WO2011135742A1 - Water permeable film and method for producing same - Google Patents

Water permeable film and method for producing same Download PDF

Info

Publication number
WO2011135742A1
WO2011135742A1 PCT/JP2010/069071 JP2010069071W WO2011135742A1 WO 2011135742 A1 WO2011135742 A1 WO 2011135742A1 JP 2010069071 W JP2010069071 W JP 2010069071W WO 2011135742 A1 WO2011135742 A1 WO 2011135742A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
permeable film
stretched
resin
film according
Prior art date
Application number
PCT/JP2010/069071
Other languages
French (fr)
Japanese (ja)
Inventor
良一 内野
正一 石元
達也 鈴木
綱 中村
和幸 木村
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010102176A external-priority patent/JP5564322B2/en
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to CN2010800664784A priority Critical patent/CN102869708A/en
Publication of WO2011135742A1 publication Critical patent/WO2011135742A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene

Definitions

  • the present invention relates to a water permeable film that can easily allow liquid such as water or oil to pass from one surface to the other surface.
  • the water-permeable film of the present invention can be used for various separators such as batteries and electrolytic capacitors, various separation membranes (filters), absorbent articles such as diapers, heat-sensitive receiving paper members, ink receptor members, and the like.
  • These materials include liquid absorbers, liquid-absorbing wiping materials, protective cushioning materials for packing and packaging, building materials, curing sheets and joint materials for civil engineering, anti-condensation materials, heat insulation materials for livestock houses, cushions, Applications such as padding for writing instruments, suction cores for fragrances, culture media for hydroponics, filter media such as filters, various microfiltration membranes, separators for batteries and electrolytic capacitors, members for heat-sensitive receiving paper, ink receptor members, etc. Has been used.
  • the above thin film materials have various merits.
  • the manufacturing process is simple and inexpensive.
  • porous films obtained by solvent extraction porous films obtained by cutting from ultra-high molecular weight polyethylene sintered bodies, and porous films obtained by fibrillating various resin films by stretching are durable. Since the pore size and distribution are uniform and precise, they are actually used in separators for batteries and electrolytic capacitors, and various microfiltration membranes (Patent Documents 1 to 9).
  • the above-mentioned porous resin film used for separators and various microfiltration membranes for batteries and electrolytic capacitors in particular has the following various problems. That is, the porous film obtained by solvent extraction has a problem of cost increase due to treatment of the solvent waste liquid discharged in the process of extracting the solvent / plasticizer from the polymer and low production rate.
  • the porous film obtained from the sintering method of ultrahigh molecular weight polyethylene has many manufacturing processes and has a problem of cost increase.
  • a porous film in which a resin film is fibrillated by stretching has a problem of cost increase due to precise temperature treatment and low production speed.
  • the present inventors have produced a water permeable film that can be stably manufactured in a large amount at a high speed with a simple manufacturing process and has excellent water permeability and tear resistance. It was an object of the present invention to provide.
  • the inventors of the present invention earnestly researched and melted and kneaded a resin composition highly filled with an inorganic filler (inorganic fine powder) in a polymer, and stretched a sheet extruded by an extruder connected to a T-die.
  • a water-permeable film that can be easily formed at high speed has been completed by a manufacturing method in which a large number of fine communication holes are formed inside.
  • attempts to form a large number of fine communication holes with a filler as a core by stretching a sheet highly filled with an inorganic filler in the entire thickness direction is a process from stretching to winding of the sheet after stretching.
  • the sheet is easily cut by the tension, and it is impossible to continuously and stably manufacture the sheet.
  • this problem is solved by selecting a polymer, which enables simple and high-speed molding.
  • the surface of the inorganic filler to be used was hydrophilized with a surface treatment agent to achieve extremely high water permeability while being a stretched resin film.
  • thermoplastic elastomer (B) is one or more thermoplastic elastomers selected from the group consisting of a styrene-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, a urethane-based thermoplastic elastomer, and an ester-based thermoplastic elastomer.
  • a styrene-based thermoplastic elastomer is particularly preferable.
  • the styrenic thermoplastic elastomer is preferably hydrogenated styrene butadiene rubber (HSBR), [5] Particularly preferred are those having a styrene content of 20% by weight or less.
  • the crystalline polyolefin resin (A) includes 0.5 to 22 parts by weight of a high melt tension polypropylene having a melt tension of 10 to 60 g with respect to 100 parts by weight of the crystalline polyolefin resin having a melt tension of less than 10 g.
  • the high melt tension polypropylene is preferably polypropylene (A ′) having a long chain branch in the main chain skeleton.
  • the stretched resin film preferably has a porosity of 28 to 80%.
  • the surface treatment agent (C) includes a water-soluble anionic surfactant having an average molecular weight of 1,000 to 15,000, a water-soluble cationic surfactant having an average molecular weight of 1,000 to 15,000, And a surface treatment agent selected from the group consisting of water-soluble nonionic surfactants having an average molecular weight of 1,000 to 15,000.
  • the stretched resin film preferably further contains a dispersant (E) that improves the dispersibility of the inorganic fine powder (D).
  • JIS-K7128-3 1998 right-angled tear method of the stretched resin film, tear strength (kgf / mm) in the direction perpendicular to the film stretch axis measured based on the test speed A and the tear test
  • adjusting the composition of the resin composition so that the product of the displacement (mm) until breakage of the test piece at the time is 10 to 200 kgf preferable.
  • the water permeable film may be composed only of the stretched resin film.
  • the water-permeable film may have a multilayer structure in which the stretched resin film is used as a base material layer and a surface layer is further provided on at least one surface thereof.
  • a multilayer structure is also included in the present invention as long as it includes the stretched resin film and is within the specified range of water permeability.
  • the stretched resin film may be a uniaxially stretched film.
  • the stretched resin film may be a biaxially stretched film,
  • the biaxially stretched resin film may be a biaxially stretched resin film that is sequentially stretched in a production line direction and a direction orthogonal to the production line,
  • a biaxially stretched resin film that is simultaneously stretched in the production line direction and the direction orthogonal to the production line may be used.
  • a resin sheet is produced using a resin composition containing 45 to 75% by weight, and then the water permeability measured in accordance with JIS-Z0221: 1976 is 0.1 to 2000 by stretching the resin sheet.
  • the manufacturing method of the water-permeable film containing the said stretched resin film characterized by including the process of manufacturing the stretched resin film which is second.
  • the thermoplastic elastomer (B) is preferably a styrenic thermoplastic elastomer
  • the styrenic thermoplastic elastomer is preferably a hydrogenated styrene butadiene rubber.
  • the resin sheet is preferably stretched such that the stretched resin film produced by stretching has a porosity of 28 to 80%.
  • the resin sheet may be stretched uniaxially in the resin sheet conveyance direction.
  • the resin sheet may be stretched uniaxially in a direction perpendicular to the transport direction of the resin sheet.
  • the resin sheet is preferably uniaxially stretched 4 to 10 times.
  • the resin sheet can be stretched by sequentially biaxially stretching the resin sheet in the production line direction and the direction perpendicular to the production line.
  • the resin sheet may be stretched by simultaneously biaxially stretching the resin sheet in the production line direction and the direction perpendicular to the production line.
  • the area stretch ratio of the resin sheet is preferably in the range of 10 to 90 times.
  • a water-permeable film produced by the production method is also included in the present invention.
  • the water-permeable film of the present invention can be used as a separator. [30] The water-permeable film of the present invention can also be used as a microfiltration membrane. [31] Furthermore, the water-permeable film of the present invention can also be used as a liquid absorbent article.
  • the water-permeable film of the present invention can be produced at a high speed and at a low cost by a very simple production method such as formation of communication holes by stretching.
  • the water-permeable film of the present invention imparts water absorption and water permeability without plasma treatment or sputter etching treatment to impart hydrophilicity to the stretched resin film or use an expensive water-absorbing polymer. Can do.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the stretched resin film constituting the water-permeable film of the present invention contains a crystalline polyolefin resin (A).
  • the crystalline polyolefin resin (A) contributes to the film-forming property of the film as a matrix resin.
  • crystalline polyolefin resins that can be used in the present invention include high-density polyethylene, medium-density polyethylene, low-density polyethylene, crystalline ethylene resins such as ethylene / ⁇ -olefin copolymers, crystalline propylene resins, and polymethyl-1 -Crystalline polyolefin resins such as pentene. These may be used in combination of two or more.
  • the crystalline polyolefin resin exhibits crystallinity.
  • the crystallinity of the resin by X-ray diffraction is usually preferably 20% or more, more preferably 35 to 75%. Those not exhibiting crystallinity do not sufficiently form pores (openings) on the film surface due to stretching.
  • the crystallinity here can be measured by methods such as X-ray diffraction and infrared spectrum analysis.
  • the crystalline polyolefin-based resins it is more preferable to use a crystalline propylene-based resin from the viewpoint of stretch formation.
  • As the crystalline propylene-based resin it is preferable to use an isotactic polymer or a syndiotactic polymer obtained by homopolymerizing propylene.
  • the copolymer may be a binary system or a ternary or higher multi-element system, and may be a random copolymer or a block copolymer.
  • the crystalline polyolefin resin (A) used in the present invention preferably contains high melt tension polypropylene in order to obtain stable stretch moldability.
  • high melt tension polypropylene those having a melt tension measured using a capilograph manufactured by Toyo Seiki Seisakusho Co., Ltd. within a range of 10 to 60 g, preferably within a range of 20 to 50 g are preferable.
  • polypropylene having a melt tension in the range of 10 to 60 g when casting the molten resin from the die to the cast roll by lateral drawing, the dripping phenomenon of the molten resin sheet is suppressed, In some cases, drawdown can be suppressed and cast sheet formability can be improved.
  • the high melt tension polypropylene is preferably polypropylene (A ′) having a long-chain branched structure in the main chain skeleton. If the crystalline polyolefin resin (A) contains polypropylene (A ′) having a long chain branch in the main chain skeleton, it is easy to improve the melt tension and the stretchability by strain hardening at the time of stretching. become.
  • the polypropylene (A ′) having a long-chain branch in the main chain skeleton is a propylene-based resin having a propylene unit branch mainly in the molecular structure. Its existence can be confirmed by general analytical methods.
  • the Trouton ratio which is an index indicating the structure of polypropylene having a long-chain branch in the main chain skeleton, was determined by using the inflow pressure loss method, Coxwell's theory (Polymer Engineering Science, 12, P. 64-73 (1972). )) To obtain by measurement.
  • the Troughton ratio is obtained from an elongation viscosity-elongation strain rate curve and a shear viscosity-shear strain rate curve approximated by an exponential function, and is a ratio of elongation viscosity to shear viscosity.
  • Polypropylene having a long chain branch in the main chain skeleton has a high elongation viscosity instead of a shear viscosity. It can be said that the polypropylene (A ′) having a long chain branch in the main chain skeleton of the present invention corresponds to a trouton ratio of 30 or more.
  • An index value indicating the degree of long-chain branching of polypropylene includes a branching index g represented by the following formula (1).
  • [ ⁇ ] LB is an intrinsic viscosity of polypropylene having a long chain branch
  • [ ⁇ ] Lin is a linear crystalline polypropylene having substantially the same weight average molecular weight as the polypropylene having a long chain branch. Intrinsic viscosity.
  • the weight average molecular weight of polypropylene having a long chain branch is M.P. L. It can be measured by the low angle laser light scattering photometric method described by McConnell in American Laboratory, May, 63-75 (1978).
  • Examples of a general method for producing polypropylene having a long chain branch in the main chain skeleton include methods such as crosslinking by radiation (high energy) irradiation, peroxide crosslinking, and copolymerization.
  • Specific examples of polypropylene having a long chain branch in these main chain skeletons include Inspire manufactured by Dow Chemical Japan, Daploy WB130HMS manufactured by BOREALIS.
  • the crystalline polyolefin resin (A) is added in a proportion of 18 to 42% by weight. This is preferably in the range of 22-37% by weight. If the crystalline polyolefin-based resin (A) is less than 18% by weight, the pore-forming property and stretchability are lowered, which is not preferable. On the other hand, when the crystalline polyolefin resin (A) exceeds 42% by weight, the number of pores formed and the tear strength of the stretched film are lowered, which is not preferable.
  • a mixture containing 0.5 to 22 parts by weight is preferred.
  • a mixture of 5 to 15 parts by weight of high melt tension polypropylene is more preferable with respect to 100 parts by weight of the crystalline propylene resin.
  • the stretched resin film of the present invention is blended with the inorganic fine powder (D) described later at a high concentration, the thermoplastic elastomer (B) described later is blended with the matrix resin so as to facilitate the stretch molding.
  • the melt tension of the crystalline polyolefin resin (A) stable stretch molding is facilitated while forming pores with the inorganic fine powder (D) as a core.
  • the stretched resin film constituting the water-permeable film of the present invention contains a thermoplastic elastomer (B).
  • the thermoplastic elastomer (B) is added to improve the tear strength of the film, prevent tearing during the stretch molding, and impart characteristics such as production stability.
  • the thermoplastic elastomer (B) that can be used in the present invention include one or more thermoplastic elastomers selected from styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, urethane-based thermoplastic elastomers, and ester-based thermoplastic elastomers. can do.
  • a styrene thermoplastic elastomer is preferable from the viewpoint of easy dispersion in the crystalline polyolefin resin (A) which is a matrix resin.
  • Styrene-based elastomers include styrene butadiene styrene block copolymer (SBS), styrene isoprene styrene block copolymer (SIS), styrene ethylene butylene styrene block copolymer (SEBS), and styrene ethylene propylene styrene block copolymer (SEPS). And hydrogenated styrene butadiene rubber (HSBR).
  • SBS styrene butadiene styrene block copolymer
  • SIS styrene isoprene styrene block copolymer
  • SEBS styrene ethylene butylene styrene block copolymer
  • SEPS styrene ethylene propylene styrene block copolymer
  • HSBR hydrogenated styrene butadiene rubber
  • these styrenic elastomers include Dynalon manufactured by JSR, Tuftec manufactured by Asahi Kasei, Kraton G manufactured by Kraton Polymer, Shibster manufactured by Kaneka, and Hibler manufactured by Kuraray.
  • As the styrene elastomer hydrogenated styrene butadiene rubber is particularly preferable, and Dynalon manufactured by JSR is particularly preferable.
  • hydrogenated styrene butadiene rubber those having a styrene content of 20% by weight or less can be easily finely dispersed in the crystalline polyolefin resin (A) which is a matrix resin, and the stretch moldability is improved. Most preferred.
  • olefin elastomer examples include ethylene propylene copolymer (EPM), ethylene propylene diene copolymer (EPDM), and those having structures such as blends of PP and PE, block copolymers, and graft copolymers.
  • EPM ethylene propylene copolymer
  • EPDM ethylene propylene diene copolymer
  • Specific examples of these olefin elastomers include Vistamax manufactured by Mitsui Chemicals, Notio manufactured by the company, Prime TPO manufactured by Prime Polymer, Versify manufactured by Dow Chemical Japan, and Zelas manufactured by Mitsubishi Chemical. .
  • Urethane elastomers include polymer chains composed of diisocyanates and short-chain glycols (ethylene glycol, propylene glycol, 1,4-butanediol, bisphenol A, etc.) as hard segments, and polymer chains composed of diisocyanates and long-chain polyols as soft segments. The thing which has the structure to do can be mentioned. Specific examples of these urethane elastomers include elastollan manufactured by BASF Japan, texin manufactured by DIC Bayer Polymer, and milactolan manufactured by Nippon Polyurethane.
  • ester elastomer polybutylene terephthalate (PBT) is a hard segment, and a polyether ester copolymer having a soft segment such as polytetramethylene glycol ether (PTMG) or PTMEG (condensate of PTMG and terephthalic acid), Mention may be made of those having a structure such as a polyester-ester copolymer. Specific examples of these ester elastomers include Byron manufactured by Toyobo Co., Ltd.
  • the thermoplastic elastomer (B) is added in a proportion of 5 to 15% by weight, and preferably in the range of 8 to 12% by weight. If the thermoplastic elastomer (B) is less than 5% by weight, the tear strength is undesirably lowered. On the other hand, the pore-forming property of the thermoplastic elastomer (B) exceeding 15% by weight is not preferable.
  • the stretched resin film constituting the water-permeable film of the present invention contains an inorganic fine powder (D) surface-treated with a surface treatment agent (C).
  • the inorganic fine powder (D) is added for imparting water permeability to the water permeable film.
  • the inorganic fine powder (D) that can be used in the present invention include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, titanium oxide, barium sulfate, zinc oxide, magnesium oxide, diatomaceous earth, and silicon oxide.
  • Examples thereof include a composite inorganic fine powder having aluminum oxide or hydroxide around the core of the inorganic fine powder, and hollow glass beads.
  • heavy calcium carbonate, calcined clay, and diatomaceous earth are preferable because they are inexpensive and can form many pores during stretching, and the porosity can be easily adjusted.
  • Heavy calcium carbonate and light calcium carbonate are preferable because the average particle size and particle size distribution can be easily obtained.
  • the surface treatment agent (C) for treating the surface of the inorganic fine powder (D) is water-soluble and has an average molecular weight of 1,000 to 15,000.
  • a range of anionic or cationic or nonionic polymeric surfactants can be mentioned. Examples of these polymer surfactants include those described in JP-A-10-212367.
  • the inorganic fine powder (D) hydrophilized with the surface treatment agent (C) is added in a proportion of 45 to 75% by weight.
  • the ratio is preferably in the range of 50 to 70% by weight. If the inorganic fine powder (D) is less than 45% by weight, formation of communication holes (communication holes) becomes difficult, which is not preferable. On the contrary, film stretch molding in which the inorganic fine powder (D) exceeds 75% by weight becomes extremely difficult, which is not preferable.
  • different inorganic fine powders may be combined and blended. Also in this case, when the total amount of the inorganic fine powder exceeds 75% by weight, the stretch moldability of the film deteriorates, which is not preferable.
  • the hydrophilic treatment of the inorganic fine powder (D) with the surface treating agent (C) is an anionic system that is water-soluble and has an average molecular weight in the range of 1,000 to 150,000 when wet grinding the inorganic particles.
  • it can be carried out by introducing a cationic or nonionic polymer surfactant and subjecting it to a surface treatment while grinding.
  • wet-grinding an inorganic compound it can also carry out by surface-treating with an anionic, cationic or nonionic antistatic agent. Both of these processes may be performed individually.
  • Preferred examples of the inorganic fine powder (D) subjected to the hydrophilic treatment include those described in JP-A-7-300568.
  • Specific examples of the inorganic fine powder (D) hydrophilized with the surface treatment agent (C) include AFF-Z manufactured by Pfeimatec.
  • the stretched resin film constituting the water-permeable film of the present invention may contain a dispersant (E).
  • the dispersant (E) improves the dispersibility of the inorganic fine powder (D) in the water-permeable film, and imparts characteristics such as improved uniformity of pores and improved water permeability in the water-permeable film.
  • the dispersant (E) that can be used in the present invention known ones can be used, but acid-modified polyolefin resins are particularly preferable, and specific examples include Umex 1001 manufactured by Sanyo Chemical Industries.
