JP2000198866A - Fluid-penetrable finely porous film and its production - Google Patents

Fluid-penetrable finely porous film and its production

Info

Publication number
JP2000198866A
JP2000198866A JP11000942A JP94299A JP2000198866A JP 2000198866 A JP2000198866 A JP 2000198866A JP 11000942 A JP11000942 A JP 11000942A JP 94299 A JP94299 A JP 94299A JP 2000198866 A JP2000198866 A JP 2000198866A
Authority
JP
Japan
Prior art keywords
layer
resin
thermoplastic resin
melting point
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11000942A
Other languages
Japanese (ja)
Other versions
JP4229504B2 (en
Inventor
Isao Yoshimura
功 吉村
Hiroshi Tajima
洋 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP00094299A priority Critical patent/JP4229504B2/en
Publication of JP2000198866A publication Critical patent/JP2000198866A/en
Application granted granted Critical
Publication of JP4229504B2 publication Critical patent/JP4229504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a fluid-penetrable finely porous film whose performance can be controlled for each target and which has a high performance, a reduced thickness and excellent productivity, by stretching a specific composition containing an α-olefin-carbon monoxide copolymer. SOLUTION: This fluid-penetrable fine porous film comprises at least one thermoplastic resin layer consisting mainly of (A) an α-olefin-carbon monoxide copolymer resin and having a crystal melting point of 140-250 deg.C, and has a porosity of 30-80%, an air permeability of 5-2,000 sec/100 cc and a 10% contraction temperature of >=100 deg.C. The film is obtained by extruding a composition consisting mainly of the component A and/or (B) a polyolefin resin having a crystal melting point of 80-240 deg.C and 85-10 pts.vol. of (C) an inactive extractable organic liquid having a viscosity of <=1,000 cPs at 200 deg.C through a die, quenching and solidifying the extruded film with a heat-conductive medium, stretching the film at least in one direction in a surface-stretching ratio of 2-50 times under a specific temperature condition, and then extracting the component C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐熱性の通流体性微
多孔フイルム及びその製造方法に関する。本発明の微多
孔フイルムは、各種の円筒型電池、角形電池、薄型電
池、ボタン型電池、薄型ポリマー電池等の電池材料又は
キャパシター、電解コンデンサー等に使用されるセパレ
ータ、精密濾過膜(中空糸状も含む)等の分離膜、建築
用結露防止用通気性フィルム素材、透湿性壁紙用素材、
非透水で透湿気性の衣料品、おむつや生理用品等の非透
水で透湿通気性の衛生用品用フイルム、通気性で細菌や
ゴミ等の通過を阻止する包装用フィルム、白化度の高い
光反射フィルム、断熱・緩衝性材料、印刷用紙材料等に
用いられる。
The present invention relates to a heat-resistant, fluid-permeable, microporous film and a method for producing the same. The microporous film of the present invention can be used for battery materials such as various cylindrical batteries, prismatic batteries, thin batteries, button batteries, thin polymer batteries or separators used for capacitors, electrolytic capacitors, etc. Separation membranes), breathable film materials for building dew condensation prevention, materials for moisture-permeable wallpapers,
Non-permeable and moisture-permeable clothing, non-permeable and moisture-permeable film for sanitary products such as diapers and sanitary goods, packaging film that is permeable and prevents the passage of bacteria and dust, highly whitened light Used for reflective film, heat insulating / buffering material, printing paper material, etc.

【0002】[0002]

【従来の技術】ポリオレフィン(PO)系樹脂である結
晶性高密度ポリエチレン(HDPE)や結晶性ポリプロ
ピレン(PP)の微多孔体であって、厚みが25〜10
0μ程度あり、厚さ方向に貫通する0.01μから5μ
程度の連通孔を有する微多孔フィルムは公知である。
2. Description of the Related Art A microporous body of crystalline high-density polyethylene (HDPE) or crystalline polypropylene (PP), which is a polyolefin (PO) resin, having a thickness of 25 to 10
About 0μ, 0.01μ to 5μ penetrating in the thickness direction
Microporous films having a degree of communication holes are known.

【0003】これらのフィルムは一般に透気度(秒/1
00cc)が10〜1000程度の気体透過性と耐透水
性を有しており、そのような性能が要求される数多くの
用途に使用されてきた。例えば電解液中でイオン透過性
であるため電極間の絶縁用隔膜として電池等の用途にも
使用されている。
[0003] These films are generally air permeable (sec / 1).
00 cc) has gas permeability and water resistance of about 10 to 1000, and has been used in many applications requiring such performance. For example, since it is ion-permeable in an electrolytic solution, it is also used as an insulating membrane between electrodes for batteries and the like.

【0004】従来、このような多孔質フィルムの製造方
法としては、例えば、(1)高結晶性のHDPEを多量
の可塑剤(体積的に45〜80vol%もの)に加熱溶
解させゲル状とし、次にフイルム乃至シート状に押し出
し、冷却させ、該樹脂を固化結晶化させ、可塑剤と相分
離させた後、該可塑剤を溶媒で抽出して、微孔核を形成
させ、次いで延伸により該微孔を成長拡大させて製造す
る方法、
Conventionally, such a porous film is produced by, for example, (1) heating and dissolving a highly crystalline HDPE in a large amount of a plasticizer (45 to 80 vol% by volume) to form a gel; Next, the film is extruded into a film or sheet, cooled, and the resin is solidified and crystallized.After phase separation with the plasticizer, the plasticizer is extracted with a solvent to form microporous nuclei, and then the film is stretched. A method of manufacturing by growing and expanding micropores,

【0005】(2)結晶性樹脂を溶融しシート状に押し
出し加工する時に、縦(流れ)方向に流動配向(有る程
度分子を流れ方向に揃える)させ、次の工程でアニール
して結晶を成長させ、その界面を明確にし、さらに1軸
(縦)方向に冷間延伸させて結晶界面に微孔を形成し、
次いで熱間延伸させて大きく成長させる方法(例えば、
特公昭55−32531号参照)、
(2) When the crystalline resin is melted and extruded into a sheet, the crystal is grown by flowing (orienting the molecules in the flow direction to some extent) in the longitudinal (flow) direction and annealing in the next step. And clarify the interface, and further perform cold stretching in the uniaxial (longitudinal) direction to form micropores at the crystal interface.
Then, a method of hot stretching to grow large (for example,
Japanese Patent Publication No. 55-32531),

【0006】(3)可溶性のフィラーを添加しフィルム
に成膜し、その後フィラーを溶出させて微多孔化する方
法(例えば、特開昭58−29839号参照)、(4)
フィラーを添加した組成物をダイスから直接インフレー
ションし、微多孔化する方法(例えば、特開平2−27
6834号参照)等が知られている。
(3) A method in which a soluble filler is added to form a film, and then the filler is eluted to make the film microporous (see, for example, JP-A-58-29839).
A method in which a composition to which a filler is added is blown directly from a die to make the composition porous (for example, Japanese Patent Application Laid-Open No. 2-27
No. 6834) is known.

【0007】これらの微多孔フィルムは、前述した通り
多くの分野で使用されているが、例えば分離膜や電池用
セパレータの分野では、使用前の滅菌や、又は使用中に
おける経時変化等の特性劣化防止の為、耐熱性、耐溶媒
性、寸法安定性等に優れたものが要求されており、加え
て、高性能化、高強度化、薄膜化、コストダウン等も要
求されている。
[0007] As described above, these microporous films are used in many fields. For example, in the field of separation membranes and battery separators, property deterioration such as sterilization before use or aging during use is observed. For the prevention, those having excellent heat resistance, solvent resistance, dimensional stability, etc. are required, and in addition, high performance, high strength, thin film, cost reduction, etc. are also required.

【0008】又、最近注目されている新型2次電池、特
にリチウム2次電池の隔膜の場合には、耐熱層と比較的
低温で溶融する層を組み合わせた、いわゆる低温ヒュー
ズ(抵抗増大で電流遮断)性で且つ高温ショート(高温
域まで、隔膜がメルトダウンしなく、両電極がショート
し電池が破裂ないし、発火するのを防ぐ効果)性を付与
せしめた安全性の高い、高強度で薄い多層系の隔膜が望
まれている。そして、電気自動車等への用途が拡大して
行くと、ますます上記の安全性は必要となってくると思
われる。
[0008] In the case of a new type of secondary battery which has recently attracted attention, particularly in the case of a diaphragm of a lithium secondary battery, a so-called low-temperature fuse (current interruption due to an increase in resistance) in which a heat-resistant layer and a layer melting at a relatively low temperature are combined. High safety, high strength, and thin multi-layers that have the property of preventing the battery from melting down and preventing both electrodes from shorting and causing the battery to burst or ignite up to the high temperature range. A systemic diaphragm is desired. Then, as the use for electric vehicles and the like expands, the above-mentioned safety will be required more and more.

【0009】[0009]

【発明が解決しようとする課題】これらの要求特性を備
えた微多孔フィルムを提供しようとして、従来は、耐熱
性のあるPPと、比較的耐熱性の低いHDPEを、別々
にそれぞれの最適条件で、熱処理し、1軸(縦)延伸を
して多孔化した後、耐熱性のあるPP層を組み合わせ、
加熱プレスしてラミネートし、多層化する方法が用いら
れてきた。しかし、これらの方法では、工程が多く、制
御が困難で、品質、生産性も良くない上、性能的にも不
十分(例えば、引き裂き強度バランスが極度に悪いもの
が多い)であった。
In order to provide a microporous film having the required characteristics, conventionally, heat-resistant PP and HDPE having relatively low heat resistance are separately separated under optimum conditions. After heat treatment and uniaxial (longitudinal) stretching to make it porous, a heat-resistant PP layer is combined,
A method of laminating by hot pressing to form a multilayer has been used. However, these methods involve many steps, are difficult to control, have poor quality and productivity, and are insufficient in performance (for example, many have extremely poor tear strength balance).

【0010】又従来の多量の充填剤を含ませる方法で
は、強度、孔特性その他を犠牲にして、連通開口特性を
付与せしめていたが、上記の要求特性を満たすことは難
しかった。
Further, in the conventional method of including a large amount of filler, communication opening characteristics are imparted at the expense of strength, pore characteristics and the like, but it has been difficult to satisfy the above required characteristics.

【0011】さらに、乾式法(抽出無し)の代表的方法
である前述(2)の方法である、密度が0.960g/
cm3以上の高密度ポリエチレン(HDPE)をドロー
ダウン比(以下DDRという)20〜200の高倍率比
で、不安定な状態で押出し、次いで冷却して原反を作製
した後、これを該HDPEの結晶融点より10〜25℃
の低い温度領域で、長時間(30秒間〜1時間もの連続
プロセスにとって影響の大きな)アニール処理をし、結
晶を大きなサイズに成長させ、次に−20〜50℃の低
温で且つ比較的低速度で差動ロール間で一軸(縦方向)
に引っ張り、冷間延伸し、続いて、該HDPEの結晶融
点より10℃〜25℃の低い温度で、且つより遅い速度
で、一軸熱延伸し、HDPEからなる微多孔フィルムを
得る方法が知られていた(特開昭62−121737
号)。
Further, a density of 0.960 g / d, which is a method of the above-mentioned (2) which is a typical method of a dry method (no extraction).
cm 3 or more high-density polyethylene (HDPE) with a high magnification ratio drawdown ratio (hereinafter referred to as DDR) 20 to 200, after the extrusion, followed by cooling to prepare a raw sheet in an unstable state, which the HDPE 10 to 25 ° C from the crystal melting point of
Annealing at a low temperature range for a long time (having a large effect on a continuous process for 30 seconds to 1 hour) to grow a crystal to a large size, and then at a low temperature of -20 to 50 ° C. and a relatively low speed. One axis between differential rolls (longitudinal)
A method of obtaining a microporous film composed of HDPE by stretching the film in a cold direction, followed by uniaxial heat stretching at a temperature lower than the crystal melting point of the HDPE by 10 ° C. to 25 ° C. and at a slower speed. (Japanese Patent Application Laid-Open No. 62-121737)
issue).

【0012】そして、PP樹脂でも同様な方法が知られ
ていた(特公昭46−40119)。しかし、これらの
方法では延伸速度が遅く、効率がよくない上、気孔率を
高めるために延伸倍率を縦(流れ)方向に開示された範
囲以上に上げるとスプレットヤーンのような糸状になつ
てしまい、又ヨコ方向に延伸し強度を向上させようとす
ると、延伸中に前駆体が裂けたり、ネッキング現象等が
生じて均一な微多孔フィルムが得られないという問題が
あった。
A similar method has been known for PP resin (JP-B-46-40119). However, in these methods, the stretching speed is low, the efficiency is not good, and if the stretching ratio is increased beyond the range disclosed in the longitudinal (flow) direction in order to increase the porosity, a yarn-like yarn like a split yarn is formed. In addition, when the film is stretched in the horizontal direction to improve the strength, there is a problem that the precursor is torn during the stretching or a necking phenomenon occurs, so that a uniform microporous film cannot be obtained.

【0013】一方、熱可塑性樹脂が充填剤を含む前述
(4)の方法は、熱可塑性樹脂90〜35体積%と充填
剤10〜65体積%とを混合し、押出してDDRが10
を超えない範囲で直接ダイスよりインフレーションする
か、シート状に成形し、少なくとも一方向に1.5〜6
倍に延伸して微多孔フィルムにする方法が一般的にとら
れるが、この方法でも充填剤が多量に含まれるため、脆
かったり、脱粒するという問題があった。
On the other hand, in the above method (4) in which the thermoplastic resin contains a filler, 90 to 35% by volume of the thermoplastic resin and 10 to 65% by volume of the filler are mixed and extruded to obtain a DDR of 10%.
Inflation directly from a die or a sheet shape within a range not exceeding 1.5 to 6 in at least one direction
A method of stretching the film twice to obtain a microporous film is generally used, but this method also has a problem that the filler is contained in a large amount, so that the film is brittle or the particles are shed.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記した
従来技術の問題点を解決するために、より幅広い種類の
樹脂を原料として選択でき、目的ごとに性能を制御でき
る上に、高性能で、より薄膜化した通流体性微多孔フィ
ルムを効率よく生産する方法について研究を重ねた。
In order to solve the above-mentioned problems of the prior art, the present inventors can select a wider variety of resins as raw materials, can control the performance for each purpose, and can improve the performance. Research was conducted on a method of efficiently producing a thinner fluid-permeable microporous film with higher performance.

【0015】その結果、製造に特別な補助層を用い、好
ましくはサーキュラー法で、単独層では低温、高倍率の
延伸条件(特に同時2軸延伸)が不可能に近い領域で、
しかも通常単層では均一延伸が困難な樹脂でも、延伸が
可能で、目的の高強度化、薄膜化、均一化の全てを満た
し、機能層が、2層以上の層構成を有する多層状の機能
性フイルムを効率良く得られる画期的な本発明の方法に
到達した。
As a result, a special auxiliary layer is used for the production, preferably by a circular method, and in a region where stretching conditions of low temperature and high magnification (especially simultaneous biaxial stretching) are impossible with a single layer,
Moreover, it is possible to stretch even a resin that is difficult to stretch uniformly with a single layer, and it satisfies all of the objectives of high strength, thinning, and uniformity, and a multi-layer function with two or more functional layers. Has reached a revolutionary method of the present invention in which a conductive film can be efficiently obtained.

【0016】すなわち、本発明は、 (1)結晶融点が140〜250℃のα−オレフィンと
一酸化炭素との共重合体樹脂を主成分とする少なくとも
1層の熱可塑性樹脂(A)からなり、多孔度が30〜8
0%であり、透気度が5〜2000sec/100cc
であり、且つ10%収縮温度が100℃以上の耐熱性を
有した通流体性微多孔フイルムであり、
That is, the present invention provides: (1) at least one layer of a thermoplastic resin (A) containing, as a main component, a copolymer resin of an α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C. Porosity 30-8
0% and air permeability of 5 to 2000 sec / 100 cc
And a heat-permeable microporous film having a 10% shrinkage temperature of 100 ° C. or higher,

【0017】(2)結晶融点が140〜250℃のα−
オレフィンと一酸化炭素との共重合体樹脂を主成分とす
る少なくとも1層の熱可塑性樹脂(A)層と、結晶融点
が80〜240℃のポリオレフィン系樹脂を主成分とす
る少なくとも1層の熱可塑性樹脂(B)層の少なくとも
2層からなる、多孔度が30〜80%であり、透気度が
5〜2000sec/100ccであり、且つ10%収
縮温度が100℃以上の耐熱性を有する通流体性微多孔
フイルムであり、且つ
(2) α- having a crystalline melting point of 140 to 250 ° C.
At least one thermoplastic resin (A) layer mainly composed of a copolymer resin of olefin and carbon monoxide, and at least one layer mainly composed of a polyolefin resin having a crystal melting point of 80 to 240 ° C. A resin having heat resistance of at least two layers of a plastic resin (B) layer having a porosity of 30 to 80%, an air permeability of 5 to 2000 sec / 100 cc, and a 10% shrinkage temperature of 100 ° C. or more. A fluid microporous film, and

【0018】(3)表層を含む少なくとも2層の、結晶
融点が140〜250℃のα−オレフィンと一酸化炭素
との共重合体樹脂を主成分とする熱可塑性樹脂(A)層
と、結晶融点が80〜240℃のポリオレフィン系樹脂
を主成分とする熱可塑性樹脂(B)の内層を含む少なく
とも1層とよりなる少なくとも3層状の微多孔フイルム
からなり、多孔度が30〜80%であり、透気度が5〜
2000sec/100ccであり、且つ10%収縮温
度が100℃以上の耐熱性を有する通流体性微多孔フイ
ルムを提供するものであり、そして、それを得るための
(3) At least two layers including a surface layer, a thermoplastic resin (A) layer mainly composed of a copolymer resin of α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C. It is composed of at least a three-layer microporous film composed of at least one layer including an inner layer of a thermoplastic resin (B) having a melting point of 80 to 240 ° C. and containing a polyolefin resin as a main component, and has a porosity of 30 to 80%. , Air permeability is 5
It is intended to provide a fluid-permeable microporous film having heat resistance of 2000 sec / 100 cc and a 10% shrinkage temperature of 100 ° C. or more, and a method for obtaining the film.

【0019】(4)結晶融点が140〜250℃のα−
オレフィンと一酸化炭素の共重合体樹脂を主成分とする
熱可塑性樹脂(A)15〜90体積部と、抽出可能であ
って、200℃での粘度が1000CPS以下であり、
且つ不活性な有機液状物質(C)85〜10体積部を主
成分とする組成物よりなる微多孔形成前駆層をダイによ
り押し出し、伝熱媒体により、直接又は間接的に急冷固
化させ、次いで15℃以上で且つ該前駆層を構成する熱
可塑性樹脂(A)のビカット軟化点に50℃を加えた温
度以下であって、且つ該樹脂の結晶融点以下の温度条件
で、少なくとも1方向に面積延伸倍率で、2倍以上50
倍以下に延伸し、その前後に上記物質(C)を抽出する
ことにより微多孔フイルムを得ることを特徴とする耐熱
性の通流体性微多孔フイルムの製造方法、又
(4) α- having a crystal melting point of 140 to 250 ° C.
15 to 90 parts by volume of a thermoplastic resin (A) containing a copolymer resin of olefin and carbon monoxide as a main component, is extractable, and has a viscosity at 200 ° C. of 1000 CPS or less,
In addition, a microporous forming precursor layer composed of a composition containing 85 to 10 parts by volume of an inert organic liquid substance (C) as a main component is extruded by a die, quenched and solidified directly or indirectly by a heat transfer medium, and then cooled by a heat transfer medium. Area stretching in at least one direction at a temperature not lower than 50 ° C. and not higher than the temperature obtained by adding 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer, and not higher than the crystal melting point of the resin. 2 times or more at 50 times
A method for producing a heat-resistant, fluid-permeable, microporous film, characterized in that the microporous film is obtained by stretching the material (C) before and after the stretching, and

【0020】(5)結晶融点が140〜250℃のα−
オレフィンと一酸化炭素との共重合体樹脂を主成分とす
る熱可塑性樹脂(A)、及び結晶融点が80〜240℃
のポリオレフィン系樹脂を主成分とする熱可塑性樹脂
(B)15〜90体積部と、抽出可能であって、200
℃での粘度が1000CPS以下であり、且つ不活性な
有機液状物質(C)85〜10体積部を主成分とする組
成物よりなる少なくとも1層の微多孔形成前駆層とを、
多層ダイにより押し出し、伝熱媒体により、直接又は間
接的に急冷固化させ、次いで15℃以上で且つ上記前駆
層を構成する熱可塑性樹脂(A)のビカット軟化点に5
0℃を加えた温度以下であって、且つ該樹脂の結晶融点
以下の温度条件で、少なくとも1方向に面積延伸倍率
で、2倍以上50倍以下に延伸し、その前後に上記物質
(C)を抽出することにより得られる、少なくとも2層
状の耐熱性の通流体性微多孔フイルムの製造方法、又
(5) α- having a crystal melting point of 140 to 250 ° C.
A thermoplastic resin (A) containing a copolymer resin of olefin and carbon monoxide as a main component, and a crystal melting point of 80 to 240 ° C.
15 to 90 parts by volume of a thermoplastic resin (B) containing a polyolefin resin as a main component,
At least one microporous forming precursor layer comprising a composition having a viscosity at 100 ° C. of 1000 CPS or less and containing 85 to 10 parts by volume of an inert organic liquid substance (C) as a main component,
Extruded with a multilayer die, quenched and solidified directly or indirectly with a heat transfer medium, and then heated to 15 ° C. or higher and the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer is increased by 5%.
At a temperature not higher than 0 ° C. and at a temperature not higher than the crystal melting point of the resin, the film is stretched in at least one direction by an area stretching ratio of 2 to 50 times, and before and after the stretching, the material (C) A method for producing a heat-resistant, fluid-permeable microporous film having at least two layers obtained by extracting

