられる。塗布液におけるフッ化ビニリデン樹脂の濃度は、得られるセパレータの特性を考慮に入れて適宜設定することができる。
前記良溶媒及び貧溶媒は、共沸や、乾燥の温度差及び蒸気圧の差が大きい組み合わせは、ピンホールに代表される貫通孔の発生頻度を高める点で好ましくなく、また製造効率上も望ましくない。良溶媒と貧溶媒の沸点差は、50℃以内、特に30℃以内とすることが製造効率上好ましい。50℃を超す場合には、製造のプロセス速度があげられないほか、乾燥エネルギーが大きくなり好ましくない。また、50℃を超す場合は、乾燥条件を段階的に設定する場合に、プロセス方向への瞬時の条件切り替えが実質的に不可能となるために、大量生産には不向きであるという問題もある。
また、本発明では、前記塗布液に多孔質構造体を形成するための樹脂を溶解する良溶媒を少なくとも2種以上含み、かつ、前記樹脂を溶解しない貧溶媒を少なくとも1種以上含んでもよい。塗布液のハンドリング性からは、塗布液粘度をある程度低くすることが重要であるため、比較的低粘度である補助的な良溶媒を、これとは異なる主たる良溶媒と併用して、塗布液粘度を低減することが望ましい。このような補助的良溶媒の選択は、上記の溶媒粘度のほか、貧溶媒との乾燥バランスや、溶媒同士の共沸性を考慮して選択すればよい。本発明における補助的良溶媒は1種類に限らず複数種用いてもよい。
The good solvent in the first, second and third production methods of the present invention is a solvent in which the resin forming the porous structure is dissolved. When polyvinylidene fluoride resin is used as the resin, examples of good solvents include N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, N, N-dimethylsulfoxide and the like. It is done. Dispersion and dissolution of the vinylidene fluoride resin in a good solvent can be performed using a commercially available stirrer. The poor solvent is a solvent that does not dissolve the resin that forms the porous structure. As the poor solvent, a solvent having a boiling point higher than that of the good solvent is selected. Examples of the poor solvent include dibutyl phthalate, ethylene glycol, diethylene glycol, glycerin and the like. The concentration of the vinylidene fluoride resin in the coating solution can be appropriately set in consideration of the characteristics of the obtained separator.
A combination of the good solvent and the poor solvent having a large difference in azeotropic or drying temperature difference and vapor pressure is not preferable in terms of increasing the frequency of occurrence of through-holes typified by pinholes, and is desirable in terms of production efficiency. Absent. The difference in boiling point between the good solvent and the poor solvent is preferably 50 ° C. or less, particularly 30 ° C. or less, in view of production efficiency. If the temperature exceeds 50 ° C., the production process speed cannot be increased, and the drying energy increases, which is not preferable. In addition, when it exceeds 50 ° C., when drying conditions are set stepwise, instantaneous condition switching in the process direction becomes practically impossible, which is not suitable for mass production. .
In the present invention, the coating solution may contain at least two good solvents that dissolve a resin for forming a porous structure, and may contain at least one poor solvent that does not dissolve the resin. Since it is important to reduce the viscosity of the coating solution to some extent from the handling properties of the coating solution, an auxiliary good solvent having a relatively low viscosity is used in combination with a main good solvent different from this, and the coating solution viscosity It is desirable to reduce Such an auxiliary good solvent may be selected in consideration of the drying viscosity with the poor solvent and the azeotropic property between the solvents in addition to the above solvent viscosity. The auxiliary good solvent in the present invention is not limited to one type, and a plurality of types may be used.

前記塗布液をシート状多孔質基材または樹脂フィルム上に塗工する方法としては、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等により塗布又はキャスティング法等を挙げることができる。これにより、シート状多孔質基材の表面及び/又は内部に多孔質構造体を形成する樹脂が積層及び浸入する。次に、塗工されたシート状多孔質基材上の塗布液から溶媒を乾燥により蒸発させて多孔質構造体を形成し積層体を得る。次に積層体から樹脂フィルムを剥離して本発明の電子部品用セパレータを得ることができる。   As a method for coating the coating liquid on a sheet-like porous substrate or resin film, coating or casting is performed by a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, or the like. The law etc. can be mentioned. Thereby, resin which forms a porous structure on the surface and / or inside of a sheet-like porous substrate is laminated and infiltrated. Next, the solvent is evaporated by drying from the coating solution on the coated sheet-like porous substrate to form a porous structure to obtain a laminate. Next, the resin film can be peeled from the laminate to obtain the electronic component separator of the present invention.

本発明の第1、第2及び第3の製造方法における塗布液において、前記溶媒として吸湿性が高いものを用いる場合には、できる限り水分の混入を防ぐことが必要である。本発明では、塗布液は、カールフィッシャー法による測定で水分量が0.7重量%以下であることが好ましく、更に0.5重量%以下であることが好ましい。水分量が0.7重量%を超すと、ゲル化が早期に進み塗布液の保存期間が極端に短くなったり、形成される多孔質構造体の膜厚が著しく不均一なものとなり、膜厚が厚いところでは塗布液が水分混入によるゲル化によって孔径が極端に小さくなり、0.1μm未満の孔径の割合が多くなる。また、ゲルが溶媒の乾燥によって固化する際に収縮するため、膜厚の薄い部分(非ゲル部分)を引っ張って、15μm越える孔径の割合が多くなる。そしてゲルは部分的な発生であるため、全体として多孔質構造体は孔径が大きい部分が多くなり、結果として、バブルポイント法による平均孔径は15μmを越えた大きなものとなり、そしてフィラー粒子の平均粒子径が孔径の1%より低い値になる。このような大きな孔径がスポット的に発生すると、その部分でのマイクロショートが発生しやすく、一方孔径が小さな部分が大きな部分として混在すると、面方向での内部抵抗のバラツキを大きくするため、電池やキャパシタ性能のバラツキを生ずることとなり問題となる。また、かかるバラツキはサイクル特性にも悪影響を及ぼしやすい。   In the coating liquids in the first, second and third production methods of the present invention, when a highly hygroscopic solvent is used as the solvent, it is necessary to prevent moisture from entering as much as possible. In the present invention, the coating solution preferably has a water content of 0.7% by weight or less, more preferably 0.5% by weight or less, as measured by the Karl Fischer method. If the water content exceeds 0.7% by weight, gelation progresses early and the storage period of the coating solution becomes extremely short, or the film thickness of the porous structure formed becomes extremely uneven. When the thickness is thick, the pore size becomes extremely small due to gelation of the coating liquid due to water mixing, and the proportion of pore sizes less than 0.1 μm increases. Further, since the gel shrinks when it is solidified by drying of the solvent, the portion having a thin film thickness (non-gel portion) is pulled, and the ratio of the pore diameter exceeding 15 μm is increased. Since the gel is a partial occurrence, the porous structure as a whole has a large number of pores, and as a result, the average pore size by the bubble point method exceeds 15 μm, and the average particle size of the filler particles The diameter is lower than 1% of the hole diameter. When such a large hole diameter occurs in a spot manner, micro-shorts are likely to occur in that part, while when a part with a small hole diameter is mixed as a large part, the variation in internal resistance in the surface direction is increased. This causes a variation in capacitor performance, which is a problem. Such variations tend to adversely affect cycle characteristics.