  • the dispersant (E) When the dispersant (E) is used in the stretched resin film constituting the water-permeable film of the present invention, it is preferably added at a ratio of 0.01 to 10% by weight. If the dispersant (E) is less than 0.01% by weight, the original function of the dispersant cannot be sufficiently exhibited, which is not preferable. Conversely, if the dispersant (E) exceeds 10% by weight, the inorganic fine powder (D) may be aggregated, which is not preferable.
  • the stretched resin film of the present invention may contain known additives such as a heat stabilizer, an ultraviolet stabilizer, an antioxidant, an antiblocking agent, a nucleating agent, a lubricant, and a colorant. These additives can also be added to layers other than the stretched resin film constituting the water-permeable film of the present invention. These additives are preferably blended in each layer in a proportion of 0.01 to 3% by weight.
  • the water-permeable film of the present invention can be produced by combining various methods known to those skilled in the art.
  • a water-permeable film produced by any method is included in the scope of the present invention as long as it satisfies the conditions described in the claims.
  • the stretched resin film constituting the water-permeable film of the present invention is preferably produced according to the production method of the present invention. That is, an inorganic fine powder (D) whose surface is hydrophilized with a surface treatment agent (C), 18 to 42% by weight of a crystalline polyolefin resin (A), 5 to 15% by weight of a thermoplastic elastomer (B) A resin sheet is produced using a resin composition containing 45 to 75% by weight, and then the water permeability measured by JIS-Z0221: 1976 is 0.1 to 2000 seconds by stretching the resin sheet. It is preferable to produce a stretched resin film.
  • the production method of the present invention is characterized by including a production process of such a stretched resin film.
  • the method for producing a resin sheet using the resin composition is not particularly limited, and can be appropriately selected and employed from commonly used methods.
  • the method of manufacturing a resin sheet can be mentioned by casting and cooling the molten resin composition.
  • the resin composition is melted at a temperature usually 30 to 110 ° C., preferably 50 to 90 ° C. higher than the melting temperature of the resin composition.
  • the molten resin composition is cast into a sheet.
  • a method of melt-kneading the resin composition using an extruder or the like and extruding it from a T-die into a sheet can be preferably employed.
  • the resin composition cast into a sheet is then cooled to a resin sheet using a cooling device or the like.
  • the water-permeable film of the present invention may have a single layer structure or a multilayer structure in which two or more layers are laminated.
  • a resin film obtained by stretching a resin sheet obtained by extruding the resin composition made of the above raw material into a sheet shape can be used as it is as a water permeable film.
  • a stretched resin film having a structure in which surface layers having different compositions are laminated on at least one surface can be used as the water permeable film.
  • it may be produced by forming each layer separately and then laminating, or may be produced by stretching together after lamination.
  • the surface layer may be another resin stretched film, woven fabric, non-woven fabric, melt laminate of resin, resin coating layer, Also good.
  • another thermoplastic resin film layer or a nonwoven fabric layer may be further included as an intermediate layer between the stretched resin film and the surface layer.
  • the resin sheet is uniaxially stretched, and then a surface layer is laminated on the resin sheet, and then uniaxially stretched in a direction orthogonal to the previous stretching direction to obtain a multilayer structure in which the resin sheet is biaxially stretched. You can also. As described above, after laminating each layer, it is easier to stretch the layers together and the manufacturing cost is reduced.
  • the other layers are provided for further improving the function of the water-permeable film of the present invention or adding a new function.
  • the water permeability and osmotic pressure of each layer are changed stepwise in the thickness direction, water and other liquids can be sucked up from one side, Although it is possible to contain a liquid inside and to release the liquid gradually from the other surface, it is possible to impart selectivity of the water permeation direction and the like in the opposite direction.
  • the nonwoven fabric the spun bond nonwoven fabric for improving physical strength, such as tear resistance at the time of use for a water-permeable film, etc. are mentioned, for example.
  • the resin coating layer the well-known recording layer for using a water-permeable film as an inkjet recording paper etc. are mentioned, for example.
  • the water-permeable film of the present invention includes a stretched stretched resin film.
  • Various known methods can be employed for stretching the film.
  • the transport direction of the resin sheet examples thereof include clip stretching (hereinafter referred to as lateral stretching in the present invention) that stretches using a tenter oven in a direction (width direction) perpendicular to the width direction, an inflation molding method that uses a tubular method, and the like.
  • lateral stretching a stretching between rolls
  • the longitudinal stretching method it is easy to obtain a uniaxially stretched resin film having an arbitrary porosity, rigidity, opacity, smoothness, and glossiness by arbitrarily adjusting the stretching ratio.
  • the longitudinal stretching method is preferable because it is easy to obtain a water-permeable film having an arbitrary water permeability by arbitrarily adjusting the porosity.
  • the draw ratio is not particularly limited, and is determined in consideration of the physical properties desired for the water-permeable film of the present invention and the properties of the thermoplastic resin used.
  • the stretching ratio in the longitudinal stretching method is usually in the range of 3 to 11 times, preferably 4 to 10 times, and more preferably 5 to 7 times. Within the same range, a uniaxially stretched resin film having desired physical properties can be stably produced.
  • the width of the obtained stretched film can be easily adjusted although there is no degree of freedom in stretching ratio as long as the longitudinal stretching method due to equipment limitations.
  • the draw ratio of the transverse drawing method is usually 4 to 11 times, more preferably 4 to 10 times, and particularly preferably 5 to 9 times.
  • the draw ratio is usually 4 to 11 times, more preferably 4 to 10 times, and particularly preferably 5 to 9 times.
  • inter-roll stretching is performed by utilizing the peripheral speed difference of a group of rolls in the resin sheet conveyance direction (production line direction) (hereinafter referred to as longitudinal stretching in the present invention).
  • sequential biaxial stretching using clip stretching hereinafter referred to as lateral stretching in the present invention
  • lateral stretching in the present invention sequential biaxial stretching using clip stretching
  • Transverse stretching has a small degree of freedom due to equipment limitations, but the stretch ratio can be adjusted in the same manner.
  • biaxial stretching includes simultaneous biaxial stretching in which stretching in the resin sheet transport direction (production line direction) and stretching in a direction perpendicular to the resin sheet transport direction are performed simultaneously.
  • a combination of a tenter oven and a pantograph, a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, and the like can be given.
  • the simultaneous biaxial stretching method by the tubular method which is a stretching method of an inflation film can be mentioned.
  • the ratio of longitudinal stretching and lateral stretching can be adjusted at the same time, so it is easy to produce a water-permeable film that is isotropic and suppresses shrinkage caused by stress relaxation as much as possible. It is.
  • the biaxially stretched film has a more stable quality because the surface of the resin sheet is less susceptible to scratching due to equipment contact. Can be manufactured.
  • the biaxial stretching method it is easy and preferable to adjust the porosity arbitrarily to obtain a water-permeable film having an arbitrary water permeability.
  • the draw ratio is not particularly limited, and is determined in consideration of the physical properties desired for the water-permeable film of the present invention and the properties of the raw materials used.
  • the area stretch ratio is usually preferably 10 to 90 times, more preferably 15 to 60 times. Within the same range, a biaxially stretched resin film having desired physical properties can be stably produced.
  • the stretching temperature is 5 ° C. or more lower than the melting point of the matrix resin, more preferably 5 ° C. or more than the melting point of the crystalline polyolefin-based resin (A). It is preferable to carry out under a temperature condition that is low and higher than the softening temperature of the thermoplastic elastomer (B).
  • the stretched film is preferably subjected to a heat treatment for the purpose of relaxing the tension of the polymer molecular chain accompanying the stretching.
  • the temperature of the heat treatment is preferably selected within the range of a temperature 30 ° C. higher than the stretching temperature from the stretching temperature.
  • the heat treatment is generally performed by roll heating or a heat oven, but may be combined.
  • the heat treatment time is usually 0.1 to 30 seconds, preferably 0.5 to 20 seconds, and more preferably 1 to 10 seconds.
  • the water-permeable film of the present invention can be manufactured in a batch system using, for example, a biaxial stretching tester. However, in view of providing a water-permeable film capable of high-speed molding that is the gist of the invention, the water-permeable film is long. It is preferable to continuously produce a band-shaped water-permeable film.
  • the water-permeable film of the present invention can be produced while conveying a resin film. That is, while transporting a resin film formed from a resin composition, the resin film is uniaxially or biaxially stretched to obtain a stretched resin film, and heat treatment is performed as necessary to efficiently produce a water-permeable film.
  • the conveyance speed is usually 10 to 500 m / min, preferably 30 to 300 m / min, and more preferably 50 to 200 m / min.
  • lateral uniaxial stretching it is usually 10 to 150 m / min, preferably 30 to 120 m / min, and more preferably 50 to 100 m / min.
  • sequential biaxial stretching it is usually 10 to 500 m / min, preferably 30 to 300 m / min, and more preferably 50 to 200 m / min.
  • simultaneous biaxial stretching it is usually 3 to 350 m / min, preferably 5 to 120 m / min, more preferably 5 to 100 m / min.
  • a band-shaped water-permeable film continuously produced from a band-shaped resin sheet may be cut into a desired size during the production process, or once wound up in a roll and stored and transported as necessary. You may cut
  • the sheet itself was cut by the sheet tension, and it was difficult to manufacture continuously and stably.
  • the treatment of the solvent waste liquid and the precise temperature control required in the conventional method for producing a water-permeable film are not required according to the production method of the present invention. Therefore, according to this invention, the functionally excellent water-permeable film can be manufactured efficiently.
  • the thickness of the stretched resin film constituting the water-permeable film of the present invention is not particularly limited, but is preferably 20 to 500 ⁇ m, more preferably 40 to 300 ⁇ m, and still more preferably 50 to 200 ⁇ m.
  • the preferable range of the total thickness of a water-permeable film is the same as the preferable range of the thickness of the said stretched resin film.
  • the thickness of the surface layer is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, and more preferably 5 to 10 ⁇ m. Is more preferable.
  • the thicknesses of the two surface layers are preferably the same from the viewpoint of preventing warping of the film.
  • the thickness of the intermediate layer is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 10 to 20 ⁇ m.
  • the porosity of the stretched resin film constituting the water-permeable film of the present invention is preferably 28 to 80%. If the stretched resin film has a porosity of 28% or more, there is a tendency that pores communicating with the inside of the film are generated and desired water permeability is easily developed. Further, if the porosity is 80% or less, stretch cracks are unlikely to occur during film production, and thus there is a tendency that more stable production is facilitated.
  • the porosity of the uniaxially stretched resin film is preferably 28 to 64%, more preferably 33 to 57%, and particularly preferably 36 to 54%.
  • the porosity of the biaxially stretched resin film is preferably 30 to 80%, more preferably 35 to 80%, still more preferably 38 to 78%, and preferably 40 to 75%. Particularly preferred.
  • the porosity of the uniaxial or biaxially stretched resin film can be controlled by adjusting the content of the thermoplastic elastomer (B) or the inorganic fine powder (D) and the stretch ratio.
  • the presence of pores inside can be confirmed by observing the cross section with an electron microscope.
  • the porosity is obtained by taking an electron micrograph of a cross section and determining the area ratio (%) of the occupancy in the cross-sectional area taken in the photograph.
  • a cut surface parallel to the thickness direction of the film that is, perpendicular to the surface direction
  • a microtome for example.
  • the porosity (%) can be determined for each layer by the above method.
  • the density of the stretched resin film constituting the water-permeable film of the present invention is preferably 0.3 to 1.1 g / cm 3, more preferably 0.4 to 0.9 g / cm 3, More preferably, it is ⁇ 0.8 g / cm 3. If the density of the stretched resin film is 0.3 g / cm 3 or more, stretch cracks are unlikely to occur during film production, and thus there is a tendency that more stable production is facilitated. Further, if the density is 1.1 g / cm 3 or less, there is a tendency that pores communicating with the inside of the film are generated and desired water permeability is easily developed.
  • the density of the stretched resin film can be controlled by adjusting the content of the thermoplastic elastomer (B) and the inorganic fine powder (D) and the stretch ratio.
  • the water-permeable film of the present invention has pores communicating in the thickness direction, liquid such as water and oil can be easily transmitted from one surface to the other surface.
  • the water permeability measured based on JIS-Z0221: 1976 is 0.1 to 2,000 seconds.
  • the water permeability is preferably 0.5 to 1,000 seconds, more preferably 1 to 200 seconds. If the water permeability is 0.1 seconds or more, stretch cracks are unlikely to occur during film production, and therefore, more stable production tends to be performed. Moreover, if a water permeability is 2,000 seconds or less, the function as a water-permeable film can fully be exhibited.
  • the water-permeable film of the present invention achieves the above water permeability from the structural features such as the degree of communication of pores inside the film, the size of the pores, the number of pores and the like. Therefore, the water permeability of the water-permeable film of the present invention can be controlled by adjusting, for example, the particle diameter of the inorganic fine particle powder, the blending amount of the inorganic fine powder, the blending amount of the thermoplastic elastomer, the stretching temperature, the stretching ratio, and the like. it can.
  • separators for batteries and electrolytic capacitors are required to have high water permeability.
  • Various filtration membranes require water permeability and filtration accuracy.
  • the water-permeable film of the present invention has a tear strength (kgf / mm) in the direction perpendicular to the film stretching direction measured based on the right angle tearing method of JIS-K7128-3: 1998, test speed A, and the same tearing. It is preferable that the product of the amount of displacement (tensile elongation, mm) until the test piece breaks during the test is 10 kgf or more.
  • the product of tear strength and displacement represents the difficulty of tearing a water-permeable film, and is a measure of the ease of handling during manufacturing (sheet cracking difficulty) and the ease of handling during various processing. is there.
  • the product of tear strength and displacement is large, the difficulty of tearing during film production can be avoided, but if the product is too large, it is difficult to form fine pores that communicate with each other, making it difficult to obtain the water permeability that is the gist of the present invention. There is a tendency to end up. Moreover, if the product of tear strength and displacement is small, sufficient pores can be obtained and the water permeability can be easily achieved. However, if the product is too small, the production stability tends to decrease. For this reason, the product of the tear strength and the displacement is preferably in the range of 10 to 200 kgf, more preferably in the range of 10 to 100 kgf, and particularly preferably in the range of 10 to 80 kgf.
  • the product of tear strength and displacement is 10 kgf or more, it tends to be easy to avoid the occurrence of tearing during winding and various processing. Moreover, if it is 200 kgf or less, there exists a tendency for a desired water permeability to be obtained easily.
  • the product of tear strength and displacement can be adjusted mainly by the blending ratio of thermoplastic elastomer (B) and inorganic fine powder (D) in terms of raw material composition, and mainly adjusted by the draw ratio and draw temperature in terms of manufacturing conditions. Is possible.
  • the water-permeable film of the present invention is porous, can hold and absorb liquid in the entire thickness direction by osmotic pressure, and can be permeated by further applying pressure. Therefore, the water-permeable film of the present invention includes a liquid absorbent, a liquid absorbent wiping material, a protective cushioning material for packing and packaging, a building material, a curing sheet and a joint material for civil engineering, a dew condensation prevention material, and a heat insulation for livestock houses.
  • the water-permeable film of the present invention is a resin-made water-permeable film that is particularly durable and has a uniform and accurate pore size and distribution, the separator of a battery or electrolytic capacitor, It can be used appropriately for various microfiltration membranes and liquid absorbent articles.
  • the water-permeable film of the present invention is used as a separator or various filtration membranes, unlike conventional products, a plasticizer and / or a solvent are added and eluted, or low molecular weight components are removed and high molecular weight polyolefin fibrils are used. It is not necessary to perform a heat treatment step for formation, and water permeability can be imparted without requiring hydrophilic treatment after film formation.
  • a resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin.
  • a sheet was obtained. After heating the resin sheet to the stretching temperature described in Table 3, the resin sheet was uniaxially stretched at a stretching ratio described in Table 3 in the conveying direction (longitudinal direction) of the resin sheet by an inter-roll stretching method, and further at 160 ° C. Heat treatment was performed. Then, it cooled at 60 degreeC and slit the ear
  • the conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to be 20 m / min after stretching.
  • manufacture example 12, 13 and manufacture example 18 it fractured
  • the physical properties (thickness, density, porosity) of these uniaxially stretched resin films were as shown in Table 3.
  • a resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained. After heating this resin sheet to the stretching temperature described in Table 4, the resin sheet was uniaxially stretched at the stretching ratio described in Table 4 in the width direction (lateral direction) of the resin sheet by a clip stretching method using a tenter stretching machine. Further, heat treatment was performed at 160 ° C. Then, it cooled at 60 degreeC and slit the ear
  • the conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to 12 m / min.
  • Production Examples 30, 31 and Production Example 36 were frequently broken during stretching, and a uniaxially stretched resin film could not be obtained.
  • the physical properties (thickness, density, porosity) of these uniaxially stretched resin films were as shown in Table 4.
  • this resin sheet After heating this resin sheet to the extending
  • the conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to be 20 m / min after stretching.
  • the physical properties (layer thickness, density, porosity) of this uniaxially stretched resin film were as shown in Table 5.
  • the resin sheet After heating the resin sheet to the stretching temperature described in Table 6, the resin sheet was uniaxially stretched at the stretching ratio described in Table 6 in the width direction (lateral direction) of the resin sheet by a clip stretching method using a tenter stretching machine. A uniaxially stretched resin film was obtained. The conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to 12 m / min. The physical properties (thickness, density, porosity) of this uniaxially stretched resin film were as shown in Table 6.
  • a resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained. After heating this resin sheet to the stretching temperature under the longitudinal stretching conditions described in Table 7, it was stretched at the stretching ratio under the longitudinal stretching conditions listed in Table 7 in the transport direction (longitudinal direction) of the resin sheet by an inter-roll stretching method. Then, it was cooled at 60 ° C. to obtain a uniaxially stretched resin film.
  • this uniaxially stretched resin film is again heated to a stretching temperature under the transverse stretching conditions listed in Table 7 using a tenter oven, and in a direction (lateral direction) orthogonal to the transport direction of the resin sheet by the clip stretching method.
  • the film was stretched at a stretching ratio under the transverse stretching conditions listed in Table 7, and further heated to 160 ° C. in an oven for heat treatment to obtain a biaxially stretched resin film by sequential biaxial stretching.
  • the production of the above biaxially stretched resin film was carried out while conveying the film at 120 m / min. Note that Production Examples 97 and 98 and Production Example 103 were frequently broken during stretching, and a biaxially stretched resin film could not be obtained.
  • the physical properties (thickness, density, porosity) of these biaxially stretched resin films were as shown in Table 7.
  • a resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained. After heating this resin sheet to the stretching temperature described in Table 8, the longitudinal stretching conditions described in Table 8 in the transport direction (longitudinal direction) of the resin sheet using a simultaneous biaxial stretching machine in combination with a tenter oven and a pantograph The film was stretched at a stretching ratio of the horizontal stretching conditions shown in Table 8 in the direction (transverse direction) orthogonal to the direction of transport of the resin sheet and further heated to 165 ° C.
  • a biaxially stretched resin film was obtained by stretching.
  • the production of the above biaxially stretched resin film was carried out while conveying the film at 50 m / min. Note that Production Example 116 and Production Example 122 were frequently broken during stretching, and a biaxially stretched resin film could not be obtained.
  • the physical properties (thickness, density, porosity) of these biaxially stretched resin films were as shown in Table 8.
  • the uniaxial stretching ratio of the longitudinal stretching conditions described in Table 9 is applied in the resin sheet transport direction (longitudinal direction) by the inter-roll stretching method. Stretched to obtain a uniaxially stretched resin film.