【0021】(6)結晶融点が140〜250℃のα−
オレフィンと一酸化炭素の共重合体樹脂を主成分とする
熱可塑性樹脂(A)99〜50体積部と、下記のD1〜
D4から選ばれる少なくとも1種の延伸開口性物質
(D)1〜50体積部含をむ組成物 D1:基材となる該樹脂(A)との溶解度パラメータの
差が3以内で、且つ弾性率が該樹脂(A)の120%以
上である熱可塑性樹脂が1〜50体積部、 D2:基材となる該樹脂(A)との溶解度パラメータの
差が3以内で、且つ弾性率が該樹脂(A)の120%未
満で、且つ結晶化度が40%以上の、熱可塑性樹脂
(A)とは、異なる熱可塑性樹脂が1〜50体積部、 D3:基材となる該樹脂(A)との溶解度パラメータの
差が3以上で、押し出し加工温度で少なくとも液状であ
る有機化合物が0.5〜10体積部、 D4:基材となる該樹脂(A)との溶解度パラメータの
差が3以内で、押し出し加工温度で少なくとも液状であ
る有機化合物が1〜20体積部、 D5:平均粒子径が10μm以下の、有機系又は無機系
より選択される少なくとも1種の充填材が1〜10体積
部、 よりなる微多孔形成前駆層をダイにより押し出し、伝熱
媒体によって、直接又は間接的に急冷固化させ、次いで
15℃以上で且つ上記前駆層を構成する熱可塑性樹脂
(A)のビカット軟化点に50℃を加えた温度以下であ
って、且つ該樹脂の結晶融点以下の温度条件で、少なく
とも1方向に面積延伸倍率で、2倍以上50倍以下に延
伸し、上記前駆層に微多孔を形成させることにより微多
孔フイルムを得ることを特徴とする耐熱性の通流体性微
多孔フイルムの製造方法、又
(6) α- having a crystal melting point of 140 to 250 ° C.
99 to 50 parts by volume of a thermoplastic resin (A) mainly containing a copolymer resin of olefin and carbon monoxide, and D1 to
A composition containing 1 to 50 parts by volume of at least one kind of stretch-openable substance (D) selected from D4. D1: a difference in solubility parameter with the resin (A) as a base material is within 3 and an elastic modulus. Is 1 to 50 parts by volume of a thermoplastic resin which is 120% or more of the resin (A). D2: The difference in solubility parameter from the resin (A) as a base material is within 3 and the elastic modulus is 1 to 50 parts by volume of a thermoplastic resin different from the thermoplastic resin (A) having a crystallinity of less than 120% of (A) and a crystallinity of 40% or more, D3: the resin (A) serving as a base material And a difference in solubility parameter between the resin (A) as a base material and the resin (A), which is at least liquid at extrusion processing temperature, is 3 or more. The organic compound which is at least liquid at the extrusion processing temperature is 1 to 2 0 parts by volume, D5: 1 to 10 parts by volume of at least one filler selected from organic or inorganic having an average particle diameter of 10 μm or less, extruded by a die, and heat transferred. The medium is directly or indirectly quenched and solidified by a medium, and then at a temperature of 15 ° C. or higher and a temperature not higher than the temperature obtained by adding 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer, and The film is stretched in at least one direction at an area stretching ratio of at least 2 times and at most 50 times under a temperature condition of a crystal melting point or lower, and a microporous film is obtained by forming microporous in the precursor layer. For producing a fluid-permeable microporous film,

【0022】(7)結晶融点が140〜250℃のα−
オレフィンと一酸化炭素との共重合体樹脂を主成分とす
る熱可塑性樹脂(A)及び結晶融点が80〜240℃の
ポリオレフィン系樹脂を主成分とした熱可塑性樹脂
(B)99〜50体積部と前記(6)記載の延伸開口性
物質(D)1〜50体積部を含む組成物からなる、少な
くとも1層の微多孔形成前駆層を、多層ダイにより押し
出し、伝熱媒体により、直接又は間接的に急冷固化さ
せ、次いで15℃以上で且つ上記前駆層を構成する熱可
塑性樹脂(A)のビカット軟化点に50℃を加えた温度
以下であって、且つ該樹脂の結晶融点以下の温度条件
で、少なくとも1方向に面積延伸倍率で、2倍以上50
倍以下に延伸して、上記前駆層に微多孔を形成させるこ
とにより微多孔フイルムを得ることを特徴とする耐熱性
の通流体性微多孔フイルムの製造方法、さらに
(7) α- crystal having a crystal melting point of 140 to 250 ° C.
99 to 50 parts by volume of a thermoplastic resin (A) mainly containing a copolymer resin of olefin and carbon monoxide and a thermoplastic resin (B) mainly containing a polyolefin resin having a crystal melting point of 80 to 240 ° C. And at least one microporous forming precursor layer comprising a composition comprising 1 to 50 parts by volume of the stretch opening material (D) described in (6) above, is extruded with a multilayer die, and directly or indirectly with a heat transfer medium. At a temperature not lower than 15 ° C. and not higher than the temperature obtained by adding 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer, and not higher than the crystal melting point of the resin. In at least one direction, the area stretch ratio is 2 times or more and 50 times or more.
The method for producing a heat-resistant, fluid-permeable microporous film, characterized by obtaining a microporous film by stretching the precursor layer to form a microporous film,

【0023】(8)結晶融点が140〜250℃のα−
オレフィンと一酸化炭素との共重合体樹脂を主成分とす
る熱可塑性樹脂(A)及び又は結晶融点が80〜240
℃のポリオレフィン系樹脂を主成分とした熱可塑樹脂
(B)よりなる微多孔形成前駆層と、更に少なくとも1
層の、該前駆層をなす樹脂とは異なる熱可塑性樹脂を主
成分とする非通流体性樹脂組成物よりなる補助層(S)
とを、同時に多層ダイにより共押し出し、伝熱媒体によ
り直接又は間接的に急冷固化させて、次いで15℃以上
で且つ上記前駆層を構成する熱可塑性樹脂(A)のビカ
ット軟化点に50℃を加えた温度以下であって、且つ該
樹脂の結晶融点以下の温度条件で、少なくとも1方向に
面積延伸倍率で、2倍以上50倍以下に延伸し、次いで
該補助層を剥離除去することにより、微多孔フイルムを
得ることを特徴とする耐熱性の通流体性の微多孔フイル
ムの製造方法を提供するものである。
(8) α- having a crystal melting point of 140 to 250 ° C.
A thermoplastic resin (A) containing a copolymer resin of olefin and carbon monoxide as a main component, and / or having a crystal melting point of 80 to 240.
A microporous forming precursor layer composed of a thermoplastic resin (B) containing a polyolefin resin as a main component at a temperature of at least 1 ° C.
An auxiliary layer (S) made of a non-flowable resin composition containing a thermoplastic resin different from the resin forming the precursor layer as a main component of the layer;
Are simultaneously co-extruded with a multilayer die, quenched and solidified directly or indirectly with a heat transfer medium, and then heated to 15 ° C. or higher and 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer. At a temperature of not more than the added temperature, and at a temperature not higher than the crystal melting point of the resin, by stretching in at least one direction by an area stretch ratio of 2 times or more and 50 times or less, and then peeling and removing the auxiliary layer, An object of the present invention is to provide a method for producing a heat-resistant and fluid-permeable microporous film characterized by obtaining a microporous film.

【0024】以下本発明を詳細に説明する。本発明のフ
イルムでは、用いる熱可塑性樹脂(A)は少なくとも1
層の連続相をなしており、且つ耐熱性の通流体性微多孔
フイルムを形成している機能層(MAと略す)の主体を
なしている。そして、該樹脂は結晶融点が140〜25
0℃のα−オレフィンと一酸化炭素との共重合体樹脂か
らなっている。具体的にはエチレン、プロピレン、ペン
テン、ヘキセン、オクテン等の炭素数C2〜C12程度
のそれぞれ異性体を含むオレフィン類から少なくとも1
種選ばれたα−オレフィンと、一酸化炭素とを共重合し
たものであり、一酸化炭素の含量(モル%)が10〜5
0モル%、好ましくは20〜50モル%、より好ましく
は30〜50モル%のものである。
Hereinafter, the present invention will be described in detail. In the film of the present invention, at least one thermoplastic resin (A) is used.
The functional layer (abbreviated as MA) which is a continuous phase of the layer and forms a heat-resistant, fluid-permeable, microporous film. The resin has a crystal melting point of 140 to 25.
It consists of a copolymer resin of α-olefin and carbon monoxide at 0 ° C. Specifically, at least one of olefins containing isomers having about C2 to C12 carbon atoms, such as ethylene, propylene, pentene, hexene, octene, etc.
A copolymer of a selected α-olefin and carbon monoxide, wherein the content (mol%) of carbon monoxide is 10 to 5
0 mol%, preferably 20 to 50 mol%, more preferably 30 to 50 mol%.

【0025】又より好ましいのは、エチレン主体にプロ
ピレンを加えたものと一酸化炭素とを共重合したもの、
及びエチレン主体にオクテン−1を加えたものを同じく
共重合したもの等があげられる。上記α−オレフィンと
一酸化炭素との共重合の態様は、ランダム状、該ランダ
ム部分を分子鎖の中に自由なブロック部分として有する
構造のもの、又はこれらが異なったα−オレフィンから
なるもの、もしくは両者の混在しているもの、又は分子
鎖の中に該一酸化炭素のランダム共重合部分の共重合密
度が順次異なる傾斜状態(いわゆるテーパー状)を有す
る部分を持つたもの等をとることができる。
More preferred are those obtained by copolymerizing ethylene-based propylene and carbon monoxide,
And those obtained by copolymerizing ethylene-based octene-1 in the same manner. Aspects of the copolymerization of the α-olefin and carbon monoxide include those having a random shape, a structure having the random portion as a free block portion in the molecular chain, or those having different α-olefins, Alternatively, a mixture of both, or a portion having a gradient state (so-called tapered shape) in which the copolymerization density of the random copolymerized portion of carbon monoxide is sequentially different in the molecular chain may be taken. it can.

【0026】これら共重合体の結晶融点(DSC法によ
る主ピーク)は140〜250℃、好ましくは150〜
250℃、より好ましくは160〜240℃であり、シ
ングルピーク、ダブルピーク、その他多重ピークを有す
るものを含んでいる。なお、本発明においては複数のピ
ークを有する樹脂もしくは混合樹脂の場合、表す代表値
としての融点は、全体のピーク面積(又は同高さ)の3
0%以上を占める高温側のピークで表現することとす
る。又ピーク高さ、温度位置とも近接して上記の判断が
つかない場合は平均値で表すこととする。
The crystalline melting point (main peak by DSC method) of these copolymers is 140 to 250 ° C., preferably 150 to 250 ° C.
The temperature is 250 ° C, more preferably 160 to 240 ° C, including those having a single peak, a double peak, and other multiple peaks. In the present invention, in the case of a resin having a plurality of peaks or a mixed resin, the melting point as a representative value to be represented is 3 points of the entire peak area (or the same height).
It is expressed as a peak on the high temperature side occupying 0% or more. If the above judgment cannot be made because the peak height and the temperature position are close to each other, the average value is used.

【0027】重量平均分子量(Mw)は、通常10、0
00〜500,000であり、好ましくは、20,00
0〜300,000である。次に、上記の機能層(M
A)と共押し出しして組み合わせ全体として高機能な相
乗効果(例えば、上記MA層より低温領域で微孔を閉塞
し、通流体性を遮断する等)を発揮せしめるため追加さ
れる機能層(MB)は、結晶融点が80〜240℃のポ
リオレフィン系樹脂(B)であり、例えば少なくとも1
種のα−オレフィンから選ばれる重合体又はα−オレフ
ィン同士の共重合体である。
The weight average molecular weight (Mw) is usually 10,0
00 to 500,000, preferably 20,000
0 to 300,000. Next, the above functional layer (M
A) a functional layer (MB) added to co-extrude with A) to exhibit a highly functional synergistic effect as a whole as a whole (for example, to close micropores in a lower temperature region than the MA layer and block fluid permeability). ) Is a polyolefin resin (B) having a crystalline melting point of 80 to 240 ° C.
It is a polymer selected from kinds of α-olefins or a copolymer of α-olefins.

【0028】必要により、α−オレフィン以外の共重合
成分として、酢酸ビニル、アクリル酸及び同誘導体、芳
香族系のスチレン及び同誘導体又は同重合体でこれらの
芳香族環の少なくとも1部を水添した構造を有するも
の、その他にシクロヘキサン(含不飽和部)環、シクロ
ペンタジエン環、ジシクロペンタジエン環、ノルボネン
環等を有する単量体を共重合しこれらを水添した構造を
有するもの、或いはこれらの混合物を用いることもでき
る。
If necessary, at least a part of these aromatic rings may be hydrogenated with vinyl acetate, acrylic acid and its derivatives, aromatic styrene and its derivatives or polymers as copolymerization components other than the α-olefin. Having a structure in which a monomer having a cyclohexane (unsaturated portion) ring, a cyclopentadiene ring, a dicyclopentadiene ring, a norbonene ring, or the like is copolymerized and hydrogenated. Can also be used.

【0029】これらの例としては、ポリエチレン系樹
脂、ポリプロピレン系樹脂、ポリブテン−1系樹脂、4
−メチルペンテン−1系樹脂、及びこれらの混合組成物
等がある。
Examples of these are polyethylene resin, polypropylene resin, polybutene-1 resin,
-Methylpentene-1 resin, and a mixed composition thereof.

【0030】前記の樹脂層(MA)と樹脂層(MB)と
を組合わせる時、その樹脂(B)と、樹脂(A)の結晶
融点差は、好ましくは20℃以上、より好ましくは30
℃以上、更に好ましくは40℃以上必要である。又樹脂
(B)の結晶融点が樹脂(A)より低い方が好ましい。
When the resin layer (MA) and the resin layer (MB) are combined, the difference between the crystal melting points of the resin (B) and the resin (A) is preferably 20 ° C. or more, more preferably 30 ° C.
C. or higher, more preferably 40 ° C. or higher. Further, it is preferable that the crystalline melting point of the resin (B) is lower than that of the resin (A).

【0031】次に本発明の通流体性微多孔体フイルムの
特性について説明する。 (1)前記の樹脂(A)単位からなる通流体性微多孔体
フイルムの特性としては、まず多孔度が30〜80%、
好ましくは40〜70%である。多孔度が上記の下限以
下では実用上有効な、通流体性(透気度、電気抵抗等と
関係する)の付与が難しく、上限以上では、フイルムの
強度に問題を生じるので好ましくない。透気度は5〜2
000sec/100ccの範囲内であり、好ましくは
10〜1000sec/100cc、より好ましくは1
5〜700sec/100ccである。
Next, the characteristics of the fluid-permeable microporous film of the present invention will be described. (1) The characteristics of the fluid-permeable microporous film comprising the resin (A) unit are as follows: first, the porosity is 30 to 80%;
Preferably it is 40 to 70%. If the porosity is less than the above lower limit, it is difficult to impart practically effective fluid permeability (related to air permeability, electric resistance, etc.), and if the porosity is more than the upper limit, a problem occurs in the strength of the film. Air permeability is 5-2
000 sec / 100 cc, preferably 10 to 1000 sec / 100 cc, more preferably 1 to 1000 sec / 100 cc.
It is 5 to 700 sec / 100 cc.

【0032】この下限以下ではフイルムの強度に問題が
生じ、上限以上では電池の隔膜として使用する場合に、
電気抵抗が高すぎ、充放電する時に問題を生じるので好
ましくない。10%収縮温度は100℃以上であり、好
ましくは110℃以上である。この下限以下では、使用
時の寸法安定性に問題を生じ、特に2次電池等で充放電
するとき、電解液を有し密着密閉され、且つ本発明のフ
イルムで包み込んだ状態にある電極が発熱し、さらにフ
イルムが収縮することによって、電極、活物質等が、極
度に締め付けられ破損したり、電極の端部がむき出しに
なってショートするという危険がある。
Below the lower limit, there is a problem in the strength of the film, and above the upper limit, when used as a battery diaphragm,
It is not preferable because the electric resistance is too high and causes a problem when charging and discharging. The 10% shrink temperature is 100 ° C or higher, preferably 110 ° C or higher. Below this lower limit, there is a problem in dimensional stability during use, and particularly when charging and discharging with a secondary battery or the like, an electrode that has an electrolytic solution, is tightly sealed, and is wrapped in the film of the present invention, generates heat. Further, when the film shrinks, there is a danger that the electrode, the active material, and the like are extremely tightened and damaged, and there is a danger that the end of the electrode is exposed and short-circuited.

【0033】(2)本発明の好ましい形態の1つであ
る、前記樹脂(A)と、前記樹脂(B)との、少なくと
も2層からなる通流体性微多孔体の特性は、まず前述
(1)の樹脂(A)単体層の場合と同じ特性を有した上
で、更に(MA)層と(MB)層の、どちらかの層に利
用する樹脂の結晶融点の差が、少なくとも20℃、好ま
しくは少なくとも30℃、より好ましくは少なくとも4
0℃のものである。又好ましくは、(MB)層を構成す
る樹脂(B)の融点が、樹脂(A)の融点より低い組合
わせを選ぶ。
(2) The characteristics of the fluid-permeable microporous body composed of at least two layers of the resin (A) and the resin (B), which are one of the preferable embodiments of the present invention, are as described above. In addition to having the same properties as the resin (A) single layer of 1), the difference in the crystal melting point of the resin used for either the (MA) layer or the (MB) layer is at least 20 ° C. , Preferably at least 30 ° C, more preferably at least 4 ° C.
It is at 0 ° C. Preferably, a combination in which the melting point of the resin (B) constituting the (MB) layer is lower than the melting point of the resin (A) is selected.

【0034】その理由は、融点の低い樹脂からなる機能
層が、前述の2次電池に使用した場合、何らかの理由
で、過充電、活物質での短絡、充電中のデンドライト状
結晶発生による電極の短絡、暴走反応、さらに機械的変
形・破壊現象等が発生し、発熱して電池が爆発・発火す
る場合、その融点の高い樹脂の層が溶融して流れ、結果
として電極板が短絡することなく(時間的にそれ以前
に)、低融点側の樹脂層の連通孔が閉塞し電気抵抗を短
時間の内に電流が流れない程度に上昇させ、電極間の電
流を遮断、絶縁して上記の爆発・発火を防ぎ、安全性を
確保することができるからである。
The reason is that when the functional layer made of a resin having a low melting point is used in the above-mentioned secondary battery, for some reason, the electrode may be overcharged, short-circuited with an active material, or dendrite-like crystals generated during charging. When a battery explodes or ignites due to short circuit, runaway reaction, mechanical deformation / destruction phenomenon, etc., and heat is generated, the high melting point resin layer melts and flows, and as a result, the electrode plate does not short circuit. (Before that in time), the communication hole of the resin layer on the low melting point side is closed and the electric resistance is increased to such an extent that current does not flow within a short time, and the current between the electrodes is cut off and insulated. This is because explosion and ignition can be prevented and safety can be ensured.

【0035】(3)又、より好ましい形態である、前記
の樹脂(A)よりなる表層を含む少なくとも2層の機能
層(MA)と、前記の樹脂(B)よりなる少なくとも1
層の内層をなす機能層(MB)とからなる、少なくとも
3層のフイルムの特性は、上述の場合の特性と同じもの
に加えて、表層の機能層(MA)に、樹脂(A)の結晶
融点の高い方を利用し、内層に樹脂(B)の結晶融点の
低い方を利用することによって得られる特性が加わる。
(3) In a more preferred embodiment, at least two functional layers (MA) including a surface layer of the resin (A) and at least one functional layer (MA) of the resin (B)
The characteristics of at least three layers of the film composed of the functional layer (MB) forming the inner layer of the layer are the same as those of the above-described film, and the crystal of the resin (A) is added to the surface functional layer (MA). By using the higher melting point and using the lower crystalline melting point of the resin (B) for the inner layer, additional characteristics can be obtained.

【0036】特に、電池の隔膜に利用する場合、熱的容
量の大きな両電極表面に接触するする側に、より高融点
の樹脂を有する機能層を配し、内部に、低融点の樹脂を
有する層を配することによって、より好ましい効果が得
られた。
In particular, when used as a battery diaphragm, a functional layer having a higher melting point resin is disposed on the side in contact with both electrode surfaces having a large thermal capacity, and a low melting point resin is provided inside. By arranging the layers, more favorable effects were obtained.

【0037】すなわち、ポーラスで凹凸のある両電極面
側に低融点層を配することにより、高温になった時、そ
れらが流動し電極の凹凸の対応して電極に潜り込みやす
くなり、局部的に高圧力が生じ膜が破損したり、隔膜全
体が薄くなって短絡し易くなる上、電流遮断性能が低下
し易く、且つ隔膜の内部の低融点の機能層が両側から押
さえられている為、縦、横の寸法変化(収縮)よりも、
該低融点層のフイルム厚み方向がより有効に収縮及び圧
密化閉塞して、全体としてより有効に、敏感に抵抗が上
昇し、電流遮断層として優れた効果を発揮するからであ
る。
That is, by arranging the low-melting-point layers on both sides of the porous and uneven electrode surface, when the temperature becomes high, they flow and easily sink into the electrode corresponding to the unevenness of the electrode. Since high pressure is generated and the membrane is damaged, the entire membrane is thinned and short circuit is easily caused, the current interrupting performance is easily deteriorated, and the low melting point functional layer inside the membrane is pressed from both sides. , Than the lateral dimensional change (shrinkage)
This is because the film thickness direction of the low melting point layer is more effectively shrunk and compacted, and the overall resistance is more effectively and sensitively increased, thus exhibiting an excellent effect as a current blocking layer.

【0038】又耐熱層の溶融短絡による短絡温度も均一
になり、より高温側にシフトすることも判明した。ここ
で「閉塞−短絡」温度差としては好ましく30℃以上、
より好ましくは40℃以上、更に好ましくは50℃以上
である。その下限は、使用している電池構成物質により
多少異なるが、電池としての昇温安全性より出来るだけ
低い方がよく、約80〜140℃である。
It was also found that the short-circuit temperature due to the melting short-circuit of the heat-resistant layer became uniform and shifted to a higher temperature side. Here, the “closed-short circuit” temperature difference is preferably 30 ° C. or more,
It is more preferably at least 40 ° C., even more preferably at least 50 ° C. The lower limit is slightly different depending on the battery constituent material used, but it is better to be as low as possible from the safety of temperature rise as a battery, and it is about 80 to 140 ° C.