本発明の第1、第2及び第3の製造方法において、シート状多孔質基材及び/又は塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含むものであるが、該フィラー粒子が樹脂粒子からなるフィラー粒子の場合では、その粒子が溶融しない温度条件で乾燥処理することが好ましい。フッ化ビニリデン樹脂を溶解可能な溶媒は、沸点が高いものが多いために、実質的には70〜180℃の加熱温度が必要となる。このため、乾燥風量を多くすることによって乾燥を早期に行いつつ、更にはプロセス速度を上げることによって、できるだけ短時間で乾燥を終了すればよい。加熱温度が70℃より低いと、乾燥効率が悪く製造効率があがらない。一方、180℃を超える範囲では、微粒子の多くが溶融してしまうためにシャットダウン機能の付与に悪影響がある。また、一般的には、乾燥条件は段階的に設定し、良溶媒を先に乾燥させた後に貧溶媒を乾燥させることが多孔質構造体を形成する上で好ましいが、セパレータの膜性能上は、共沸しなければ、両溶媒は必ずしもはっきりと分けて乾燥しなくてもよい。乾燥は、多孔質構造体の空隙率や、孔径の制御を適宜行いつつ乾燥条件を決定することによって行なうことが望ましい。本発明では、上記のように溶媒処方の組み合わせ、乾燥温度及び送風量の各条件を適宜選択することによって、セパレータのシャットダウン機能及びその他の電池性能の最適化と、製造効率向上の両立を実現することができる。また、本発明では、上記従来技術におけるような、溶媒などによる貧溶媒、残留溶媒の除去工程を設ける必要がなく、塗工後に乾燥工程を一度経由するだけで、セパレータとして最適な多孔質構造体を簡便に製造することができる。したがって、製造効率が非常に良好なことから、安価で良質なセパレータを大量に提供することが可能となる。   In the first, second and third production methods of the present invention, the sheet-like porous substrate and / or the coating liquid contains at least two kinds of filler particles having different average particle diameters. In the case of filler particles composed of particles, it is preferable to perform a drying treatment under temperature conditions that do not melt the particles. Since many solvents capable of dissolving the vinylidene fluoride resin have a high boiling point, a heating temperature of 70 to 180 ° C. is substantially required. For this reason, it is only necessary to finish the drying in as short a time as possible by increasing the drying speed and further increasing the process speed while performing the drying at an early stage. When the heating temperature is lower than 70 ° C., the drying efficiency is poor and the production efficiency is not increased. On the other hand, when the temperature exceeds 180 ° C., most of the fine particles are melted, which adversely affects the provision of the shutdown function. In general, drying conditions are set in stages, and it is preferable to dry the poor solvent after drying the good solvent first, in order to form a porous structure. If not azeotroped, both solvents do not necessarily have to be separated and dried. The drying is desirably performed by determining the drying conditions while appropriately controlling the porosity and the pore diameter of the porous structure. In the present invention, the combination of the solvent formulation, the drying temperature, and the air flow rate are appropriately selected as described above, thereby realizing both the optimization of the separator shutdown function and other battery performance and the improvement of the production efficiency. be able to. Further, in the present invention, it is not necessary to provide a process for removing a poor solvent and a residual solvent using a solvent as in the above prior art, and a porous structure optimal as a separator can be obtained by passing a drying process once after coating. Can be easily produced. Therefore, since the production efficiency is very good, it is possible to provide a large amount of inexpensive and high-quality separators.

本発明においては、上記いずれの製造方法も好適に用いられるが、例えばシート状多孔質基材の空隙率が大きい場合は第2の製造方法が好ましい。すなわち、第1の製造方法の場合は、樹脂フィルム上にシート状多孔質基材を重ねた上に塗布液を塗工するために、シート状多孔質基材を構成する例えば不織布の場合には、これを構成する繊維間の空隙に空気が残存しやすく、塗工欠点となる場合があるためである。しかしながら、第1の製造方法は、予めシート状多孔質基材を樹脂フィルムと同軸に巻いておくことが可能であるため、第2の製造方法のようにシート状多孔質基材を別に巻き出すための巻き出し機構が不要であるため、より効率の良い製造が可能である。したがって、空隙率が比較的低く成膜性に問題のないシート状多孔質基材の場合には第1の製造方法が適している。シート状多孔質基材の空隙率は、電池設計を優先して決めるべきであり、その設計要求によって製造方法を適宜選択すればよい。第2の製造方法では、例えばシート状多孔質基材の空隙率の大小に関わらず、塗工欠点のない均質なセパレータを製造することが可能であるが、いずれの方法を用いる場合であっても、上記の空隙率に代表されるシート状多孔質基材の諸物性を考慮してその製造方法を選択すれば、均質なセパレータを製造することが可能である。   In the present invention, any of the above production methods is preferably used. For example, when the porosity of the sheet-like porous substrate is large, the second production method is preferred. That is, in the case of the first production method, for example, in the case of a non-woven fabric constituting the sheet-like porous substrate in order to apply the coating liquid on the resin film on which the sheet-like porous substrate is stacked. This is because air tends to remain in the gaps between the fibers constituting this, which may cause a coating defect. However, in the first manufacturing method, since the sheet-like porous substrate can be wound in advance coaxially with the resin film, the sheet-like porous substrate is unwound separately as in the second manufacturing method. Therefore, a more efficient production is possible because no unwinding mechanism is required. Therefore, the first production method is suitable for a sheet-like porous substrate having a relatively low porosity and no problem in film formation. The porosity of the sheet-like porous substrate should be determined with priority given to battery design, and the production method may be appropriately selected according to the design requirements. In the second production method, for example, it is possible to produce a homogeneous separator without coating defects regardless of the porosity of the sheet-like porous substrate, but any method is used. However, if a manufacturing method is selected in consideration of various physical properties of the sheet-like porous substrate represented by the above porosity, a homogeneous separator can be manufactured.