  • this uniaxially stretched resin film is again heated to a stretching temperature under the transverse stretching conditions listed in Table 9 using a tenter oven, and in a direction (lateral direction) orthogonal to the transport direction of the resin sheet by the clip stretching method.
  • the film was stretched at a stretching ratio under the lateral stretching conditions listed in Table 9, and further heated to 160 ° C. in an oven for heat treatment to obtain a biaxially stretched resin film by sequential biaxial stretching.
  • the production of the above biaxially stretched resin film was performed while conveying the film at 100 m / min.
  • the physical properties (thickness, density, porosity) of this biaxially stretched resin film were as shown in Table 9.
  • the resin composition having the composition of Formulation Example 3 or 7 shown in Table 2 was melt-kneaded by two extruders set at 250 ° C., respectively, and extruded from a T-die into a sheet shape, and uniaxially stretched resin
  • the resin sheet having a laminated structure of surface layer [b] / base material layer [a] / back surface layer [c] was obtained by melt lamination on the front and back surfaces of the film, respectively.
  • the resin sheet having this laminated structure is heated again to the stretching temperature under the transverse stretching conditions shown in Table 9 using a tenter oven, and the direction perpendicular to the conveying direction of the resin sheet by the clip stretching method (lateral direction) Are stretched at the stretching ratio of the transverse stretching conditions listed in Table 9 and further heat-treated in an oven up to 160 ° C. to obtain a biaxially stretched resin film in which the base material layer [a] is successively biaxially stretched. It was. In addition, about the manufacture example 127, it fractured
  • a tensile test knob to the tensile tester (Orientec Co., Ltd., RTM-250), attach the above test piece, perform the test at a speed of 200 mm per minute, and when the test piece is completely torn
  • the load was the tear strength (kgf / mm).
  • the amount of displacement (mm) until breakage is the amount of movement of the crosshead (movable knob) of the tester at the moment of breakage after the test piece is no longer loosened and tension is applied to the test piece. It was.
  • the measurement was performed 5 times, and the average value was taken as the measurement value and used for product calculation.
  • the stretched fat film in which the product of the right-angled tear strength and the amount of displacement until breakage is less than 10 kgf is a film that is easy to be notched and easily torn, and was judged to have poor moldability. Conversely, if this exceeds 200 kgf, the moldability is good, but the required water permeability tends to be difficult to obtain. Therefore, the quality was determined according to the following criteria. ⁇ : Product is 10-100kgf ⁇ : Product is more than 100 kgf and less than 200 kgf ⁇ : Product is less than 10 kgf or more than 200 kgf
  • the water-permeable film of the present invention can be produced in the same stretching process as a general porous film production method, and can be set to any water permeability, and is superior to conventional water-permeable films. It has performance. Therefore, the water-permeable film of the present invention has many industrial advantages and is extremely useful.

Abstract

Disclosed is a water permeable film containing a stretched resin film containing 18 - 42 wt% of a crystalline polyolefin resin (A), 5 - 15 wt% of a thermoplastic elastomer (B), 45 - 75 wt% of an inorganic fine powder (D) the surface of which has been hydrophilized by a surface treating agent (C). The water permeable film can be mass-produced stably at high speeds by a simple production process and has superior water permeability and tear resistance.

Description

透水性フィルムおよびその製造方法Water-permeable film and method for producing the same
 本発明は、一方の面から他方の面へ容易に水や油などの液体を透過させることができる透水性フィルムに関する。本発明の透水性フィルムは電池や電解コンデンサーなどの各種セパレータ、各種分離膜(フィルター)、おむつなどの吸収性物品、感熱受容紙用部材、インク受容体部材などに使用することができる。 The present invention relates to a water permeable film that can easily allow liquid such as water or oil to pass from one surface to the other surface. The water-permeable film of the present invention can be used for various separators such as batteries and electrolytic capacitors, various separation membranes (filters), absorbent articles such as diapers, heat-sensitive receiving paper members, ink receptor members, and the like.
 従来、厚み方向に水を透過させることができる薄膜状の素材として、天然紙(パルプ紙・ペーパーフィルター)、織布(濾し布)、不織布、オイルリムーブや溶剤抽出による多孔性フィルム、超高分子量ポリエチレンの焼結体から切削して得られた多孔性フィルム、ポリテトラフルオロエチレン、超高分子量ポリエチレンやポリアミド系樹脂を延伸しフィブリル化させた多孔質フィルム、物理発泡フィルム、スポンジ、金網等のものがあった。
 これらの素材は、液体吸収体、液体吸収性の清拭材、梱包包装用の保護緩衝材、土木建築用の建材・養生シート・目地材、結露防止材、家畜舎用の断熱材、クッション、筆記具用の中綿、芳香剤等の吸上げ芯、水耕栽培用の培地、フィルター等の濾材、各種精密濾過膜、電池や電解コンデンサーのセパレータ、感熱受容紙用部材、インク受容体部材等の用途に用いられてきた。
Conventionally, as a thin film material that can permeate water in the thickness direction, natural paper (pulp paper / paper filter), woven fabric (filtered fabric), non-woven fabric, porous film by oil removal or solvent extraction, ultra high molecular weight Porous films obtained by cutting from polyethylene sintered bodies, polytetrafluoroethylene, ultrahigh molecular weight polyethylene and polyamide resins, fibrillated porous films, physical foam films, sponges, wire mesh, etc. was there.
These materials include liquid absorbers, liquid-absorbing wiping materials, protective cushioning materials for packing and packaging, building materials, curing sheets and joint materials for civil engineering, anti-condensation materials, heat insulation materials for livestock houses, cushions, Applications such as padding for writing instruments, suction cores for fragrances, culture media for hydroponics, filter media such as filters, various microfiltration membranes, separators for batteries and electrolytic capacitors, members for heat-sensitive receiving paper, ink receptor members, etc. Has been used.
 上述の薄膜素材には、それぞれ種々のメリットがある。例えば天然紙や不織布については、製造工程が簡便で安価である。また、溶剤抽出による多孔性フィルム、超高分子量ポリエチレンの焼結体から切削して得られる多孔性フィルム、各種樹脂フィルムを延伸によりフィブリル化させた多孔性フィルムについては、耐久性があり、その空孔径と分布が均一精密であることから、電池や電解コンデンサーのセパレータや各種精密濾過膜などに実際に使用されている(特許文献1~9)。 The above thin film materials have various merits. For example, for natural paper and non-woven fabric, the manufacturing process is simple and inexpensive. In addition, porous films obtained by solvent extraction, porous films obtained by cutting from ultra-high molecular weight polyethylene sintered bodies, and porous films obtained by fibrillating various resin films by stretching are durable. Since the pore size and distribution are uniform and precise, they are actually used in separators for batteries and electrolytic capacitors, and various microfiltration membranes (Patent Documents 1 to 9).
特許第2814598号公報Japanese Patent No. 2814598 特許第3055470号公報Japanese Patent No. 3055470 特許第3121047号公報Japanese Patent No. 3121047 特許第3455285号公報Japanese Patent No. 3455285 特許第3067956号公報Japanese Patent No. 3067956 特許第3502959号公報Japanese Patent No. 3502959 特許第3534514号公報Japanese Patent No. 3533414 特許第3378460号公報Japanese Patent No. 3378460 特開2008-218085号公報JP 2008-218085 A
 しかし、特に電池や電解コンデンサーのセパレータや各種精密濾過膜などに使用される上述の多孔性樹脂フィルムは、下記のような各種問題点を内在している。即ち、溶剤抽出による多孔性フィルムは、ポリマーからの溶媒・可塑剤の抽出工程において排出された溶剤廃液の処理や低製造速度によるコスト上昇の問題がある。超高分子量ポリエチレンの焼結法から得られる多孔性フィルムは製造工程が多くコスト上昇の問題がある。樹脂フィルムを延伸によりフィブリル化させた多孔性フィルムにおいては精密な温度処理や、同じく低製造速度によるコスト上昇の問題がある。 However, the above-mentioned porous resin film used for separators and various microfiltration membranes for batteries and electrolytic capacitors in particular has the following various problems. That is, the porous film obtained by solvent extraction has a problem of cost increase due to treatment of the solvent waste liquid discharged in the process of extracting the solvent / plasticizer from the polymer and low production rate. The porous film obtained from the sintering method of ultrahigh molecular weight polyethylene has many manufacturing processes and has a problem of cost increase. A porous film in which a resin film is fibrillated by stretching has a problem of cost increase due to precise temperature treatment and low production speed.
 そこで本発明者らは、このような従来技術の問題点を解決するために、簡便な製造工程で高速に安定して大量に製造でき、透水性と引裂抵抗性に優れている透水性フィルムを提供することを本発明の目的とした。 Therefore, in order to solve the problems of the prior art, the present inventors have produced a water permeable film that can be stably manufactured in a large amount at a high speed with a simple manufacturing process and has excellent water permeability and tear resistance. It was an object of the present invention to provide.
 本発明者らは鋭意に研究を重ね、ポリマー中に無機充填材(無機微細粉末)を高充填した樹脂組成物を溶融練混し、Tダイに接続した押出機等で押出成形したシートを延伸することにより、内部に多数の微細連通孔を形成させる製法により、簡便で高速成形可能な透水性フィルムを完成するに至った。
 従来、厚み方向全部に無機充填剤を高充填したシートを延伸して、充填剤を核とした多数の微細連通孔を形成しようとする試みは、延伸時ないし延伸後のシート巻き取りまでの工程においてかかる張力によりシートが容易に切れてしまい、連続して安定に製造することが不可能であった。本発明では、この問題をポリマーの選定により解決し、簡便で高速成形を可能とした。また、用いる無機充填剤を表面処理剤により表面を親水化処理することにより、樹脂延伸フィルムでありながら非常に高い透水性を達成した。
The inventors of the present invention earnestly researched and melted and kneaded a resin composition highly filled with an inorganic filler (inorganic fine powder) in a polymer, and stretched a sheet extruded by an extruder connected to a T-die. As a result, a water-permeable film that can be easily formed at high speed has been completed by a manufacturing method in which a large number of fine communication holes are formed inside.
Conventionally, attempts to form a large number of fine communication holes with a filler as a core by stretching a sheet highly filled with an inorganic filler in the entire thickness direction is a process from stretching to winding of the sheet after stretching. In this case, the sheet is easily cut by the tension, and it is impossible to continuously and stably manufacture the sheet. In the present invention, this problem is solved by selecting a polymer, which enables simple and high-speed molding. In addition, the surface of the inorganic filler to be used was hydrophilized with a surface treatment agent to achieve extremely high water permeability while being a stretched resin film.
 すなわち、課題を解決する手段として、以下の本発明を提供するに至った。
[1] JIS-Z0221:1976に基づき測定される透水度が0.1~2000秒であり且つ少なくとも以下の3成分を含む延伸樹脂フィルムを有することを特徴とする、透水性フィルム。
1)結晶性ポリオレフィン系樹脂(A)
                          18~42重量%
2)熱可塑性エラストマー(B)
                           5~15重量%
3)表面処理剤(C)により表面を親水化処理された無機微細粉末(D)
                          45~75重量%
[2] 前記熱可塑性エラストマー(B)は、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、およびエステル系熱可塑性エラストマーからなる群より選択される1以上の熱可塑性エラストマーであることが好ましく、
[3] 特にスチレン系熱可塑性エラストマーであることが好ましい。
[4] 前記スチレン系熱可塑性エラストマーは水素添加スチレンブタジエンゴム(HSBR)であることが好ましく、
[5] 特にスチレン含量が20重量%以下であるものが好ましい。
[6] 前記結晶性ポリオレフィン系樹脂(A)は、溶融張力が10g未満の結晶性ポリオレフィン系樹脂100重量部に対し、溶融張力10~60gの高溶融張力ポリプロピレン0.5~22重量部を含むことが好ましく、
[7] 特に前記高溶融張力ポリプロピレンが主鎖骨格中に長鎖分岐を有するポリプロピレン(A') であることが好ましい。
[8] 前記延伸樹脂フィルムの空孔率は28~80%であることが好ましい。
[9] 前記表面処理剤(C)は、平均分子量が1,000~15,000の水溶性アニオン系界面活性剤、平均分子量が1,000~15,000の水溶性カチオン系界面活性剤、および平均分子量が1,000~15,000の水溶性非イオン系界面活性剤からなる群より選択される表面処理剤であることが好ましい。
[10] 前記延伸樹脂フィルムは、更に無機微細粉末(D)の分散性を改善させる分散剤(E)を含むことが好ましい。
[11] 前記延伸樹脂フィルムのJIS-K7128-3:1998の直角形引裂法、試験速度Aに基づき測定されるフィルム延伸軸に直交する方向での引裂強さ(kgf/mm)と同引裂試験時における試験片の破断までの変位量(mm)との積が、10~200kgfとなるように樹脂組成物の配合を調整することは、前記延伸樹脂フィルムを高速に安定製造しやすくする観点で好ましい。
[12] 透水性フィルムは、前記延伸樹脂フィルムのみから構成されるものであってもよい。
[13] また透水性フィルムは、前記延伸樹脂フィルムを基材層とし、その少なくとも片面に更に表面層を設けた多層構造を有するものであってもよい。前記延伸樹脂フィルムを含み且つ透水度の規定範囲内である限り、多層構造であっても本発明に含まれる。
[14] 前記延伸樹脂フィルムは1軸延伸フィルムであってもよい。
[15] 前記延伸樹脂フィルムは2軸延伸フィルムであってもよく、
[16] 前記2軸延伸樹脂フィルムは、製造ライン方向と、製造ラインに直交する方向にそれぞれ逐次延伸した2軸延伸樹脂フィルムであってよく、
[17] 製造ライン方向と製造ラインに直交する方向に同時に延伸した2軸延伸樹脂フィルムであってもよい。
That is, the following present invention has been provided as means for solving the problems.
[1] A water-permeable film having a stretched resin film having a water permeability measured in accordance with JIS-Z0221: 1976 of 0.1 to 2000 seconds and containing at least the following three components.
1) Crystalline polyolefin resin (A)
18-42% by weight
2) Thermoplastic elastomer (B)
5-15% by weight
3) Inorganic fine powder (D) whose surface is hydrophilized with the surface treatment agent (C)
45-75% by weight
[2] The thermoplastic elastomer (B) is one or more thermoplastic elastomers selected from the group consisting of a styrene-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, a urethane-based thermoplastic elastomer, and an ester-based thermoplastic elastomer. Preferably,
[3] A styrene-based thermoplastic elastomer is particularly preferable.
[4] The styrenic thermoplastic elastomer is preferably hydrogenated styrene butadiene rubber (HSBR),
[5] Particularly preferred are those having a styrene content of 20% by weight or less.
[6] The crystalline polyolefin resin (A) includes 0.5 to 22 parts by weight of a high melt tension polypropylene having a melt tension of 10 to 60 g with respect to 100 parts by weight of the crystalline polyolefin resin having a melt tension of less than 10 g. Preferably
[7] In particular, the high melt tension polypropylene is preferably polypropylene (A ′) having a long chain branch in the main chain skeleton.
[8] The stretched resin film preferably has a porosity of 28 to 80%.
[9] The surface treatment agent (C) includes a water-soluble anionic surfactant having an average molecular weight of 1,000 to 15,000, a water-soluble cationic surfactant having an average molecular weight of 1,000 to 15,000, And a surface treatment agent selected from the group consisting of water-soluble nonionic surfactants having an average molecular weight of 1,000 to 15,000.
[10] The stretched resin film preferably further contains a dispersant (E) that improves the dispersibility of the inorganic fine powder (D).
[11] JIS-K7128-3: 1998 right-angled tear method of the stretched resin film, tear strength (kgf / mm) in the direction perpendicular to the film stretch axis measured based on the test speed A and the tear test In order to facilitate stable production of the stretched resin film at a high speed, adjusting the composition of the resin composition so that the product of the displacement (mm) until breakage of the test piece at the time is 10 to 200 kgf preferable.
[12] The water permeable film may be composed only of the stretched resin film.
[13] The water-permeable film may have a multilayer structure in which the stretched resin film is used as a base material layer and a surface layer is further provided on at least one surface thereof. A multilayer structure is also included in the present invention as long as it includes the stretched resin film and is within the specified range of water permeability.
[14] The stretched resin film may be a uniaxially stretched film.
[15] The stretched resin film may be a biaxially stretched film,
[16] The biaxially stretched resin film may be a biaxially stretched resin film that is sequentially stretched in a production line direction and a direction orthogonal to the production line,
[17] A biaxially stretched resin film that is simultaneously stretched in the production line direction and the direction orthogonal to the production line may be used.
[18] 結晶性ポリオレフィン系樹脂(A)18~42重量%と、熱可塑性エラストマー(B)5~15重量%と、表面処理剤(C)により表面を親水化処理された無機微細粉末(D)45~75重量%とを含有する樹脂組成物を用いて樹脂シートを製造し、次いで、前記樹脂シートを延伸することによりJIS-Z0221:1976に基づき測定される透水度が0.1~2000秒である延伸樹脂フィルムを製造する工程を含むことを特徴とする、前記延伸樹脂フィルムを含む透水性フィルムの製造方法。
[19] 前記熱可塑性エラストマー(B)はスチレン系熱可塑性エラストマーであることが好ましく、
[20] 前記スチレン系熱可塑性エラストマーは水素添加スチレンブタジエンゴムであることが好ましい。
[21] 前記樹脂シートの延伸は、延伸によって製造される延伸樹脂フィルムの空孔率が28~80%となるように行うことが好ましい。
[22] 前記樹脂シートの延伸は、樹脂シートの搬送方向に1軸延伸することができる。
[23] 前記樹脂シートの延伸は、樹脂シートの搬送方向に直交する方向に1軸延伸することもできる。
[24] 前記樹脂シートは4~10倍に1軸延伸することが好ましい。
[25] 前記樹脂シートの延伸は、樹脂シートの製造ライン方向と製造ラインに直交する方向に逐次2軸延伸することにより行うことができる。
[26] 前記樹脂シートの延伸は、樹脂シートの製造ライン方向と製造ラインに直交する方向に同時2軸延伸することにより行うこともできる。
[27] 前記樹脂シートの面積延伸倍率は10~90倍の範囲内にすることが好ましい。
[28] 前記製造方法により製造される透水性フィルムも本発明に含まれる。
[18] Inorganic fine powder (D) having a surface hydrophilized with a surface treatment agent (C), 18 to 42% by weight of crystalline polyolefin resin (A), 5 to 15% by weight of thermoplastic elastomer (B) ) A resin sheet is produced using a resin composition containing 45 to 75% by weight, and then the water permeability measured in accordance with JIS-Z0221: 1976 is 0.1 to 2000 by stretching the resin sheet. The manufacturing method of the water-permeable film containing the said stretched resin film characterized by including the process of manufacturing the stretched resin film which is second.
[19] The thermoplastic elastomer (B) is preferably a styrenic thermoplastic elastomer,
[20] The styrenic thermoplastic elastomer is preferably a hydrogenated styrene butadiene rubber.
[21] The resin sheet is preferably stretched such that the stretched resin film produced by stretching has a porosity of 28 to 80%.
[22] The resin sheet may be stretched uniaxially in the resin sheet conveyance direction.
[23] The resin sheet may be stretched uniaxially in a direction perpendicular to the transport direction of the resin sheet.