【0039】フイルムの耐熱寸法安定性も、低融点でよ
り低温で収縮し易い層を有するにもかかわらず、例えば
該低融点層の全層に対する厚み比率が70%でも表層の
収縮特性に近い特性を保ち、さらに本発明で言う耐熱性
の有る寸法安定性が、2軸延伸のフイルム(縦1軸延伸
のフイルムでは、延伸方向、つまり流れ方向の縦に両電
極と隔膜を重ね、巻物状に仕上げる関係で、横方向には
収縮しない特徴がある)であるにもかかわらず発揮でき
ることが判明した。この通流体性微多孔体の通流体性を
発揮する連通開口径は、0.01〜10μmであり、好
ましくは0.02〜5μmである。
The film has a heat resistant dimensional stability which is close to the shrinkage characteristics of the surface layer even if the low melting point layer has a thickness ratio of 70% to all layers despite having a layer having a low melting point and easily shrinking at a lower temperature. In addition, the dimensional stability with heat resistance referred to in the present invention is a biaxially stretched film (in the case of a longitudinally uniaxially stretched film, the two electrodes and the diaphragm are overlapped in the stretching direction, that is, in the longitudinal direction of the flow direction, and formed into a roll. In terms of finishing, there is a feature that it does not shrink in the lateral direction). The diameter of the communication opening for exhibiting the fluid permeability of the fluid-permeable microporous body is 0.01 to 10 μm, preferably 0.02 to 5 μm.

【0040】次に、本発明のフイルムの製造方法につい
て説明する。本発明のフイルムを得る一つの方法は、前
述の基材となる熱可塑性樹脂(A)、及び又は追加する
熱可塑性樹脂(B)と、抽出可能であって200℃での
粘度が1000CPS以下であり、且つ不活性な有機液
状物質(C)85〜10体積部を主成分とする微多孔形
成前駆層用組成物をダイ(場合により多層ダイ)により
押し出し、伝熱媒体により、直接又は間接的に急冷固化
させて、次いで15℃以上で且つ該前駆層を構成する熱
可塑性樹脂(A)のビカット軟化点に50℃を加えた温
度以下であって、且つ該樹脂の結晶融点以下の温度条件
で、少なくとも1方向に面積延伸倍率で、2倍以上50
倍以下に延伸した後、上記物質(C)を抽出することに
より微多孔フイルムを製造する方法である。
Next, the method for producing the film of the present invention will be described. One method of obtaining the film of the present invention is to extract the thermoplastic resin (A) serving as the base material described above and / or the additional thermoplastic resin (B) and extractable and have a viscosity at 200 ° C. of 1000 CPS or less. The composition for a microporous formation precursor layer containing 85 to 10 parts by volume of the present and inert organic liquid substance (C) as a main component is extruded with a die (in some cases, a multilayer die), and directly or indirectly with a heat transfer medium. At a temperature not lower than 15 ° C. and not higher than the temperature obtained by adding 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer, and not higher than the crystal melting point of the resin. In at least one direction, the area stretch ratio is 2 times or more and 50 times or more.
This is a method for producing a microporous film by extracting the above-mentioned substance (C) after stretching it to twice or less.

【0041】この通流体性微多孔フイルム本体となる基
材樹脂に関しては、前述した通りであり、製造するとき
に該基材樹脂にあらかじめ混合する不活性な液状物質
(C)は、前記M層(又は好ましい場合に選ばれるS
層)を溶融押出しする温度で少なくとも液状(例えば、
200℃で1000ポイズ以下:B型粘度計で測定)で
あり、平均分子量5000以下、好ましくは同分子量3
000以下の有機物(単分子体、オリゴマーや低分子量
重合体も含むものとする)から選ばれた1種以上を用い
る。
The base resin which becomes the body of the fluid-permeable microporous film is as described above. The inert liquid substance (C) which is previously mixed with the base resin at the time of production is the same as that of the M layer. (Or the S chosen in the preferred case)
Layer) at least liquid (eg,
1000 poise or less at 200 ° C .: measured with a B-type viscometer) and an average molecular weight of 5000 or less, preferably 3
One or more selected from organic substances having a molecular weight of 000 or less (including monomolecular substances, oligomers and low molecular weight polymers) are used.

【0042】該(c)物質は、界面活性剤類、可塑剤
類、溶剤類、滑材類、ワックス類、又は一般に相分離法
により微多孔フィルムを製造するときに使用される公知
のものから選んでよく、例えば、流動パラフィンやパラ
フィンワックスをはじめとするパラフィンオイル、ミネ
ラルオイル(パラフイン系、飽和シクロナフテン系を含
む)、液状ポリブテンや液状ポリブタジエンをはじめと
する液状ゴム等の常温で液体である有機液状体、常温で
固体であるパラフィンワックス、高級アルコール類、高
級アルコールエステル、又は、フタル酸ジオクチル、ア
ジピン酸ジオクチル、セバシン酸ジオクチル、フタル酸
ジシクロヘキシル、トリフェニルホスフェートをはじめ
とする脂肪族/芳香族のジカルボン酸やリン酸等の各種
エステル類等が挙げられ、これらは単一物でも混合物で
もよい。
The substance (c) may be a surfactant, a plasticizer, a solvent, a lubricant, a wax, or a known substance generally used for producing a microporous film by a phase separation method. For example, liquid at room temperature such as liquid paraffin, paraffin oil including paraffin wax, mineral oil (including paraffin type and saturated cyclonaphthene type), liquid rubber such as liquid polybutene and liquid polybutadiene, etc. Organic liquids, paraffin waxes that are solid at room temperature, higher alcohols, higher alcohol esters, or aliphatic / aromatics including dioctyl phthalate, dioctyl adipate, dioctyl sebacate, dicyclohexyl phthalate, triphenyl phosphate Various esters such as dicarboxylic acid and phosphoric acid Is, it may be a mixture in a single product.

【0043】又これらの量及び種類を選ぶことによって
該基材熱可塑性樹脂との相分離状態が変化し、その結
果、微多孔フィルムの多孔度、孔構造、孔径等を変える
ことが出来る。本発明の(c)の添加量は、基材樹脂1
5〜90体積部に対し、85〜10体積部であり、好ま
しくは基材樹脂30〜70体積部に対し70〜30体積
部である。
By selecting these amounts and types, the state of phase separation from the base thermoplastic resin changes, and as a result, the porosity, pore structure, pore diameter, etc. of the microporous film can be changed. The addition amount of (c) of the present invention is as follows.
It is 85 to 10 parts by volume with respect to 5 to 90 parts by volume, and preferably 70 to 30 parts by volume with respect to 30 to 70 parts by volume of the base resin.

【0044】他に、製造時に追加される前駆層樹脂とは
異なる熱可塑性樹脂を主成分とする非通流体性樹脂組成
物(同時に延伸しても通流体性とならないもの)よりな
る補助層(S)とを、同時に多層ダイにより共押し出
し、次いで該(S)層を剥離除去した後、不活性な液状
物質(C)を抽出することにより微多孔フイルムの前駆
体を得て、次に延伸(1軸、又は好ましくは2軸)し
て、目的の通流体性微多孔フイルムを得るか、又は、好
ましくは、該(S)層を同時に押し出し、次に同時に延
伸(同上)した後、該補助層を剥離除去し、不活性な液
状物質(C)を抽出することにより、微多孔フイルムを
得る方法がある。
In addition, an auxiliary layer made of a non-fluid resin composition mainly composed of a thermoplastic resin different from the precursor layer resin added at the time of manufacture (a material which does not become fluid-permeable even when stretched simultaneously) ( And S) are simultaneously co-extruded with a multilayer die, and then the (S) layer is peeled and removed. Then, an inert liquid substance (C) is extracted to obtain a precursor of a microporous film, which is then stretched. (Uniaxially, or preferably biaxially) to obtain the desired fluid-permeable microporous film, or preferably, simultaneously extruding the (S) layer and then simultaneously stretching (same as above), There is a method of obtaining a microporous film by peeling and removing the auxiliary layer and extracting an inert liquid substance (C).

【0045】さらに、好ましい他の製法について説明す
る。前記の熱可塑性樹脂(A)、又は追加して使用する
前記の熱可塑性樹脂(B)と後記の延伸開口性物を含む
微多孔形成前駆層(M層と表す。個別にはMA,MBの
総称とする)と、さらに好ましくは、少なくとも1層の
成膜性向上を主目的とする該M層に用いられる樹脂とは
異なる前記又は後記の非通流体性熱可塑性樹脂よりなる
補助層(S層)とを(同時)積層共押出し、巾、流れ方
向に均一な流動配向(含高倍率の)を与え、伝熱媒体に
より急冷固化させ、次に所定の範囲の温度、延伸倍率で
少なくとも1方向に延伸し、微多孔を形成せしめて多層
フィルムを得た後、該S層を剥離除去(場合により回
収、リサイクル)することにより微多孔フィルムを得る
方法がある。
Further, another preferable production method will be described. A microporous forming precursor layer (hereinafter referred to as an M layer) containing the thermoplastic resin (A) or the thermoplastic resin (B) additionally used and a stretchable opening material described below. More preferably, an auxiliary layer (S) made of the above-mentioned or the following non-flow-permeable thermoplastic resin different from the resin used for the M layer whose main purpose is to improve the film-forming properties of at least one layer Layer) and co-extruded (simultaneously) to give a uniform flow orientation (of a high content ratio) in the width and flow directions, quenched and solidified with a heat transfer medium, and then at least 1 at a predetermined range of temperature and stretching ratio. There is a method of obtaining a microporous film by stretching in the direction to form a microporous film to obtain a multilayer film, and then peeling and removing the S layer (in some cases, collecting and recycling).

【0046】この方法では、少なくとも1層の連続相を
形成する熱可塑性樹脂を主成分として含む組成物よりな
る微多孔形成前駆層(MA,及び又は追加のMB)と、
さらに少なくとも1層の、該前駆層に用いられる樹脂と
は異なる熱可塑性樹脂を主成分とする非通流体性の補助
層(S)とを多層ダイにより積層共押出した[場合によ
り該前駆層に適切な流動配向を加えた]後、伝熱媒体に
より直接又は間接的に該前駆層を急冷固化させて、15
℃以上で且つ該前駆層を構成する組成物のビカット軟化
点に50℃を加えた温度以下の温度条件で、得られた積
層体を少なくとも1方向に面積倍率で1.1倍以上30
倍以下に延伸することにより該前駆層に微多孔が形成さ
れた多層フィルムを得、次いで該補助層(S)を剥離除
去することにより通流体性微多孔フィルムを得ている。
In this method, a microporous forming precursor layer (MA and / or additional MB) composed of a composition containing as a main component a thermoplastic resin forming at least one continuous phase;
Further, at least one layer of a non-flow-permeable auxiliary layer (S) mainly composed of a thermoplastic resin different from the resin used for the precursor layer was laminated and co-extruded with a multilayer die. After the appropriate flow orientation has been added, the precursor layer is quenched and solidified directly or indirectly by a heat transfer medium to form
Under a temperature condition of not less than 50 ° C. and not more than a temperature obtained by adding 50 ° C. to the Vicat softening point of the composition constituting the precursor layer, the obtained laminate was obtained in an area magnification of 1.1 to 30 in at least one direction.
A multi-layer film in which microporosity is formed in the precursor layer is obtained by stretching the film up to twice or less, and the auxiliary layer (S) is peeled off to obtain a fluid-permeable microporous film.

【0047】この方法により、M層単独では従来不可能
だった、均一で高度な流動配向を付与することができ、
従来法の欠点であった延伸工程中に不均一になり裂けて
しまったり、厚み方向で孔形状及び特性が異なったり、
幅方向で均一性に欠けたりといった問題が解決された。
しかも、条件的により厳しいバブル法での延伸(特に、
縦・横同時方向により低温で高倍率の高度な延伸配向を
加える場合や極薄肉例えば、2〜5μm程度の目的フイ
ルムを得る場合等には従来は上記理由でのパンクや不均
一化の問題が有り、更にバブル内の空気が抜けて封入で
きず、延伸が継続して出来ない等の問題があった)がで
きないため、従来達成することができなかった樹脂組成
・延伸条件でも、高性能の微多孔フィルムを効率よく生
産することができるようになった。
According to this method, it is possible to impart a uniform and high flow orientation, which was impossible with the M layer alone,
During the stretching process, which was a drawback of the conventional method, it became uneven and teared, or the hole shape and characteristics differed in the thickness direction,
The problem of lack of uniformity in the width direction has been solved.
Moreover, the stretching by the bubble method which is more strictly conditional (particularly,
Conventionally, there is a problem of puncturing or non-uniformity due to the above reasons when adding a high stretch orientation of high magnification at a low temperature in the vertical and horizontal simultaneous directions or when obtaining an ultrathin wall, for example, a target film of about 2 to 5 μm. Yes, there is a problem that the air in the bubble escapes and cannot be enclosed, and stretching cannot be continued.) It has become possible to efficiently produce a microporous film.

【0048】本発明において、M層は、少なくとも1層
の連続相を形成する通流体性微多孔体を形成する前記の
熱可塑性樹脂(A)、及び又は、追加の熱可塑性樹脂
(B)を主成分とする組成物の層からなる。このような
熱可塑性樹脂(A)、(B)としては、延伸配向により
強度を付与し、安定な孔を形成するという観点から、比
較的に硬質な樹脂として前記のフイルムと同じものが選
択される。
In the present invention, the M layer comprises the thermoplastic resin (A) forming a fluid-permeable microporous body forming at least one continuous phase and / or the additional thermoplastic resin (B). It consists of a layer of the composition as the main component. As such a thermoplastic resin (A) or (B), the same resin as the above-mentioned film is selected as a relatively hard resin from the viewpoint of imparting strength by stretching orientation and forming stable holes. You.

【0049】最終的に得られる本発明の微多孔フィルム
の孔径を決定する、熱可塑性樹脂(A)及び又は(B)
に分散相となる異種類の延伸開口せい物質を混合し、そ
の樹脂中での分散状態を制御するため、連続相となる熱
可塑性樹脂(AないしB)の使用量を、99〜55体積
%、好ましくは98〜60体積%、更に好ましくは97
〜70体積%にする。又分散相を形成し、本発明の加工
条件下での延伸開口性物質(D)となる以下の(D1)
〜(D5)から選択される少なくとも1種の物質(D)
を1〜45体積%、好ましくは2〜40体積%、さらに
好ましくは3〜30体積%使用する。この(D)の量
が、上記下限以下では有効な延伸開口作用を発揮出来な
く、又上記上限以上では、基材の特性を、変性(強度低
下、開口の不均一化、等)してしまうので好ましくな
い。
The thermoplastic resin (A) and / or (B) for determining the pore diameter of the finally obtained microporous film of the present invention.
In order to control the state of dispersion in the resin by mixing different kinds of stretch opening burrs that become a disperse phase, the amount of the thermoplastic resin (A or B) that becomes a continuous phase is reduced to 99 to 55% by volume. , Preferably 98 to 60% by volume, more preferably 97% by volume.
7070% by volume. The following (D1) which forms a dispersed phase and becomes a stretchable openable substance (D) under the processing conditions of the present invention:
At least one substance (D) selected from (D5)
Is used in an amount of 1 to 45% by volume, preferably 2 to 40% by volume, more preferably 3 to 30% by volume. When the amount of (D) is less than the above lower limit, an effective stretching opening effect cannot be exhibited, and when it is more than the above upper limit, the properties of the substrate are denatured (reduced strength, uneven opening, etc.). It is not preferable.

【0050】(D1)〜(D5)としては特性、作用効
果上から下記のものが用いられる。 D1:該熱可塑性樹脂(A)との溶解度パラメータ(以
下SP値:秋山三郎らによる、ポリマーブレンド 12
5頁〜(1981年 シーエムシー刊)に記載されてい
る方法や、Smallによる Journal of
AppliedChemistry 第3巻 71頁〜
(1953年)の方法により計算。なお、この方法によ
り計算できない場合は、ポリマーの各種溶媒(SP値の
判明した)への溶解性により推定)の差が3以内で、曲
げ弾性率(本発明ではASTMD790による曲げ弾性
率を指す)が熱可塑性樹脂(A)の140%以上である
熱可塑性樹脂。
As (D1) to (D5), the following are used from the viewpoint of characteristics and effects. D1: Solubility parameter with the thermoplastic resin (A) (hereinafter referred to as SP value: polymer blend 12 by Saburo Akiyama et al.)
Pages 5 to (1981, published by CMC) and the Journal of Journal by Small.
Applied Chemistry Volume 3 71
(1953). If the calculation cannot be performed by this method, the difference between the polymers in the solvent (estimated by the solubility in the SP value) is within 3 and the flexural modulus (refers to the flexural modulus according to ASTM D790 in the present invention). Is 140% or more of the thermoplastic resin (A).

【0051】D2:熱可塑性樹脂(A)とのSP値の差
が3以内で、弾性率が熱可塑性樹脂(A)の140%未
満でかつ結晶化度が40%以上の熱可塑性樹脂(A)と
は異なる熱可塑性樹脂。 D3:基材となる樹脂(A)との溶解度パラメータの差
が3以上で、押し出し加工温度で少なくとも液状である
有機化合物。 D4:熱可塑性樹脂(A)とのSP値の差が3以内でか
つM層を溶融押出しする温度で液状である有機物。 D5:平均粒子径が10μm以下である有機系または無
機系の充填剤。
D2: Thermoplastic resin (A) having a difference in SP value from thermoplastic resin (A) of 3 or less, an elastic modulus of less than 140% of thermoplastic resin (A) and a crystallinity of 40% or more. A) a different thermoplastic resin. D3: An organic compound having a solubility parameter difference of at least 3 with respect to the resin (A) as a base material and being at least liquid at an extrusion processing temperature. D4: Organic substance having a difference in SP value from the thermoplastic resin (A) within 3 and being liquid at a temperature at which the M layer is melt-extruded. D5: Organic or inorganic filler having an average particle diameter of 10 μm or less.

【0052】好ましくは、これらの(D)を2種以上組
み合わせて使用する。これらの延伸開口性物質(D)は
基本的に、基材をなす熱可塑性樹脂A及び又はBと、少
なくとも該樹脂の軟化点(ビカツト軟化点)、又は結晶
融点以下では、前述の混合比率で完全相溶(分子分散状
に)しないものが選ばれる。好ましくは制御された形状
に均一に微分散し、経時的に安定なものが好ましい。又
成分(D)として開口性熱可塑性樹脂(D1)または
(D2)の中から少なくとも1成分を選択することが基
材の特性低下を少なくする上で好ましく、他の開口性物
質をそれらに加えると相乗効果が期待できる場合があ
る。
Preferably, two or more of these (D) are used in combination. These stretch-openable substances (D) are basically mixed with the thermoplastic resins A and / or B constituting the base material at least at the softening point of the resin (Bichat softening point) or at the crystal melting point or lower. Those that are not completely compatible (in a molecularly dispersed state) are selected. Preferably, those which are finely dispersed uniformly in a controlled shape and are stable over time are preferred. It is preferable to select at least one component from the openable thermoplastic resin (D1) or (D2) as the component (D) in order to reduce the deterioration of the properties of the base material, and to add another openable substance to them. In some cases, a synergistic effect can be expected.

【0053】開口性熱可塑性樹脂(D1)は、基材の熱
可塑性樹脂(A)、(B)と適度な親和性を有し、溶融
混練り分散により一定の粒径、形状に分散し、冷却固化
後安定であり、かつ延伸条件にて該基材熱可塑性樹脂と
の界面を均一に剥離させるようにすることができるもの
であって、該基材より高い曲げ弾性率の樹脂であり、好
ましくは基材より低分子のものである。
The openable thermoplastic resin (D1) has a suitable affinity for the thermoplastic resins (A) and (B) of the base material, and is dispersed into a given particle size and shape by melt-kneading and dispersing. It is stable after cooling and solidifying, and is capable of uniformly separating the interface with the base thermoplastic resin under stretching conditions, and is a resin having a higher flexural modulus than the base, Preferably, it has a lower molecular weight than the substrate.

【0054】開口性熱可塑性樹脂(D2)は、基材の熱
可塑性樹脂(A)、(B)と適度な親和性を有し、混練
り分散延伸により一定の粒径、形状に分散し、冷却固化
後安定であり、結晶性であって、基材との界面をより剥
離し易くすることができるものである。
The openable thermoplastic resin (D2) has an appropriate affinity for the thermoplastic resins (A) and (B) of the base material, and is dispersed into a certain particle size and shape by kneading, dispersing and stretching. It is stable after cooling and solidification, is crystalline, and can make the interface with the base material easier to peel off.

【0055】一方、基材の熱可塑性樹脂との適度な親和
性がない、即ち、熱可塑性樹脂(D1)ないし熱可塑性
樹脂(D2)と基材の熱可塑性樹脂とのSP値の差が3
を超える場合、混練しても分散状態が一定にならず、結
果として強度も低下し易く、均一な微多孔フィルムが得
られない。また、SP値の差が3以内で、かつ該基材樹
脂と比較して比較的軟質(該弾性率140%未満)で結
晶性が低い場合は、以後の延伸工程で均一に開孔しない
場合がある。
On the other hand, there is no appropriate affinity with the thermoplastic resin of the base material, that is, the difference in SP value between the thermoplastic resin (D1) or the thermoplastic resin (D2) and the thermoplastic resin of the base material is 3
When it exceeds, the dispersion state is not constant even when kneaded, and as a result, the strength is liable to decrease, and a uniform microporous film cannot be obtained. In addition, when the difference in SP value is within 3 and is relatively soft (less than the elastic modulus of 140%) and low in crystallinity as compared with the base resin, the hole is not uniformly opened in the subsequent stretching step. There is.

【0056】延伸開口性物質(D3)は基材樹脂とのS
P値の差が3以上でかつM層(S層)を溶融押出しする
温度で少なくとも液状(例えば、200℃で1000ポ
イズ以下:B型粘度計で測定)であり、一般に平均分子
量5000以下、好ましくは同分子量3000以下の有
機物(オリゴマーや低分子量重合体も含む)から一種選
ばれたものである。
The stretch openable substance (D3) is formed of S with the base resin.
P value difference is 3 or more and at least liquid at the temperature at which the M layer (S layer) is melt-extruded (for example, 1000 poise or less at 200 ° C .: measured with a B-type viscometer), and generally has an average molecular weight of 5000 or less, preferably Is selected from organic substances having the same molecular weight of 3000 or less (including oligomers and low molecular weight polymers).

【0057】これらの例としては、極性の少ないシリコ
ーン系オイル及びそれらの変性物、フッ素系オイル及び
それらの変性物等がある。又逆に極性の高い親水性の高
いもの等も用いることができる。要するに選定した基材
樹脂とSP値が離れたものであればよい。
Examples of these are silicone oils having low polarity and modified products thereof, and fluorine oils and modified products thereof. Conversely, those having high polarity and high hydrophilicity can also be used. In short, it is only necessary that the selected base resin and the SP value are apart from each other.