また、本発明の第3の製造方法においては、前記多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液に、前記シート状多孔質基材を含浸した後に余剰な塗布液を除去する工程を有する。この製造方法においては、塗布液をシート状多孔質基材に含浸しているためシート状多孔質基材の内部には塗布液が一様にしみこんでおり、ドクターブレードなどで表面に付着する塗布液をかきとることで、該表面に残る塗布液を表裏両面とも極く薄い層とした後に、乾燥することで表裏それぞれに1〜2μm程度の非常に薄い多孔質構造体を有する均一なセパレータを得ることができる。また、上記のように表面層が非常に薄膜である場合は、含浸、かきとり後、塗布液で湿潤状態にあるシート状多孔質基材を、良溶媒及び貧溶媒を置換する液体中に浸漬して、該良溶媒及び貧溶媒を上記置換用液体で置換することで均一なセパレータを得ることができる。この置換用液体としては、イオン交換水等を挙げることができる。
本発明者らの検討によれば、多孔質構造体を形成する樹脂として、例えばポリフッ化ビニリデンを用いた場合においては、塗布量が多い場合において、溶媒置換法ではセパレータの表面にスキン層を生じやすく、従って、透気度が高くなってしまう不具合が発生する場合があったが、上記のようにセパレータの表層部に残る塗布層が溶媒除去後に目安として片面で1〜2μm程度、両面で2〜4μm程度であれば、上記の溶媒置換法でもスキン層を生じにくく、従って、低透気度を有する均一なセパレータを得ることが可能である。また、上記のように、極く薄膜の多孔質構造体を形成する場合には、溶媒置換される塗布液中の溶媒量は少ないために、抽出された溶媒の処理は比較的容易である点も利点である。
Further, in the third production method of the present invention, the sheet-like porous material is applied to a coating solution containing a resin that forms the porous structure and at least a good solvent that dissolves the resin or both a good solvent and a poor solvent. It has the process of removing an excess coating liquid after impregnating a base material. In this manufacturing method, since the sheet-like porous substrate is impregnated with the coating liquid, the coating liquid uniformly penetrates the inside of the sheet-like porous substrate, and the coating adheres to the surface with a doctor blade or the like. A uniform separator having a very thin porous structure of about 1 to 2 μm on each of the front and back surfaces is obtained by drying the liquid after scraping off the liquid to make the coating liquid remaining on the front and back surfaces extremely thin. Obtainable. When the surface layer is very thin as described above, after impregnation and scraping, the sheet-like porous substrate that is wet with the coating solution is immersed in a liquid that replaces the good solvent and the poor solvent. Thus, a uniform separator can be obtained by replacing the good solvent and the poor solvent with the replacement liquid. Examples of the replacement liquid include ion exchange water.
According to the study by the present inventors, for example, when polyvinylidene fluoride is used as a resin for forming a porous structure, a skin layer is formed on the surface of the separator in the solvent replacement method when the amount of coating is large. However, there was a case where the problem that the air permeability becomes high may occur. However, as described above, the coating layer remaining on the surface layer of the separator is about 1 to 2 μm on one side and 2 on both sides as a guide after removing the solvent. If it is about -4 micrometers, it is hard to produce a skin layer also by said solvent substitution method, Therefore It is possible to obtain the uniform separator which has low air permeability. In addition, as described above, when an extremely thin porous structure is formed, the amount of solvent in the coating liquid to be solvent-substituted is small, so that the processing of the extracted solvent is relatively easy. Is also an advantage.

上記の第1、第2及び第3の製造方法により得られる本発明の電子部品用セパレータは、いずれも低透気度を有し、特に、高いレート特性や低温特性を要求されるリチウム系電池及び特にパワー用途のキャパシタには好適に用いることができる。   All of the separators for electronic parts of the present invention obtained by the first, second and third manufacturing methods described above have low air permeability, and in particular, lithium-based batteries that are required to have high rate characteristics and low temperature characteristics. In particular, it can be suitably used for capacitors for power applications.

以下に、本発明の電子部品用セパレータを実施例によって説明する。しかしながら、本発明は、これらの実施例によって限定されるものではない。   Below, the separator for electronic parts of the present invention will be described with reference to examples. However, the present invention is not limited to these examples.

重量平均分子量30万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整した塗布液を得た。この溶液中に含まれる水分量をカールフィッシャー法で測定したところ、0.6重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予め融点が250℃のポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に一次平均粒子径が5μmで融点が113℃のポリエチレン粒子、及び同じ融点を有しその一次平均粒子径が1μmのポリエチレン粒子をそれぞれ1g/m保持させておいたものを載置し、その不織布に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する厚さが18μmの本発明の電子部品用セパレータを得た。なお、樹脂フィルムの積層体に対する剥離強度は17g/20mmであった。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の平均孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。
A vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 10 weights The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this solution was measured by the Karl Fischer method, it was 0.6% by weight. Next, a polyethylene film having a primary average particle diameter of 5 μm and a melting point of 113 ° C. on a non-woven fabric having a thickness of 10 μm made of polyethylene terephthalate fiber having a melting point of 250 ° C. in advance on the resin film surface made of polyethylene terephthalate, and the same melting point The polyethylene particles having a primary average particle diameter of 1 μm were each held at 1 g / m 2 , and the coating solution was applied to the nonwoven fabric by a casting method. Next, a solvent having a thickness of 18 μm having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers is obtained by evaporating the solvent in the coating liquid contained inside the nonwoven fabric by heat and peeling the resin film. The separator for electronic parts of the invention was obtained. The peel strength of the resin film laminate was 17 g / 20 mm.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The average pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

重量平均分子量30万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が5重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.65重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予め融点が240℃のポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に一次平均粒子径が1μmで融点が113℃のポリエチレン粒子と一次平均粒子径が0.3μmで融点が132℃のポリエチレン粒子を前者が10g/m後者を7g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが11μmの本発明の電子部品用セパレータを得た。なお、樹脂フィルムの積層体に対する剥離強度は0.6g/20mmであった。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は殆ど認められなかった。
A vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 5 wt. The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this coating solution was measured by the Karl Fischer method, it was 0.65% by weight. Next, a polyethylene film having a primary average particle diameter of 1 μm and a melting point of 113 ° C. and a primary average particle diameter of 0 are formed on a non-woven fabric 10 μm thick made of polyethylene terephthalate fibers having a melting point of 240 ° C. The polyethylene particles having a melting point of 132 ° C. of 3 μm and the former holding 10 g / m 2 and the latter 7 g / m 2 were placed, and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was subjected to press treatment to obtain a separator for electronic parts of the present invention having a thickness of 11 μm. The peel strength of the resin film laminate was 0.6 g / 20 mm.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Further, almost no inclination of the pore size distribution was observed in the thickness direction of the separator.