[24] The resin sheet is preferably uniaxially stretched 4 to 10 times.
[25] The resin sheet can be stretched by sequentially biaxially stretching the resin sheet in the production line direction and the direction perpendicular to the production line.
[26] The resin sheet may be stretched by simultaneously biaxially stretching the resin sheet in the production line direction and the direction perpendicular to the production line.
[27] The area stretch ratio of the resin sheet is preferably in the range of 10 to 90 times.
[28] A water-permeable film produced by the production method is also included in the present invention.
[29] 本発明の透水性フィルムはセパレータとして用いうる。
[30] また本発明の透水性フィルムは精密濾過膜としても用いうる。
[31] さらに本発明の透水性フィルムは液体吸収性物品としても用いうる。
[29] The water-permeable film of the present invention can be used as a separator.
[30] The water-permeable film of the present invention can also be used as a microfiltration membrane.
[31] Furthermore, the water-permeable film of the present invention can also be used as a liquid absorbent article.
 本発明の透水性フィルムは、延伸による連通孔形成といった非常に簡便な製法で高速かつ安価に製造することができる。また、本発明の透水性フィルムは、プラズマ処理やスパッタエッチング処理を行い樹脂延伸フィルムに親水性を付与したり高価な吸水性ポリマーを使用したりすることなく、吸水性・透水性を付与することができる。 The water-permeable film of the present invention can be produced at a high speed and at a low cost by a very simple production method such as formation of communication holes by stretching. In addition, the water-permeable film of the present invention imparts water absorption and water permeability without plasma treatment or sputter etching treatment to impart hydrophilicity to the stretched resin film or use an expensive water-absorbing polymer. Can do.
 以下において、本発明の透水性フィルムについて詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the water-permeable film of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
透水性フィルムの構成材料
[結晶性ポリオレフィン系樹脂(A)]
 本発明の透水性フィルムを構成する延伸樹脂フィルムは、結晶性ポリオレフィン系樹脂(A)を含む。本発明において結晶性ポリオレフィン系樹脂(A)は、マトリクス樹脂としてフィルムの製膜性に寄与するものである。
 本発明に使用できる結晶性ポリオレフィン系樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、エチレン・α-オレフィン共重合体等の結晶性エチレン系樹脂、結晶性プロピレン系樹脂、ポリメチル-1-ペンテン等の結晶性ポリオレフィン系樹脂が挙げられる。これらは2種以上混合して用いることもできる。
Constituent material of water permeable film [crystalline polyolefin resin (A)]
The stretched resin film constituting the water-permeable film of the present invention contains a crystalline polyolefin resin (A). In the present invention, the crystalline polyolefin resin (A) contributes to the film-forming property of the film as a matrix resin.
Examples of crystalline polyolefin resins that can be used in the present invention include high-density polyethylene, medium-density polyethylene, low-density polyethylene, crystalline ethylene resins such as ethylene / α-olefin copolymers, crystalline propylene resins, and polymethyl-1 -Crystalline polyolefin resins such as pentene. These may be used in combination of two or more.
 結晶性ポリオレフィン系樹脂は、結晶性を示すものである。樹脂のX線回折法による結晶化度は、通常20%以上が好ましく、35~75%がより好ましい。結晶性を示さないものは、延伸によりフィルム表面に空孔(開口)が十分に形成されない。ここでいう結晶化度はX線回折、赤外線スペクトル分析等の方法によって測定することができる。
 結晶性ポリオレフィン系樹脂の中では、延伸形成性の観点より、結晶性プロピレン系樹脂を用いることがより好ましい。結晶性プロピレン系樹脂としては、プロピレンを単独重合させたアイソタクティック重合体又はシンジオタクティック重合体を用いることが好ましい。また、エチレン、1-ブテン、1-ヘキセン、1-ヘプテン、4-メチル-1-ペンテン等のα-オレフィンとプロピレンとを共重合させた様々な立体規則性を有するプロピレンを主成分とする共重合体を使用することもできる。共重合体は2元系でも3元系以上の多元系でもよく、またランダム共重合体でもブロック共重合体でもよい。
The crystalline polyolefin resin exhibits crystallinity. The crystallinity of the resin by X-ray diffraction is usually preferably 20% or more, more preferably 35 to 75%. Those not exhibiting crystallinity do not sufficiently form pores (openings) on the film surface due to stretching. The crystallinity here can be measured by methods such as X-ray diffraction and infrared spectrum analysis.
Among the crystalline polyolefin-based resins, it is more preferable to use a crystalline propylene-based resin from the viewpoint of stretch formation. As the crystalline propylene-based resin, it is preferable to use an isotactic polymer or a syndiotactic polymer obtained by homopolymerizing propylene. Copolymers mainly composed of propylene having various stereoregularities obtained by copolymerizing propylene with an α-olefin such as ethylene, 1-butene, 1-hexene, 1-heptene and 4-methyl-1-pentene. Polymers can also be used. The copolymer may be a binary system or a ternary or higher multi-element system, and may be a random copolymer or a block copolymer.
 本発明に使用される結晶性ポリオレフィン系樹脂(A)は、安定した延伸成形性を得るために、高溶融張力のポリプロピレンを含むことが好ましい。これらは特に株式会社東洋精機製作所製のキャピログラフを使用して測定される溶融張力が10~60gの範囲内、好ましくは20~50gの範囲内であるものが好ましい。溶融張力が10~60gの範囲内のポリプロピレンを含有することにより、キャストシート成形時、ダイスからキャストロールへ溶融樹脂を横引きでキャスティングする場合には溶融樹脂シートの垂れ現象の抑制、縦引きの場合においてはドローダウンを抑制し、キャストシート成形性の改善が可能となる。
 上記の高溶融張力ポリプロピレンとしては、主鎖骨格中に長鎖分岐の構造を有するポリプロピレン(A')であることが好ましい。結晶性ポリオレフィン系樹脂(A)が、主鎖骨格中に長鎖分岐を有するポリプロピレン(A')を含むものであれば溶融張力向上、延伸時のひずみ硬化性による延伸性向上等の改善が容易になる。
The crystalline polyolefin resin (A) used in the present invention preferably contains high melt tension polypropylene in order to obtain stable stretch moldability. In particular, those having a melt tension measured using a capilograph manufactured by Toyo Seiki Seisakusho Co., Ltd. within a range of 10 to 60 g, preferably within a range of 20 to 50 g are preferable. By containing polypropylene having a melt tension in the range of 10 to 60 g, when casting the molten resin from the die to the cast roll by lateral drawing, the dripping phenomenon of the molten resin sheet is suppressed, In some cases, drawdown can be suppressed and cast sheet formability can be improved.
The high melt tension polypropylene is preferably polypropylene (A ′) having a long-chain branched structure in the main chain skeleton. If the crystalline polyolefin resin (A) contains polypropylene (A ′) having a long chain branch in the main chain skeleton, it is easy to improve the melt tension and the stretchability by strain hardening at the time of stretching. become.
 ここで主鎖骨格中に長鎖分岐を有するポリプロピレン(A')とは、分子構造中に主としてプロピレン単位の分岐を持ったプロピレン系樹脂であり、プロピレン単位の分岐は、トルートン比や固有粘度等の一般的分析法によってその存在を確かめることができる。
 主鎖骨格中に長鎖分岐を有するポリプロピレンの構造を示す指標となるトルートン比は、流入圧力損失法を用い、コックスウェル(Cogswell)の理論(Polymer Engineering Science、12、P.64-73(1972))に従って測定により得られる。トルートン比とは、指数関数で近似した伸長粘度―伸長ひずみ速度曲線、せん断粘度―せん断ひずみ速度曲線から求めたもので、伸長粘度とせん断粘度の比である。主鎖骨格中に長鎖分岐を有するポリプロピレンはせん断粘度のわりに伸長粘度が高くなる。本発明の主鎖骨格中に長鎖分岐を有するポリプロピレン(A')は、トルートン比が30以上に相当すると言える。
Here, the polypropylene (A ′) having a long-chain branch in the main chain skeleton is a propylene-based resin having a propylene unit branch mainly in the molecular structure. Its existence can be confirmed by general analytical methods.
The Trouton ratio, which is an index indicating the structure of polypropylene having a long-chain branch in the main chain skeleton, was determined by using the inflow pressure loss method, Coxwell's theory (Polymer Engineering Science, 12, P. 64-73 (1972). )) To obtain by measurement. The Troughton ratio is obtained from an elongation viscosity-elongation strain rate curve and a shear viscosity-shear strain rate curve approximated by an exponential function, and is a ratio of elongation viscosity to shear viscosity. Polypropylene having a long chain branch in the main chain skeleton has a high elongation viscosity instead of a shear viscosity. It can be said that the polypropylene (A ′) having a long chain branch in the main chain skeleton of the present invention corresponds to a trouton ratio of 30 or more.
 またポリプロピレンの長鎖分岐の程度を示す指標値として、下記式(1)で表される分岐指数gが挙げられる。
Figure JPOXMLDOC01-appb-M000001
ここで、[η]LBは長鎖分岐を有するポリプロピレンの固有粘度であり、[η]Linは長鎖分岐を有するポリプロピレンと実質的に同一の重量平均分子量を有する直鎖状の結晶性ポリプロピレンの固有粘度である。
 また、長鎖分岐を有するポリプロピレンの重量平均分子量は、M.L.McConnellによってAmerican Laboratory,May,63-75(1978)に記載されている低角度レーザー光散乱光度測定法で測定することができる。
 これら主鎖骨格中に長鎖分岐を有するポリプロピレンの一般的な製造方法としては、放射線(高エネルギー)照射による架橋、パーオキサイド架橋、共重合等の方法が挙げられる。これらの主鎖骨格中に長鎖分岐を有するポリプロピレンの具体例としては、ダウケミカル日本製のインスパイア、BOREALIS社製のDaploy WB130HMSなどを挙げることができる。
An index value indicating the degree of long-chain branching of polypropylene includes a branching index g represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Here, [η] LB is an intrinsic viscosity of polypropylene having a long chain branch, and [η] Lin is a linear crystalline polypropylene having substantially the same weight average molecular weight as the polypropylene having a long chain branch. Intrinsic viscosity.
In addition, the weight average molecular weight of polypropylene having a long chain branch is M.P. L. It can be measured by the low angle laser light scattering photometric method described by McConnell in American Laboratory, May, 63-75 (1978).
Examples of a general method for producing polypropylene having a long chain branch in the main chain skeleton include methods such as crosslinking by radiation (high energy) irradiation, peroxide crosslinking, and copolymerization. Specific examples of polypropylene having a long chain branch in these main chain skeletons include Inspire manufactured by Dow Chemical Japan, Daploy WB130HMS manufactured by BOREALIS.
 本発明に使用される延伸樹脂フィルムにおいて、結晶性ポリオレフィン系樹脂(A)は18~42重量%の割合で添加される。これは22~37重量%の範囲であることが好ましい。結晶性ポリオレフィン系樹脂(A)が18重量%に満たないと空孔形成性の低下や延伸性の低下が起こり好ましくない。逆に結晶性ポリオレフィン系樹脂(A)が42重量%を超えると形成される空孔数の低下や延伸フィルムの引裂強度の低下などが起こり好ましくない。
 結晶性ポリオレフィン系樹脂(A)の配合に関して、より詳細には、溶融張力が10g未満の結晶性プロピレン系樹脂の100重量部に対して、溶融張力が10~60gの範囲の高溶融張力ポリプロピレンの0.5~22重量部を含有する混合物であることが好ましい。結晶性プロピレン系樹脂の100重量部に対して、高溶融張力ポリプロピレンの5~15重量部との混合物であるのがより好ましい。
 同範囲内であればキャストシート成形時、ダイスからキャストロールへ溶融樹脂を横引きでキャスティングする場合には溶融樹脂シートの垂れ現象の抑制、縦引きの場合においてはドローダウンを抑制し、キャストシート成形性の改善が可能であり、延伸成形性も損なわれずシートの割れなどを防止できる。本願発明の延伸樹脂フィルムは後述する無機微細粉末(D)を高濃度で配合するため、延伸成形をしやすいようにマトリクス樹脂に後述する熱可塑性エラストマー(B)を配合するが、樹脂組成物全体の溶融張力を結晶性ポリオレフィン系樹脂(A)で調整することで、無機微細粉末(D)を核とした空孔を形成しつつ、安定な延伸成形が容易となる。
In the stretched resin film used in the present invention, the crystalline polyolefin resin (A) is added in a proportion of 18 to 42% by weight. This is preferably in the range of 22-37% by weight. If the crystalline polyolefin-based resin (A) is less than 18% by weight, the pore-forming property and stretchability are lowered, which is not preferable. On the other hand, when the crystalline polyolefin resin (A) exceeds 42% by weight, the number of pores formed and the tear strength of the stretched film are lowered, which is not preferable.
Regarding the blending of the crystalline polyolefin resin (A), more specifically, the high melt tension polypropylene having a melt tension in the range of 10 to 60 g with respect to 100 parts by weight of the crystalline propylene resin having a melt tension of less than 10 g. A mixture containing 0.5 to 22 parts by weight is preferred. A mixture of 5 to 15 parts by weight of high melt tension polypropylene is more preferable with respect to 100 parts by weight of the crystalline propylene resin.
If it is within the same range, when casting the cast resin from the die to the cast roll by lateral drawing, the dripping phenomenon of the molten resin sheet is suppressed, and in the case of vertical drawing, the drawdown is suppressed, and the cast sheet The formability can be improved, and the sheet can be prevented from cracking without impairing the stretch formability. Since the stretched resin film of the present invention is blended with the inorganic fine powder (D) described later at a high concentration, the thermoplastic elastomer (B) described later is blended with the matrix resin so as to facilitate the stretch molding. By adjusting the melt tension of the crystalline polyolefin resin (A), stable stretch molding is facilitated while forming pores with the inorganic fine powder (D) as a core.
[熱可塑性エラストマー(B)]
 本発明の透水性フィルムを構成する延伸樹脂フィルムは、熱可塑性エラストマー(B)を含む。本発明において熱可塑性エラストマー(B)は、フィルムの引き裂き強度を向上させ、その延伸成形時の引き裂けを防止し、製造安定性といった特徴を付与するために添加するものである。
 本発明に使用できる熱可塑性エラストマー(B)としては、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、エステル系熱可塑性エラストマーより選ばれた1以上の熱可塑性エラストマーなどを例示することができる。これらの中でも、マトリクス樹脂である結晶性ポリオレフィン系樹脂(A)へ分散が容易である観点から、スチレン系熱可塑性エラストマーであることが好ましい。
[Thermoplastic elastomer (B)]
The stretched resin film constituting the water-permeable film of the present invention contains a thermoplastic elastomer (B). In the present invention, the thermoplastic elastomer (B) is added to improve the tear strength of the film, prevent tearing during the stretch molding, and impart characteristics such as production stability.
Examples of the thermoplastic elastomer (B) that can be used in the present invention include one or more thermoplastic elastomers selected from styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, urethane-based thermoplastic elastomers, and ester-based thermoplastic elastomers. can do. Among these, a styrene thermoplastic elastomer is preferable from the viewpoint of easy dispersion in the crystalline polyolefin resin (A) which is a matrix resin.
 スチレン系エラストマーとしてはスチレンブタジエンスチレンブロック共重合体(SBS)、スチレンイソプレンスチレンブロック共重合体(SIS)、スチレンエチレンブチレンスチレンブロック共重合体(SEBS)、スチレンエチレンプロピレンスチレンブロック共重合体(SEPS)、水添スチレンブタジエンゴム(HSBR)といった構造を有するものを挙げることができる。これらスチレン系エラストマーとしてはJSR社製のダイナロン、旭化成社製のタフテック、KratonPolymer社製のKratonG、カネカ社製のシブスター、クラレ社製のハイブラーなどの具体例を挙げることができる。スチレン系エラストマーとしては水添スチレンブタジエンゴムが特に好ましく、またJSR社製のダイナロンが特に好ましい。水添スチレンブタジエンゴムとしては、スチレン含量が20重量%以下といった特徴を有するものがマトリクス樹脂である結晶性ポリオレフィン系樹脂(A)へ微分散が容易であり、延伸成形性が向上するといった観点から最も好ましい。
 オレフィン系エラストマーとしてはエチレンプロピレン共重合体(EPM)、エチレンプロピレンジエン共重合体(EPDM)、PPとPEとのブレンドやブロックコポリマーやグラフトコポリマーといった構造を有するものを挙げることができる。これらオレフィン系エラストマーとしては三井化学社製のビスタマックス、同社製のノティオ、プライムポリマー社製のプライムTPO、ダウケミカル日本社製のバーシファイ、三菱化学社製のゼラスなどの具体例を挙げることができる。
Styrene-based elastomers include styrene butadiene styrene block copolymer (SBS), styrene isoprene styrene block copolymer (SIS), styrene ethylene butylene styrene block copolymer (SEBS), and styrene ethylene propylene styrene block copolymer (SEPS). And hydrogenated styrene butadiene rubber (HSBR). Specific examples of these styrenic elastomers include Dynalon manufactured by JSR, Tuftec manufactured by Asahi Kasei, Kraton G manufactured by Kraton Polymer, Shibster manufactured by Kaneka, and Hibler manufactured by Kuraray. As the styrene elastomer, hydrogenated styrene butadiene rubber is particularly preferable, and Dynalon manufactured by JSR is particularly preferable. As hydrogenated styrene butadiene rubber, those having a styrene content of 20% by weight or less can be easily finely dispersed in the crystalline polyolefin resin (A) which is a matrix resin, and the stretch moldability is improved. Most preferred.
Examples of the olefin elastomer include ethylene propylene copolymer (EPM), ethylene propylene diene copolymer (EPDM), and those having structures such as blends of PP and PE, block copolymers, and graft copolymers. Specific examples of these olefin elastomers include Vistamax manufactured by Mitsui Chemicals, Notio manufactured by the company, Prime TPO manufactured by Prime Polymer, Versify manufactured by Dow Chemical Japan, and Zelas manufactured by Mitsubishi Chemical. .
 ウレタン系エラストマーとしてはジイソシアネートと短鎖グリコール(エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ビスフェノールA等)からなるポリマー鎖をハードセグメントとし、ジイソシアネートと長鎖ポリオールからなるポリマー鎖をソフトセグメントとする構造を有するものを挙げることができる。これらウレタン系エラストマーとしてはBASFジャパン社製のエラストラン、DICバイエルポリマー社製のテキシン、日本ポリウレタン社製のミラクトランなどの具体例を挙げることができる。
 エステル系エラストマーとしてはポリブチレンテレフタレート(PBT)をハードセグメントとし、ポリテトラメチレングリコールエーテル(PTMG)やPTMEGT(PTMGとテレフタル酸の縮合体)等のポリエーテルをソフトセグメントとするポリエーテル・エステルコポリマー、ポリエステル・エステルコポリマーといった構造を有するものを挙げることができる。これらエステル系エラストマーとしては東洋紡績社製のバイロンなどの具体例を挙げることができる。
Urethane elastomers include polymer chains composed of diisocyanates and short-chain glycols (ethylene glycol, propylene glycol, 1,4-butanediol, bisphenol A, etc.) as hard segments, and polymer chains composed of diisocyanates and long-chain polyols as soft segments. The thing which has the structure to do can be mentioned. Specific examples of these urethane elastomers include elastollan manufactured by BASF Japan, texin manufactured by DIC Bayer Polymer, and milactolan manufactured by Nippon Polyurethane.