【0058】延伸開口性物質(D4)は基材樹脂とのS
P値の差が3以内で且つM層(S層)を溶融押出しする
温度で少なくとも液状(例えば、200℃で1000ポ
イズ以下:B型粘度計で測定)であり、一般に平均分子
量5000以下、好ましくは同分子量3000以下の有
機物(オリゴマーや低分子量重合体も含むものとする)
から選ばれたものである。
The stretch-openable substance (D4) is made of S
P value difference is within 3 and at least liquid at the temperature at which the M layer (S layer) is melt-extruded (for example, 1000 poise or less at 200 ° C .: measured with a B-type viscometer), and generally has an average molecular weight of 5,000 or less, preferably Is an organic substance having the same molecular weight of 3000 or less (including oligomers and low molecular weight polymers)
It was chosen from

【0059】これらの例としては、界面活性剤類、可塑
剤類、溶剤類、滑材類、ワックス類、又は一般に相分離
法により微多孔フィルムを製造するときに使用されるも
のが挙げられる。例えば、公知のフタル酸ジオクチル
(SP値8.7)、セバシン酸ジオクチル(SP値7.
9)、フタル酸ジシクロヘキシル(SP値8.6)、ト
リフェニルホスフェート(SP値8.6)をはじめとす
る脂肪族/芳香族のジカルボン酸やリン酸のエステル
類、流動パラフィンやパラフィンワックスをはじめとす
るパラフィンオイル、ミネラルオイル(パラフイン系、
飽和シクロナフテン系を含む)、液状ポリブテンや液状
ポリブタジエンをはじめとする液状ゴム等の常温で液体
である有機液状体、常温で固体であるパラフィンワック
ス、高級アルコール、ロジン類、テルペン樹脂及びその
水添物、石油樹脂及びその水添物等が挙げられる。これ
らを用いるときは得られる基材熱可塑性樹脂と開口性物
質(D4)とのミクロな相分離状態が変化し、微多孔フ
ィルムの孔径が変化する場合があるので選択して用い
る。
Examples of these include surfactants, plasticizers, solvents, lubricants, waxes, and those generally used when producing microporous films by a phase separation method. For example, known dioctyl phthalate (SP value: 8.7), dioctyl sebacate (SP value: 7.
9), esters of aliphatic / aromatic dicarboxylic acids and phosphoric acids such as dicyclohexyl phthalate (SP value 8.6), triphenyl phosphate (SP value 8.6), liquid paraffin and paraffin wax. Paraffin oil, mineral oil (paraffin type,
Organic liquids that are liquid at room temperature, such as liquid rubbers, including saturated cyclonaphthenes, liquid polybutene and liquid polybutadiene, paraffin wax that is solid at room temperature, higher alcohols, rosins, terpene resins and their hydrogenation Products, petroleum resins and hydrogenated products thereof. When these are used, the microphase separation state between the obtained base thermoplastic resin and the opening substance (D4) changes, and the pore diameter of the microporous film may change, so that they are selected and used.

【0060】また、該物質(D4)の各成分と基材をな
す熱可塑性樹脂とのSP値の差は、開口性熱可塑性樹脂
(D1)、(D2)の場合と同様、3以内であることが
好ましく、この範囲を超えると混練を十分に行っても均
一に分散せず、分離凝集し、結果として均一な微多孔フ
ィルムが得られない場合がある。
The difference in SP value between each component of the substance (D4) and the thermoplastic resin forming the base material is within 3 as in the case of the openable thermoplastic resins (D1) and (D2). If it exceeds this range, even if the kneading is sufficiently performed, the fine particles are not uniformly dispersed, separated and aggregated, and as a result, a uniform microporous film may not be obtained.

【0061】延伸開口性物質(D5)は、粒子径(3次
元投影法により測定された平均粒子径)が10μm以下
である有機系または無機系の充填剤である。これらの充
填剤(D5)としては、一般にゴムまたは樹脂に使用さ
れる有機系または無機系の充填剤が用いられる。
The stretch opening material (D5) is an organic or inorganic filler having a particle size (average particle size measured by a three-dimensional projection method) of 10 μm or less. As these fillers (D5), organic or inorganic fillers generally used for rubber or resin are used.

【0062】例えば有機系の充填剤としては、セルロー
ス系粉末、スチレン系、アクリル系、シリコーン系、シ
リコーンーアクリル系、その他の樹脂系架橋微粒子等が
挙げられる。また、無機系の充填剤としては、例えば、
炭酸カルシウム、クレー、カオリン、シリカ(含球
状)、珪藻土、炭酸マグネシウム、炭酸バリウム、酸化
アルミニウム、酸化亜鉛、水酸化マグネシウム、酸化マ
グネシウム、酸化チタン、アルミナ、ガラス粉、ゼオラ
イト、カーボン、活性炭微粒子、黒鉛系微粒子等が使用
される。これらは、要求される最終孔径と延伸条件によ
り単独または混合して適宜使用される。
For example, examples of the organic filler include cellulose-based powder, styrene-based, acrylic-based, silicone-based, silicone-acryl-based, and other resin-based crosslinked fine particles. Further, as the inorganic filler, for example,
Calcium carbonate, clay, kaolin, silica (including spherical), diatomaceous earth, magnesium carbonate, barium carbonate, aluminum oxide, zinc oxide, magnesium hydroxide, magnesium oxide, titanium oxide, alumina, glass powder, zeolite, carbon, activated carbon fine particles, graphite System fine particles and the like are used. These may be used singly or in combination depending on the required final pore diameter and stretching conditions.

【0063】又上記充填剤(D5)を用いる場合、熱可
塑性樹脂(A)に対する充填剤の分散性を改良する目的
で、公知の界面活性剤、可塑剤、滑剤、シリコーン系分
散助剤等の助剤を用いることができる。
When the above filler (D5) is used, in order to improve the dispersibility of the filler in the thermoplastic resin (A), known fillers such as a surfactant, a plasticizer, a lubricant, and a silicone-based dispersing agent may be used. Auxiliaries can be used.

【0064】なお、基材の熱可塑性樹脂に対して物質
(D5)を複数用いてもかまわない。さらに、製造時の
延伸性、得られる微多孔フィルムの引張強度、引裂強度
や孔径分布等を向上させる目的で、全体に対し、好まし
くは0.05〜30体積%の範囲内で、結晶核剤、相溶
化剤、軟質樹脂、エラストマー等の公知の改質材、添加
剤、加工助剤等を用いても差し支えない。
Incidentally, a plurality of substances (D5) may be used for the thermoplastic resin as the base material. Further, for the purpose of improving the stretchability at the time of production, the tensile strength, the tear strength, the pore size distribution, and the like of the obtained microporous film, the crystal nucleating agent is preferably added in the range of 0.05 to 30% by volume based on the whole. Known modifiers such as compatibilizers, soft resins, and elastomers, additives, and processing aids may be used.

【0065】本発明に用いられる基材となる該熱可塑性
樹脂と、上記の添加剤からなる前駆層(M層)は、得ら
れる微多孔フィルムの強度、耐熱性及び厚み方向の孔径
分布等の性能要求により、機能層として少なくとも二層
以上有し、各層が同種の場合は混合組成の量比が異なる
組成、又は異種の樹脂組成物からなる層で構成されてい
る異なる孔構造の微多孔状態を有する多層構造をとるこ
とも好ましい。
The thermoplastic resin serving as the base material used in the present invention and the precursor layer (M layer) composed of the above-mentioned additives are used to form the microporous film to be obtained with strength, heat resistance, and pore size distribution in the thickness direction. Depending on performance requirements, it has at least two or more layers as functional layers, and when each layer is of the same type, the composition is different in the mixing ratio of the mixed composition, or the microporous state of different pore structures composed of layers composed of different resin compositions It is also preferable to take a multilayer structure having

【0066】その複層の機能層(M層)の内訳は、機能
層MAの基材樹脂(A)の内でも異なった共重合比、分
子量のもの同士からなる多層であり、同様に必要により
追加される機能層MBも基材樹脂(B)同士、又は両者
(A,B)の混合したものである。
The breakdown of the multi-layered functional layer (M layer) is a multilayer composed of those having different copolymerization ratios and molecular weights among the base resin (A) of the functional layer MA. The functional layer MB to be added is also a mixture of the base resins (B) or a mixture of both (A, B).

【0067】本発明で用いられる補助層(S層)を構成
する熱可塑性樹脂(E)としては、M層の成膜性、延伸
性等を向上するものであれば、特に限定されないが、後
にM層とS層とが容易に剥離できるよう、該S層に隣接
するM層を構成する熱可塑性樹脂(A)との溶解度パラ
メータの差が0.3以上であることが好ましい。
The thermoplastic resin (E) constituting the auxiliary layer (S layer) used in the present invention is not particularly limited as long as it improves the film formability and stretchability of the M layer. In order that the M layer and the S layer can be easily separated, the difference in solubility parameter between the thermoplastic resin (A) constituting the M layer adjacent to the S layer is preferably 0.3 or more.

【0068】具体的には、隣接するM層をなす樹脂の種
類と同一でないものであって、ポリオレフィン系樹脂、
ポリアミド系樹脂、ポリエステル系樹脂のいずれかを主
成分とするのが好ましい。このうちポリオレフィン系樹
脂としては、低密度ポリエチレン系樹脂、ポリプロピレ
ン系樹脂、ポリブテンー1系樹脂、アイオノマー系樹脂
等を主体(50vol%以上)とするものが用いられ
る。
Specifically, it is not the same as the type of the resin forming the adjacent M layer, and is a polyolefin resin,
It is preferable to use either a polyamide resin or a polyester resin as a main component. Among them, as the polyolefin-based resin, a resin mainly composed of a low-density polyethylene-based resin, a polypropylene-based resin, a polybutene-1-based resin, an ionomer-based resin, or the like (50 vol% or more) is used.

【0069】好ましくは、ポリブテン−1を主体とした
結晶性樹脂、ポリプテン−1系樹脂に石油系樹脂を3〜
30重量%混合した組成物、及び又はこれにポリプロピ
レン系樹脂を全組成中の割合で5〜90重量%混合した
3元組成物、又はポリプロピレン系樹脂に石油系樹脂を
5〜30重量%混合した組成物、共重合ポリエステル系
樹脂、或いは、次に示す(E1)、(E2)及び(E
3)からなる樹脂組成物、(E1)及び(E2)からな
る樹脂組成物、または(E2)及び(E3)からなる樹
脂組成物より選択される混合組成物である。
Preferably, a crystalline resin mainly composed of polybutene-1 and a petroleum resin are added to
30% by weight of a composition, and / or a ternary composition in which a polypropylene resin is mixed in an amount of 5 to 90% by weight of the total composition, or 5 to 30% by weight of a polypropylene resin and a petroleum resin. The composition, the copolymerized polyester resin, or the following (E1), (E2) and (E
It is a resin composition composed of the resin composition composed of (E1) and (E2), or a resin composition composed of (E2) and (E3).

【0070】<成分(E1)>成分(E1)としては、
主として延伸性の観点から、硬質、軟質の中間程度の比
較的低結晶性(DSC法により35〜75%、好ましく
は、40〜70%の結晶性)の重合体が選ばれる。この
ような重合体としては、例えば、エチレン系共重合体グ
ループの低密度ポリエチレン、好ましくは直鎖低密度ポ
リエチレン(LLDPE)、超低密度ポリエチレン(V
LDPE)等のα−オレフィンが15モル%以下でかつ
VSPが80℃以上のエチレンとC3〜C12のα−オ
レフィンとの共重合体等及びメタロセン系を含むシング
ルサイト系触媒等の公知の新触媒で重合されるものが挙
げられる。
<Component (E1)> As the component (E1),
Mainly from the viewpoint of stretchability, a polymer having a relatively low crystallinity (35 to 75%, preferably 40 to 70% crystallinity by a DSC method) of an intermediate level between hard and soft is selected. Examples of such a polymer include low-density polyethylene of the ethylene copolymer group, preferably linear low-density polyethylene (LLDPE), and ultra-low-density polyethylene (V
LDPE) and other known new catalysts such as copolymers of ethylene and C3 to C12 α-olefins having an α-olefin content of 15 mol% or less and a VSP of 80 ° C. or more, and single-site catalysts including metallocenes. And the like.

【0071】これらグループの低密度ポリエチレンの
内、好ましい例である直鎖低密度ポリエチレン(LLD
PE)は、中圧法、低圧法、または場合によっては高圧
法で得られたエチレンに、プロピレン、ブテン、ペンテ
ン、ヘキセン、へプテン、オクテン、4−メチル−1−
ペンテン等の炭素数C3〜C12のα−オレフィン類か
ら選ばれる少なくとも1種のオレフィンを10モル%以
下、好ましくは1.5〜9モル%程度共重合したもので
ある。
Of these low-density polyethylenes, linear low-density polyethylene (LLD) which is a preferred example
PE) is obtained by adding propylene, butene, pentene, hexene, heptene, octene, 4-methyl-1- to ethylene obtained by the medium pressure method, the low pressure method, or, in some cases, the high pressure method.
At least one olefin selected from C3-C12 α-olefins such as pentene is copolymerized in an amount of 10 mol% or less, preferably 1.5 to 9 mol%.

【0072】これ等樹脂のMIは、延伸性、他に混合す
る成分との分散性、他層との層間乱れ防止の観点から、
通常、0.2〜15、好ましくは0.2〜10である。
また、これら樹脂のVSPは80℃以上、好ましくは、
85℃以上である。好ましいコモノマ一のα−オレフィ
ンの炭素数は、フイルム強度(補助層の延伸補助能力増
強の為等)の観点からC5〜C12である。
The MI of these resins is selected from the viewpoints of stretchability, dispersibility with other components to be mixed, and prevention of disorder between other layers.
Usually, it is 0.2 to 15, preferably 0.2 to 10.
The VSP of these resins is 80 ° C. or higher, preferably
85 ° C or higher. The carbon number of the preferred α-olefin of the comonomer is C5 to C12 from the viewpoint of the film strength (for enhancing the drawing assisting ability of the auxiliary layer).

【0073】極性官能基を有するグループとしては、ビ
ニルエステル単量体、脂肪族不飽和モノカルボン酸、該
モノカルボン酸アルキルエステル誘導体から選ばれる少
なくとも1種の単量体とエチレンとの共重合体、エチレ
ン99〜82モル%とスチレン1〜18モル%のエチレ
ン−スチレン系共重合体、またはこれらの誘導体からか
ら選ばれる少なくとも1種の重合体が挙げられる。
The group having a polar functional group includes a copolymer of ethylene and at least one monomer selected from vinyl ester monomers, aliphatic unsaturated monocarboxylic acids, and alkyl monocarboxylate derivatives. And at least one polymer selected from ethylene-styrene copolymers of 99 to 82 mol% of ethylene and 1 to 18 mol% of styrene, or derivatives thereof.

【0074】さらに、好ましくは、エチレン−酢酸ビニ
ル共重合体(EVA)、エチレン−アクリル酸エチル共
重合体(EEA)、エチレン−メタアクリル酸メチル共
重合体(EMMA)、エチレン−アクリル酸共重合体
(EAA)、エチレン−メタアクリル酸共重合体(EM
A)が挙げられる。また、これらには、エチレンと不飽
和モノカルボン酸アルキルエステルのアルコール成分の
アルキル基の炭素数がC2〜C12のもの、好ましくは
C2〜C8のもの(例えば、プロピル、ブチル、へキシ
ル、オクチル等)、または上記いずれかの少なくとも2
種の単量体より選ばれる多元共重合体、或いは、これら
の少なくとも一部がケン化されたカルボキシル基を有
し、その少なくとも一部分がアイオノマー化された重合
体(アイオノマー樹脂)も含まれる。
More preferably, ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-acrylic acid copolymer (EMA), ethylene-methacrylic acid copolymer (EM
A). Further, these include those in which the alkyl group of the alcohol component of ethylene and the unsaturated monocarboxylic acid alkyl ester has C2 to C12, preferably C2 to C8 (for example, propyl, butyl, hexyl, octyl, etc.). ) Or at least two of the above
Also included are multi-component copolymers selected from species of monomers, or polymers in which at least a part thereof has a saponified carboxyl group and at least a part of which is ionized (ionomer resin).

【0075】これら共重合体のエチレン以外の単量体の
量は、好ましくは1.5〜12モル%で、より好ましく
は2〜10モル%である。この量が1.5モル%以上の
場合は、柔軟性、各強度特性等に優れてくる。また、こ
の量が12モル%を超えると、押出し加工性、他成分と
の混合性等に劣ってきたり、表層(最外層)として使用
した場合、面同士がブロッキングして取扱いに問題がで
てくる。
The amount of the monomers other than ethylene in these copolymers is preferably 1.5 to 12 mol%, more preferably 2 to 10 mol%. When this amount is 1.5 mol% or more, flexibility, strength characteristics and the like are excellent. On the other hand, if the amount exceeds 12 mol%, the extrusion processability, the mixing property with other components, etc. are deteriorated, and when used as a surface layer (outermost layer), the surfaces are blocked from each other, causing a problem in handling. come.

【0076】これら樹脂のMIは、通常、0.2〜10
で、好ましくは0.3〜5である。MIが0.2未満で
は原料の混合性、押出し性に問題を生じ、また、MIが
10を超えると多層押出時にM層との層間の乱れを引き
起こしやすく、S層としての強度が不足する場合があ
り、例えば、延伸時に破れやすくなるため好ましくな
い。
The MI of these resins is usually 0.2 to 10
And preferably 0.3 to 5. When the MI is less than 0.2, there is a problem in the mixing properties and extrudability of the raw materials, and when the MI exceeds 10, turbulence between the layers with the M layer is liable to be caused during multilayer extrusion, and the strength as the S layer is insufficient. For example, it is not preferable because it is easily broken at the time of stretching.

【0077】<成分(E2)>成分(E2)はVSPが
80℃以下の軟質、熱可塑性エラストマーであって、α
−オレフィン系エラストマー、すなわち、異なったα−
オレフィン2種以上の共重合体(炭素数C3〜C1
2)、或いはエチレンと炭素数C3〜C12のα−オレ
フィン共重合体、ブチルゴム系エラストマー、スチレン
−共役2重結合ジエン誘導体ブロック共重合エラストマ
ー、該エラストマーの共役2重結合または環由来の部分
の少なくとも1部を水素添加した共重合体、α−オレフ
ィンが20〜80モル%とスチレン80〜20モル%の
共重合体(含、芳香族環の部分の少なくとも1部を水添
したものも)、熱可塑性ポリウレタン等から選ばれる少
なくとも1種の重合体が好ましい。又、これら樹脂のグ
ラフト変性樹脂を用いてもよい。
<Component (E2)> The component (E2) is a soft, thermoplastic elastomer having a VSP of 80 ° C. or less, and α
-Olefinic elastomers, i.e. different α-
Copolymer of two or more olefins (C3 to C1)
2) or ethylene and an α-olefin copolymer having C3 to C12, a butyl rubber-based elastomer, a styrene-conjugated double bond diene derivative block copolymer elastomer, and at least a portion derived from a conjugated double bond or a ring of the elastomer. A copolymer obtained by hydrogenating 1 part, a copolymer containing 20 to 80 mol% of an α-olefin and 80 to 20 mol% of styrene (including at least one part of an aromatic ring portion hydrogenated), At least one polymer selected from thermoplastic polyurethane and the like is preferred. Further, a graft-modified resin of these resins may be used.

【0078】これらのα−オレフィンエラストマー共重
合体の密度は、0.860〜0.905g/cm3であ
り、好ましくは、0.865〜0.900g/cm3
る。これらのα−オレフィンエラストマー共重合体のV
SPは75℃以下が好ましく、より好ましくは、70℃
以下、更に好ましくは、60℃以下である。これらのα
−オレフィンエラストマー共重合体は、一般にゴム状の
領域で実質的に非晶質のものから結晶化度30%程度以
下のものを含むが、結晶化度は20%以下が好ましく、
よリ好ましくは、15%以下、更に好ましくは、10%
以下の低度の部分結晶性のものである。また、その結晶
の融点は、DSC法(10℃/分の昇温スピード)によ
る測定で、120℃以下のものが通常好ましく、より好
ましくは、110℃以下、更に好ましくは、100℃以
下である。
The density of these α-olefin elastomer copolymers is 0.860 to 0.905 g / cm 3 , preferably 0.865 to 0.900 g / cm 3 . V of these α-olefin elastomer copolymers
SP is preferably 75 ° C. or less, more preferably 70 ° C.
Below, more preferably, it is 60 degrees C or less. These α
-The olefin elastomer copolymer generally includes those having a degree of crystallinity of about 30% or less from a substantially amorphous substance in a rubbery region, and the degree of crystallinity is preferably 20% or less,
More preferably, 15% or less, more preferably, 10%
It is of the following low degree of partial crystallinity. The melting point of the crystal is usually preferably 120 ° C. or lower, more preferably 110 ° C. or lower, and still more preferably 100 ° C. or lower, as measured by a DSC method (heating rate at 10 ° C./min). .

【0079】α−オレフィンエラストマー共重合体の中
で好ましいのは、エチレンとプロピレンまたはブテン−
1、プロピレンと、ブテン−1または4メチルペンテン
−1または両者の混合物との共重合体で、例えば、シン
グルサイト系もしくはメタロセン系触媒等で重合したラ
ンダム及びブロック(共)重合体、又はバナジウム系化
合物と有機アルミニウム化合物系の触媒で重合したラン
ダム共重合体等である。そして、MI(ASTM法D1
238のE条件に準じて測定:以後単にMIと言う)は
0.1〜10であり、好ましくは0.2〜6である。
Preferred among the α-olefin elastomer copolymers are ethylene and propylene or butene-
1, a copolymer of propylene with butene-1 or 4-methylpentene-1 or a mixture thereof, for example, a random or block (co) polymer polymerized with a single-site or metallocene catalyst, or a vanadium-based polymer And a random copolymer polymerized with a compound and an organoaluminum compound-based catalyst. Then, MI (ASTM method D1)
(Measured according to the E condition of 238: hereinafter simply referred to as MI) is 0.1 to 10, preferably 0.2 to 6.