重量平均分子量60万のポリアミドイミド樹脂をジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してポリアミドイミド樹脂成分が10重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.5重量%であった。次にポリエチレンテレフタレートからなる樹脂フィルム面に、予め融点が240℃のポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に一次平均粒子径が3μmで融点が113℃のポリエチレン粒子と一次平均粒子径が1μmで融点が148℃のポリプロピレン粒子を前者が20/m、後者を10g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にポリアミドイミド樹脂の多孔質構造体を有する厚さが23μmの本発明の電子部品用セパレータを得た。なお、樹脂フィルムの積層体に対する剥離強度は65g/20mmであった。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。
A polyamideimide resin having a weight average molecular weight of 600,000 was dissolved in dimethylacetamide (good solvent), and dibutyl phthalate (poor solvent) was added to obtain a coating solution adjusted so that the polyamideimide resin component was 10% by weight. . The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.5% by weight. Next, on the surface of the resin film made of polyethylene terephthalate, a 10 μm-thick nonwoven fabric made of polyethylene terephthalate fibers having a melting point of 240 ° C. in advance has a primary average particle diameter of 3 μm and a melting point of 113 ° C. polyethylene particles and a primary average particle diameter of 1 μm. Polypropylene particles having a melting point of 148 ° C. with the former held at 20 / m 2 and the latter held at 10 g / m 2 were placed, and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric is evaporated by heat, and the resin film is peeled off, thereby having a porous structure of polyamideimide resin between the nonwoven fabric fibers having a thickness of 23 μm. An electronic component separator was obtained. The peel strength of the resin film laminate was 65 g / 20 mm.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. No inclination of the pore size distribution was observed in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

重量平均分子量20万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が8重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.5重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に一次平均粒子径が1.5μmで融点が350℃のポリテトラフルオロエチレン粒子と一次平均粒子径が0.5μmで融点が350℃のポリテトラフルオロエチレン粒子をそれぞれ5g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが25μmの本発明の電子部品用セパレータを得た。なお、樹脂フィルムの積層体に対する剥離強度は15g/20mmであった。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。
A vinylidene fluoride homopolymer having a weight average molecular weight of 200,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 8 weights The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.5% by weight. Next, a polytetrafluoroethylene particle having a primary average particle diameter of 1.5 μm and a melting point of 350 ° C. and a primary average particle diameter of 0 on a 10 μm-thick nonwoven fabric made of polyethylene terephthalate fiber in advance on the resin film surface made of polyethylene terephthalate. melting point places the polytetrafluoroethylene particles 350 ° C. which was allowed to 5 g / m 2 respectively held in .5Myuemu, was the coating liquid was applied by a casting method on the nonwoven fabric. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts of the present invention having a thickness of 25 μm. The peel strength of the resin film laminate was 15 g / 20 mm.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

重量平均分子量30万のポリアミドイミド樹脂をジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してポリアミドイミド樹脂が10重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.51重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、フィルム面の垂直方向に貫通した実質上遮蔽構造を有しない平均孔径が20μm隣接する貫通孔間の最短距離が20μmであって厚さが6μmの微多孔樹脂フィルム面に、予め一次平均粒子径が5μmで融点が350℃のポリテトラフルオロエチレン粒子を10g/mと、一次平均粒子径が2μmで融点が350℃のポリテトラフルオロエチレン粒子を5g/m付着させておいたものを載置し、該微多孔樹脂フィルム上に上記溶液をキャスティング法により塗布した。次に、該微多孔質樹脂フィルムに塗布された塗布液中の溶剤を熱により蒸発させ、上記樹脂フィルムを剥離することによって、該微多孔樹脂フィルムの表裏及び貫通孔の内部にポリアミドイミド樹脂の多孔質構造体を有する厚さが10μmの本発明の電子部品用セパレータを得た。なお、樹脂フィルムの積層体に対する剥離強度は16g/20mmであった。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。
A polyamideimide resin having a weight average molecular weight of 300,000 was dissolved in dimethylacetamide (good solvent), and dibutyl phthalate (poor solvent) was added to obtain a coating solution adjusted so that the polyamideimide resin was 10% by weight. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.51% by weight. Next, on the resin film surface made of polyethylene terephthalate, the shortest distance between adjacent through holes having an average hole diameter of 20 μm that does not substantially have a shielding structure penetrating in the direction perpendicular to the film surface is 20 μm and the thickness is 6 μm. On the surface of the porous resin film, 10 g / m 2 of polytetrafluoroethylene particles having a primary average particle diameter of 5 μm and a melting point of 350 ° C., and 5 g of polytetrafluoroethylene particles having a primary average particle diameter of 2 μm and a melting point of 350 ° C. / M 2 was placed, and the solution was applied onto the microporous resin film by a casting method. Next, the solvent in the coating solution applied to the microporous resin film is evaporated by heat, and the resin film is peeled off, so that the polyamideimide resin is formed on the front and back surfaces of the microporous resin film and inside the through holes. The separator for electronic parts of the present invention having a porous structure and a thickness of 10 μm was obtained. The peel strength of the resin film laminate was 16 g / 20 mm.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

実施例1において、不織布を構成する繊維の一部を繊維径が0.1デニールのものが10重量%になるように置き換えた以外は、実施例1と同様にして本発明の電子部品用セパレータを得た。この際の不織布の厚さは10μmであった。また得られた電子部品用セパレータの厚さは20μmであり、樹脂フィルムの積層体に対する剥離強度は20g/20mmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。   The separator for electronic parts of the present invention is the same as in Example 1 except that part of the fibers constituting the nonwoven fabric is replaced so that the fiber diameter is 0.1 denier so that the fiber diameter becomes 10% by weight. Got. The thickness of the nonwoven fabric at this time was 10 μm. Moreover, the thickness of the obtained separator for electronic components was 20 micrometers, and the peeling strength with respect to the laminated body of a resin film was 20 g / 20mm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

実施例1において、不織布を構成する繊維の一部を繊維径が0.1デニールのものが50重量%になるように置き換えた以外は、実施例1と同様にして電子部品用セパレータを得た。この際の不織布の厚さは10μmであった。また得られた電子部品用セパレータの厚さは18μmであり、樹脂フィルムの積層体に対する剥離強度は16g/20mmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。   In Example 1, a separator for an electronic component was obtained in the same manner as in Example 1 except that a part of the fibers constituting the nonwoven fabric was replaced so that the fiber diameter was 0.1 denier so that it was 50% by weight. . The thickness of the nonwoven fabric at this time was 10 μm. The thickness of the obtained separator for electronic parts was 18 μm, and the peel strength of the resin film laminate was 16 g / 20 mm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

実施例1において、ポリエチレンテレフタレートよりなる樹脂フィルムに直接キャスティング法により、実施例1と同様の塗布液を塗工し、塗布直後に湿潤状態にある塗工面上に、実施例1の2種のポリエチレン粒子を保持した不織布をウェットラミネーションにより重ねた。それ以外は実施例1と同様にして本発明の電子部品用セパレータを得た。得られた電子部品用セパレータの厚さは21μmであり、樹脂フィルムの積層体に対する剥離強度は14g/20mmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。   In Example 1, the same coating solution as in Example 1 was applied to a resin film made of polyethylene terephthalate by direct casting, and the two polyethylenes of Example 1 were applied on the coated surface in a wet state immediately after application. The nonwoven fabric holding the particles was stacked by wet lamination. Other than that was carried out similarly to Example 1, and obtained the separator for electronic components of this invention. The thickness of the obtained separator for electronic components was 21 μm, and the peel strength of the resin film laminate was 14 g / 20 mm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