As the ester elastomer, polybutylene terephthalate (PBT) is a hard segment, and a polyether ester copolymer having a soft segment such as polytetramethylene glycol ether (PTMG) or PTMEG (condensate of PTMG and terephthalic acid), Mention may be made of those having a structure such as a polyester-ester copolymer. Specific examples of these ester elastomers include Byron manufactured by Toyobo Co., Ltd.
 本発明の透水性フィルムを構成する延伸樹脂フィルムには、熱可塑性エラストマー(B)は5~15重量%の割合で添加され、8~12重量%の範囲であることが好ましい。熱可塑性エラストマー(B)が5重量%に満たないと引裂強度が低下し好ましくない。逆に熱可塑性エラストマー(B)が15重量%を超える空孔形成性が低下し好ましくない。 In the stretched resin film constituting the water-permeable film of the present invention, the thermoplastic elastomer (B) is added in a proportion of 5 to 15% by weight, and preferably in the range of 8 to 12% by weight. If the thermoplastic elastomer (B) is less than 5% by weight, the tear strength is undesirably lowered. On the other hand, the pore-forming property of the thermoplastic elastomer (B) exceeding 15% by weight is not preferable.
[無機微細粉末(D)]
 本発明の透水性フィルムを構成する延伸樹脂フィルムは、表面処理剤(C)により表面処理された無機微細粉末(D)を含む。本発明において無機微細粉末(D)は、透水性フィルムに透水性の特徴を付与するために添加するものである。
 本発明に使用できる無機微細粉末(D)としては、重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレー、タルク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化マグネシウム、珪藻土、酸化珪素などの無機微細粉末、無機微細粉末の核の周囲にアルミニウム酸化物ないしは水酸化物を有する複合無機微細粉末、中空ガラスビーズなどを挙げることができる。中でも重質炭酸カルシウム、焼成クレー、珪藻土は、安価で延伸時に多くの空孔を形成させることができ、空孔率の調整が容易なために好ましい。また重質炭酸カルシウム、軽質炭酸カルシウムは、その平均粒径や粒度分布が所望のものを得やすいために好ましい。
[Inorganic fine powder (D)]
The stretched resin film constituting the water-permeable film of the present invention contains an inorganic fine powder (D) surface-treated with a surface treatment agent (C). In the present invention, the inorganic fine powder (D) is added for imparting water permeability to the water permeable film.
Examples of the inorganic fine powder (D) that can be used in the present invention include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, titanium oxide, barium sulfate, zinc oxide, magnesium oxide, diatomaceous earth, and silicon oxide. Examples thereof include a composite inorganic fine powder having aluminum oxide or hydroxide around the core of the inorganic fine powder, and hollow glass beads. Among these, heavy calcium carbonate, calcined clay, and diatomaceous earth are preferable because they are inexpensive and can form many pores during stretching, and the porosity can be easily adjusted. Heavy calcium carbonate and light calcium carbonate are preferable because the average particle size and particle size distribution can be easily obtained.
 これらの無機微細粉末(D)を親水化加工するため、無機微細粉末(D)の表面を処理する表面処理剤(C)としては、水溶性であり平均分子量が1,000~15,000の範囲のアニオン系又はカチオン系、ないし非イオン系の高分子界面活性剤を挙げることができる。これらの高分子界面活性剤としては特開平10-212367号公報に記載されるものを挙げることができる。 In order to hydrophilize these inorganic fine powders (D), the surface treatment agent (C) for treating the surface of the inorganic fine powder (D) is water-soluble and has an average molecular weight of 1,000 to 15,000. A range of anionic or cationic or nonionic polymeric surfactants can be mentioned. Examples of these polymer surfactants include those described in JP-A-10-212367.
 本発明の透水性フィルムを構成する延伸樹脂フィルムには、表面処理剤(C)により親水化処理された無機微細粉末(D)は45~75重量%の割合で添加される。同割合は50~70重量%の範囲であることが好ましい。無機微細粉末(D)が45重量%に満たないと連通孔(連通する空孔)の形成が困難となり好ましくない。逆に無機微細粉末(D)が75重量%を超えるフィルム延伸成形が一際困難となり好ましくない。また上記無機微細粉末(D)に併せ、異なる無機微細粉末を組み合わせて配合しても良い。この場合も無機微細粉末の総量が75重量%を超える場合はフィルムの延伸成形性が悪化するため好ましくない。 In the stretched resin film constituting the water-permeable film of the present invention, the inorganic fine powder (D) hydrophilized with the surface treatment agent (C) is added in a proportion of 45 to 75% by weight. The ratio is preferably in the range of 50 to 70% by weight. If the inorganic fine powder (D) is less than 45% by weight, formation of communication holes (communication holes) becomes difficult, which is not preferable. On the contrary, film stretch molding in which the inorganic fine powder (D) exceeds 75% by weight becomes extremely difficult, which is not preferable. In addition to the inorganic fine powder (D), different inorganic fine powders may be combined and blended. Also in this case, when the total amount of the inorganic fine powder exceeds 75% by weight, the stretch moldability of the film deteriorates, which is not preferable.
[表面処理剤(C)により親水化処理された無機微細粉末(D)]
 本発明において表面処理剤(C)による無機微細粉末(D)の親水化処理は、無機粒子を湿式粉砕する際に、水溶性であり平均分子量が1,000~150,000の範囲のアニオン系又はカチオン系、ないし非イオン系の高分子界面活性剤を導入し、粉砕しながら表面処理することによって実施することができる。また、無機化合物を湿式粉砕する際にアニオン系、カチオン系又は非イオン系帯電防止剤で表面処理することによって実施することもできる。これらの処理はそれぞれ個別に両方行ってもよい。親水化処理した無機微細粉末(D)の好ましい例として、特開平7-300568号公報に記載されるものを挙げることができる。
 これら表面処理剤(C)により親水化処理された無機微細粉末(D)としては、ファイマテック社製のAFF-Z等の具体例を挙げることができる。
[Inorganic fine powder (D) hydrophilized with surface treatment agent (C)]
In the present invention, the hydrophilic treatment of the inorganic fine powder (D) with the surface treating agent (C) is an anionic system that is water-soluble and has an average molecular weight in the range of 1,000 to 150,000 when wet grinding the inorganic particles. Alternatively, it can be carried out by introducing a cationic or nonionic polymer surfactant and subjecting it to a surface treatment while grinding. Moreover, when wet-grinding an inorganic compound, it can also carry out by surface-treating with an anionic, cationic or nonionic antistatic agent. Both of these processes may be performed individually. Preferred examples of the inorganic fine powder (D) subjected to the hydrophilic treatment include those described in JP-A-7-300568.
Specific examples of the inorganic fine powder (D) hydrophilized with the surface treatment agent (C) include AFF-Z manufactured by Pfeimatec.
[分散剤(E)]
 本発明の透水性フィルムを構成する延伸樹脂フィルムは、分散剤(E)を含むものであってもよい。本発明において分散剤(E)は、透水性フィルム中の無機微細粉末(D)の分散性を改善し、透水性フィルム中の空孔の均一性向上および透水度の向上といった特徴を付与するために添加するものである。本発明に使用できる分散剤(E)としては、公知のものを用いることができるが、特に酸変性ポリオレフィン系樹脂が好ましく、具体例としては三洋化成社製のユーメックス1001などを挙げることができる。
 本発明の透水性フィルムを構成する延伸樹脂フィルムに分散剤(E)を使用する場合は、0.01~10重量%の割合で添加することが好ましい。分散剤(E)が0.01重量%に満たないと分散剤本来の機能が充分に発揮し得ず好ましくない。逆に分散剤(E)が10重量%を超えると無機微細粉末(D)の凝集を起こす可能性があり好ましくない。
[Dispersant (E)]
The stretched resin film constituting the water-permeable film of the present invention may contain a dispersant (E). In the present invention, the dispersant (E) improves the dispersibility of the inorganic fine powder (D) in the water-permeable film, and imparts characteristics such as improved uniformity of pores and improved water permeability in the water-permeable film. To be added. As the dispersant (E) that can be used in the present invention, known ones can be used, but acid-modified polyolefin resins are particularly preferable, and specific examples include Umex 1001 manufactured by Sanyo Chemical Industries.
When the dispersant (E) is used in the stretched resin film constituting the water-permeable film of the present invention, it is preferably added at a ratio of 0.01 to 10% by weight. If the dispersant (E) is less than 0.01% by weight, the original function of the dispersant cannot be sufficiently exhibited, which is not preferable. Conversely, if the dispersant (E) exceeds 10% by weight, the inorganic fine powder (D) may be aggregated, which is not preferable.
[添加剤]
 必要に応じて本発明の延伸樹脂フィルムには、熱安定剤、紫外線安定剤、酸化防止剤、ブロッキング防止剤、核剤、滑剤、着色剤等の公知の添加剤を配合してもよい。これらの添加剤は、本発明の透水性フィルムを構成する延伸樹脂フィルム以外の層にも添加することができる。これらの添加剤は、各層に0.01~3重量%の割合で配合するのが好ましい。
[Additive]
If necessary, the stretched resin film of the present invention may contain known additives such as a heat stabilizer, an ultraviolet stabilizer, an antioxidant, an antiblocking agent, a nucleating agent, a lubricant, and a colorant. These additives can also be added to layers other than the stretched resin film constituting the water-permeable film of the present invention. These additives are preferably blended in each layer in a proportion of 0.01 to 3% by weight.
[透水性フィルムの製造方法]
 本発明の透水性フィルムは、当業者に公知の種々の方法を組み合わせることによって製造することができる。いかなる方法により製造された透水性フィルムであっても、特許請求の範囲に記載された条件を満たすものである限り本発明の範囲内に包含される。
[Method for producing water-permeable film]
The water-permeable film of the present invention can be produced by combining various methods known to those skilled in the art. A water-permeable film produced by any method is included in the scope of the present invention as long as it satisfies the conditions described in the claims.
 本発明の透水性フィルムを構成する延伸樹脂フィルムは、本発明の製造方法にしたがって製造することが好ましい。すなわち、結晶性ポリオレフィン系樹脂(A)18~42重量%と、熱可塑性エラストマー(B)5~15重量%と、表面処理剤(C)により表面を親水化処理された無機微細粉末(D)45~75重量%とを含有する樹脂組成物を用いて樹脂シートを製造し、次いで、前記樹脂シートを延伸することによりJIS-Z0221:1976に基づき測定される透水度が0.1~2000秒である延伸樹脂フィルムを製造することが好ましい。本発明の製造方法は、このような延伸樹脂フィルムの製造工程を含むことを特徴とするものである。 The stretched resin film constituting the water-permeable film of the present invention is preferably produced according to the production method of the present invention. That is, an inorganic fine powder (D) whose surface is hydrophilized with a surface treatment agent (C), 18 to 42% by weight of a crystalline polyolefin resin (A), 5 to 15% by weight of a thermoplastic elastomer (B) A resin sheet is produced using a resin composition containing 45 to 75% by weight, and then the water permeability measured by JIS-Z0221: 1976 is 0.1 to 2000 seconds by stretching the resin sheet. It is preferable to produce a stretched resin film. The production method of the present invention is characterized by including a production process of such a stretched resin film.
[樹脂シートの形成]
 樹脂組成物を用いて樹脂シートを製造する方法は特に制限されず、通常用いられている方法の中から適宜選択して採用することができる。
 例えば、溶融状態の樹脂組成物を流延して冷却することにより樹脂シートを製造する方法を挙げることができる。このとき樹脂組成物は、樹脂組成物の溶融温度よりも通常30~110℃高い温度、好ましくは50~90℃高い温度で溶融する。溶融する際には、同時に混練することが好ましい。溶融した樹脂組成物はシート状に流延する。このとき、例えば押出機などを用いて樹脂組成物を溶融混練してTダイからシート状に押し出す方法などを好ましく採用することができる。シート状に流延した樹脂組成物は、その後、冷却装置などを用いて冷却して樹脂シートにする。
[Formation of resin sheet]
The method for producing a resin sheet using the resin composition is not particularly limited, and can be appropriately selected and employed from commonly used methods.
For example, the method of manufacturing a resin sheet can be mentioned by casting and cooling the molten resin composition. At this time, the resin composition is melted at a temperature usually 30 to 110 ° C., preferably 50 to 90 ° C. higher than the melting temperature of the resin composition. When melting, it is preferable to knead simultaneously. The molten resin composition is cast into a sheet. At this time, for example, a method of melt-kneading the resin composition using an extruder or the like and extruding it from a T-die into a sheet can be preferably employed. The resin composition cast into a sheet is then cooled to a resin sheet using a cooling device or the like.
[層構成]
 本発明の透水性フィルムは、単層構造であっても、2層以上を積層した多層構造であってもよい。単層構造の場合、上記の原料からなる樹脂組成物をシート状に押し出した樹脂シートを延伸した樹脂フィルムを、そのまま透水性フィルムとして用いることができる。
 多層構造の場合、延伸樹脂フィルムの少なくとも片面に組成の異なる表面層を積層した構造を有するものを透水性フィルムとして用いることができる。多層構造の場合は、それぞれの層を別々に成形した後に積層することによって製造してもよいし、積層した後にまとめて延伸して製造してもよい。
 別々に成形した後に積層する場合、表面層は別の樹脂延伸フィルムであっても、織布であっても、不織布であっても、樹脂の溶融ラミネートであっても、樹脂コーティング層であってもよい。また例えば延伸樹脂フィルムと表面層の間に、中間層として更に他の熱可塑性樹脂フィルム層や不織布層などを含むものであってもよい。
 積層後にまとめて延伸する場合、例えば、樹脂シートに表面層を積層し、その後延伸することにより、多層構造物として得ることができる。または樹脂シートを延伸し、次いで表面層を積層して多層構造物として得ることもできる。または樹脂シートを1軸延伸し、次いで樹脂シートに表面層を積層し、その後先の延伸方向と直交する方向に1軸延伸することにより、樹脂シートが2軸延伸された多層構造物を得ることもできる。上記のように各層を積層した後にまとめて延伸する方が簡便であり製造コストも安くなる。
[Layer structure]
The water-permeable film of the present invention may have a single layer structure or a multilayer structure in which two or more layers are laminated. In the case of a single layer structure, a resin film obtained by stretching a resin sheet obtained by extruding the resin composition made of the above raw material into a sheet shape can be used as it is as a water permeable film.
In the case of a multilayer structure, a stretched resin film having a structure in which surface layers having different compositions are laminated on at least one surface can be used as the water permeable film. In the case of a multilayer structure, it may be produced by forming each layer separately and then laminating, or may be produced by stretching together after lamination.
When laminated after being molded separately, the surface layer may be another resin stretched film, woven fabric, non-woven fabric, melt laminate of resin, resin coating layer, Also good. Further, for example, another thermoplastic resin film layer or a nonwoven fabric layer may be further included as an intermediate layer between the stretched resin film and the surface layer.
When extending | stretching collectively after lamination | stacking, it can obtain as a multilayered structure by laminating | stacking a surface layer on a resin sheet, and extending | stretching after that, for example. Alternatively, the resin sheet can be stretched, and then the surface layer can be laminated to obtain a multilayer structure. Alternatively, the resin sheet is uniaxially stretched, and then a surface layer is laminated on the resin sheet, and then uniaxially stretched in a direction orthogonal to the previous stretching direction to obtain a multilayer structure in which the resin sheet is biaxially stretched. You can also. As described above, after laminating each layer, it is easier to stretch the layers together and the manufacturing cost is reduced.
 上記の他の層(表面層、中間層)は、本発明の透水性フィルムの機能をより向上し、または新たな機能を追加するために設けるものである。
 上記の別の樹脂延伸フィルムを積層する主旨としては、例えば、個々の層の透水度や浸透圧を厚み方向に段階的に変えてやれば、一方の面から水やその他の液体を吸い上げ、フィルム内部に液体を含有させ、他方の面よりその液体を徐放することが可能であるが、その逆方向は不可となる透水方向の選択性などを付与することができる。
 上記の不織布としては、例えば透水性フィルムに使用時の引き裂き耐性等の物理的強度を向上させるためのスパンボンド不織布等が挙げられる。
 上記の樹脂コーティング層としては、例えば透水性フィルムをインクジェット記録用紙として用いる為の公知の記録層等が挙げられる。
The other layers (surface layer, intermediate layer) are provided for further improving the function of the water-permeable film of the present invention or adding a new function.
For example, if the water permeability and osmotic pressure of each layer are changed stepwise in the thickness direction, water and other liquids can be sucked up from one side, Although it is possible to contain a liquid inside and to release the liquid gradually from the other surface, it is possible to impart selectivity of the water permeation direction and the like in the opposite direction.
As said nonwoven fabric, the spun bond nonwoven fabric for improving physical strength, such as tear resistance at the time of use for a water-permeable film, etc. are mentioned, for example.
As said resin coating layer, the well-known recording layer for using a water-permeable film as an inkjet recording paper etc. are mentioned, for example.
[延伸]
 本発明の透水性フィルムは延伸した延伸樹脂フィルムを含むものである。フィルムの延伸には、公知の種々の方法を採用することができる。
[Stretching]
The water-permeable film of the present invention includes a stretched stretched resin film. Various known methods can be employed for stretching the film.
 例えば1軸延伸の具体的な方法としては、樹脂シートの搬送方向にロール群の周速差を利用して延伸するロール間延伸(以後、本発明では縦延伸と表記)、樹脂シートの搬送方向に直交する方向(幅方向)にテンターオーブンを利用して延伸するクリップ延伸(以後、本発明では横延伸と表記)、チューブラー法を利用したインフレ成形法などを挙げることができる。
 縦延伸法によれば、延伸倍率を任意に調整して、任意の空孔率、剛性、不透明度、平滑度、光沢度を有する1軸延伸樹脂フィルムを得ることが容易である。
 特に縦延伸法は任意に空孔率を調整して、任意の透水度を有する透水性フィルムを得ることが容易であり好ましい。従って延伸倍率は特に限定されるものではなく、本発明の透水性フィルムに所望する物性と、用いる熱可塑性樹脂の特性を考慮して決定する。縦延伸法での延伸倍率は通常は3~11倍の範囲とし、4~10倍であることが好ましく、5~7倍であることがより好ましい。同範囲内であれば所望の物性を有する1軸延伸樹脂フィルムを安定して製造することができる。
 横延伸法によれば、機器の制約上、縦延伸法ほど延伸倍率の自由度はないものの、得られる延伸フィルム幅を調整することが容易である。延伸フィルム幅を大きく取れれば、その用途を拡大することが容易となる。横延伸法の延伸倍率は通常4~11倍であり、4~10倍であることがより好ましく、5~9倍であることが特に好ましい。延伸倍率を4倍以上にすることによって、連通孔が形成され、且つ延伸ムラを防いでより均一な膜厚の1軸延伸樹脂フィルムを製造することが容易になる傾向がある。また11倍以下にすることによって、延伸切れや粗大な穴あきをより効果的に防ぎやすくなる傾向がある。
For example, as a specific method of uniaxial stretching, stretching between rolls (hereinafter referred to as “longitudinal stretching” in the present invention) that stretches using the peripheral speed difference of the roll group in the transport direction of the resin sheet, the transport direction of the resin sheet Examples thereof include clip stretching (hereinafter referred to as lateral stretching in the present invention) that stretches using a tenter oven in a direction (width direction) perpendicular to the width direction, an inflation molding method that uses a tubular method, and the like.