【0080】<成分(E3)>成分(E3)は、比較的
硬質[成分(E1)、(E2)よりも硬質]で比較的結
晶化度の高い成分よりなり、ポリプロピレン、(高分子
量)ポリブテン−1、高密度ポリエチレン、ポリ4−メ
チルペンテン−1、(以後それぞれ、IPP、PB−
1、HDPE、PMTと略する)等の単独重合体、又は
自由な共重合体が挙げられる、これらは、単体で使用す
る時はそれ自体で、混合して使用する場合は、成分(E
3)全体としてのVSPが80℃以上、好ましくは90
℃以上、より好ましくは100℃以上の比較的硬質の重
合体よりなることが好ましい。
<Component (E3)> The component (E3) is a component that is relatively hard [harder than the components (E1) and (E2)] and has a relatively high crystallinity, and is composed of polypropylene, (high molecular weight) polybutene. -1, high density polyethylene, poly 4-methylpentene-1, (hereinafter IPP, PB-
1, abbreviated as HDPE, PMT) or a free copolymer. These can be used as such when used alone or as a component (E) when used as a mixture.
3) The overall VSP is 80 ° C. or higher, preferably 90 ° C.
It is preferably made of a relatively hard polymer having a temperature of 100 ° C or higher, more preferably 100 ° C or higher.

【0081】PPのメルトフローレート[ASTM D
1238(L条件)で測定。以後MFRと略する]は通
常0.1〜30であり、好ましくは、0.5〜20であ
り、より好ましくは、0.7〜15である。MFRが上
記未満では、加工時における混合性(均一性)等に問題
が生じ、上記を超えて多量に用いる場合には、押出安定
性に問題を生じる。
Melt flow rate of PP [ASTM D
Measured at 1238 (L condition). Hereinafter abbreviated as MFR] is usually 0.1 to 30, preferably 0.5 to 20, and more preferably 0.7 to 15. When the MFR is less than the above, there is a problem in mixing properties (uniformity) during processing, and when the amount is larger than the above, there is a problem in extrusion stability.

【0082】PB−1としてはブテン1の含有量が90
モル%以上の結晶性で、他のモノマー(例えば、エチレ
ン、プロピレン、C5以上のもの)との共重合体も含む
ことができる。MIは0.1〜10程度のものが好まし
く、水添飽和炭化水素樹脂を2〜20重量%混合し用い
てもかまわない。
As PB-1, the content of butene 1 is 90
A copolymer with another monomer (for example, ethylene, propylene, C5 or more) having a crystallinity of mol% or more can be included. The MI is preferably about 0.1 to 10 and a hydrogenated saturated hydrocarbon resin may be mixed and used in an amount of 2 to 20% by weight.

【0083】また、IPPとPB−1のどちらか、又は
両者の混合物に水添飽和炭化水素系樹脂(好ましくは、
その構成単位の一成分に環状部分を少なくとも一部含む
同樹脂)を混合した組成物を用いることが好ましい。な
お、上記の他に適度の相溶性、分散性がある硬質のポリ
マーであれば用いることができる。
Further, one of IPP and PB-1, or a mixture of both, is added to a hydrogenated saturated hydrocarbon resin (preferably,
It is preferable to use a composition in which one component of the constituent unit contains the same resin containing at least a part of a cyclic portion). In addition, other than the above, any hard polymer having appropriate compatibility and dispersibility can be used.

【0084】PMTとしては、メルトフローレート(M
FR)(ASTM法D1238に準じて、260℃で荷
重が5kgで測定された値)が1〜200程度のもので
ある、4−メチルペンテン−1含量85モル%以上の、
結晶性で、少なくとも1種の他のα−オレフィンモノマ
ーとの共重合体を含むものが好ましい。更に、これらの
重合体及び共重合体は、相互に自由な割合で混合して用
いることもできる。また、前述のIPP、PB−1、ま
たは他の公知の樹脂を50重量%を超えない範囲で混合
して用いても良い。この量は、40重量%を超えない量
であることが好ましく、更に30重量%を超えない量で
あることがより好ましい。
As the PMT, the melt flow rate (M
FR) (a value measured at 260 ° C. and a load of 5 kg according to ASTM method D1238) of about 1 to 200, and a 4-methylpentene-1 content of 85 mol% or more,
Those which are crystalline and contain a copolymer with at least one other α-olefin monomer are preferred. Further, these polymers and copolymers can be used by mixing with each other at a free ratio. Further, the above-mentioned IPP, PB-1 or other known resins may be mixed and used within a range not exceeding 50% by weight. This amount is preferably not more than 40% by weight, and more preferably not more than 30% by weight.

【0085】本発明の通流体性微多孔性フィルムの製造
時に用いる補助層(S層)における、上記の各成分の好
ましい組合せとしては、(E1)と(E2)、(E
2)と(E3)及び、(E1)と(E2)と(E3)
を主体とする混合組成が挙げられる。
Preferred combinations of the above components in the auxiliary layer (S layer) used in producing the fluid-permeable microporous film of the present invention are (E1), (E2), and (E1).
2) and (E3) and (E1), (E2) and (E3)
And a mixed composition mainly composed of

【0086】各成分の混合量の好ましい範囲は以下の通
りである。 0.05≦E2/(E1+E2)≦0.90、 0.30≦E2/(E2+E3)≦0.90、 0.05≦E2/(E1+E2)≦0.90でかつ
0.05≦E3/(E1+E2)≦2.0
The preferred range of the mixing amount of each component is as follows. 0.05 ≦ E2 / (E1 + E2) ≦ 0.90, 0.30 ≦ E2 / (E2 + E3) ≦ 0.90, 0.05 ≦ E2 / (E1 + E2) ≦ 0.90 and 0.05 ≦ E3 / ( E1 + E2) ≦ 2.0

【0087】軟質成分(E2)の混合量が少ない場合
は、各、、の場合とも混合物としての、相乗効果
を発揮し難くなり、例えば、S層による延伸性向上効果
が低下する。また(E2)の混合量が多すぎても、フイ
ルムが軟質化しすぎ、M層に十分に延伸配向を付与でき
ない。成分(E2)を好ましい重量の範囲から選択する
ことにより、、、の場合とも混合物としての相乗
効果が大きくなり、諸特性が向上し、例えばフイルムの
強度、延伸性等が段階を追って向上する。
When the mixing amount of the soft component (E2) is small, the synergistic effect of the mixture is hardly exhibited in each case, and for example, the effect of improving the stretchability by the S layer is reduced. Also, if the mixing amount of (E2) is too large, the film becomes too soft, and the stretch orientation cannot be sufficiently imparted to the M layer. By selecting the component (E2) from a preferable weight range, the synergistic effect as a mixture is increased even in the case of (1), and various properties are improved, and for example, the film strength, stretchability, and the like are improved step by step.

【0088】以上の各混合組成組合せのうち、特に好ま
しい組合せは、の(E1)と(E2)と(E3)を主
体とするものである。この場合、成分(E3)は、混合
組成の押出し・延伸性を他の成分と相乗的に改良する効
果が大きい。3成分の内、成分(E1)と成分(E3)
のみの混合の場合は、通常混合性、相溶性があまリ良く
なく、前述の相乗効果も期待し難いが、成分(E2)を
加えると、それらの欠点を著しく改善し、自身層の冷間
延伸性、他層への同延伸補助効果をも良くする場合が多
い。
Among the above-mentioned combinations of mixed compositions, particularly preferred combinations are mainly composed of (E1), (E2) and (E3). In this case, the component (E3) has a large effect of synergistically improving the extrudability and stretchability of the mixed composition with other components. Of the three components, component (E1) and component (E3)
In the case of only mixing, the mixing and compatibility are usually not satisfactory, and it is difficult to expect the above-mentioned synergistic effect. However, when the component (E2) is added, those drawbacks are remarkably improved, and In many cases, the stretchability and the effect of assisting the stretching to other layers are also improved.

【0089】また、S層としては、上記〜の混合重
合体が少なくとも50重量%、好ましくは80重量%以
上になるよう諸特性を害しない範囲でさらに他の公知の
樹脂を加えた層として用いても良い。このS層は、それ
自体のドローダウン性及び延伸性がよいばかりでなく、
多層にしたときに発揮する、M層に格段の(M層単独で
は不均一化、破断してしまうような)高ドローダウン
性、(タテ、横方向に厚みムラのない)高均一性を発揮
し、更に原反パンク、延伸パンクをも防ぎ、M層の延伸
性及び延伸による開孔性を大幅に改良する効果がある。
The S layer is a layer to which other known resins are added so that the characteristics of the mixed polymer are at least 50% by weight, preferably 80% by weight or more without impairing various properties. May be. This S layer has not only good drawdown properties and stretchability itself, but also
Exhibits a remarkably high drawdown property (such as non-uniformity and breakage in the M layer alone) and high uniformity (no vertical or horizontal thickness unevenness) in the M layer, which is exhibited when a multilayer is formed. In addition, the raw material puncture and the stretch puncture are prevented, and the stretchability of the M layer and the porosity by stretching are greatly improved.

【0090】また、延伸中に該前駆層にネッキングが発
生するのを防ぐ効果もある。さらに、共延伸中は適度な
層間密着力があり、両層を構成する樹脂の差による延伸
歪(それぞれ単層では延伸条件が異なるために発生する
歪)を生じさせることなく、逆に全体として延伸最適条
件が広がり、全体としてより安定化する相乗効果を発揮
する。その結果、全層としての延伸特性が良くなり、よ
り少ない開口材の使用量でよく、該開口材の特に小さい
分散状態でも有効に開口し通流体性化させることが出来
る上、得られる微多孔フィルムの均一性、孔径制御及び
その分布、空孔率等がよくなる。そして、特に最終的に
微多孔フィルムとして使用するM層の延伸により強度が
著しく改良される。
Further, there is an effect of preventing necking from occurring in the precursor layer during stretching. Furthermore, during co-stretching, there is an appropriate interlayer adhesion force, and the stretching as a whole due to the difference in the resin constituting both layers (strain generated due to different stretching conditions in a single layer) does not occur. The optimum stretching conditions are widened, and a synergistic effect is achieved that is more stable as a whole. As a result, the stretching characteristics of the entire layer are improved, and the amount of the opening material used may be smaller, and even if the opening material is particularly small in a dispersed state, the opening material can be effectively opened and the fluid permeability can be improved. The uniformity of the film, the control of the pore size and its distribution, the porosity, etc. are improved. Particularly, the strength is remarkably improved by stretching the M layer finally used as the microporous film.

【0091】M層単独で延伸する場合は、不均一な延伸
で面積延伸倍率で2倍までしかいかないような条件下で
も、S層と積層することによりより高倍率まで均一延伸
が可能となり、且つM層単独では全く延伸出来ない(例
えば、破れて)低温条件(10〜30℃)でも延伸可能
(特に、同時2軸延伸)になる。又その相乗効果として
驚くべきことには、開口材の量を通常の単層延伸の場合
では全く開口しない少ない量(例えば、数VOL%)に
しても、又開口し難い種類の添加材であっても、微少で
均一な通流体性を発揮出来る開口が得られる。そのため
従来達成されていなかった2軸の冷間延伸領域で通流体
性微多孔フイルムを得ることが可能となり、又高配向に
より強度を保ったまま、孔径をコントロールして、空孔
率等を増大させることも出来るようになった。
In the case of stretching the M layer alone, even under the condition that the area stretching ratio is only up to 2 times in the non-uniform stretching, it is possible to perform uniform stretching to a higher ratio by laminating with the S layer, In addition, stretching can be performed even at low temperature conditions (10 to 30 ° C.) (particularly, simultaneous biaxial stretching), which cannot be stretched at all (for example, breaks) by the M layer alone. Surprisingly, as a synergistic effect, even if the amount of the opening material is set to a small amount (for example, several VOL%) that does not open at all in the case of ordinary single-layer stretching, it is difficult to open the material. However, an opening capable of exhibiting minute and uniform fluid permeability can be obtained. Therefore, it is possible to obtain a fluid-permeable microporous film in the biaxial cold stretching region, which has not been achieved conventionally, and to increase the porosity etc. by controlling the pore size while maintaining the strength by high orientation. Now you can do it.

【0092】M層との剥離性または同時に延伸中の密着
性を高めるために、S層を構成する熱可塑性樹脂(E)
には、M層との界面までブリード可能な添加剤を含有さ
せることが好ましい。このような添加剤の例としては、
非イオン系の界面活性剤、例えば、脂肪酸と多価アルコ
ールとのエステル、ポリオキシエチレンアルキルエーテ
ル、または、高級アルコール、各脂肪酸アマイド類、ワ
ックス類、フッ素系・シリコン系の添加剤、その他特殊
な機能を有する個々の目的に合致したものが挙げられ
る。
In order to enhance the releasability from the M layer or the adhesion during stretching at the same time, the thermoplastic resin (E) constituting the S layer
Preferably contains an additive capable of bleeding up to the interface with the M layer. Examples of such additives include:
Nonionic surfactants, for example, esters of fatty acids and polyhydric alcohols, polyoxyethylene alkyl ethers, or higher alcohols, fatty acid amides, waxes, fluorine-based / silicon-based additives, and other special Those which have a function and fit individual purposes can be mentioned.

【0093】これらのなかで好ましいのは、少なくとも
50℃で液状の成分が主体のものである。さらに好まし
くは、M層とS層を共押出して延伸した後、すばやくM
層との界面にブリードするものであり、両層の間に適度
な密着性を保ちつつ、目的の共延伸及び両層の剥離が容
易に出来、又同時に静電気の発生防止及び機能層の保護
対策も行うことができる。また、これにより、エージン
グすることなく、オンラインでも高速で破損することな
く、厚肉のフイルムはもとより極薄状(例えば、1〜1
0μm)の該微多孔フィルムでも剥離して巻き取ること
が可能となる。
Among these, those mainly composed of components that are liquid at least at 50 ° C. are preferred. More preferably, after the M layer and the S layer are co-extruded and stretched,
It bleeds at the interface with the layer, and it can easily co-stretch and peel off the two layers while maintaining appropriate adhesion between the two layers. At the same time, it prevents static electricity generation and protects the functional layer. Can also be done. In addition, this makes it possible to prevent aging, breakage at high speed even on-line, and not only a thick film but also an extremely thin film (for example, 1 to 1).
(0 μm) can be peeled and wound up.

【0094】なお、ブリード可能な添加剤を場合によ
り、M層に或いは両層に適用してもよい。これら添加剤
の添加量は通常、0.2〜5重量%であることが好まし
く、0.2重量%未満では、剥離が容易になる効果等が
十分に得られず、また、この量が5重量%を超えると両
層の間に適度な密着性が保たれず、延伸中に層間がずれ
て剥離する。
The bleedable additive may be applied to the M layer or to both layers depending on the case. Usually, the amount of these additives is preferably from 0.2 to 5% by weight. If the amount is less than 0.2% by weight, the effect of facilitating peeling cannot be sufficiently obtained. If the amount is more than 10% by weight, appropriate adhesion between the two layers is not maintained, and the layers are displaced during stretching and peeled off.

【0095】M層とS層とを合わせた好ましい全体の層
構成としては、M層/S層、M層/S層/M層、S層/
M層/S層、M層/S層/M層/S層/M層等が挙げら
れる。生産性の面から複数のM層を含む層構成が望まし
い。
The preferred overall layer structure including the M layer and the S layer is M layer / S layer, M layer / S layer / M layer, S layer /
M layer / S layer, M layer / S layer / M layer / S layer / M layer, and the like. A layer configuration including a plurality of M layers is desirable in terms of productivity.

【0096】また、先述したように、各M層及びS層は
それぞれ多層構造であってもよく、特に微多孔フィルム
の高性能化、高品質化を優先する場合好ましいのは、S
層/M1層/M2層、S層/M1層/M2層/S層、S
層/M1層/M2層/M1層、S層/M1層/M2層/
M1層/S層、M1層/M2層/M1層/S層/M1層
/M2層/M1層等である。
Further, as described above, each of the M layer and the S layer may have a multilayer structure. Particularly, when priority is given to high performance and high quality of the microporous film, it is preferable that
Layer / M1 layer / M2 layer, S layer / M1 layer / M2 layer / S layer, S
Layer / M1 layer / M2 layer / M1 layer, S layer / M1 layer / M2 layer /
M1 layer / S layer, M1 layer / M2 layer / M1 layer / S layer / M1 layer / M2 layer / M1 layer.

【0097】M層とS層を合わせた延伸前の全層の厚み
は、好ましくは、5〜1000μで、より好ましくは、
10〜700μである。この厚みの下限は、M層中の結
晶サイズやM層中に含まれるB成分の分散径により決定
され、この厚みの上限は、押出し、流動配向を付与した
後の急冷時、あるいは延伸中の加熱及び/または冷却時
の温度ムラにより決定される。
The thickness of all layers before stretching, including the M layer and the S layer, is preferably 5 to 1000 μm, more preferably
10 to 700 μ. The lower limit of this thickness is determined by the crystal size in the M layer and the dispersion diameter of the B component contained in the M layer. The upper limit of this thickness is extruded, during quenching after imparting flow orientation, or during stretching. It is determined by temperature unevenness during heating and / or cooling.

【0098】S層の全層厚みに対する比率は、10〜9
0%、好ましくは20〜80%、よリ好ましくは30〜
70%である。上記範囲では、S層の(冷間)延伸力
で、機能層それ自体の単独では冷間延伸が出来なく、従
って開孔を達成することのできない樹脂層にも強力でし
かも均一に延伸力(低温、高倍率領域に)を与え、該層
の延伸開孔を、特に安定に(フィルムの破れ、サージン
グなしに)達成でき、その結果、本発明の相乗効果(高
強度化、低延伸倍率でも、安定に開口、使用開口材の種
類の拡大、該使用量の縮小化等)を発揮することができ
る。
The ratio of the S layer to the total layer thickness is 10 to 9
0%, preferably 20-80%, more preferably 30-80%
70%. In the above range, the (cold) stretching force of the S layer makes it impossible to perform cold stretching by itself on the functional layer itself, and therefore, the resin layer that cannot achieve the opening can be strongly and uniformly stretched. (Low temperature, high magnification region), and the stretch opening of the layer can be achieved particularly stably (without film breakage and surging). As a result, the synergistic effect of the present invention (high strength, low stretching ratio) Stably opening, expanding the type of opening material used, reducing the amount of use, etc.).

【0099】また、高温延伸域でも同様な効果が認めら
れる。その比は、M層の構成により最適になるように決
定すれば良い。例えば、M層が冷間延伸により開孔せし
め難い組成層を含む場合は、全体層の内、該S層比率の
下限は比較的高く、逆に目的の孔構造に開孔せしめやす
い組成の該層を含む場合は、加工上低い該S層の比率レ
ベルで良い。
The same effect is observed in the high temperature stretching region. The ratio may be determined so as to be optimal depending on the configuration of the M layer. For example, when the M layer includes a composition layer that is not easily opened by cold stretching, the lower limit of the S layer ratio is relatively high in the entire layer, and conversely, the composition having a composition that is easily opened in a target hole structure is obtained. When a layer is included, the ratio level of the S layer may be low in processing.

【0100】本発明では、好ましくは、少なくとも1層
のM層を構成する熱可塑性樹脂を主成分とする組成物
と、更に、少なくとも1層のS層を構成する熱可塑性樹
脂を主成分とする組成物とを、それぞれ別々の押出機で
熱可塑化溶融し、多層ダイより共押出後、伝熱媒体によ
り急冷固化させ十分均一なチューブまたはシート状原反
にする。共押出の方法としては、多層のT−ダイ法、多
層の環状ダイ法があるが、後者の方法の方が原反効率の
良さ、流動配向の均一性等の点で好ましい。
In the present invention, preferably, a composition mainly comprising a thermoplastic resin constituting at least one M layer, and further comprising a thermoplastic resin mainly constituting at least one S layer. The compositions are thermoplastically melted by separate extruders, co-extruded from a multilayer die, and quenched and solidified by a heat transfer medium to form a sufficiently uniform tube or sheet material. Examples of the co-extrusion method include a multilayer T-die method and a multilayer annular die method, and the latter method is preferable in terms of raw material efficiency, uniform flow orientation, and the like.

【0101】次いで、M層とS層とからなる原反は、1
5℃以上、M層を構成する前述の熱可塑性樹脂(A)の
VSP+50℃以下の温度条件で少なくとも1方向に面
積倍率で1.1倍以上50倍以下に延伸し、微多孔また
は前駆状態を形成させる。延伸時にS層が存在すること
によって開口作用及び高配向が均一にM層に付与され、
M層中の異なる2相、例えば熱可塑性樹脂(A)の結晶
核とその周りのドメインの間、あるいは熱可塑性樹脂
(A)と物質(B)の間に微細な剥離が生じ、これが均
一な微多孔のもととなる。従って局部的に開口し、強度
(引っ張り、引き裂き的に)が低くなった部分が更に不
均一化して行くことは少ない。
Next, the raw material consisting of the M layer and the S layer is 1
5 ° C or higher, VSP of the above-mentioned thermoplastic resin (A) constituting the M layer is stretched to 1.1 to 50 times in area ratio in at least one direction under a temperature condition of 50 ° C or lower to reduce the microporous or precursor state. Let it form. The opening action and the high orientation are uniformly applied to the M layer by the presence of the S layer at the time of stretching,
Fine separation occurs between two different phases in the M layer, for example, between the crystal nucleus of the thermoplastic resin (A) and its surrounding domain, or between the thermoplastic resin (A) and the substance (B). It is the source of microporosity. Therefore, a portion that is locally opened and has low strength (pulling or tearing) is less likely to be further uneven.

【0102】延伸温度は15℃以上、かつ、該熱可塑性
樹脂(A)のVSPに50℃を加えた温度以下の範囲に
なければ、延伸ムラが発生するか、あるいは開孔しない
といった問題が発生する。延伸倍率が上記の範囲外、例
えば、1.1倍未満であると、M層が均一に開孔しない
か、あるいは全く開孔しない。また、延伸倍率が50倍
を超えると原反が安定に延伸できず、時には破断してし
まうといった現象が発生する。延伸方向はM層の組成な
らびに微多孔フィルムに要求される特性により決定さ
れ、一軸でも二軸でもかまわないが後者の方が好まし
い。
If the stretching temperature is not higher than 15 ° C. and not higher than the temperature obtained by adding 50 ° C. to the VSP of the thermoplastic resin (A), there occurs a problem that uneven stretching occurs or holes are not formed. I do. When the stretching ratio is out of the above range, for example, less than 1.1 times, the M layer does not uniformly or not at all. On the other hand, when the stretching ratio exceeds 50 times, a phenomenon occurs that the raw material cannot be stretched stably and sometimes breaks. The stretching direction is determined by the composition of the M layer and the properties required for the microporous film, and may be uniaxial or biaxial, but the latter is preferred.