実施例6の不織布を用いた他は、実施例3と同様にして本発明の電子部品用セパレータを得た。得られた電子部品用セパレータの厚さは21μmであり、樹脂フィルムの積層体に対する剥離強度は21g/20mmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。   An electronic component separator of the present invention was obtained in the same manner as in Example 3 except that the nonwoven fabric of Example 6 was used. The thickness of the obtained separator for electronic parts was 21 μm, and the peel strength of the resin film laminate was 21 g / 20 mm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

実施例5の微多孔樹脂フィルムを実施例5の塗布液に含浸後、表裏両面をドクターブレードでそれぞれかきとった後に、イオン交換水に浸漬した後、80℃の乾燥機にて1時間乾燥して微多孔樹脂フィルムの表裏及び貫通孔の内部にポリアミドイミド樹脂の多孔質構造体を有する厚さが9μmの本発明の電子部品用セパレータを得た。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。
After impregnating the microporous resin film of Example 5 with the coating solution of Example 5, the front and back surfaces were both scraped with a doctor blade, immersed in ion-exchanged water, and then dried in a dryer at 80 ° C. for 1 hour. Thus, a separator for electronic parts of the present invention having a thickness of 9 μm having a porous structure of polyamideimide resin on the front and back of the microporous resin film and inside of the through hole was obtained.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

実施例3の塗布液に実施例1の2種のフィラー粒子を混合・分散した塗布液を準備し、この塗布液を用いて不織布を載置しない以外は実施例1と同様にして、不織布を用いない厚さが12μmの本発明の電子部品用セパレータを得た。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。
Prepare a coating solution in which the two filler particles of Example 1 were mixed and dispersed in the coating solution of Example 3, and the nonwoven fabric was prepared in the same manner as in Example 1 except that the nonwoven fabric was not placed using this coating solution. An unused separator for electronic parts of the present invention having a thickness of 12 μm was obtained.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

実施例3の塗布液に実施例3の2種のフィラー粒子を混合・分散した塗布液を準備し、この塗布液を用いて不織布を載置しない以外は実施例1と同様にして、不織布を用いない厚さが11μmの本発明の電子部品用セパレータを得た。
この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。
Prepare a coating solution prepared by mixing and dispersing the two types of filler particles of Example 3 in the coating solution of Example 3, and use this coating solution to place the nonwoven fabric in the same manner as in Example 1 except that the nonwoven fabric is not placed. An unused separator for electronic parts of the present invention having a thickness of 11 μm was obtained.
When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction.

[比較例1]
厚さ20μmのポリエチレンテレフタレート繊維よりなる不織布のみを比較用の電子部品用セパレータとした。
[比較例2]
実施例1において、一次平均粒子径が5μmのポリエチレン粒子だけを用いた以外は、実施例1と同様にして比較用の電子部品用セパレータを得た。この電子部品用セパレータの厚さは17μmであった。
[比較例3]
実施例1において、一次平均粒子径が1μmのポリエチレン粒子の代わりに一次平均粒子径が0.05μmで融点が113℃のポリエチレン粒子に変えた以外は、実施例1と同様にして比較用の電子部品用セパレータを得た。この電子部品用セパレータの厚さは18μmであった。
[Comparative Example 1]
Only a nonwoven fabric made of polyethylene terephthalate fibers having a thickness of 20 μm was used as a separator for electronic parts for comparison.
[Comparative Example 2]
In Example 1, a separator for electronic parts for comparison was obtained in the same manner as in Example 1 except that only polyethylene particles having a primary average particle diameter of 5 μm were used. The electronic component separator had a thickness of 17 μm.
[Comparative Example 3]
In Example 1, an electron for comparison was used in the same manner as in Example 1 except that instead of polyethylene particles having a primary average particle size of 1 μm, polyethylene particles having a primary average particle size of 0.05 μm and a melting point of 113 ° C. were used. A separator for parts was obtained. The thickness of this electronic component separator was 18 μm.

上記実施例及び比較例で得られた電子部品用セパレータの特性を下記のように評価した。
〔イオン伝導度〕
上記実施例1〜12及び比較例1〜3で得られた電子部品用セパレータを使用してコイン型セルを作製し、そのイオン伝導度を測定した。その結果を表1に示す。なお、測定環境、測定装置は次の通りである。
測定環境:20℃50%RH
測定装置:Solartron社製 SI 1287 1255B
The characteristics of the separators for electronic parts obtained in the above examples and comparative examples were evaluated as follows.
[Ionic conductivity]
A coin-type cell was produced using the electronic component separators obtained in Examples 1 to 12 and Comparative Examples 1 to 3, and the ionic conductivity was measured. The results are shown in Table 1. The measurement environment and measurement apparatus are as follows.
Measurement environment: 20 ° C, 50% RH
Measuring device: Solartron's SI 1287 1255B

Figure 2006066355
Figure 2006066355

表1より明らかなように、本発明の実施例1から12の電子部品用セパレータは、比較例3よりもイオン伝導性が優れていることが確認された。これは、低透気度であるということと、電極とセパレータとがセパレータ表面の樹脂層により隙間なく接触していることがイオン伝導性を良くした要因であると考えられる。   As is apparent from Table 1, it was confirmed that the separators for electronic parts of Examples 1 to 12 of the present invention were superior in ion conductivity to Comparative Example 3. It is considered that this is because the low air permeability and the contact between the electrode and the separator with the resin layer on the separator surface without any gap are the factors that improve the ion conductivity.

〔シャットダウン性〕
上記実施例1〜3、6〜8、11及び比較例2、3で得られた電子部品用セパレータを使用してコイン型セルを作製し、そのシャットダウン性を確認した。その結果を表2に示す。試験方法としては、満充電したコイン型セルに更に充電を行い、その際の電池内部の温度変化を測定し、温度が下がり始めた点をシャットダウン温度とした。
[Shutdown]
Coin-type cells were produced using the electronic component separators obtained in Examples 1 to 3, 6 to 8, and 11 and Comparative Examples 2 and 3, and their shutdown properties were confirmed. The results are shown in Table 2. As a test method, the fully charged coin cell was further charged, the temperature change inside the battery at that time was measured, and the point at which the temperature began to fall was defined as the shutdown temperature.

Figure 2006066355
Figure 2006066355

表2より明らかなように、本発明の実施例の電子部品用セパレータは、シャットダウン機能を有することが確認された。一方、比較例2ではフィラー粒子の平均粒子径が一定であるために、フィラー粒子が溶融してもフィラー粒子間の空隙を埋めきれずに電池反応を抑えきれず、シャットダウン機能が働かなかった。本発明の異なる平均粒子径を有するフィラー群を用いた場合は、良好なシャットダウン性を有することが明らかとなった。この比較対照から、本発明ではフィラー粒子間の空隙が小さく、従ってシャットダウン機能を持たせやすいことがわかる。   As is clear from Table 2, it was confirmed that the separator for electronic parts of the example of the present invention had a shutdown function. On the other hand, in Comparative Example 2, since the average particle diameter of the filler particles was constant, even when the filler particles were melted, the gap between the filler particles could not be filled and the battery reaction could not be suppressed, and the shutdown function did not work. When filler groups having different average particle diameters of the present invention were used, it was revealed that they have good shutdown properties. From this comparison, it can be seen that in the present invention, the voids between the filler particles are small, and therefore it is easy to provide a shutdown function.