According to the longitudinal stretching method, it is easy to obtain a uniaxially stretched resin film having an arbitrary porosity, rigidity, opacity, smoothness, and glossiness by arbitrarily adjusting the stretching ratio.
In particular, the longitudinal stretching method is preferable because it is easy to obtain a water-permeable film having an arbitrary water permeability by arbitrarily adjusting the porosity. Accordingly, the draw ratio is not particularly limited, and is determined in consideration of the physical properties desired for the water-permeable film of the present invention and the properties of the thermoplastic resin used. The stretching ratio in the longitudinal stretching method is usually in the range of 3 to 11 times, preferably 4 to 10 times, and more preferably 5 to 7 times. Within the same range, a uniaxially stretched resin film having desired physical properties can be stably produced.
According to the transverse stretching method, the width of the obtained stretched film can be easily adjusted although there is no degree of freedom in stretching ratio as long as the longitudinal stretching method due to equipment limitations. If the stretched film width can be increased, the application can be easily expanded. The draw ratio of the transverse drawing method is usually 4 to 11 times, more preferably 4 to 10 times, and particularly preferably 5 to 9 times. By setting the draw ratio to 4 times or more, there is a tendency that communication holes are formed and it becomes easy to produce a uniaxially stretched resin film having a more uniform film thickness by preventing stretching unevenness. Moreover, by making it 11 times or less, there exists a tendency which becomes easy to prevent extending | stretching cut | disconnection and coarse perforation more effectively.
 一方、2軸延伸の具体的な方法としては、樹脂シートの搬送方向(製造ライン方向)にロール群の周速差を利用して延伸するロール間延伸(以後、本発明では縦延伸と表記)と、樹脂シートの搬送方向に直交する方向(幅方向)にテンターオーブンを利用して延伸するクリップ延伸(以後、本発明では横延伸と表記)を利用した逐次2軸延伸を挙げることができる。
 逐次2軸延伸法によれば、縦延伸での倍率を任意に調整することが容易である。横延伸は機器の制約上、自由度は小さいが同様に延伸倍率を調整することができる。そのため、2軸延伸樹脂フィルムは任意の空孔率、剛性、不透明度、平滑度、光沢度を有するものを得ることが容易である。
 また、2軸延伸の別の具体的な方法としては、樹脂シートの搬送方向(製造ライン方向)の延伸と、樹脂シートの搬送方向に直交する方向の延伸を同時に行う同時2軸延伸を挙げることができる。より具体的には、テンターオーブンとパンタグラフの組合せ、テンターオーブンとリニアモーターの組合せによる同時2軸延伸方法などを挙げることができる。
 また、インフレーションフィルムの延伸方法であるチューブラー法による同時2軸延伸方法を挙げることができる。
On the other hand, as a specific method of biaxial stretching, inter-roll stretching is performed by utilizing the peripheral speed difference of a group of rolls in the resin sheet conveyance direction (production line direction) (hereinafter referred to as longitudinal stretching in the present invention). And sequential biaxial stretching using clip stretching (hereinafter referred to as lateral stretching in the present invention) that stretches using a tenter oven in a direction (width direction) orthogonal to the transport direction of the resin sheet.
According to the sequential biaxial stretching method, it is easy to arbitrarily adjust the magnification in the longitudinal stretching. Transverse stretching has a small degree of freedom due to equipment limitations, but the stretch ratio can be adjusted in the same manner. Therefore, it is easy to obtain a biaxially stretched resin film having an arbitrary porosity, rigidity, opacity, smoothness, and gloss.
Another specific method of biaxial stretching includes simultaneous biaxial stretching in which stretching in the resin sheet transport direction (production line direction) and stretching in a direction perpendicular to the resin sheet transport direction are performed simultaneously. Can do. More specifically, a combination of a tenter oven and a pantograph, a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, and the like can be given.
Moreover, the simultaneous biaxial stretching method by the tubular method which is a stretching method of an inflation film can be mentioned.
 テンターオーブンを用いた同時2軸延伸法によれば、縦延伸及び横延伸の倍率を同時に調整できるため、等方的で応力緩和に起因する収縮を極力抑えた透水性フィルムを製造することが容易である。また樹脂シートの延伸や搬送をロールに頼る部分が少なくなり、クリップによる搬送の比率が多くなるために、樹脂シート表面が機器接触による擦過の影響を受けづらく、より安定した品質の2軸延伸フィルムが製造できる。
 2軸延伸法によれば任意に空孔率を調整して、任意の透水度を有する透水性フィルムを得ることが容易であり好ましい。従ってその延伸倍率は特に限定されるものではなく、本発明の透水性フィルムに所望する物性と、用いる原料等の特性を考慮して決定する。
 原料に結晶性ポリオレフィン系樹脂(A)を用いる場合、通常、面積延伸倍率は10~90倍であることが好ましく、15~60倍であることがより好ましい。同範囲内であれば所望の物性を有する2軸延伸樹脂フィルムを安定して製造することができる。
According to the simultaneous biaxial stretching method using a tenter oven, the ratio of longitudinal stretching and lateral stretching can be adjusted at the same time, so it is easy to produce a water-permeable film that is isotropic and suppresses shrinkage caused by stress relaxation as much as possible. It is. In addition, since there are fewer parts that rely on rolls for stretching and transporting the resin sheet, and the ratio of transport by clips increases, the biaxially stretched film has a more stable quality because the surface of the resin sheet is less susceptible to scratching due to equipment contact. Can be manufactured.
According to the biaxial stretching method, it is easy and preferable to adjust the porosity arbitrarily to obtain a water-permeable film having an arbitrary water permeability. Therefore, the draw ratio is not particularly limited, and is determined in consideration of the physical properties desired for the water-permeable film of the present invention and the properties of the raw materials used.
When the crystalline polyolefin resin (A) is used as a raw material, the area stretch ratio is usually preferably 10 to 90 times, more preferably 15 to 60 times. Within the same range, a biaxially stretched resin film having desired physical properties can be stably produced.
 1軸延伸の場合であっても2軸延伸の場合であっても、延伸温度は、マトリクス樹脂の融点より5℃以上低い温度、より好ましく結晶性ポリオレフィン系樹脂(A)の融点より5℃以上低く且つ熱可塑性エラストマー(B)の軟化温度より高い温度条件で行うことが好ましい。 Whether it is uniaxial stretching or biaxial stretching, the stretching temperature is 5 ° C. or more lower than the melting point of the matrix resin, more preferably 5 ° C. or more than the melting point of the crystalline polyolefin-based resin (A). It is preferable to carry out under a temperature condition that is low and higher than the softening temperature of the thermoplastic elastomer (B).
[熱処理]
 延伸後のフィルムは、延伸に伴うポリマー分子鎖の緊張を緩和する目的から、熱処理を行うのが好ましい。熱処理を行うことにより、上記延伸による延伸方向の残留応力に起因する熱収縮率が低減し、製品保管時の巻き締まりや熱による収縮から生じるシートの波打ち等が少なくなる。
 熱処理の温度は、延伸温度から延伸温度より30℃高い温度の範囲内を選択することが好ましい。熱処理の方法はロール加熱又は熱オーブンで行うのが一般的であるが、これらを組み合わせてもよい。熱処理の時間は、通常0.1秒~30秒であり、好ましくは0.5秒~20秒であり、より好ましくは1秒~10秒である。これらの熱処理は、延伸した樹脂フィルムを緊張下に保持した状態において行うのがより高い処理効果が得られるので好ましい。
[Heat treatment]
The stretched film is preferably subjected to a heat treatment for the purpose of relaxing the tension of the polymer molecular chain accompanying the stretching. By performing the heat treatment, the thermal contraction rate due to the residual stress in the stretching direction due to the stretching is reduced, and the sheet undulation or the like resulting from tightening during product storage or shrinkage due to heat is reduced.
The temperature of the heat treatment is preferably selected within the range of a temperature 30 ° C. higher than the stretching temperature from the stretching temperature. The heat treatment is generally performed by roll heating or a heat oven, but may be combined. The heat treatment time is usually 0.1 to 30 seconds, preferably 0.5 to 20 seconds, and more preferably 1 to 10 seconds. These heat treatments are preferably performed in a state in which the stretched resin film is held under tension because a higher treatment effect can be obtained.
[搬送]
 本発明の透水性フィルムは、例えば2軸延伸試験機などを用いてバッチ式で製造することも可能であるが、発明の趣旨である高速成形可能な透水性フィルムの提供を鑑みれば、長尺帯状の透水性フィルムを連続的に製造することが好ましい。
 本発明の透水性フィルムは、樹脂フィルムを搬送しながら製造することができる。すなわち、樹脂組成物から形成した樹脂フィルムを搬送しながらこれを1軸または2軸延伸して延伸樹脂フィルムとし、必要に応じて熱処理を行い、効率よく透水性フィルムを製造することができる。
 搬送速度は、縦1軸延伸の場合、通常は10~500m/minであり、30~300m/minであることが好ましく、50~200m/minであることがより好ましい。横1軸延伸の場合、通常は10~150m/minであり、30~120m/minであることが好ましく、50~100m/minであることがより好ましい。逐次2軸延伸の場合、通常は10~500m/minであり、30~300m/minであることが好ましく、50~200m/minであることがより好ましい。同時2軸延伸の場合、通常は3~350m/minであり、5~120m/minであることが好ましく、5~100m/minであることがより好ましい。
[Transport]
The water-permeable film of the present invention can be manufactured in a batch system using, for example, a biaxial stretching tester. However, in view of providing a water-permeable film capable of high-speed molding that is the gist of the invention, the water-permeable film is long. It is preferable to continuously produce a band-shaped water-permeable film.
The water-permeable film of the present invention can be produced while conveying a resin film. That is, while transporting a resin film formed from a resin composition, the resin film is uniaxially or biaxially stretched to obtain a stretched resin film, and heat treatment is performed as necessary to efficiently produce a water-permeable film.
In the case of longitudinal uniaxial stretching, the conveyance speed is usually 10 to 500 m / min, preferably 30 to 300 m / min, and more preferably 50 to 200 m / min. In the case of lateral uniaxial stretching, it is usually 10 to 150 m / min, preferably 30 to 120 m / min, and more preferably 50 to 100 m / min. In the case of sequential biaxial stretching, it is usually 10 to 500 m / min, preferably 30 to 300 m / min, and more preferably 50 to 200 m / min. In the case of simultaneous biaxial stretching, it is usually 3 to 350 m / min, preferably 5 to 120 m / min, more preferably 5 to 100 m / min.
 帯状の樹脂シートから連続的に製造される帯状の透水性フィルムは、製造工程中で所望のサイズに裁断してもよいし、いったんロール状に巻き取って保管・運送してから必要に応じて所望のサイズに裁断してもよい。
 本発明以前は、透水性フィルムを搬送しながら延伸して効率よく製造しようとすると、シート張力によりシート自体が切れてしまい、連続して安定に製造することが困難であった。これに対して、本発明によれば、シートが切れることなく、高速で安定に連続的に製造することが可能となった。また、本発明によれば、従来の透水性フィルムの製造方法にて必要とされていた溶剤廃液の処理や、精密な温度制御は、本発明の製造方法によれば不要である。したがって、本発明によれば、機能的に優れた透水性フィルムを、効率よく製造することができる。
A band-shaped water-permeable film continuously produced from a band-shaped resin sheet may be cut into a desired size during the production process, or once wound up in a roll and stored and transported as necessary. You may cut | judge to a desired size.
Prior to the present invention, if the water-permeable film was stretched while being transported to be efficiently manufactured, the sheet itself was cut by the sheet tension, and it was difficult to manufacture continuously and stably. On the other hand, according to the present invention, it has become possible to continuously and stably manufacture at high speed without cutting the sheet. In addition, according to the present invention, the treatment of the solvent waste liquid and the precise temperature control required in the conventional method for producing a water-permeable film are not required according to the production method of the present invention. Therefore, according to this invention, the functionally excellent water-permeable film can be manufactured efficiently.
透水性フィルムの特徴
[厚さ]
 本発明の透水性フィルムを構成する延伸樹脂フィルムの厚みは特に制限されないが、20~500μmが好ましく、より好ましくは40~300μm、さらに好ましくは50~200μmの範囲である。本発明の透水性フィルムが延伸樹脂フィルムのみから構成される場合は、透水性フィルムの全厚の好ましい範囲は上記延伸樹脂フィルムの厚みの好ましい範囲と同じである。本発明の透水性フィルムが延伸樹脂フィルムの少なくとも一面に表面層を積層した構造を有する場合、表面層の厚みは特に制限されないが、1~50μmが好ましく、3~30μmがより好ましく、5~10μmがさらに好ましい。本発明の透水性フィルムが延伸樹脂フィルムの両面に表面層を積層した構造を有する場合、フィルムのそりを防ぐ観点からは2つの表面層の厚みは同じであることが好ましい。また、延伸樹脂フィルムと表面層の間に中間層が形成されている場合、中間層の厚みは特に制限されないが、1~50μmが好ましく、5~30μmがより好ましく、10~20μmがさらに好ましい。
Features of water-permeable film [thickness]
The thickness of the stretched resin film constituting the water-permeable film of the present invention is not particularly limited, but is preferably 20 to 500 μm, more preferably 40 to 300 μm, and still more preferably 50 to 200 μm. When the water-permeable film of this invention is comprised only from a stretched resin film, the preferable range of the total thickness of a water-permeable film is the same as the preferable range of the thickness of the said stretched resin film. When the water-permeable film of the present invention has a structure in which a surface layer is laminated on at least one surface of a stretched resin film, the thickness of the surface layer is not particularly limited, but is preferably 1 to 50 μm, more preferably 3 to 30 μm, and more preferably 5 to 10 μm. Is more preferable. When the water-permeable film of the present invention has a structure in which surface layers are laminated on both sides of a stretched resin film, the thicknesses of the two surface layers are preferably the same from the viewpoint of preventing warping of the film. In the case where an intermediate layer is formed between the stretched resin film and the surface layer, the thickness of the intermediate layer is not particularly limited, but is preferably 1 to 50 μm, more preferably 5 to 30 μm, and even more preferably 10 to 20 μm.
[空孔率]
 本発明の透水性フィルムを構成する延伸樹脂フィルムの空孔率は28~80%であることが好ましい。延伸樹脂フィルムの空孔率が28%以上であれば、フィルム内部に連通する空孔を生じて所望の透水性が発現しやすくなる傾向がある。また、空孔率が80%以下であれば、フィルム製造時に延伸割れが発生しにくいため、より安定した製造を行いやすくなる傾向がある。1軸延伸樹脂フィルムの空孔率は28~64%であることが好ましく、33~57%であることがより好ましく、36~54%であることが特に好ましい。2軸延伸樹脂フィルムの空孔率は30~80%であることが好ましく、35~80%であることがより好ましく、38~78%であることがさらに好ましく、40~75%であることが特に好ましい。1軸または2軸延伸樹脂フィルムの空孔率は、熱可塑性エラストマー(B)や無機微細粉末(D)の含有量や、延伸倍率を調整することにより制御することができる。
[Porosity]
The porosity of the stretched resin film constituting the water-permeable film of the present invention is preferably 28 to 80%. If the stretched resin film has a porosity of 28% or more, there is a tendency that pores communicating with the inside of the film are generated and desired water permeability is easily developed. Further, if the porosity is 80% or less, stretch cracks are unlikely to occur during film production, and thus there is a tendency that more stable production is facilitated. The porosity of the uniaxially stretched resin film is preferably 28 to 64%, more preferably 33 to 57%, and particularly preferably 36 to 54%. The porosity of the biaxially stretched resin film is preferably 30 to 80%, more preferably 35 to 80%, still more preferably 38 to 78%, and preferably 40 to 75%. Particularly preferred. The porosity of the uniaxial or biaxially stretched resin film can be controlled by adjusting the content of the thermoplastic elastomer (B) or the inorganic fine powder (D) and the stretch ratio.
 内部に空孔があることは、断面を電子顕微鏡で観察することにより確かめることができる。空孔率は、断面の電子顕微鏡写真を撮影し、その写真に撮影された断面領域内に占める空孔の面積割合(%)を求めることにより得られる。具体的には、延伸樹脂フィルムをエポキシ樹脂で包埋して固化させた後、ミクロトームを用いて例えばフィルムの厚さ方向に対して平行(すなわち面方向に垂直)な切断面を作製し、この切断面をメタライジングした後、走査型電子顕微鏡で観察しやすい任意の倍率(例えば500倍~2000倍)に拡大して観察し、さらに空孔部分をトレーシングフィルムにトレースし塗りつぶした図を画像解析装置(ニレコ(株)製:型式ルーゼックスIID)で画像処理を行い、測定範囲を占める空孔の面積割合(%)を求めて空孔率(%)とすることができる。
 透水性フィルムが多層構造である場合は、各層ごとに上記方法により空孔率(%)を求めることができる。
The presence of pores inside can be confirmed by observing the cross section with an electron microscope. The porosity is obtained by taking an electron micrograph of a cross section and determining the area ratio (%) of the occupancy in the cross-sectional area taken in the photograph. Specifically, after the stretched resin film is embedded with an epoxy resin and solidified, a cut surface parallel to the thickness direction of the film (that is, perpendicular to the surface direction) is prepared using a microtome, for example. After metallizing the cut surface, magnify it to an arbitrary magnification (for example, 500x to 2000x) that is easy to observe with a scanning electron microscope, and trace the pores on a tracing film and fill it in Image processing is performed with an analyzer (manufactured by Nireco Co., Ltd .: model Luzex IID), and the area ratio (%) of the holes occupying the measurement range can be obtained to obtain the porosity (%).
When the water permeable film has a multilayer structure, the porosity (%) can be determined for each layer by the above method.
[密度]
 本発明の透水性フィルムを構成する延伸樹脂フィルムの密度は、0.3~1.1g/cm3であることが好ましく、0.4~0.9g/cm3であることがより好ましく、0.4~0.8g/cm3であることがさらに好ましい。延伸樹脂フィルムの密度が0.3g/cm3以上であれば、フィルム製造時に延伸割れが発生しにくいため、より安定した製造を行いやすくなる傾向がある。また、密度が1.1g/cm3以下であれば、フィルム内部に連通する空孔を生じて所望の透水性が発現しやすくなる傾向がある。延伸樹脂フィルムの密度は、熱可塑性エラストマー(B)や無機微細粉末(D)の含有量や、延伸倍率を調整することにより制御することができる。
[density]
The density of the stretched resin film constituting the water-permeable film of the present invention is preferably 0.3 to 1.1 g / cm 3, more preferably 0.4 to 0.9 g / cm 3, More preferably, it is ˜0.8 g / cm 3. If the density of the stretched resin film is 0.3 g / cm 3 or more, stretch cracks are unlikely to occur during film production, and thus there is a tendency that more stable production is facilitated. Further, if the density is 1.1 g / cm 3 or less, there is a tendency that pores communicating with the inside of the film are generated and desired water permeability is easily developed. The density of the stretched resin film can be controlled by adjusting the content of the thermoplastic elastomer (B) and the inorganic fine powder (D) and the stretch ratio.