【0103】延伸の方法は、ロール延伸法、テンターフ
レーム法、(ダブルバブル、トリプルバブル等のマルチ
バブルプロセスを含む)チューブラー法等の各種方法が
用いられるが、次の理由からチューブラー法が好まし
く、更にこれにS層を少なくとも一層配するのがより好
ましい。 1)先述したように原反をチューブ状で作製するのが好
ましい。 2)得られる微多孔フィルムの厚み方向、幅方向、長さ
方向における均一性、高流動配向を付与した結果開孔が
容易になる。 3)開孔サイズや孔分布の均一性がよい。 4)延伸時のチャック部やネックインによる製品のロス
がない。 5)孔の開いていないS層が存在するためエアー漏れの
心配がない。 6)S層がM層の傷、汚染(菌、汚れ、他)を保護す
る。
Various stretching methods such as a roll stretching method, a tenter frame method, and a tubular method (including a multi-bubble process such as a double bubble and a triple bubble) are used. The tubular method is used for the following reasons. It is more preferable that at least one S layer is disposed thereon. 1) As described above, it is preferable to manufacture the raw material in a tube shape. 2) Uniformity in the thickness direction, width direction, and length direction of the obtained microporous film and high flow orientation are imparted, so that opening is facilitated. 3) Good uniformity of pore size and pore distribution. 4) There is no loss of product due to the chuck portion or neck-in during stretching. 5) There is no fear of air leakage due to the existence of the S layer having no holes. 6) The S layer protects the M layer from scratches and contamination (fungi, dirt, etc.).

【0104】延伸条件は、(1)延伸の際、より確実に
微多孔を形成させる、(2)得られる微多孔フィルムの
微孔特性を使用される用途に合わせる、(3)寸法安定
性を付与する、(4)タテ/ヨコの延伸度合いを変換・
移動する等の目的で、多段階に分けて行うことができ
る。又15℃以上であって、M層を構成する該樹脂
(A)のVSPに50℃を加えた温度以下の温度で、合
計面積倍率が1.1倍以上50倍以下であればよいが、
各段における延伸開始部の温度差が少なくとも5℃以上
であることが好ましい。又多段の後段程、該延伸開始温
度を少なくとも5℃程度高くするのが好ましい。
The stretching conditions are as follows: (1) more surely form microporous material during stretching; (2) adapt the microporous properties of the resulting microporous film to the intended use; and (3) ensure dimensional stability. (4) Converting the vertical / horizontal stretching degree
It can be performed in multiple stages for the purpose of moving. Further, the total area magnification may be 1.1 to 50 times at a temperature of 15 ° C. or higher and a temperature not higher than the temperature obtained by adding 50 ° C. to the VSP of the resin (A) constituting the M layer.
It is preferable that the temperature difference at the stretching start part in each stage is at least 5 ° C. or more. Further, it is preferable that the stretching start temperature is raised by at least about 5 ° C. in the later stages of the multistage.

【0105】同様に、延伸開始部と延伸終了部の温度差
が5℃以上の条件下で延伸すると都合がよい。なお、こ
こでいう延伸温度とは、延伸開始部の温度のことをい
う。また、寸法安定性を特に重要視する場合は、最終延
伸段の温度を高めにしてヒートセット効果を付与して
も、または次工程としてヒートセット工程を加えてもよ
い。
Similarly, it is convenient to perform stretching under the condition that the temperature difference between the stretching start portion and the stretching end portion is 5 ° C. or more. Here, the stretching temperature refers to the temperature of the stretching start portion. When dimensional stability is particularly important, the heat setting effect may be imparted by increasing the temperature of the final stretching step, or a heat setting step may be added as the next step.

【0106】さらに、延伸前に、M層とS層からなる積
層原反の延伸性、M層の延伸開孔性を高め、微多孔フィ
ルムの強度、耐熱性、寸法安定性を向上させる目的で、
延伸前、又は延伸後にM層、S層に2〜15Mrad、
好ましくは2.5〜10Mradの高エネルギー線によ
って、架橋処理を行うことができる。この方法として
は、電離性放射線、例えば電子線、放射性同位元素から
放射されるβ線、γ線を照射する方法、またはベンゾフ
ェノンやパーオキサイド等の増感剤をあらかじめM層に
混合しておき、紫外線照射を行う方法等が挙げられる
が、工業的には高エネルギー電子線を使用するのが好ま
しい。
Further, prior to stretching, the stretchability of the layered raw material composed of the M layer and the S layer, the stretch opening property of the M layer, and the strength, heat resistance, and dimensional stability of the microporous film are improved. ,
Before stretching, or after stretching M layer, S layer 2-15Mrad,
The cross-linking treatment can be performed preferably by a high energy ray of 2.5 to 10 Mrad. As this method, ionizing radiation, for example, an electron beam, a method of irradiating a β-ray emitted from a radioisotope, a γ-ray, or a sensitizer such as benzophenone or peroxide previously mixed in the M layer, A method of irradiating ultraviolet rays may be mentioned, but it is preferable to use a high energy electron beam industrially.

【0107】また、多層状のM層の所定層の架橋度合い
を、目的により樹脂の種類、分子量の制御、(架橋を促
進または抑制する)添加剤等を利用することができる。
エネルギー線の透過深度を制御することによりコントロ
ール(例えば、表層の架橋密度を高くする、中間層の架
橋密度を下げる、または実質的にゲル分率が測定できな
い程度の弱い架橋を行う等)してもよい。さらにこれら
の架橋処理をS層にも適用し、相乗効果を得てもよい。
Further, depending on the purpose, the type of resin, control of molecular weight, additives (promoting or suppressing crosslinking), and the like can be used for the degree of crosslinking of the predetermined layer of the multilayer M layer.
Control by controlling the penetration depth of energy rays (for example, increase the cross-linking density of the surface layer, lower the cross-linking density of the intermediate layer, or perform weak cross-linking such that the gel fraction cannot be measured substantially). Is also good. Further, these crosslinking treatments may be applied to the S layer to obtain a synergistic effect.

【0108】上記の積層後延伸されたM層とS層の延伸
積層体からS層を剥離することにより、少なくとも1枚
の微多孔フィルムが得られる。この微多孔フィルムの厚
みは、好ましくは1〜150μ程度、より好ましくは5
〜100μ程度である。該延伸積層体は延伸歪を内蔵す
ることがあり、その除去のために、延伸後に該延伸積層
体を緊張状態あるいは緩和状態(収縮させる)に保ち、
所定温度、通常は延伸温度(複数段階延伸した場合はそ
の最高温度)の前後近くの温度で加熱することにより安
定化できる。
By peeling the S layer from the stretched laminate of the M layer and the S layer stretched after the lamination, at least one microporous film is obtained. The thickness of this microporous film is preferably about 1 to 150 μm, more preferably about 5 μm.
About 100 μm. The stretched laminate may have a built-in stretching strain. To remove the strain, the stretched laminate is kept in a tensioned state or a relaxed state (shrinked) after stretching,
Stabilization can be achieved by heating at a predetermined temperature, usually around a stretching temperature (the highest temperature in the case of stretching in multiple stages).

【0109】また、場合により最後に多少の(自由方向
の)一軸延伸を加え配向移動処理を行ってもよい。この
歪除去のための加熱時間は、温度、該積層体に残存する
歪量等に応じて設定するが、通常約5秒間から2分間で
ある。必要に応じて、この熱処理を剥離後の微多孔フィ
ルムに対して行ってもよい。また、剥離により該延伸積
層体から除去されたS層は、リサイクルしてS層の少な
くとも一部に、または場合によりM層に混合して使用し
てもよい。
In some cases, a slight (free-direction) uniaxial stretching may be performed at the end to perform the orientation moving treatment. The heating time for removing the strain is set according to the temperature, the amount of strain remaining in the laminate, and the like, and is usually about 5 seconds to 2 minutes. If necessary, this heat treatment may be performed on the microporous film after peeling. The S layer removed from the stretched laminate by peeling may be recycled and used as at least a part of the S layer, or may be mixed with the M layer in some cases.

【0110】[0110]

【発明の実施の形態】次に本発明の実施の形態を実施例
により具体的に説明するが、本発明はこれら実施例に限
定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the embodiments of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

【0111】なお、実施例中に示される透気度はAS
TM D−726(B)法に基づいて測定したガーレー
値(秒/100cc)で25ミクロンに換算した値であ
る。 結晶融点は、原料樹脂をそれぞれの最適温度でアニー
ル処理し、平衡状態としたものを、DSC法にて10℃
/分のスキャンスピードで測定した値を示す。 多孔度は、所定のフイルムを、10cm×10cmの
サイズに切り取り、平均厚みを厚み計で測定し、サンプ
ルの体積を求め、次に該サンプルの重量を測定し、この
重量を使用樹脂組成物の平均密度で換算した該樹脂体積
分を求め、(1−サンプルの樹脂分体積/サンプル体
積)で換算し求めた値を用いる。
Note that the air permeability shown in the examples is AS
It is a value converted to 25 microns by the Gurley value (sec / 100 cc) measured based on the TM D-726 (B) method. The crystal melting point was determined by annealing the raw material resin at the respective optimum temperature to obtain an equilibrium state.
The values measured at a scan speed of / min are shown. For the porosity, a predetermined film is cut into a size of 10 cm × 10 cm, the average thickness is measured with a thickness gauge, the volume of the sample is determined, and then the weight of the sample is measured. The resin volume integrated in terms of the average density is obtained, and the value obtained by converting (1−resin volume of sample / sample volume) is used.

【0112】ビカット軟化点(VSPと略す)は、A
STM−D1525(荷重1Kgで2℃/分の昇温スピ
ードで測定)に準じて測定した値を用いる。 10%収縮温度は、フイルムサンプルを10cm×1
0cmに切り取り、接着しないようにタルク等の粉末を
まぶし、所定の温度に加熱したエヤーオーブン式恒温槽
に、水平に入れ自由に収縮する状態で10分間処理した
後、フイルムの収縮量縦、横の平均値を求め、各温度で
の収縮測定値をグラフ化し、10%収縮した温度で表す
ものとする。
The Vicat softening point (abbreviated to VSP) is A
The value measured according to STM-D1525 (measured at a heating rate of 2 ° C./min with a load of 1 kg) is used. 10% shrinkage temperature is 10cm x 1 for film sample
Cut to 0 cm, dusted with talc or other powder to prevent adhesion, placed horizontally in an air oven type constant temperature oven heated to a predetermined temperature, and treated for 10 minutes in a freely shrinkable state. Is calculated, and the measured shrinkage value at each temperature is graphed to indicate the temperature at which the shrinkage is 10%.

【0113】(実施例中で使用した樹脂、及び他の原材
料) 1)基材の熱可塑性樹脂(A)[α−オレフィンと一酸
化炭素の共重合樹脂] (A−1):エチレン(一部プロピレン)58モル%に
一酸化炭素42モル%を共重合した(結晶融点:212
℃、メルトフローインデックス(240℃−5kgの荷
重で測定):7、VSP:190℃、SP値:11.
1)共重合樹脂。 (A−2):エチレン(一部プロピレン、オクテン−
1)62モル%に一酸化炭素38モル%共重合した(結
晶融点:185℃、メルトフローレート(上記と同条
件):18、VSP:165℃、SP値:11.0)共
重合樹脂。
(Resins and Other Raw Materials Used in Examples) 1) Thermoplastic resin (A) of base material [copolymer resin of α-olefin and carbon monoxide] (A-1): ethylene Part propylene) was copolymerized with 42 mol% of carbon monoxide to 58 mol% (crystal melting point: 212).
° C, melt flow index (measured at a load of 240 ° C-5 kg): 7, VSP: 190 ° C, SP value: 11.
1) Copolymer resin. (A-2): ethylene (partially propylene, octene-
1) A copolymer resin obtained by copolymerizing 62 mol% of carbon monoxide with 38 mol% (crystal melting point: 185 ° C., melt flow rate (under the same conditions as above): 18, VSP: 165 ° C., SP value: 11.0).

【0114】(A−3):上述A−1 65wt%に、
結晶性ポリプロピレン(PP−1と略す、密度0.90
g/cm3、メルトフローレート:6、結晶融点:16
0℃、VSP:143℃、SP値:7.6)を35wt
%、2軸混練り機で混練りしてペレタイズした組成物。 (A−4):A−2 80wt%に、高密度ポリエチレ
ン(HDPE−1と略す、密度0.963g/cm3
メルトフローレート:1.2、VSP:120℃、結晶
融点:133℃、SP値:8.1)20wt%を(A−
3)と同様に混合した組成物。
(A-3): 65% by weight of A-1 described above
Crystalline polypropylene (abbreviated as PP-1, density 0.90
g / cm 3 , melt flow rate: 6, crystal melting point: 16
0 ° C, VSP: 143 ° C, SP value: 7.6) 35 wt%
%, A composition kneaded with a twin-screw kneader and pelletized. (A-4): A-2 80 wt%, high density polyethylene (abbreviated as HDPE-1, density 0.963 g / cm 3 ,
Melt flow rate: 1.2, VSP: 120 ° C, crystal melting point: 133 ° C, SP value: 8.1) 20 wt% (A-
A composition mixed as in 3).

【0115】2)基材の熱可塑性樹脂(B)[結晶性ポ
リオレフィン系樹脂] (B−1):高密度ポリエチレン(HDPE−1と略
す、密度0.963g/cm3、メルトフローレート:
1.2、VSP:120℃、結晶融点:133℃、SP
値:8.1) (B−2):結晶性ポリプロピレン(PP−1と略す、
密度0.91g/cm3、メルトフローレート:2.
3、結晶融点:163℃、VSP:148℃、SP値:
7.6)
2) Thermoplastic resin of base material (B) [crystalline polyolefin resin] (B-1): High-density polyethylene (abbreviated as HDPE-1, density 0.963 g / cm 3 , melt flow rate:
1.2, VSP: 120 ° C, crystal melting point: 133 ° C, SP
(Value: 8.1) (B-2): crystalline polypropylene (abbreviated as PP-1)
Density 0.91 g / cm 3 , melt flow rate: 2.
3. Crystal melting point: 163 ° C, VSP: 148 ° C, SP value:
7.6)

【0116】(B−3):ポリブテン−1(PB−1と
略す、密度0.906g/cm3、メルトフローレー
ト:1.0、結晶融点123℃、VSP:106℃、S
P値:8.3) (B−4):ポリ4−メチルペンテン−1系共重合樹脂
(PMP−1と略す、密度0.88g/cm3、メルト
フローレート:4.0、結晶融点:177℃、VSP:
158℃、SP値:7.3) (B−5):低密度ポリエチレン(LL1と略す、密度
0.923g/cm3、MI0.8,結晶融点118
℃、VSP100℃、SP値:7.8)
(B-3): Polybutene-1 (abbreviated as PB-1, density 0.906 g / cm 3 , melt flow rate: 1.0, crystal melting point 123 ° C., VSP: 106 ° C., S
(P value: 8.3) (B-4): Poly 4-methylpentene-1 copolymer resin (abbreviated as PMP-1, density 0.88 g / cm 3 , melt flow rate: 4.0, crystal melting point: 177 ° C, VSP:
(158 ° C, SP value: 7.3) (B-5): Low density polyethylene (abbreviated as LL1, density 0.923 g / cm 3 , MI 0.8, crystal melting point 118)
° C, VSP100 ° C, SP value: 7.8)

【0117】3)不活性な有機液状物質(C)[基材樹
脂と相分離後に抽出する物質] (C−1):ミネラルオイル(MO−1:パラフィン系
で、B型粘度計での粘度が50℃で30センチポイズ:
以後同条件で、CPSと略す、SP値:8.2) (C−2):ヂオクチルフタレート(上記同粘度が15
CPSのもの、SP値:7.9)
3) Inert organic liquid substance (C) [substance extracted after phase separation from base resin] (C-1): mineral oil (MO-1: paraffin type, viscosity measured by B-type viscometer) Is 30 centipoise at 50 ° C:
Hereinafter, under the same conditions, abbreviated as CPS, SP value: 8.2) (C-2): octyl phthalate (the same viscosity is 15
CPS, SP value: 7.9)

【0118】4)延伸開口性物質(D)[基材樹脂に混
合分散し延伸時に開口させるもの] (D1−1):ポリフェニレンエーテル(PPE:密度
1.06g/cm3、メルトフロレート15、曲げ弾性
率250kg/mm2、SP値9.6) (D1−2):スチレンーブチルアクリレート共重合体
(SBA:密度1.05g/cm3、VSP82℃、曲
げ弾性率185kg/mm2、SP値8.9) (D2−1):ポリブテンー1(PB−1:密度0.9
07g/cm3、メルトフロレート1・0、曲げ弾性率
65kg/mm2、結晶化度46%、SP値8.3) (D3−1):ヂメチルシリコーンオイル(SO−1:
粘度10CPS、SP値5.7)
4) Stretching openable substance (D) [mixed and dispersed in a base resin and opened during stretching] (D1-1): polyphenylene ether (PPE: density 1.06 g / cm 3 , melt flow rate 15, Flexural modulus 250 kg / mm 2 , SP value 9.6) (D1-2): Styrene-butyl acrylate copolymer (SBA: density 1.05 g / cm 3 , VSP 82 ° C., flexural modulus 185 kg / mm 2 , SP Value 8.9) (D2-1): polybutene-1 (PB-1: density 0.9)
07 g / cm 3 , melt flow rate 1.0, flexural modulus 65 kg / mm 2 , crystallinity 46%, SP value 8.3) (D3-1): methyl silicone oil (SO-1:
(Viscosity 10 CPS, SP value 5.7)

【0119】(D4−1):流動パラフィン(PA−
1:粘度13CPS,SP値8.4) (D4−2):水添石油樹脂(PR−1:VSP130
℃、粘度(200℃)800CPS、SP値:8.3) (D5−1):架橋シリコーン粉末(CSP−1:平均
粒径0.5μm) (D5−2):球状シリカ(SFC−1:平均粒径0.
35μm)
(D4-1): Liquid paraffin (PA-
1: viscosity 13 CPS, SP value 8.4) (D4-2): hydrogenated petroleum resin (PR-1: VSP130)
° C, viscosity (200 ° C) 800 CPS, SP value: 8.3) (D5-1): crosslinked silicone powder (CSP-1: average particle size 0.5 µm) (D5-2): spherical silica (SFC-1: Average particle size 0.
35 μm)

【0120】5)補助層(S) (S1):エチレンを3重量%共重合したポリプロピレ
ン(PP1:密度0.90g/cm3、VSP143
℃、結晶融点152℃、MFR1.5)75重量%と、
プロピレンを2重量%共重合したポリブテン1(PB
1:密度0.90g/cm3、VSP98℃、MFR
2.0)10重量%に、水添飽和炭化水素系樹脂(H
1:共重合成分に環状部分を有する通称水添石油樹脂と
呼ばれているもので、環球法軟化点が150℃のもの)
15重量%を混練りした組成物。
5) Auxiliary layer (S) (S1): Polypropylene copolymerized with 3% by weight of ethylene (PP1: density 0.90 g / cm 3 , VSP143)
° C, crystalline melting point 152 ° C, MFR 1.5) 75% by weight,
Polybutene 1 (PB) copolymerized with 2% by weight of propylene
1: Density 0.90 g / cm 3 , VSP 98 ° C, MFR
2.0) 10% by weight of hydrogenated saturated hydrocarbon resin (H
1: a so-called hydrogenated petroleum resin having a cyclic portion in the copolymer component, and having a ring-ball method softening point of 150 ° C)
A composition in which 15% by weight is kneaded.

【0121】(S2):エチレンを3重量%共重合した
ポリブテン1(PB2:密度0.90g/cm3、VS
P90℃、MFR2.0)70重量%に、水添飽和炭化
水素系樹脂(H2:共重合成分に環状部分を有する通称
水添石油樹脂と呼ばれているもので、環球法軟化点が1
40℃のもの)10重量%と、シングルサイト系触媒で
重合したポリプロピレン(PP2:密度0.90g/c
3、VSP135℃、結晶融点143℃、MFR1.
5)20重量%を混練りした組成物。
(S2): Polybutene 1 obtained by copolymerizing 3% by weight of ethylene (PB2: density 0.90 g / cm 3 , VS
P90 ° C., MFR 2.0) 70% by weight, hydrogenated saturated hydrocarbon resin (H2: a so-called hydrogenated petroleum resin having a cyclic portion in a copolymerization component), and a ring-ball method softening point of 1
40% by weight) and polypropylene (PP2: density 0.90 g / c) polymerized with a single-site catalyst.
m 3, VSP135 ℃, crystalline melting point 143 ° C., MFR1.
5) A composition obtained by kneading 20% by weight.

【0122】(S3):成分E1のシングルサイト系触
媒を用いエチレンにオクテン1を5モル%共重合したL
LDPE(LL1:密度0.915g/cm3、VSP
91℃、MI1.5、結晶融点95℃、DSC法による
結晶化度50%)70重量%と、成分E2のαオレフィ
ンにプロピレンを14モル%共重合したαオレフィンエ
ラストマー(密度0.88g/cm3、VSP45℃、
MI0.4)15重量%と、成分E3の前述PP1 1
5重量%を混練りした組成物。
(S3): L obtained by copolymerizing octene 1 with 5 mol% of ethylene using the single-site catalyst of the component E1.
LDPE (LL1: density 0.915 g / cm 3 , VSP
70% by weight of 91 ° C., MI 1.5, crystal melting point 95 ° C., crystallinity by DSC method: 50%) and α-olefin elastomer obtained by copolymerizing 14 mol% of propylene with α-olefin of component E2 (density: 0.88 g / cm 3 , VSP45 ℃,
MI 0.4) 15% by weight and the aforementioned PP11 of component E3
A composition in which 5% by weight is kneaded.