〔短絡性〕
ステンレス製の平板上に10cm×10cmの正方形に切り出した上記実施例1〜12及び比較例1〜3で得られた電子部品用セパレータを置き、同じくステンレス製の底面積が0.5cmの円筒形の圧子を用いて30kgの力で押したときのステンレス板とステンレス円筒間の電気的な短絡を確認した。その結果を表3に示し、○は短絡が生じなかったことを示し、×は短絡が生じたことを示す。
[Short-circuiting]
A separator for electronic parts obtained in Examples 1 to 12 and Comparative Examples 1 to 3 cut into a 10 cm × 10 cm square is placed on a stainless steel flat plate, and a stainless steel cylinder with a bottom area of 0.5 cm 2 is also used. An electrical short circuit between the stainless steel plate and the stainless steel cylinder was confirmed when pressed with a force of 30 kg using a shaped indenter. The results are shown in Table 3. ◯ indicates that no short circuit occurred, and x indicates that a short circuit occurred.

Figure 2006066355
Figure 2006066355

本発明の実施例の電子部品用セパレータはいずれも短絡しなかった。一方、比較例1及び比較例2の電子部品用セパレータは短絡が生じて問題があることが確認された。特に、実施例2、5、10、11及び12のような厚さ15μm以下の薄いセパレータであっても短絡を生ずることなく、本発明の課題が解決されたことを確認した。   None of the electronic component separators of the examples of the present invention were short-circuited. On the other hand, it was confirmed that the separators for electronic parts of Comparative Example 1 and Comparative Example 2 had a problem due to a short circuit. In particular, it was confirmed that the problem of the present invention was solved without causing a short circuit even with a thin separator having a thickness of 15 μm or less as in Examples 2, 5, 10, 11 and 12.

〔耐熱性〕
実施例3、5、9、10及び12の電子部品用セパレータについて、その寸法安定性を確認したところ、いずれも200℃の雰囲気下、10時間放置後においても寸法変化が殆どみられず、また、透気度などの変化も確認されないことから、耐熱性が良好であることを確認した。
〔Heat-resistant〕
Regarding the separators for electronic parts of Examples 3, 5, 9, 10 and 12, the dimensional stability was confirmed. As a result, almost no dimensional change was observed even after standing for 10 hours in an atmosphere of 200 ° C. Since no change in air permeability was confirmed, it was confirmed that the heat resistance was good.

2種類のフィラー粒子の平均粒子径の関係を説明する図である。It is a figure explaining the relationship of the average particle diameter of two types of filler particles. 微多孔樹脂フィルムの一例を示した図である。It is the figure which showed an example of the microporous resin film. 2枚の微多孔樹脂フィルムを重ねた電子部品用セパレータの模式的断面図である。It is typical sectional drawing of the separator for electronic components which piled up two microporous resin films.

符号の説明Explanation of symbols

1 微多孔樹脂フィルム
2 貫通孔
3 多孔質構造体
A フィラー粒子
B フィラー粒子
DESCRIPTION OF SYMBOLS 1 Microporous resin film 2 Through-hole 3 Porous structure A Filler particle B Filler particle

Claims (12)