[透水度]
 本発明の透水性フィルムは、厚み方向に連通する空孔を有することにより、一方の面から他方の面へ容易に水や油などの液体を透過させることができる。具体的には、JIS-Z0221:1976に基づき測定される透水度が、0.1~2,000秒である特徴を有する。同透水度は、0.5~1,000秒であることが好ましく、1~200秒であることがより好ましい。透水度が0.1秒以上であればフィルム製造時に延伸割れが発生しにくいため、より安定した製造を行いやすくなる傾向がある。また透水度が2,000秒以下であれば透水性フィルムとしての機能を充分に発揮できるようになる。
 本発明の透水性フィルムは、フィルム内部の空孔の連通度合い、空孔の大きさ、空孔の数などといった構造上の特徴から、上記の透水度を達成するものである。したがって、本発明の透水性フィルムの透水度は、例えば無機微粒粉末の粒子径、無機微細粉末の配合量、熱可塑性エラストマーの配合量、延伸温度、延伸倍率などを調整することによって制御することができる。
[Water permeability]
Since the water-permeable film of the present invention has pores communicating in the thickness direction, liquid such as water and oil can be easily transmitted from one surface to the other surface. Specifically, the water permeability measured based on JIS-Z0221: 1976 is 0.1 to 2,000 seconds. The water permeability is preferably 0.5 to 1,000 seconds, more preferably 1 to 200 seconds. If the water permeability is 0.1 seconds or more, stretch cracks are unlikely to occur during film production, and therefore, more stable production tends to be performed. Moreover, if a water permeability is 2,000 seconds or less, the function as a water-permeable film can fully be exhibited.
The water-permeable film of the present invention achieves the above water permeability from the structural features such as the degree of communication of pores inside the film, the size of the pores, the number of pores and the like. Therefore, the water permeability of the water-permeable film of the present invention can be controlled by adjusting, for example, the particle diameter of the inorganic fine particle powder, the blending amount of the inorganic fine powder, the blending amount of the thermoplastic elastomer, the stretching temperature, the stretching ratio, and the like. it can.
 一般に電池や電解コンデンサーのセパレータにおいては、透水性が高いことが要求される。各種濾過膜においては、透水性と濾過精度が求められる。 Generally, separators for batteries and electrolytic capacitors are required to have high water permeability. Various filtration membranes require water permeability and filtration accuracy.
[引裂強さと変位量の積]
 本発明の透水性フィルムは、JIS-K7128-3:1998の直角形引裂法、試験速度Aに基づき測定されるフィルム延伸方向に直交する方向での引裂強さ(kgf/mm)と、同引裂試験時における試験片の破断までの変位量(引張伸び、mm)との積が、10kgf以上であることが好ましい。引裂強さと変位量の積は、透水性フィルムの引裂き難さを表すものであり、製造時の引き裂けにくさ(シートの割れにくさ)や各種加工時などの取り扱いやすさの目安となるものである。
[Product of tear strength and displacement]
The water-permeable film of the present invention has a tear strength (kgf / mm) in the direction perpendicular to the film stretching direction measured based on the right angle tearing method of JIS-K7128-3: 1998, test speed A, and the same tearing. It is preferable that the product of the amount of displacement (tensile elongation, mm) until the test piece breaks during the test is 10 kgf or more. The product of tear strength and displacement represents the difficulty of tearing a water-permeable film, and is a measure of the ease of handling during manufacturing (sheet cracking difficulty) and the ease of handling during various processing. is there.
 引裂強さと変位量の積が大きければフィルム製造時の裂けにくさを回避できるが、積が大きすぎると連通する微細空孔ができにくくなって本発明の主旨である透水度が得られにくくなってしまう傾向がある。また、引裂強さと変位量の積が小さければ充分な空孔が得られ透水度を達成しやすいが、積が小さすぎると製造安定性が低下してしまう傾向がある。
 このため、引裂強さと変位量の積は10~200kgfの範囲内であることが好ましく、10~100kgfの範囲内であることがより好ましく、10~80kgfの範囲内であることが特に好ましい。引裂強さと変位量の積が10kgf以上であれば、巻取りや各種加工時における引き裂けの発生を回避することが容易になる傾向がある。また200kgf以下であれば、所望の透水度が得られやすくなる傾向がある。
 引裂強さと変位量の積は、原料構成面では主に熱可塑性エラストマー(B)と無機微細粉末(D)の配合割合によって調整可能であり、製造条件面では主に延伸倍率や延伸温度によって調整可能である。
If the product of tear strength and displacement is large, the difficulty of tearing during film production can be avoided, but if the product is too large, it is difficult to form fine pores that communicate with each other, making it difficult to obtain the water permeability that is the gist of the present invention. There is a tendency to end up. Moreover, if the product of tear strength and displacement is small, sufficient pores can be obtained and the water permeability can be easily achieved. However, if the product is too small, the production stability tends to decrease.
For this reason, the product of the tear strength and the displacement is preferably in the range of 10 to 200 kgf, more preferably in the range of 10 to 100 kgf, and particularly preferably in the range of 10 to 80 kgf. If the product of tear strength and displacement is 10 kgf or more, it tends to be easy to avoid the occurrence of tearing during winding and various processing. Moreover, if it is 200 kgf or less, there exists a tendency for a desired water permeability to be obtained easily.
The product of tear strength and displacement can be adjusted mainly by the blending ratio of thermoplastic elastomer (B) and inorganic fine powder (D) in terms of raw material composition, and mainly adjusted by the draw ratio and draw temperature in terms of manufacturing conditions. Is possible.
透水性フィルムの用途
 本発明の透水性フィルムは、多孔質であり、浸透圧により厚み方向全体に液体を保持、吸収することができ、またさらに圧をかけることで透過させることができる。そのため本発明の透水性フィルムは、液体吸収体、液体吸収性の清拭材、梱包包装用の保護緩衝材、土木建築用の建材・養生シート・目地材、結露防止材、家畜舎用の断熱材、クッション、筆記具用の中綿、芳香剤等の吸上げ芯、水耕栽培用の培地、フィルター等の濾材、各種精密濾過膜、電池や電解コンデンサーのセパレータ、感熱受容紙用部材、インク受容体部材、液状糊などの流出口、マイクロバブル発生部材、合成セーヌ革代替品、細胞培養シート等の用途に使用可能である。
 本発明の透水性フィルムは、特に耐久性のあり、空孔径と分布が均一精密である樹脂製の透水性フィルムであることから、従来の多孔性フィルムと同様に、電池や電解コンデンサーのセパレータや各種精密濾過膜、液体吸収性物品といった用途に適切に用いうる。
 本発明の透水性フィルムをセパレータや各種濾過膜として用いる際には、従来品とは異なり、可塑剤および/又は溶剤の添加および溶出工程を行ったり、低分子量成分の除去や高分子量ポリオレフィンのフィブリル形成のための熱処理工程を行ったりする必要がなく、またフィルム形成後の親水化処理を要さずに透水性を付与することができる。
Use of water-permeable film The water-permeable film of the present invention is porous, can hold and absorb liquid in the entire thickness direction by osmotic pressure, and can be permeated by further applying pressure. Therefore, the water-permeable film of the present invention includes a liquid absorbent, a liquid absorbent wiping material, a protective cushioning material for packing and packaging, a building material, a curing sheet and a joint material for civil engineering, a dew condensation prevention material, and a heat insulation for livestock houses. Materials, cushions, padding for writing instruments, suction cores for fragrances, medium for hydroponics, filter media such as filters, various microfiltration membranes, separators for batteries and electrolytic capacitors, members for heat-sensitive paper, and ink receptors It can be used for applications such as members, outlets for liquid glue, microbubble generating members, synthetic seine leather substitutes, cell culture sheets and the like.
Since the water-permeable film of the present invention is a resin-made water-permeable film that is particularly durable and has a uniform and accurate pore size and distribution, the separator of a battery or electrolytic capacitor, It can be used appropriately for various microfiltration membranes and liquid absorbent articles.
When the water-permeable film of the present invention is used as a separator or various filtration membranes, unlike conventional products, a plasticizer and / or a solvent are added and eluted, or low molecular weight components are removed and high molecular weight polyolefin fibrils are used. It is not necessary to perform a heat treatment step for formation, and water permeability can be imparted without requiring hydrophilic treatment after film formation.
 以下に、製造例、実施例及び試験例を挙げて本発明をさらに具体的に説明する。製造例及び実施例に示す材料、使用量、割合、処理内容、処理手順等は本発明を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described more specifically with reference to production examples, examples and test examples. The materials, amounts used, ratios, processing details, processing procedures, etc. shown in the production examples and examples can be appropriately changed without departing from the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
製造例
 表1に記載の原材料を使用し、表2に記載の配合量(重量%)に従い、延伸樹脂フィルムの製造に用いる樹脂組成物を準備した(配合例1~36)。表2に記載される原料No.は、表1に記載される原料No.に対応している。ここで結晶性ポリオレフィン系樹脂(A)に関して、株式会社東洋精機製作所製のキャピログラフを使用し、温度190℃、キャピラリー径2mm、ピストン速度10mm/min、引取速度10m/minの条件で測定される原料No.1の結晶性ポリプロピレンの溶融張力は12.2gであり、原料No.2の結晶性ポリプロピレンの溶融張力は2gであり、原料No.3の結晶性ポリプロピレンの溶融張力は1.07gであり、原料No.4の長鎖分岐ポリプロピレンの溶融張力は25gであった。また、スチレン系エラストマーであるNo.5のスチレン含量は10重量%であり、No.6のスチレン含量は15重量%である。
 次に、表3~表9に記載の配合例の樹脂組成物を用いて、表3~表9に記載の延伸条件に従って延伸樹脂フィルムを製造した(製造例1~127)。製造工程の詳細は、下記のとおりである。表3~表9に記載される各層の配合例No.は、表2に記載される配合例No.に対応している。
Production Example Using the raw materials shown in Table 1, resin compositions used for the production of stretched resin films were prepared according to the blending amounts (% by weight) shown in Table 2 (Formulation Examples 1 to 36). Raw material No. described in Table 2 Is the raw material No. described in Table 1. It corresponds to. Here, regarding the crystalline polyolefin resin (A), a raw material measured using a capilograph manufactured by Toyo Seiki Seisakusho Co., Ltd. under the conditions of a temperature of 190 ° C., a capillary diameter of 2 mm, a piston speed of 10 mm / min, and a take-up speed of 10 m / min. No. No. 1 crystalline polypropylene has a melt tension of 12.2 g. 2 has a melt tension of 2 g. No. 3 crystalline polypropylene has a melt tension of 1.07 g. The melt tension of No. 4 long-chain branched polypropylene was 25 g. Moreover, No. which is a styrene-type elastomer. No. 5 has a styrene content of 10% by weight. The styrene content of 6 is 15% by weight.
Next, stretched resin films were produced using the resin compositions of the formulation examples described in Tables 3 to 9 according to the stretching conditions described in Tables 3 to 9 (Production Examples 1 to 127). The details of the manufacturing process are as follows. Formulation example No. of each layer described in Tables 3 to 9 Is the formulation example No. described in Table 2. It corresponds to.
〔製造例1~18〕
 表2に記載の組成を有する樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この樹脂シートを表3に記載の延伸温度まで加熱した後、ロール間延伸法にて樹脂シートの搬送方向(縦方向)に表3に記載の延伸倍率で1軸延伸し、更に160℃にて熱処理を行った。その後60℃にて冷却し、耳部をスリットして1軸延伸樹脂フィルムを得た。延伸ゾーン以外の領域における樹脂シートと1軸延伸樹脂フィルムの搬送速度は、延伸後に20m/minとなるように制御した。
 尚、製造例12、13および製造例18については、延伸の際に度々破断してしまい、1軸延伸樹脂フィルムを得ることができなかった。
 これらの1軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表3に示すとおりであった。
[Production Examples 1 to 18]
A resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
After heating the resin sheet to the stretching temperature described in Table 3, the resin sheet was uniaxially stretched at a stretching ratio described in Table 3 in the conveying direction (longitudinal direction) of the resin sheet by an inter-roll stretching method, and further at 160 ° C. Heat treatment was performed. Then, it cooled at 60 degreeC and slit the ear | edge part, and obtained the uniaxially stretched resin film. The conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to be 20 m / min after stretching.
In addition, about manufacture example 12, 13 and manufacture example 18, it fractured | ruptured at the time of extending | stretching, and the uniaxially stretched resin film was not able to be obtained.
The physical properties (thickness, density, porosity) of these uniaxially stretched resin films were as shown in Table 3.
〔製造例19~36〕
 表2に記載の組成を有する樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この樹脂シートを表4に記載の延伸温度まで加熱した後、テンター延伸機を用いたクリップ延伸法にて樹脂シートの幅方向(横方向)に表4に記載の延伸倍率で1軸延伸し、更に160℃にて熱処理を行った。その後60℃にて冷却し、耳部をスリットして1軸延伸樹脂フィルムを得た。延伸ゾーン以外の領域における樹脂シートと1軸延伸樹脂フィルムの搬送速度は、12m/minに制御した。尚、製造例30、31および製造例36については、延伸の際に度々破断してしまい、1軸延伸樹脂フィルムを得ることができなかった。
 これらの1軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表4に示すとおりであった。
[Production Examples 19 to 36]
A resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
After heating this resin sheet to the stretching temperature described in Table 4, the resin sheet was uniaxially stretched at the stretching ratio described in Table 4 in the width direction (lateral direction) of the resin sheet by a clip stretching method using a tenter stretching machine. Further, heat treatment was performed at 160 ° C. Then, it cooled at 60 degreeC and slit the ear | edge part, and obtained the uniaxially stretched resin film. The conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to 12 m / min. In addition, Production Examples 30, 31 and Production Example 36 were frequently broken during stretching, and a uniaxially stretched resin film could not be obtained.
The physical properties (thickness, density, porosity) of these uniaxially stretched resin films were as shown in Table 4.
〔製造例37~56、58~61〕
 表2に記載の組成を有する樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この樹脂シートを表5に記載の延伸温度まで加熱した後、ロール間延伸法にて樹脂シートの搬送方向(縦方向)に表5に記載の延伸倍率で1軸延伸し、1軸延伸樹脂フィルムを得た。延伸ゾーン以外の領域における樹脂シートと1軸延伸樹脂フィルムの搬送速度は、延伸後に20m/minとなるように制御した。
 尚、製造例43と製造例61については、延伸の際に度々破断してしまい、1軸延伸樹脂フィルムを得ることができなかった。
 これらの1軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表5に示すとおりであった。
[Production Examples 37 to 56, 58 to 61]
A resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
After heating this resin sheet to the extending | stretching temperature of Table 5, it is uniaxially stretched by the draw ratio of Table 5 in the conveyance direction (longitudinal direction) of the resin sheet by the stretching method between rolls, and a uniaxially stretched resin film Got. The conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to be 20 m / min after stretching.
In addition, Production Example 43 and Production Example 61 were frequently broken during stretching, and a uniaxially stretched resin film could not be obtained.
The physical properties (thickness, density, porosity) of these uniaxially stretched resin films were as shown in Table 5.
〔製造例57〕
 表2に記載の配合例18の樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。さらに表2に記載の配合例35の組成を有する樹脂組成物をそれぞれ個別の250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、樹脂シートの表面および裏面にそれぞれラミネートし、表面層〔b〕/基材層〔a〕/裏面層〔c〕の積層構造を有する樹脂シートを得た。
 この樹脂シートを表5に記載の延伸温度まで加熱した後、ロール間延伸法にて樹脂シートの搬送方向(縦方向)に表5に記載の延伸倍率で1軸延伸し、1軸延伸樹脂フィルムを得た。延伸ゾーン以外の領域における樹脂シートと1軸延伸樹脂フィルムの搬送速度は、延伸後に20m/minとなるように制御した。
 この1軸延伸樹脂フィルムの物性(各層厚さ、密度、空孔率)は表5に示すとおりであった。
[Production Example 57]
The resin composition of Formulation Example 18 shown in Table 2 was melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, cooled to 80 ° C. with a cooling device, and unstretched. A resin sheet was obtained. Further, the resin composition having the composition of Formulation Example 35 shown in Table 2 was melted and kneaded with an extruder set at 250 ° C., extruded from a T-die into a sheet, and laminated on the front and back surfaces of the resin sheet, respectively. Thus, a resin sheet having a laminated structure of surface layer [b] / base material layer [a] / back surface layer [c] was obtained.
After heating this resin sheet to the extending | stretching temperature of Table 5, it is uniaxially stretched by the draw ratio of Table 5 in the conveyance direction (longitudinal direction) of the resin sheet by the stretching method between rolls, and a uniaxially stretched resin film Got. The conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to be 20 m / min after stretching.
The physical properties (layer thickness, density, porosity) of this uniaxially stretched resin film were as shown in Table 5.
〔製造例62~79、81~84〕
 表2に記載の組成を有する樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この樹脂シートを表6に記載の延伸温度まで加熱した後、テンター延伸機を用いたクリップ延伸法にて樹脂シートの幅方向(横方向)に表6に記載の延伸倍率で1軸延伸し、1軸延伸樹脂フィルムを得た。延伸ゾーン以外の領域における樹脂シートと1軸延伸樹脂フィルムの搬送速度は、12m/minに制御した。尚、製造例66と製造例84については、延伸の際に度々破断してしまい、1軸延伸樹脂フィルムを得ることができなかった。
 これらの1軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表6に示すとおりであった。
[Production Examples 62 to 79, 81 to 84]
A resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
After heating the resin sheet to the stretching temperature described in Table 6, the resin sheet was uniaxially stretched at the stretching ratio described in Table 6 in the width direction (lateral direction) of the resin sheet by a clip stretching method using a tenter stretching machine. A uniaxially stretched resin film was obtained. The conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to 12 m / min. Note that Production Example 66 and Production Example 84 were frequently broken during stretching, and a uniaxially stretched resin film could not be obtained.
The physical properties (thickness, density, porosity) of these uniaxially stretched resin films were as shown in Table 6.
〔製造例80〕
 表2に記載の配合例18の樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。さらに表2に記載の配合例35の組成を有する樹脂組成物をそれぞれ個別の250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、樹脂シートの表面および裏面にそれぞれラミネートし、表面層〔b〕/基材層〔a〕/裏面層〔c〕の積層構造を有する樹脂シートを得た。
 この樹脂シートを表6に記載の延伸温度まで加熱した後、テンター延伸機を用いたクリップ延伸法にて樹脂シートの幅方向(横方向)に表6に記載の延伸倍率で1軸延伸し、1軸延伸樹脂フィルムを得た。延伸ゾーン以外の領域における樹脂シートと1軸延伸樹脂フィルムの搬送速度は、12m/minに制御した。
 この1軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表6に示すとおりであった。
[Production Example 80]
The resin composition of Formulation Example 18 shown in Table 2 was melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, cooled to 80 ° C. with a cooling device, and unstretched. A resin sheet was obtained. Further, the resin composition having the composition of Formulation Example 35 shown in Table 2 was melted and kneaded with an extruder set at 250 ° C., extruded from a T-die into a sheet, and laminated on the front and back surfaces of the resin sheet, respectively. Thus, a resin sheet having a laminated structure of surface layer [b] / base material layer [a] / back surface layer [c] was obtained.
After heating the resin sheet to the stretching temperature described in Table 6, the resin sheet was uniaxially stretched at the stretching ratio described in Table 6 in the width direction (lateral direction) of the resin sheet by a clip stretching method using a tenter stretching machine. A uniaxially stretched resin film was obtained. The conveyance speed of the resin sheet and the uniaxially stretched resin film in the region other than the stretching zone was controlled to 12 m / min.