【0123】[0123]

【実施例】実施例1〜5 表1に記載の基材樹脂(A)及び延伸開口性物質(D)
の組成物を所定の割合にあらかじめ2軸混練り押し出し
機で混練りし、ペレタイズしておき、内部層(M層)と
補助層と外部層(S層)の配置が、S/M/Sの3層と
なるように、2台の40mm径(L/D=37)の押出
機で、それぞれ可塑化混練し(但しS層用の押し出し機
はスクリュウ途中の混練り部に相当するシリンダー部か
ら添加剤として使用樹脂の割合に対し2wt%のジグリ
セリンモノラウレートを圧入混練りし)、2種3層の環
状ダイより共押し出し(厚み比:S層/M層/S層=
0.5/1/0.5)し、実施例1、2,3,4,5の
S層として、順にS1、S1、S2、S2、S3を選定
し、ダイス先端と水の均一に出る水冷リングの間の距離
を調節し、ドロー比(DDR)12の条件で、原反を安
定に得た。
EXAMPLES Examples 1 to 5 Base resin (A) and stretch opening material (D) shown in Table 1
Is kneaded in a predetermined ratio with a biaxial kneading extruder in advance and pelletized, and the arrangement of the inner layer (M layer), the auxiliary layer, and the outer layer (S layer) is S / M / S Plasticizing and kneading by two 40 mm diameter (L / D = 37) extruders so that the extruder for the S layer is a cylinder portion corresponding to the kneading portion in the middle of the screw. Of 2% by weight of diglycerin monolaurate with respect to the ratio of the resin used as an additive, and co-extrusion from two or three types of annular dies (thickness ratio: S layer / M layer / S layer =
0.5 / 1 / 0.5), and S1, S1, S2, S2, and S3 are sequentially selected as the S layers of the first, second, third, fourth, and fifth embodiments, and the tip of the die and water are uniformly discharged. The distance between the water-cooled rings was adjusted, and a stock was stably obtained under the condition of a draw ratio (DDR) of 12.

【0124】この原反を、2対の送りニップロールと引
取りニップロールの間に通して熱風により82℃に加熱
し、そのまま内部に空気を入れ、整流接触ガイドを用い
て連続的に膨張させて機械方向の延伸倍率が3.5倍、
横方向の延伸倍率が3倍になるように延伸し、次いでも
う一組の2対の送りニップロールと引取りニップロール
の間に通して熱風により115℃に加熱し、機械方向の
延伸倍率が2倍、横方向の延伸倍率が2.0倍になるよ
うに再延伸し、さらにもう一組の2対の送りニップロー
ルと引取りニップロールの間に通して、チューブ状にし
て周方向より熱風により120℃に加熱してタテ方向に
5%、ヨコ方向に5%収縮させながら30秒間ヒートセ
ットした。
The raw material was passed between two pairs of feed nip rolls and take-off nip rolls, heated to 82 ° C. by hot air, air was introduced into the raw material, and continuously expanded using a rectifying contact guide. The draw ratio in the direction is 3.5 times,
The film is stretched so that the transverse stretching ratio becomes 3 times, then passed between another pair of feed nip rolls and the take-off nip roll and heated to 115 ° C. by hot air, and the machine direction stretching ratio becomes 2 times. Then, the film is stretched again so that the stretching ratio in the transverse direction becomes 2.0 times, and is further passed between another pair of feed nip rolls and take-off nip rolls, and is formed into a tube shape at 120 ° C. by hot air from the circumferential direction. And heat-set for 30 seconds while contracting 5% in the vertical direction and 5% in the horizontal direction.

【0125】最後に両端をスリットしながら、延伸され
たM層をS層から剥離することにより目的の通流体性微
多孔フィルム(厚み24μ)を得た。これらの特性を表
1に記載する。これらは剥離時には静電気の発生もな
く、オフラインでの高速剥離性(100m/分)もよか
った。更に、各工程中でも適度な密着性があり、剥離し
てバラバラになることもなかった。
Finally, the stretched M layer was peeled from the S layer while slitting both ends to obtain a desired fluid-permeable microporous film (24 μm in thickness). These properties are listed in Table 1. They did not generate static electricity at the time of peeling, and had good off-line high-speed peelability (100 m / min). Furthermore, even in each step, there was an appropriate adhesiveness, and there was no separation and separation.

【0126】[0126]

【表1】 [Table 1]

【0127】実施例6〜10 表2に記載した各基材樹脂(A),(B)、及び延伸開
口性物質(D)との組成物を所定の割合にそれぞれあら
かじめ2軸混練り押し出し機で混練りしペレタイズして
おいた。内部層(MA,MB層)と補助層の外部層(S
層:S1処方を採用)の層配置がS/MA/MB/MA
/Sの5層となるように、それぞれ3台の40mm径
(L/D=37)の押出機で可塑化混練し(但しS層用
の押し出し機はスクリュウ途中の混練り部に相当するシ
リンダー部から添加剤として使用樹脂の割合に対し2w
t%のジグリセリンモノラウレートと1wt%のステア
リン酸アマイドを圧入混練りし)、3種5層の環状ダイ
より共押し出し(それぞれの厚み比がS層/MA層/M
B層/MA層/S層=1.0/0.5/1/0.5/
1.0となるようにし)し、ダイス先端と水の均一に出
る水冷リングの間の距離を調節し、ドロー比(DDR)
10の条件で、原反を安定に得た。
Examples 6 to 10 The compositions of each of the base resins (A) and (B) and the stretch-openable substance (D) shown in Table 2 were previously biaxially kneaded and extruded at a predetermined ratio. And kneaded and pelletized. The inner layer (MA and MB layers) and the outer layer of the auxiliary layer (S
Layer: Adopt S1 formulation) S / MA / MB / MA
/ S are plasticized and kneaded by three extruders each having a diameter of 40 mm (L / D = 37) so as to form five layers (the extruder for the S layer is a cylinder corresponding to the kneading portion in the middle of the screw). 2w to the ratio of resin used as additive from part
t% diglycerin monolaurate and 1 wt% stearic acid amide are press-fitted and kneaded) and co-extruded from three types and five layers of annular dies (thickness ratio of each layer is S layer / MA layer / M).
B layer / MA layer / S layer = 1.0 / 0.5 / 1 / 0.5 /
1.0) and adjust the distance between the die tip and the water-cooled ring that uniformly distributes the water to obtain a draw ratio (DDR).
Under the conditions of 10, a raw material was obtained stably.

【0128】この原反を、2対の送りニップロールと引
取りニップロールの間に通して熱風により92℃に加熱
し、そのまま内部に空気を入れ、整流接触ガイドを用い
て連続的に膨張させて機械方向の延伸倍率が4.5倍、
横方向の延伸倍率が4倍になるように延伸し、さらにも
う一組の2対の送りニップロールと引取りニップロール
の間に通して、同様にチューブ状にして周方向より熱風
により115℃に加熱してタテ方向に4%、ヨコ方向に
5%収縮させながら20秒間ヒートセットした。
The raw material was passed between two pairs of feed nip rolls and take-off nip rolls, heated to 92 ° C. by hot air, air was directly introduced into the raw material, and continuously expanded using a rectifying contact guide. Stretching ratio in the direction of 4.5 times,
The film is stretched so that the stretching ratio in the transverse direction becomes 4 times, and it is further passed between another pair of feed nip rolls and take-off nip rolls. Similarly, it is formed into a tube and heated to 115 ° C. by hot air from the circumferential direction. Then, it was heat set for 20 seconds while contracting 4% in the vertical direction and 5% in the horizontal direction.

【0129】最後に両端をスリットしながら、延伸され
た多層フイルムから、S層から剥離することにより目的
の通流体性微多孔フィルム(厚み24μ)を得た。これ
らの特性を表2に記載する。これらの剥離時には、MA
層とMB層間が剥離することもなく表層のみがスムーズ
に剥離した、又静電気の発生もなく、オフラインでの高
速剥離性(200m/分)もよかった。更に、各工程中
でも適度な密着性があり、剥離してバラバラになること
もなかった。
Lastly, the desired fluid-permeable microporous film (24 μm in thickness) was obtained by peeling off the S layer from the stretched multilayer film while slitting both ends. These properties are listed in Table 2. At the time of these peeling
Only the surface layer was peeled off smoothly without peeling between the layer and the MB layer, and there was no generation of static electricity, and the high-speed peeling off-line (200 m / min) was good. Furthermore, even in each step, there was an appropriate adhesiveness, and there was no separation and separation.

【0130】[0130]

【表2】 [Table 2]

【0131】実施例11、12 基材樹脂(A)として前述のA−2を55体積%,及び
抽出可能な有機液状物質(C)として前述C−1/C−
2が40/60(体積%)の混合比のものを、45体積
%2軸混練り押し出し機で混練りし、内部層(M層)と
して、次に補助層の外部層(S層)としてS1処方を選
定し、層配置それぞれが、S/M/Sの3層となるよう
に、それぞれ2台の押出機で可塑化混練し、2種3層の
環状ダイより共押し出し(厚み比:S層/M層/S層=
0.2/1/0.2)し(実施例11)、又上記に加え
て、更にB−1を50体積%、C−1を50体積%混練
りし、S/MA/MB/MA/Sの5層となる様に、3
種5層の環状ダイより共押し出し(厚み比順に:0.2
/0.5/1.0/0.5/0.2)し(実施例1
2)、ダイス先端と水の均一に出る水冷リングの間の距
離を調節し、ドロー比(DDR)8の条件で、急冷し樹
脂成分を相分離させて原反を安定に得た。
Examples 11 and 12 55% by volume of the above-mentioned A-2 as a base resin (A), and C-1 / C-A as an extractable organic liquid substance (C)
2 was mixed at a mixing ratio of 40/60 (vol%) by a 45 vol% biaxial kneading extruder to form an inner layer (M layer) and then an auxiliary layer as an outer layer (S layer). The S1 formulation was selected, and each layer arrangement was plasticized and kneaded with two extruders so that each layer had three layers of S / M / S, and was co-extruded from two types and three layers of annular dies (thickness ratio: S layer / M layer / S layer =
0.2 / 1 / 0.2) (Example 11), and in addition to the above, further kneaded 50% by volume of B-1 and 50% by volume of C-1 to obtain S / MA / MB / MA. / S to be 5 layers
Co-extrusion from a seed five-layer annular die (in order of thickness ratio: 0.2
/0.5/1.0/0.5/0.2) (Example 1)
2) The distance between the tip of the die and the water-cooled ring that uniformly spreads the water was adjusted, and rapidly cooled under the condition of a draw ratio (DDR) of 8 to phase-separate the resin components to stably obtain a raw material.

【0132】この原反を、2対の送りニップロールと引
取りニップロールの間に通して熱風により82℃に加熱
し、そのまま内部に空気を入れ、整流接触ガイドを用い
て連続的に膨張させて機械方向の延伸倍率が3.5倍、
横方向の延伸倍率が3倍になるように延伸し、同様に2
組のニップロール間で、次いでもう一組の2対の送りニ
ップロールと引取りニップロールの間に通して熱風によ
り95℃に加熱し、機械方向の延伸倍率が2倍、横方向
の延伸倍率が1.5倍になるように再延伸し、さらにも
う一組の2対の送りニップロールと引取りニップロール
の間に通して、チューブ状にして周方向より熱風により
100℃に加熱してタテ方向に5%、ヨコ方向に5%収
縮させながら30秒間ヒートセットした。
This raw material was passed between two pairs of feed nip rolls and take-off nip rolls, heated to 82 ° C. by hot air, air was directly injected into the raw material, and continuously expanded using a rectifying contact guide. The draw ratio in the direction is 3.5 times,
The film is stretched so that the stretching ratio in the transverse direction becomes three times, and
Heated to 95 ° C. by hot air between two sets of nip rolls and then another pair of feed nip rolls and a take-off nip roll, the stretching ratio in the machine direction is 2 times, and the stretching ratio in the transverse direction is 1. Re-stretch to 5 times, pass through another pair of feed nip rolls and take-off nip rolls, form a tube, heat to 100 ° C with hot air from the circumferential direction and 5% in the vertical direction Then, it was heat-set for 30 seconds while contracting 5% in the horizontal direction.

【0133】最後に両端をスリットしながら、延伸され
たM層をS層から剥離し、抽出槽(溶媒1,1、1−ト
リクロロエタン)で前述のCを抽出し、乾燥することに
より目的の通流体性微多孔フィルム(厚み23μ)を得
た。これらの特性は、実施例11は、多孔度54%、透
気度300(sec/100cc)、10%収縮温度1
65℃であった。
Finally, while stretching both ends, the stretched M layer was peeled off from the S layer, and the above-mentioned C was extracted in an extraction tank (solvent 1,1,1-trichloroethane) and dried to obtain the desired product. A fluid microporous film (thickness 23 μ) was obtained. These characteristics are as follows: Example 11 has a porosity of 54%, an air permeability of 300 (sec / 100 cc), and a 10% shrinkage temperature of 1.
65 ° C.

【0134】又実施例12は、多孔度57%、透気度1
58(sec/100cc)、10%収縮温度165
℃、前述の電池安全性(温度差)は55℃、電流遮断温
度は133℃であった。これらはいずれも剥離時には切
れることも、静電気の発生もなく、オフラインでの高速
剥離性(100m/分)もよかった。更に、各工程中で
も適度な密着性があり、剥離してバラバラになることも
なかった。
In Example 12, the porosity was 57% and the air permeability was 1
58 (sec / 100cc), 10% shrink temperature 165
° C, the above-mentioned battery safety (temperature difference) was 55 ° C, and the current interruption temperature was 133 ° C. All of them were not broken at the time of peeling, did not generate static electricity, and had good off-line high-speed peeling properties (100 m / min). Furthermore, even in each step, there was an appropriate adhesiveness, and there was no separation and separation.

【0135】実施例13 実施例12と同様な方法で、押し出し機に、中空ホロー
ファイバー用のクロスヘッド型小型2種2層の環状ダイ
を装備し、S、M層の処方を利用し、S(外)側/M
(内側)の比が、1/20の2層状で押し出し、ドロー
比13で急冷し、M層を均一に相分離させ、原(反)糸
を得た。次にニップロール間の延伸方法で、65℃に加
熱し機械方向の延伸倍率が7.5倍に延伸し、次の工程
で、100℃に加熱し、機械方向に5%ゆるめ20秒間
ヒートセットした。さらにS(表)層を連続的に剥離
し、抽出し多孔状のチューブを得た。
Example 13 In the same manner as in Example 12, the extruder was equipped with a crosshead type small two-type two-layer annular die for hollow hollow fiber, and the S and M layer formulations were used. (Outside) side / M
The (inside) ratio was extruded in two layers of 1/20, quenched at a draw ratio of 13, and the M layer was uniformly phase-separated to obtain a raw (counter) yarn. Next, by a stretching method between nip rolls, the film was heated to 65 ° C. and stretched to 7.5 times in the machine direction in the machine direction. In the next step, the film was heated to 100 ° C., loosened 5% in the machine direction and heat set for 20 seconds. . Further, the S (surface) layer was continuously peeled off and extracted to obtain a porous tube.

【0136】外径2.5mm、内径1.5mm、多孔度
47%で、透気度が1300sec/100cc、10
%収縮温度が178℃、透水性(フラックス)が100
cc/cm2・Hr・atm、バブルポイント(水中
で、空気により順次加圧してゆき、孔から空気の気泡が
出だす瞬間の圧力をいう)が2.6kg/cm2の特性
を有する分離用ホローファイバーであった。
The outer diameter is 2.5 mm, the inner diameter is 1.5 mm, the porosity is 47%, and the air permeability is 1300 sec / 100 cc.
% Shrinkage temperature is 178 ° C and water permeability (flux) is 100
cc / cm 2 · Hr · atm, separation point with a bubble point (the pressure at the moment when air bubbles come out from the holes by being sequentially pressurized with air in water) is 2.6 kg / cm 2 It was a hollow fiber.

【0137】実施例14 A−1を87体積%と延伸開口性物質(D)としてD1
−1を5体積%、D3−1を1体積%、D5−1を1体
積%、その他の添加剤としてエルカ酸アマイドを1体積
%、B−3を5体積%を、2軸混練り押し出し機で混練
りし、内部層(M層)及び補助層の外部層(S層)とし
てS3処方を選定し、層配置がS/M/Sの3層となる
ように、それぞれ2台の押出機で可塑化混練し、2種3
層の環状ダイより共押し出し(厚み比:S層/M層/S
層=2/1/2)した後、ダイス先端と水の均一に出る
水冷リングの間の距離を調節し、ドロー比(DDR)8
の条件で、急冷し原反を安定に得た。
Example 14 87% by volume of A-1 and D1 as a stretch-openable substance (D)
-1 was 5% by volume, D3-1 was 1% by volume, D5-1 was 1% by volume, and erucic acid amide was 1% by volume and B-3 was 5% by volume as other additives. Kneading with an extruder, selecting the S3 formulation as the inner layer (M layer) and the outer layer (S layer) of the auxiliary layer, and extruding two units each so that the layer arrangement becomes three layers of S / M / S. Kneading with plasticizer, 2 types 3
Layer co-extrusion through a circular die (thickness ratio: S layer / M layer / S
Layer = 2/1/2), and then adjust the distance between the die tip and the water cooling ring which uniformly comes out of water, and draw ratio (DDR) 8
Under the conditions described above, the raw material was quenched to obtain a stable material.

【0138】この原反を、2対の送りニップロールと引
取りニップロールの間に通して熱風により55℃に加熱
し、そのまま内部に空気を入れ、整流接触ガイドを用い
て連続的に膨張させて機械方向の延伸倍率が4.5倍、
横方向の延伸倍率が4倍になるように延伸し、次いでも
う一組の2対の送りニップロールと引取りニップロール
の間に通して熱風により75℃に加熱し、機械方向の延
伸倍率が2倍、横方向の延伸倍率が1.5倍になるよう
に再延伸し、2組のニップロール間でフラット状でヒー
トセットし、最後に両端をスリットしながら、延伸され
たM層をS層から剥離し、目的の通流体性微多孔フィル
ム(厚み5μ)を得た。
The raw material was passed between two pairs of feed nip rolls and take-off nip rolls, heated to 55 ° C. by hot air, air was introduced into the raw material, and continuously expanded using a rectifying contact guide. Stretching ratio in the direction of 4.5 times,
The film is stretched so that the stretching ratio in the transverse direction becomes 4 times, and then it is passed between another pair of feed nip rolls and the take-off nip roll and heated to 75 ° C. by hot air, and the stretching ratio in the machine direction is 2 times. And re-stretched so that the stretching ratio in the horizontal direction becomes 1.5 times, heat-set in a flat state between two sets of nip rolls, and finally strip the stretched M layer from the S layer while slitting both ends. Thus, an intended fluid-permeable microporous film (5 μm in thickness) was obtained.

【0139】これらの特性は、多孔度50%、透気度1
00(sec/100cc)、10%収縮温度175℃
であった。又剥離時には静電気の発生もなく、オフライ
ンでの高速剥離性(100m/分)もよかった。更に、
各工程中でも適度な密着性があり、剥離してバラバラに
なることもなかった。
These properties are as follows: porosity 50%, air permeability 1
00 (sec / 100cc), 10% shrink temperature 175 ° C
Met. In addition, no static electricity was generated at the time of peeling, and the high-speed peeling off-line (100 m / min) was good. Furthermore,
Even in each step, there was moderate adhesion, and there was no separation and separation.

【0140】[0140]