多孔質構造体及び平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含有した電子部品用セパレータであって、前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする電子部品用セパレータ。   A separator for an electronic component containing at least two kinds of filler particles having different porous structures and average particle sizes, wherein the average particle sizes of the filler particles are a, b, c,. In this case, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3} b,... N ≧ {( 2√3-3) / 3} m. The electronic component separator. 前記フィラー粒子の少なくとも1種類の融点が80℃以上であることを特徴とする請求項1に記載の電子部品用セパレータ。   2. The electronic component separator according to claim 1, wherein at least one melting point of the filler particles is 80 ° C. or more. シート状多孔質基材を含むことを特徴とする請求項1に記載の電子部品用セパレータ。   The separator for electronic components according to claim 1, comprising a sheet-like porous substrate. 前記シート状多孔質基材が不織布か、又はフィルム面の垂直方向に貫通した実質上遮蔽構造を有しない平均孔径が0.01〜50μmの貫通孔を有し、隣接する貫通孔間の最短距離の平均が0.01〜100μmである微多孔樹脂フィルムであることを特徴とする請求項3に記載の電子部品用セパレータ。   The sheet-like porous substrate is a non-woven fabric or has a through hole with an average pore diameter of 0.01 to 50 μm that does not substantially have a shielding structure penetrating in the direction perpendicular to the film surface, and is the shortest distance between adjacent through holes The separator for electronic parts according to claim 3, which is a microporous resin film having an average of 0.01 to 100 μm. 前記シート状多孔質基材の融点が180℃を超すことを特徴とする請求項3に記載の電子部品用セパレータ。   The separator for electronic parts according to claim 3, wherein the melting point of the sheet-like porous substrate exceeds 180 ° C. 前記多孔質構造体が溶媒可溶型樹脂であり、前記シート状多孔質基材及び前記フィラー粒子が有機電解液に対して70℃までの範囲で実質上膨潤しないことを特徴とする請求項3に記載の電子部品用セパレータ。   The porous structure is a solvent-soluble resin, and the sheet-like porous base material and the filler particles do not substantially swell in the range up to 70 ° C. with respect to the organic electrolyte. The separator for electronic components as described in 2. 樹脂フィルムの一面に、シート状多孔質基材を載置する工程、該シート状多孔質基材の上に、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液を塗工する工程、形成された塗工層を乾燥して溶媒を除去することによってシート状多孔質基材の表面及び/又は内部に多孔質構造体を形成した積層体を得る工程、その後該積層体から樹脂フィルムを剥離する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする電子部品用セパレータの製造方法。   A step of placing a sheet-like porous substrate on one surface of the resin film, a resin that forms a porous structure on the sheet-like porous substrate, and at least a good solvent or a good solvent that dissolves the resin; A step of applying a coating solution containing both of the poor solvent, and drying the formed coating layer to remove the solvent, thereby forming a porous structure on the surface and / or inside of the sheet-like porous substrate. A step of obtaining a laminate, and then a step of peeling a resin film from the laminate, the sheet-like porous substrate and / or the coating liquid containing at least two kinds of filler particles having different average particle diameters When the average particle size of the filler particles is a, b, c,..., M, n in order of increasing size, the relationship between the adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3} b,... N ≧ {(2√3-3) / 3} method for manufacturing an electronic component separator, which is a m. 樹脂フィルム上の一面に、多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液を塗工する工程、シート状多孔質基材を前記工程で得られた塗工層に重ね合わせる工程、その後、乾燥して溶媒を除去することによってシート状多孔質基材の表面及び/又は内部に多孔質構造体を形成した積層体を得る工程、その後該積層体から樹脂フィルムを剥離する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする電子部品用セパレータの製造方法。   The step of applying a coating liquid containing a resin that forms a porous structure and at least a good solvent that dissolves the resin or both a good solvent and a poor solvent on one surface of the resin film, the sheet-like porous substrate A step of superimposing on the coating layer obtained in the step, and then a step of obtaining a laminate in which a porous structure is formed on the surface and / or inside of the sheet-like porous substrate by drying and removing the solvent, Thereafter, there is a step of peeling the resin film from the laminate, and the filler has an average particle diameter of at least two kinds of filler particles having different average particle diameters in the sheet-like porous substrate and / or the coating liquid. Where a, b, c,..., M, n are the largest, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3 -3) / 3} b, ... n ≧ {(2√3-3) / 3} Method for manufacturing an electronic component separator, characterized in that it. 多孔質構造体を形成する樹脂と少なくとも該樹脂を溶解する良溶媒または良溶媒と貧溶媒の両方を含む塗布液に、シート状多孔質基材を含浸した後に余剰な塗布液を除去する工程、その後、乾燥して溶媒を除去するか、又は前記良溶媒及び貧溶媒を置換する液体中に浸漬して前記良溶媒及び貧溶媒を除去した後に更に乾燥により該良溶媒及び貧溶媒を置換する液体を除去する工程を有し、前記シート状多孔質基材及び/又は前記塗布液に平均粒子径が異なる少なくとも2種類以上のフィラー粒子を含み前記フィラー粒子の平均粒子径を大きい順にa、b、c、・・・m、nとした場合に、隣り合う平均粒子径の関係がb≧{(2√3−3)/3}a、c≧{(2√3−3)/3}b、・・・n≧{(2√3−3)/3}mであることを特徴とする電子部品用セパレータの製造方法。   A step of removing excess coating liquid after impregnating the sheet-like porous substrate into a coating liquid containing a resin that forms a porous structure and at least a good solvent that dissolves the resin or both a good solvent and a poor solvent; Thereafter, the solvent is removed by drying, or the liquid is substituted with the good solvent and the poor solvent by drying after being immersed in a liquid that replaces the good solvent and the poor solvent to remove the good solvent and the poor solvent. A, b, in order of increasing average particle diameter of the filler particles, including at least two or more kinds of filler particles having different average particle diameters in the sheet-like porous substrate and / or the coating liquid. When c,..., m, n, the relationship between adjacent average particle sizes is b ≧ {(2√3-3) / 3} a, c ≧ {(2√3-3) / 3} b. , ... n ≧ {(2√3-3) / 3} m Method of manufacturing goods for the separator. 前記塗布液中に含まれる水分量がカールフィッシャー法による測定で0.7重量%以下であることを特徴とする請求項7乃至9のいずれか1項に記載の電子部品用セパレータの製造方法。   The method for producing a separator for an electronic component according to any one of claims 7 to 9, wherein the amount of water contained in the coating liquid is 0.7% by weight or less as measured by a Karl Fischer method. 前記塗布液に含まれる貧溶媒の沸点が良溶媒の沸点よりも高いことを特徴とする請求項7乃至9のいずれか1項に記載の電子部品用セパレータの製造方法。   The method for manufacturing a separator for electronic parts according to any one of claims 7 to 9, wherein the boiling point of the poor solvent contained in the coating solution is higher than the boiling point of the good solvent. 前記積層体から樹脂フィルムを剥離する強度が0.1〜75g/20mmであることを特徴とする請求項7または8に記載の電子部品用セパレータの製造方法。   The method for producing a separator for electronic parts according to claim 7 or 8, wherein the strength for peeling the resin film from the laminate is 0.1 to 75 g / 20 mm.
JP2004251048A 2004-08-30 2004-08-30 Separator for electronic parts and method for manufacturing the same Expired - Lifetime JP4676728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251048A JP4676728B2 (en) 2004-08-30 2004-08-30 Separator for electronic parts and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251048A JP4676728B2 (en) 2004-08-30 2004-08-30 Separator for electronic parts and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006066355A true JP2006066355A (en) 2006-03-09
JP4676728B2 JP4676728B2 (en) 2011-04-27

Family

ID=36112638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251048A Expired - Lifetime JP4676728B2 (en) 2004-08-30 2004-08-30 Separator for electronic parts and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4676728B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311151A (en) * 2006-05-18 2007-11-29 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
JP2008210541A (en) * 2007-02-23 2008-09-11 Hitachi Maxell Ltd Battery separator, and nonaqueous electrolyte battery
WO2008123331A1 (en) * 2007-03-23 2008-10-16 Sumitomo Chemical Company, Limited Separator
JP2008266593A (en) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd Porous film
JP2009059732A (en) * 2007-08-29 2009-03-19 Jm Energy Corp Lithium ion capacitor
JP2010538173A (en) * 2007-09-07 2010-12-09 カール・フロイデンベルク・カー・ゲー Non-woven material filled with particles
JP2014528139A (en) * 2011-07-11 2014-10-23 カリフォルニア インスティチュート オブ テクノロジー New separator for electrochemical systems
JP2015506058A (en) * 2012-04-30 2015-02-26 エルジー・ケム・リミテッド Separator and electrochemical device including the same
KR101834482B1 (en) 2013-09-30 2018-04-13 주식회사 엘지화학 Separator for electrochemical device and electrochemical device with improved stability and performance comprising the same
US9954213B2 (en) 2011-07-11 2018-04-24 California Institute Of Technology Electrochemical systems with at least one electronically and ionically conductive layer
US9991492B2 (en) 2013-11-18 2018-06-05 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
JP2018186072A (en) * 2017-02-21 2018-11-22 ユニチカ株式会社 Porous composite and method of producing the same
CN109713202A (en) * 2017-10-25 2019-05-03 丰田自动车株式会社 Partition and non-aqueous electrolyte secondary battery
KR20190102572A (en) * 2018-02-26 2019-09-04 삼성에스디아이 주식회사 Separator, method for preparing the same, and lithium battery comprising the same
KR20190105881A (en) * 2018-03-06 2019-09-18 삼성에스디아이 주식회사 Separator, method for preparing the same, and lithium battery comprising the same
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
CN111492507A (en) * 2017-10-30 2020-08-04 阿科玛股份有限公司 Lithium ion battery diaphragm
US20210351478A1 (en) * 2019-10-08 2021-11-11 South China University Of Technology Separator for lithium ion battery and method for preparing the same, and lithium ion battery
US11271214B2 (en) 2015-12-02 2022-03-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2000195490A (en) * 1998-12-25 2000-07-14 Nitto Denko Corp Separator for battery and its manufacture
JP2000198866A (en) * 1999-01-06 2000-07-18 Asahi Chem Ind Co Ltd Fluid-penetrable finely porous film and its production
JP2001084987A (en) * 1999-09-14 2001-03-30 Toshiba Corp Electrochemical device
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
WO2004049471A2 (en) * 2002-11-26 2004-06-10 Degussa Ag Separator provided with asymmetrical pore structures for an electrochemical cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2000195490A (en) * 1998-12-25 2000-07-14 Nitto Denko Corp Separator for battery and its manufacture
JP2000198866A (en) * 1999-01-06 2000-07-18 Asahi Chem Ind Co Ltd Fluid-penetrable finely porous film and its production
JP2001084987A (en) * 1999-09-14 2001-03-30 Toshiba Corp Electrochemical device
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
WO2004049471A2 (en) * 2002-11-26 2004-06-10 Degussa Ag Separator provided with asymmetrical pore structures for an electrochemical cell