【発明の効果】本発明には耐熱性があり、高強度で高性
能な上、薄膜化と生産性に優れた電池用セパレーターや
分離膜等多くの用途に有用な通流体性微多孔フイルムと
その製造方法を提供したという効果がある。
According to the present invention, there is provided a fluid-permeable microporous film which is heat-resistant, high-strength, high-performance, and excellent in thinning and productivity, and is useful in many applications such as battery separators and separation membranes. There is an effect that the manufacturing method is provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 9/28 CES C08J 9/28 CES 5H021 C08K 13/04 C08K 13/04 C08L 23/00 C08L 23/00 H01M 2/16 H01M 2/16 P // B29K 23:00 105:04 B29L 7:00 9:00 31:14 31:34 Fターム(参考) 4D006 GA07 MA06 MA22 MA31 MA40 MB15 MB20 MC22X MC23X MC44X MC81 MC83 MC87 MC88 MC89 NA35 NA36 PC80 4F071 AA14 AF08 AF45 AG29 AH02 AH04 BA01 BB07 BC01 BC17 4F074 AA02 AA09 AA16 AA17 AA24 AA26 AA27 AA32 AA48 AA90 AC02 AC17 AC19 AC24 AC34 AC36 AD11 AD16 CA02 CB33 CC02Y CC22X CC29Y CC32X CC32Y DA02 DA10 DA43 4F100 AK01B AK03A AK03B AK03J AK56A AK56J BA02 BA10A BA10B BA15 BA16 DJ01A EH202 EJ373 EJ502 EJ513 EJ912 GB41 GB90 JA03A JA04A JA06A JA20A JB16B JD02A JJ03 JK01 JL02 JL04 YY00A 4J002 AB013 AE032 AE052 AF022 BA002 BB041 BB141 BB172 BC033 BG053 BL012 CP033 DA017 DA027 DA037 DE077 DE107 DE137 DE147 DE237 DJ007 DJ017 DJ037 DL007 EH146 EW046 FA083 FD013 FD017 GD05 5H021 BB01 BB02 BB05 BB13 BB19 CC00 CC04 EE04 EE15 EE21 EE31 HH00 HH01 HH02 HH03 HH06 HH07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08J 9/28 CES C08J 9/28 CES 5H021 C08K 13/04 C08K 13/04 C08L 23/00 C08L 23/00 H01M 2/16 H01M 2/16 P // B29K 23:00 105: 04 B29L 7:00 9:00 31:14 31:34 F term (reference) 4D006 GA07 MA06 MA22 MA31 MA40 MB15 MB20 MC22X MC23X MC44X MC81 MC83 MC87 MC88 MC89 NA35 NA36 PC80 4F071 AA14 AF08 AF45 AG29 AH02 AH04 BA01 BB07 BC01 BC17 4F074 AA02 AA09 AA16 AA17 AA24 AA26 AA27 AA32 AA48 AA90 AC02 AC17 AC19 AC24 AC34 AC36 AD11 AD16 CA03 DA02 AK56A AK56J BA02 BA10A BA10B BA15 BA16 DJ01A EH202 EJ373 EJ502 EJ513 EJ912 GB41 GB90 JA03A JA04A JA06A JA20A JB16B JD02A JJ03 JK01 JL 02 JL04 YY00A 4J002 AB013 AE032 AE052 AF022 BA002 BB041 BB141 BB172 BC033 BG053 BL012 CP033 DA017 DA027 DA037 DE077 DE107 DE137 DE147 DE237 DJ007 DJ017 DJ037 DL007 EH146 EW046 FA083 FD0115 BB01 BB01 BB015 02BB HH06 HH07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 結晶融点が140〜250℃のα−オレ
フィンと一酸化炭素との共重合体樹脂を主成分とする少
なくとも1層の熱可塑性樹脂(A)からなり、多孔度が
30〜80%であり、透気度が5〜2000sec/1
00ccであり、且つ10%収縮温度が100℃以上の
耐熱性を有する通流体性微多孔フイルム。
1. A thermoplastic resin (A) having at least one layer of a copolymer resin of an α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C. as a main component, and having a porosity of 30 to 80. %, And the air permeability is 5 to 2000 sec / 1.
A fluid-permeable microporous film having a heat resistance of 100 cc and a 10% shrinkage temperature of 100 ° C. or higher.
【請求項2】 結晶融点が140〜250℃のα−オレ
フィンと一酸化炭素との共重合体樹脂を主成分とする少
なくとも1層の熱可塑性樹脂(A)層と、結晶融点が8
0〜240℃のポリオレフィン系樹脂を主成分とする少
なくとも1層の熱可塑性樹脂(B)層の少なくとも2層
からなる、多孔度が30〜80%であり、透気度が5〜
2000sec/100ccであり、且つ10%収縮温
度が100℃以上の耐熱性を有する通流体性微多孔フイ
ルム。
2. At least one thermoplastic resin (A) layer mainly composed of a copolymer resin of α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C., and a crystal melting point of 8
It has a porosity of 30 to 80% and an air permeability of at least two layers of at least one thermoplastic resin (B) layer having a polyolefin resin as a main component at 0 to 240 ° C.
A fluid-permeable microporous film having heat resistance of 2000 sec / 100 cc and a 10% shrinkage temperature of 100 ° C. or higher.
【請求項3】 表層を含む少なくとも2層の、結晶融点
が140〜250℃のα−オレフィンと一酸化炭素との
共重合体樹脂を主成分とする熱可塑性樹脂(A)層と、
結晶融点が80〜240℃のポリオレフィン系樹脂を主
成分とする熱可塑性樹脂(B)の内層を含む少なくとも
1層とよりなる少なくとも3層状の微多孔フイルムから
なり、多孔度が30〜80%であり、透気度が5〜20
00sec/100ccであり、且つ10%収縮温度が
100℃以上の耐熱性を有する通流体性微多孔フイル
ム。
3. A thermoplastic resin (A) layer containing at least two layers including a surface layer, the main component of which is a copolymer resin of α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C.,
It is composed of at least a three-layer microporous film composed of at least one layer including an inner layer of a thermoplastic resin (B) containing a polyolefin resin having a crystal melting point of 80 to 240 ° C. as a main component, and having a porosity of 30 to 80%. Yes, air permeability 5-20
A fluid-permeable microporous film having a heat resistance of 00 sec / 100 cc and a 10% shrinkage temperature of 100 ° C. or higher.
【請求項4】 結晶融点が140〜250℃のα−オレ
フィンと一酸化炭素の共重合体樹脂を主成分とする熱可
塑性樹脂(A)15〜90体積部と、抽出可能であっ
て、200℃での粘度が1000CPS以下であり、且
つ不活性な有機液状物質(C)85〜10体積部を主成
分とする組成物よりなる微多孔形成前駆層をダイにより
押し出し、伝熱媒体により、直接又は間接的に急冷固化
させ、次いで15℃以上で且つ該前駆層を構成する熱可
塑性樹脂(A)のビカット軟化点に50℃を加えた温度
以下であって、且つ該樹脂の結晶融点以下の温度条件
で、少なくとも1方向に面積延伸倍率で、2倍以上50
倍以下に延伸し、その前後に上記物質(C)を抽出する
ことにより微多孔フイルムを得ることを特徴とする耐熱
性の通流体性微多孔フイルムの製造方法。
4. A thermoplastic resin (A) containing a copolymer resin of α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C. as a main component and 15 to 90 parts by volume, which is extractable, and A microporous formation precursor layer composed of a composition having a viscosity of not more than 1000 CPS at 85 ° C. and containing 85 to 10 parts by volume of an inert organic liquid substance (C) as a main component is extruded with a die, and directly extruded with a heat transfer medium. Or indirectly quenched and solidified, and then at a temperature not lower than 15 ° C. and not higher than the temperature obtained by adding 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer, and not higher than the crystal melting point of the resin. Under the temperature condition, the area stretching ratio in at least one direction is 2 times or more and 50 times or more.
A method for producing a heat-resistant, fluid-permeable, microporous film, characterized in that the microporous film is obtained by drawing the substance (C) before and after stretching the film to twice or less.
【請求項5】 結晶融点が140〜250℃のα−オレ
フィンと一酸化炭素との共重合体樹脂を主成分とする熱
可塑性樹脂(A)、及び結晶融点が80〜240℃のポ
リオレフィン系樹脂を主成分とする熱可塑性樹脂(B)
15〜90体積部と、抽出可能であって、200℃での
粘度が1000CPS以下であり、且つ不活性な有機液
状物質(C)85〜10体積部を主成分とする組成物よ
りなる少なくとも1層の微多孔形成前駆層とを、多層ダ
イにより押し出し、伝熱媒体により、直接又は間接的に
急冷固化させ、次いで15℃以上で且つ上記前駆層を構
成する熱可塑性樹脂(A)のビカット軟化点に50℃を
加えた温度以下であって、且つ該樹脂の結晶融点以下の
温度条件で、少なくとも1方向に面積延伸倍率で、2倍
以上50倍以下に延伸し、その前後に上記物質(C)を
抽出することにより得られる、少なくとも2層状の耐熱
性の通流体性微多孔フイルムの製造方法。
5. A thermoplastic resin (A) comprising a copolymer resin of α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C. as a main component, and a polyolefin resin having a crystal melting point of 80 to 240 ° C. -Based thermoplastic resin (B)
15 to 90 parts by volume, at least one of a composition which is extractable, has a viscosity at 200 ° C. of 1000 CPS or less, and has 85 to 10 parts by volume of an inert organic liquid substance (C) as a main component. The microporous forming precursor layer of the layer is extruded by a multilayer die, solidified by direct or indirect quenching with a heat transfer medium, and then Vicat softening of the thermoplastic resin (A) at 15 ° C. or higher and constituting the precursor layer. At a temperature not higher than the temperature obtained by adding 50 ° C. to the point and at a temperature not higher than the crystal melting point of the resin, the film is stretched in at least one direction by an area stretch ratio of 2 times or more and 50 times or less. A method for producing a heat-resistant, fluid-permeable microporous film having at least two layers, which is obtained by extracting C).
【請求項6】 結晶融点が140〜250℃のα−オレ
フィンと一酸化炭素の共重合体樹脂を主成分とする熱可
塑性樹脂(A)99〜50体積部と、下記のD1〜D4
から選ばれる少なくとも1種の延伸開口性物質(D)1
〜50体積部を含む組成物 D1:基材となる該樹脂(A)との溶解度パラメータの
差が3以内で、且つ弾性率が該樹脂(A)の120%以
上である熱可塑性樹脂が1〜50体積部、 D2:基材となる該樹脂(A)との溶解度パラメータの
差が3以内で、且つ弾性率が該樹脂(A)の120%未
満で、且つ結晶化度が40%以上の、熱可塑性樹脂
(A)とは、異なる熱可塑性樹脂が1〜50体積部、 D3:基材となる該樹脂(A)との溶解度パラメータの
差が3以上で、押し出し加工温度で少なくとも液状であ
る有機化合物が0.5〜10体積部、 D4:基材となる該樹脂(A)との溶解度パラメータの
差が3以内で、押し出し加工温度で少なくとも液状であ
る有機化合物が1〜20体積部、 D5:平均粒子径が10μm以下の、有機系又は無機系
より選択される少なくとも1種の充填材が1〜10体積
部、 よりなる微多孔形成前駆層をダイにより押し出し、伝熱
媒体によって、直接又は間接的に急冷固化させ、次いで
15℃以上で且つ上記前駆層を構成する熱可塑性樹脂
(A)のビカット軟化点に50℃を加えた温度以下であ
って、且つ該樹脂の結晶融点以下の温度条件で、少なく
とも1方向に面積延伸倍率で、2倍以上50倍以下に延
伸し、上記前駆層に微多孔を形成させることにより微多
孔フイルムを得ることを特徴とする耐熱性の通流体性微
多孔フイルムの製造方法。
6. A thermoplastic resin (A) having a crystal melting point of 140 to 250 ° C. and containing a copolymer resin of α-olefin and carbon monoxide as a main component, in an amount of 99 to 50 parts by volume, and D1 to D4 described below.
At least one kind of stretch opening material (D) 1 selected from
D1: A thermoplastic resin having a solubility parameter difference of not more than 3 with respect to the resin (A) as a base material and having an elastic modulus of 120% or more of the resin (A) is 1 5050 parts by volume, D2: The difference in solubility parameter with the resin (A) as the base material is within 3, the elastic modulus is less than 120% of the resin (A), and the crystallinity is 40% or more. The thermoplastic resin (A) is different from the thermoplastic resin (A) in an amount of 1 to 50 parts by volume. D3: The difference in solubility parameter with the resin (A) as the base material is 3 or more, and the liquid is at least liquid at the extrusion processing temperature. D4: a difference in solubility parameter between the resin (A) as a substrate and the resin (A) is 3 or less, and an organic compound which is at least liquid at an extrusion processing temperature is 1 to 20 parts by volume. Part, D5: an organic or organic compound having an average particle diameter of 10 μm or less 1 to 10 parts by volume of at least one filler selected from inorganic-based, a microporous forming precursor layer consisting of extruded by a die, quenched and solidified directly or indirectly by a heat transfer medium, and then at 15 ° C or higher. And at a temperature not higher than the temperature obtained by adding 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer, and at a temperature not higher than the crystal melting point of the resin, in an area stretch ratio in at least one direction, A method for producing a heat-resistant, fluid-permeable, microporous film, characterized in that a microporous film is obtained by stretching the precursor layer by a factor of 2 to 50 and forming microporosity in the precursor layer.
【請求項7】 結晶融点が140〜250℃のα−オレ
フィンと一酸化炭素との共重合体樹脂を主成分とする熱
可塑性樹脂(A)及び結晶融点が80〜240℃のポリ
オレフィン系樹脂を主成分とした熱可塑性樹脂(B)9
9〜50体積部と請求項6記載の延伸開口性物質(D)
1〜50体積部を含む組成物からなる、少なくとも1層
の微多孔形成前駆層を、多層ダイにより押し出し、伝熱
媒体により、直接又は間接的に急冷固化させ、次いで1
5℃以上で且つ上記前駆層を構成する熱可塑性樹脂
(A)のビカット軟化点に50℃を加えた温度以下であ
って、且つ該樹脂の結晶融点以下の温度条件で、少なく
とも1方向に面積延伸倍率で、2倍以上50倍以下に延
伸して、上記前駆層に微多孔を形成させることにより微
多孔フイルムを得ることを特徴とする耐熱性の通流体性
微多孔フイルムの製造方法。
7. A thermoplastic resin (A) mainly composed of a copolymer resin of α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C. and a polyolefin resin having a crystal melting point of 80 to 240 ° C. Thermoplastic resin (B) 9 as a main component
9 to 50 parts by volume of the stretch-openable substance (D) according to claim 6.
At least one microporous forming precursor layer comprising a composition comprising 1 to 50 parts by volume is extruded by a multilayer die, quenched and solidified directly or indirectly by a heat transfer medium,
At least 5 ° C. and not more than the temperature obtained by adding 50 ° C. to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer, and not more than the crystal melting point of the resin, the area is at least one direction. A method for producing a heat-resistant, fluid-permeable, microporous film, characterized in that a microporous film is obtained by stretching the film at a stretching ratio of 2 to 50 times to form a microporous film in the precursor layer.
【請求項8】 結晶融点が140〜250℃のα−オレ
フィンと一酸化炭素との共重合体樹脂を主成分とする熱
可塑性樹脂(A)及び又は結晶融点が80〜240℃の
ポリオレフィン系樹脂を主成分とした熱可塑樹脂(B)
よりなる微多孔形成前駆層と、更に少なくとも1層の、
該前駆層をなす樹脂とは異なる熱可塑性樹脂を主成分と
する非通流体性樹脂組成物よりなる補助層(S)とを、
同時に多層ダイにより共押し出し、伝熱媒体により直接
又は間接的に急冷固化させて、次いで15℃以上で且つ
上記前駆層を構成する熱可塑性樹脂(A)のビカット軟
化点に50℃を加えた温度以下であって、且つ該樹脂の
結晶融点以下の温度条件で、少なくとも1方向に面積延
伸倍率で、2倍以上50倍以下に延伸し、次いで該補助
層を剥離除去することにより、微多孔フイルムを得るこ
とを特徴とする耐熱性の通流体性の微多孔フイルムの製
造方法。
8. A thermoplastic resin (A) mainly comprising a copolymer resin of an α-olefin and carbon monoxide having a crystal melting point of 140 to 250 ° C. and / or a polyolefin resin having a crystal melting point of 80 to 240 ° C. -Based thermoplastic resin (B)
A microporous formation precursor layer, and at least one further layer,
An auxiliary layer (S) made of a non-fluid resin composition containing a thermoplastic resin different from the resin constituting the precursor layer as a main component,
At the same time, co-extruded with a multilayer die, quenched and solidified directly or indirectly with a heat transfer medium, and then at a temperature of 15 ° C. or higher and 50 ° C. added to the Vicat softening point of the thermoplastic resin (A) constituting the precursor layer. The microporous film is stretched in at least one direction at a temperature of not more than the crystal melting point of the resin to at least one direction at an area stretch ratio of 2 to 50 times, and then the auxiliary layer is peeled off. A method for producing a heat-resistant, fluid-permeable, microporous film, characterized in that:
JP00094299A 1999-01-06 1999-01-06 Fluid-permeable microporous film and method for producing the same Expired - Lifetime JP4229504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00094299A JP4229504B2 (en) 1999-01-06 1999-01-06 Fluid-permeable microporous film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00094299A JP4229504B2 (en) 1999-01-06 1999-01-06 Fluid-permeable microporous film and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008207673A Division JP2009001817A (en) 2008-08-12 2008-08-12 Liquid-permeable microporous film and its manufacturing process

Publications (2)

Publication Number Publication Date
JP2000198866A true JP2000198866A (en) 2000-07-18
JP4229504B2 JP4229504B2 (en) 2009-02-25

Family

ID=11487739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00094299A Expired - Lifetime JP4229504B2 (en) 1999-01-06 1999-01-06 Fluid-permeable microporous film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4229504B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097298A (en) * 2000-09-26 2002-04-02 Inoac Corp Micro-pore body and method of producing the same
JP2004139933A (en) * 2002-10-21 2004-05-13 Mitsubishi Plastics Ind Ltd Separator and battery using the same
JPWO2002070115A1 (en) * 2001-03-06 2004-07-02 旭化成ケミカルズ株式会社 Manufacturing method of hollow fiber membrane
JP2005137972A (en) * 2003-11-04 2005-06-02 Chisso Corp Filter made of polyolefin resin
JP2006066355A (en) * 2004-08-30 2006-03-09 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
EP1574249A3 (en) * 2004-03-09 2006-07-05 Celgard Inc. Method of making a composite microporous membrane
JP2007083549A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Perforated laminate and its manufacturing method
JP2007160691A (en) * 2005-12-13 2007-06-28 Mitsubishi Plastics Ind Ltd Method for manufacturing porous body and porous body
WO2009122961A1 (en) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
JPWO2008032679A1 (en) * 2006-09-11 2010-01-28 旭化成株式会社 POLYMER ELECTROLYTE, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE
WO2010055834A1 (en) 2008-11-17 2010-05-20 Tonen Chemical Corporation Microporous membranes and methods for producing and using such membranes
JP2011051330A (en) * 2009-08-06 2011-03-17 Asahi Kasei E-Materials Corp Microporous membrane pile-up, manufacturing method of the same, and manufacturing method of microporous membrane
JP2011073276A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Laminated microporous film, method for manufacturing the same, and separator for battery
JP2011074212A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Fine porous film, method for producing fine porous film, and separator for battery
WO2011135742A1 (en) * 2010-04-27 2011-11-03 株式会社ユポ・コーポレーション Water permeable film and method for producing same
US9147868B2 (en) 2007-11-30 2015-09-29 Toray Battery Separator Film Co., Ltd. Microporous films, methods for their production, and applications thereof
WO2017170065A1 (en) 2016-03-28 2017-10-05 ニッポン高度紙工業株式会社 Separator for electrochemical element and electrochemical element
CN114400416A (en) * 2021-12-08 2022-04-26 四川大学 Lithium battery diaphragm with thermal shutdown property and preparation method
CN114561745A (en) * 2021-12-13 2022-05-31 杭州诺邦无纺股份有限公司 Phase-change non-woven material with temperature adjusting function
CN115023460A (en) * 2020-01-31 2022-09-06 旭化成株式会社 Microporous membrane and method for producing same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097298A (en) * 2000-09-26 2002-04-02 Inoac Corp Micro-pore body and method of producing the same
JPWO2002070115A1 (en) * 2001-03-06 2004-07-02 旭化成ケミカルズ株式会社 Manufacturing method of hollow fiber membrane
JP2004139933A (en) * 2002-10-21 2004-05-13 Mitsubishi Plastics Ind Ltd Separator and battery using the same
JP4658442B2 (en) * 2002-10-21 2011-03-23 三菱樹脂株式会社 Separator and battery using the same
JP2005137972A (en) * 2003-11-04 2005-06-02 Chisso Corp Filter made of polyolefin resin
CN100371058C (en) * 2004-03-09 2008-02-27 思凯德公司 Method of making a composite microporous membrane
EP1574249A3 (en) * 2004-03-09 2006-07-05 Celgard Inc. Method of making a composite microporous membrane
JP2006066355A (en) * 2004-08-30 2006-03-09 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP4676728B2 (en) * 2004-08-30 2011-04-27 株式会社巴川製紙所 Separator for electronic parts and method for manufacturing the same
JP2007083549A (en) * 2005-09-22 2007-04-05 Mitsubishi Plastics Ind Ltd Perforated laminate and its manufacturing method
JP2007160691A (en) * 2005-12-13 2007-06-28 Mitsubishi Plastics Ind Ltd Method for manufacturing porous body and porous body
JPWO2008032679A1 (en) * 2006-09-11 2010-01-28 旭化成株式会社 POLYMER ELECTROLYTE, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE
US9147868B2 (en) 2007-11-30 2015-09-29 Toray Battery Separator Film Co., Ltd. Microporous films, methods for their production, and applications thereof
WO2009122961A1 (en) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 Microporous film and method for producing the same
US8309256B2 (en) 2008-03-31 2012-11-13 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
KR101213862B1 (en) * 2008-03-31 2012-12-18 아사히 가세이 이-매터리얼즈 가부시키가이샤 Microporous film and method for producing the same
WO2010055834A1 (en) 2008-11-17 2010-05-20 Tonen Chemical Corporation Microporous membranes and methods for producing and using such membranes
US9647253B2 (en) 2008-11-17 2017-05-09 Toray Battery Separator Film Co., Ltd. Methods of producing and using microporous membranes
JP2014076662A (en) * 2009-08-06 2014-05-01 Asahi Kasei E-Materials Corp Microporous membrane pile-up, manufacturing method of the same, and manufacturing method of microporous membrane
JP2015092488A (en) * 2009-08-06 2015-05-14 旭化成イーマテリアルズ株式会社 Microporous membrane pile-up, manufacturing method of the same, and manufacturing method of microporous membrane
JP2011051330A (en) * 2009-08-06 2011-03-17 Asahi Kasei E-Materials Corp Microporous membrane pile-up, manufacturing method of the same, and manufacturing method of microporous membrane
JP2011074212A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Fine porous film, method for producing fine porous film, and separator for battery
JP2011073276A (en) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp Laminated microporous film, method for manufacturing the same, and separator for battery
WO2011135742A1 (en) * 2010-04-27 2011-11-03 株式会社ユポ・コーポレーション Water permeable film and method for producing same
CN102869708A (en) * 2010-04-27 2013-01-09 优泊公司 Water permeable film and method for producing same
WO2017170065A1 (en) 2016-03-28 2017-10-05 ニッポン高度紙工業株式会社 Separator for electrochemical element and electrochemical element
CN115023460A (en) * 2020-01-31 2022-09-06 旭化成株式会社 Microporous membrane and method for producing same
CN115023460B (en) * 2020-01-31 2024-04-05 旭化成株式会社 Microporous membrane and method for producing same
CN114400416A (en) * 2021-12-08 2022-04-26 四川大学 Lithium battery diaphragm with thermal shutdown property and preparation method
CN114561745A (en) * 2021-12-13 2022-05-31 杭州诺邦无纺股份有限公司 Phase-change non-woven material with temperature adjusting function

Also Published As

Publication number Publication date
JP4229504B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP4229504B2 (en) Fluid-permeable microporous film and method for producing the same
JP5502707B2 (en) Multilayer porous film, battery separator and battery
JP5265052B1 (en) Method for producing laminated porous film
JP5778657B2 (en) Polypropylene resin porous film, battery separator and battery
KR101316995B1 (en) Laminated porous film, separator for battery, and battery
JP5419817B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5697328B2 (en) Multilayer porous film, battery separator, and battery
JP5676577B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5690832B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101071602B1 (en) Laminated porous film, separator for lithium cell, and cell
JP4734397B2 (en) Laminated porous film, separator for lithium ion battery using the same, and battery
JP2004161799A (en) Biaxially oriented polyproylene film
JP2008144039A (en) Fluid-permeable fine porous material and its manufacturing method
TW200815519A (en) Polyolefin composition, its production method, and a battery separator made therefrom
JP2014012391A (en) Lamination porous film roll and its manufacturing method
JP5434661B2 (en) Porous film and power storage device
JP2017088837A (en) Low heat shrinkable polyolefin microporous film and manufacturing method therefor
JP2020007443A (en) Packaging film for food product, and package for food product
JP5603410B2 (en) Polypropylene resin porous film, battery separator and battery
JP2009001817A (en) Liquid-permeable microporous film and its manufacturing process
JP4052707B2 (en) Method for producing multilayer microporous film
JP5976305B2 (en) Method for producing laminated porous film
WO2021033733A1 (en) Polyolefin micro porous film, laminate, and battery
JPH10249945A (en) Manufacture of finely porous film and multilayer film
JPH10265608A (en) Production of microporous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350