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311151A (en) * 2006-05-18 2007-11-29 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
JP2008210541A (en) * 2007-02-23 2008-09-11 Hitachi Maxell Ltd Battery separator, and nonaqueous electrolyte battery
EP2133387A4 (en) * 2007-03-23 2011-10-19 Sumitomo Chemical Co Porous film
WO2008123331A1 (en) * 2007-03-23 2008-10-16 Sumitomo Chemical Company, Limited Separator
JP2008270178A (en) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd Separator
JP2008266593A (en) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd Porous film
EP2133387A1 (en) * 2007-03-23 2009-12-16 Sumitomo Chemical Company, Limited Porous film
EP2144311A4 (en) * 2007-03-23 2010-11-17 Sumitomo Chemical Co Separator
US8323837B2 (en) 2007-03-23 2012-12-04 Sumitomo Chemical Company, Limited Porous film
US8313865B2 (en) 2007-03-23 2012-11-20 Sumitomo Chemical Company, Limited Separator
JP2009059732A (en) * 2007-08-29 2009-03-19 Jm Energy Corp Lithium ion capacitor
JP2010538172A (en) * 2007-09-07 2010-12-09 カール・フロイデンベルク・カー・ゲー Non-woven material filled with particles
JP2010538173A (en) * 2007-09-07 2010-12-09 カール・フロイデンベルク・カー・ゲー Non-woven material filled with particles
JP2014528139A (en) * 2011-07-11 2014-10-23 カリフォルニア インスティチュート オブ テクノロジー New separator for electrochemical systems
US9954213B2 (en) 2011-07-11 2018-04-24 California Institute Of Technology Electrochemical systems with at least one electronically and ionically conductive layer
JP2018067543A (en) * 2011-07-11 2018-04-26 カリフォルニア インスティチュート オブ テクノロジー Novel separators for electrochemical systems
US10693117B2 (en) 2011-07-11 2020-06-23 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
US11527802B2 (en) 2011-07-11 2022-12-13 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
US10158110B2 (en) 2011-07-11 2018-12-18 California Institute Of Technology Separators for electrochemical systems
JP2015506058A (en) * 2012-04-30 2015-02-26 エルジー・ケム・リミテッド Separator and electrochemical device including the same
JP2018113261A (en) * 2012-04-30 2018-07-19 エルジー・ケム・リミテッド Separator and electrochemical element including the same
KR101834482B1 (en) 2013-09-30 2018-04-13 주식회사 엘지화학 Separator for electrochemical device and electrochemical device with improved stability and performance comprising the same
US9991492B2 (en) 2013-11-18 2018-06-05 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US11177537B2 (en) 2013-11-18 2021-11-16 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
US11271214B2 (en) 2015-12-02 2022-03-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
US11894562B2 (en) 2015-12-02 2024-02-06 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
JP2018186072A (en) * 2017-02-21 2018-11-22 ユニチカ株式会社 Porous composite and method of producing the same
JP7203405B2 (en) 2017-02-21 2023-01-13 ユニチカ株式会社 Method for producing porous composite
CN109713202A (en) * 2017-10-25 2019-05-03 丰田自动车株式会社 Partition and non-aqueous electrolyte secondary battery
CN109713202B (en) * 2017-10-25 2023-04-07 丰田自动车株式会社 Separator and nonaqueous electrolyte secondary battery
CN111492507A (en) * 2017-10-30 2020-08-04 阿科玛股份有限公司 Lithium ion battery diaphragm
KR102210884B1 (en) * 2018-02-26 2021-02-02 삼성에스디아이 주식회사 Separator, method for preparing the same, and lithium battery comprising the same
KR20190102572A (en) * 2018-02-26 2019-09-04 삼성에스디아이 주식회사 Separator, method for preparing the same, and lithium battery comprising the same
KR102209826B1 (en) * 2018-03-06 2021-01-29 삼성에스디아이 주식회사 Separator, method for preparing the same, and lithium battery comprising the same
KR20190105881A (en) * 2018-03-06 2019-09-18 삼성에스디아이 주식회사 Separator, method for preparing the same, and lithium battery comprising the same
US11502373B2 (en) 2018-03-06 2022-11-15 Samsung Sdi Co., Ltd. Separator, method of preparing the same, and lithium battery including the same
US20210351478A1 (en) * 2019-10-08 2021-11-11 South China University Of Technology Separator for lithium ion battery and method for preparing the same, and lithium ion battery

Also Published As

Publication number Publication date
JP4676728B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4676728B2 (en) Separator for electronic parts and method for manufacturing the same
KR100699215B1 (en) Separator for electric component and method for producing the same
JP4705334B2 (en) Separator for electronic parts and method for manufacturing the same
JP5031835B2 (en) Heat-resistant ultrafine fiber separation membrane and secondary battery using the same
US9368778B2 (en) Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP6054001B2 (en) Non-aqueous electrolyte battery separator, non-aqueous electrolyte battery, and non-aqueous electrolyte battery manufacturing method
JP5031836B2 (en) Separation membrane having heat-resistant ultrafine fiber layer and secondary battery using the same
JP4593566B2 (en) COMPOSITE MEMBRANE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE HAVING THE SAME
KR101297769B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4974448B2 (en) Manufacturing method of separator for electronic parts
JP5670811B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US9755208B2 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
JP5837437B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
JP2007048738A (en) Separator for electronic part and its manufacturing method
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JP2011035373A (en) Separator for power storage device
JP2992598B2 (en) Lithium ion battery
JP2006338918A (en) Electronic component and separator therefor
JP2006331759A (en) Separator for electronic component and method of manufacturing the same
JP7054996B2 (en) Manufacturing method of separator for non-aqueous secondary battery, non-aqueous secondary battery and non-aqueous secondary battery
JP2006338917A (en) Electronic component and separator therefor
JP6779157B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP4705335B2 (en) Separator for electronic parts and method for manufacturing the same
JP2010287697A (en) Separator for energy storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350