The physical properties (thickness, density, porosity) of this uniaxially stretched resin film were as shown in Table 6.
〔製造例85~103〕
 表2に記載の組成を有する樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この樹脂シートを表7に記載の縦延伸条件の延伸温度まで加熱した後、ロール間延伸法にて樹脂シートの搬送方向(縦方向)に表7に記載の縦延伸条件の延伸倍率で延伸し、その後60℃にて冷却して1軸延伸樹脂フィルムを得た。
 次いで、この1軸延伸樹脂フィルムをテンターオーブンを用いて再び表7に記載の横延伸条件の延伸温度まで加熱して、クリップ延伸法にて樹脂シートの搬送方向に直交する方向(横方向)に表7に記載の横延伸条件の延伸倍率で延伸し、更にオーブンで160℃まで加熱して熱処理を行い、逐次2軸延伸による2軸延伸樹脂フィルムを得た。
 以上の2軸延伸樹脂フィルムの製造は、フィルムを120m/minで搬送しながら行った。
 尚、製造例97、98および製造例103については、延伸の際に度々破断してしまい、2軸延伸樹脂フィルムを得ることができなかった。
 これらの2軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表7に示すとおりであった。
[Production Examples 85 to 103]
A resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
After heating this resin sheet to the stretching temperature under the longitudinal stretching conditions described in Table 7, it was stretched at the stretching ratio under the longitudinal stretching conditions listed in Table 7 in the transport direction (longitudinal direction) of the resin sheet by an inter-roll stretching method. Then, it was cooled at 60 ° C. to obtain a uniaxially stretched resin film.
Next, this uniaxially stretched resin film is again heated to a stretching temperature under the transverse stretching conditions listed in Table 7 using a tenter oven, and in a direction (lateral direction) orthogonal to the transport direction of the resin sheet by the clip stretching method. The film was stretched at a stretching ratio under the transverse stretching conditions listed in Table 7, and further heated to 160 ° C. in an oven for heat treatment to obtain a biaxially stretched resin film by sequential biaxial stretching.
The production of the above biaxially stretched resin film was carried out while conveying the film at 120 m / min.
Note that Production Examples 97 and 98 and Production Example 103 were frequently broken during stretching, and a biaxially stretched resin film could not be obtained.
The physical properties (thickness, density, porosity) of these biaxially stretched resin films were as shown in Table 7.
〔製造例104~122〕
 表2に記載の組成を有する樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この樹脂シートを表8に記載の延伸温度まで加熱した後、テンターオーブンとパンタグラフの組合せによる同時2軸延伸機を用いて、樹脂シートの搬送方向(縦方向)に表8に記載の縦延伸条件の延伸倍率、および樹脂シートの搬送方向に直交する方向(横方向)に表8に記載の横延伸条件の延伸倍率で延伸し、更にオーブンで165℃まで加熱して熱処理を行い、同時2軸延伸による2軸延伸樹脂フィルムを得た。
 以上の2軸延伸樹脂フィルムの製造は、フィルムを50m/minで搬送しながら行った。
 尚、製造例116および製造例122については、延伸の際に度々破断してしまい、2軸延伸樹脂フィルムを得ることができなかった。
 これらの2軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表8に示すとおりであった。
[Production Examples 104 to 122]
A resin composition having the composition shown in Table 2 is melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T-die, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
After heating this resin sheet to the stretching temperature described in Table 8, the longitudinal stretching conditions described in Table 8 in the transport direction (longitudinal direction) of the resin sheet using a simultaneous biaxial stretching machine in combination with a tenter oven and a pantograph The film was stretched at a stretching ratio of the horizontal stretching conditions shown in Table 8 in the direction (transverse direction) orthogonal to the direction of transport of the resin sheet and further heated to 165 ° C. in an oven for heat treatment. A biaxially stretched resin film was obtained by stretching.
The production of the above biaxially stretched resin film was carried out while conveying the film at 50 m / min.
Note that Production Example 116 and Production Example 122 were frequently broken during stretching, and a biaxially stretched resin film could not be obtained.
The physical properties (thickness, density, porosity) of these biaxially stretched resin films were as shown in Table 8.
〔製造例123、124〕
 表2に記載の配合例2の樹脂組成物および配合例5または7の樹脂組成物を、それぞれ個別に250℃に設定した3台の押出機で溶融混練して、これをTダイに供給してダイ内部で積層し、Tダイよりシート状に押し出し、冷却装置にて80℃まで冷却して表面層〔b〕/基材層〔a〕/裏面層〔c〕の積層構造を有する無延伸の樹脂シートを得た。
 この樹脂シートを表9に記載の縦延伸条件の延伸温度まで加熱した後、ロール間延伸法にて樹脂シートの搬送方向(縦方向)に表9に記載の縦延伸条件の延伸倍率で1軸延伸し、1軸延伸樹脂フィルムを得た。
 次いで、この1軸延伸樹脂フィルムをテンターオーブンを用いて再び表9に記載の横延伸条件の延伸温度まで加熱して、クリップ延伸法にて樹脂シートの搬送方向に直交する方向(横方向)に表9に記載の横延伸条件の延伸倍率で延伸し、更にオーブンで160℃まで加熱して熱処理を行い、逐次2軸延伸による2軸延伸樹脂フィルムを得た。
 以上の2軸延伸樹脂フィルムの製造は、フィルムを100m/minで搬送しながら行った。
 この2軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表9に示すとおりであった。
[Production Examples 123 and 124]
The resin composition of Formulation Example 2 shown in Table 2 and the resin composition of Formulation Example 5 or 7 were melt-kneaded by three extruders set individually at 250 ° C. and supplied to a T die. Layered inside the die, extruded into a sheet form from the T-die, cooled to 80 ° C. with a cooling device, and has a non-stretched structure of surface layer [b] / base material layer [a] / back surface layer [c] A resin sheet was obtained.
After heating this resin sheet to the stretching temperature under the longitudinal stretching conditions described in Table 9, the uniaxial stretching ratio of the longitudinal stretching conditions described in Table 9 is applied in the resin sheet transport direction (longitudinal direction) by the inter-roll stretching method. Stretched to obtain a uniaxially stretched resin film.
Next, this uniaxially stretched resin film is again heated to a stretching temperature under the transverse stretching conditions listed in Table 9 using a tenter oven, and in a direction (lateral direction) orthogonal to the transport direction of the resin sheet by the clip stretching method. The film was stretched at a stretching ratio under the lateral stretching conditions listed in Table 9, and further heated to 160 ° C. in an oven for heat treatment to obtain a biaxially stretched resin film by sequential biaxial stretching.
The production of the above biaxially stretched resin film was performed while conveying the film at 100 m / min.
The physical properties (thickness, density, porosity) of this biaxially stretched resin film were as shown in Table 9.
〔製造例125~127〕
表9に記載の配合例2の組成を有する樹脂組成物を、250℃に設定した押出機で溶融混練して、Tダイよりシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この樹脂シートを表9に記載の縦延伸条件の延伸温度まで加熱した後、ロール間延伸法にて樹脂シートの搬送方向(縦方向)に表9に記載の縦延伸条件の延伸倍率で延伸し、その後60℃にて冷却して1軸延伸樹脂フィルムを得た。
 次いで表2に記載の配合例3または7の組成を有する樹脂組成物をそれぞれ個別の250℃に設定した2台の押出機で溶融混練して、Tダイよりシート状に押し出し、1軸延伸樹脂フィルムの表面および裏面にそれぞれ溶融ラミネートし、表面層〔b〕/基材層〔a〕/裏面層〔c〕の積層構造を有する樹脂シートを得た。
 次いで、この積層構造を有する樹脂シートをテンターオーブンを用いて再び表9に記載の横延伸条件の延伸温度まで加熱して、クリップ延伸法にて樹脂シートの搬送方向に直交する方向(横方向)に表9に記載の横延伸条件の延伸倍率で延伸し、更にオーブンで160℃まで加熱して熱処理を行い、基材層〔a〕が逐次2軸延伸されている2軸延伸樹脂フィルムを得た。
 尚、製造例127については、延伸の際に度々破断してしまい、2軸延伸樹脂フィルムを得ることができなかった。
 これらの2軸延伸樹脂フィルムの物性(厚さ、密度、空孔率)は表9に示すとおりであった。
[Production Examples 125 to 127]
The resin composition having the composition of Formulation Example 2 shown in Table 9 was melt-kneaded with an extruder set at 250 ° C., extruded into a sheet form from a T die, and cooled to 80 ° C. with a cooling device. An unstretched resin sheet was obtained.
After heating this resin sheet to the stretching temperature under the longitudinal stretching conditions listed in Table 9, the resin sheet was stretched at the stretching ratio under the longitudinal stretching conditions listed in Table 9 in the transport direction (longitudinal direction) of the resin sheet by an inter-roll stretching method. Then, it was cooled at 60 ° C. to obtain a uniaxially stretched resin film.
Next, the resin composition having the composition of Formulation Example 3 or 7 shown in Table 2 was melt-kneaded by two extruders set at 250 ° C., respectively, and extruded from a T-die into a sheet shape, and uniaxially stretched resin The resin sheet having a laminated structure of surface layer [b] / base material layer [a] / back surface layer [c] was obtained by melt lamination on the front and back surfaces of the film, respectively.
Next, the resin sheet having this laminated structure is heated again to the stretching temperature under the transverse stretching conditions shown in Table 9 using a tenter oven, and the direction perpendicular to the conveying direction of the resin sheet by the clip stretching method (lateral direction) Are stretched at the stretching ratio of the transverse stretching conditions listed in Table 9 and further heat-treated in an oven up to 160 ° C. to obtain a biaxially stretched resin film in which the base material layer [a] is successively biaxially stretched. It was.
In addition, about the manufacture example 127, it fractured | ruptured at the time of extending | stretching, and the biaxially stretched resin film was not able to be obtained.
The physical properties (thickness, density, porosity) of these biaxially stretched resin films were as shown in Table 9.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例1~58及び比較例1~16
 製造例1~11、製造例14~17、製造例19~29、製造例32~35、製造例37~42、製造例44~60、製造例62~65、製造例67~83で得られた各1軸延伸樹脂フィルムにおいて、本発明の範囲内のものを実施例とし、本発明の範囲外のものを比較例として、下記の各試験を実施した。各試験結果を表10および表11に示す。
Examples 1 to 58 and Comparative Examples 1 to 16
Production Examples 1 to 11, Production Examples 14 to 17, Production Examples 19 to 29, Production Examples 32 to 35, Production Examples 37 to 42, Production Examples 44 to 60, Production Examples 62 to 65, and Production Examples 67 to 83 were obtained. In addition, in each uniaxially stretched resin film, the following tests were carried out with the examples within the scope of the present invention as examples and the comparative examples as those outside the scope of the present invention. The test results are shown in Table 10 and Table 11.
実施例59~86及び比較例17~25
 製造例85~96、製造例99~102、製造例104~115、製造例117~121、製造例123~126で得られた各2軸延伸樹脂フィルムにおいて、本発明の範囲内のものを実施例とし、本発明の範囲外のものを比較例として、下記の各試験を実施した。各試験結果を表12に示す。
Examples 59-86 and Comparative Examples 17-25
The biaxially stretched resin films obtained in Production Examples 85 to 96, Production Examples 99 to 102, Production Examples 104 to 115, Production Examples 117 to 121, and Production Examples 123 to 126 are within the scope of the present invention. The following tests were conducted by way of examples, and comparative examples that were outside the scope of the present invention. Table 12 shows the test results.
〔透水度〕
 製造した延伸樹脂フィルムの透水度をJIS-Z0221:1976に準拠し測定した。測定は表面側および裏面側からそれぞれ3回行い、計6回の平均値を測定値とした。下記の判断基準にて透水度の良否を判定した。
 ○: 0.1~2000秒
 ×: 0.1秒未満または2000秒超
[Water permeability]
The water permeability of the produced stretched resin film was measured according to JIS-Z0221: 1976. The measurement was performed three times from the front side and the back side, respectively, and the average value of a total of six times was taken as the measured value. The quality of water permeability was determined according to the following criteria.
○: 0.1 to 2000 seconds ×: less than 0.1 seconds or more than 2000 seconds
〔延伸性〕
 各製造例の延伸樹脂フィルムを連続で1時間製造した際のフィルム破れの回数をカウントし、下記の判断基準にて延伸性の良否を判定した。
 ○: 0~1回
 △: 2~3回
 ×: 4回以上
[Extensible]
The number of film breaks when the stretched resin film of each production example was continuously produced for 1 hour was counted, and the quality of stretchability was determined according to the following criteria.
○: 0 to 1 time △: 2 to 3 times ×: 4 times or more
〔直角形引裂強さおよび破断に至るまでの変位量〕
 製造した延伸樹脂フィルムの直角形引裂強さ、および破断に至るまでの変位量は、JIS-K7128-3:1998で規定される直角形引裂法の試験測度Aに準拠し測定した。
 1軸延伸樹脂フィルムの場合は、延伸軸に直交する方向に引張試験するように(縦延伸の場合は同JIS図1の横向きに、横延伸の場合は図1の縦向きに)試験片を5点採取した。2延伸樹脂フィルムの場合は、製造ラインに直交する方向に引張試験するように試験片を5点採取した。
 引張試験機(オリエンテック株式会社製、RTM-250)に引張試験用つまみ具を取り付け、上記試験片を取り付け、毎分200mmの速度で試験を行い、試験片が完全に引き裂かれたときの最大荷重を引裂強さ(kgf/mm)とした。
 また破断に至るまでの変位量(mm)は、測定時に試験片の弛みがなくなり、試験片に張力が印加されてから、破断した瞬間の試験機のクロスヘッド(可動するつまみ部)の移動量とした。
 測定は5回行い、その平均値を測定値とし、積の計算に用いた。直角形引裂強さと破断に至るまでの変位量との積が、10kgf未満となる延伸脂フィルムは、ノッチが入りやすく裂けやすいフィルムであり、成形性は不良であると判断した。逆にこれが200kgfを超えては、成形性は良好であるが、求める透水度が得られにくい傾向がある。よって、下記の判断基準にて良否を判定した。
 ○: 積が10~100kgf
 △: 積が100kgf超200kgf以下
 ×: 積が10kgf未満または200kgf超
[Right-angled tear strength and displacement to break]
The right-angled tear strength of the produced stretched resin film and the amount of displacement until the fracture occurred were measured according to the test measure A of the right-angled tear method defined in JIS-K7128-3: 1998.
In the case of a uniaxially stretched resin film, the test piece should be subjected to a tensile test in a direction perpendicular to the stretch axis (in the case of longitudinal stretching in the horizontal direction of FIG. 1 of the same JIS and in the case of lateral stretching in the longitudinal direction of FIG. 1). Five points were collected. In the case of a two-stretched resin film, five test pieces were collected so as to perform a tensile test in a direction perpendicular to the production line.
Attach a tensile test knob to the tensile tester (Orientec Co., Ltd., RTM-250), attach the above test piece, perform the test at a speed of 200 mm per minute, and when the test piece is completely torn The load was the tear strength (kgf / mm).
The amount of displacement (mm) until breakage is the amount of movement of the crosshead (movable knob) of the tester at the moment of breakage after the test piece is no longer loosened and tension is applied to the test piece. It was.
The measurement was performed 5 times, and the average value was taken as the measurement value and used for product calculation. The stretched fat film in which the product of the right-angled tear strength and the amount of displacement until breakage is less than 10 kgf is a film that is easy to be notched and easily torn, and was judged to have poor moldability. Conversely, if this exceeds 200 kgf, the moldability is good, but the required water permeability tends to be difficult to obtain. Therefore, the quality was determined according to the following criteria.
○: Product is 10-100kgf
Δ: Product is more than 100 kgf and less than 200 kgf ×: Product is less than 10 kgf or more than 200 kgf
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 本発明の透水性フィルムは、一般的な多孔性フィルムの製造方法と同様の延伸工程で製造することが可能であり、任意の透水度を設定しうる等、従来の透水性フィルムよりも優れた性能を有するものである。従って、本発明の透水性フィルムは産業上の利点が多く、極めて有用である。 The water-permeable film of the present invention can be produced in the same stretching process as a general porous film production method, and can be set to any water permeability, and is superior to conventional water-permeable films. It has performance. Therefore, the water-permeable film of the present invention has many industrial advantages and is extremely useful.

Claims (31)

  1.  JIS-Z0221:1976に基づき測定される透水度が0.1~2000秒であり且つ少なくとも以下の3成分を含む延伸樹脂フィルムを有することを特徴とする、透水性フィルム。
    1)結晶性ポリオレフィン系樹脂(A)
                           18~42重量%
    2)熱可塑性エラストマー(B)
                            5~15重量%
    3)表面処理剤(C)により表面を親水化処理された無機微細粉末(D)
                           45~75重量%
    A water-permeable film comprising a stretched resin film having a water permeability measured in accordance with JIS-Z0221: 1976 of 0.1 to 2000 seconds and containing at least the following three components.
    1) Crystalline polyolefin resin (A)
    18-42% by weight
    2) Thermoplastic elastomer (B)
    5-15% by weight
    3) Inorganic fine powder (D) whose surface is hydrophilized with the surface treatment agent (C)
    45-75% by weight
  2.  前記熱可塑性エラストマー(B)が、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、およびエステル系熱可塑性エラストマーからなる群より選択される1以上の熱可塑性エラストマーであることを特徴とする請求項1に記載の透水性フィルム。 The thermoplastic elastomer (B) is one or more thermoplastic elastomers selected from the group consisting of styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, urethane-based thermoplastic elastomers, and ester-based thermoplastic elastomers. The water-permeable film according to claim 1.
  3.  前記熱可塑性エラストマー(B)がスチレン系熱可塑性エラストマーであることを特徴とする請求項2に記載の透水性フィルム。 The water-permeable film according to claim 2, wherein the thermoplastic elastomer (B) is a styrene-based thermoplastic elastomer.
  4.  前記スチレン系熱可塑性エラストマーが水素添加スチレンブタジエンゴムであることを特徴とする請求項3に記載の透水性フィルム。 The water-permeable film according to claim 3, wherein the styrene-based thermoplastic elastomer is hydrogenated styrene butadiene rubber.
  5.  前記水素添加スチレンブタジエンゴムにおけるスチレン含量が20重量%以下であることを特徴とする請求項4に記載の透水性フィルム。 The water-permeable film according to claim 4, wherein the hydrogenated styrene-butadiene rubber has a styrene content of 20% by weight or less.
  6.  前記結晶性ポリオレフィン系樹脂(A)が、溶融張力が10g未満の結晶性ポリオレフィン系樹脂100重量部に溶融張力10~60gの高溶融張力ポリプロピレン0.5~22重量部を含むことを特徴とする請求項1に記載の透水性フィルム。 The crystalline polyolefin resin (A) includes 0.5 to 22 parts by weight of a high melt tension polypropylene having a melt tension of 10 to 60 g in 100 parts by weight of a crystalline polyolefin resin having a melt tension of less than 10 g. The water-permeable film according to claim 1.
  7.  前記高溶融張力ポリプロピレンが主鎖骨格中に長鎖分岐を有するポリプロピレン(A') であることを特徴とする請求項6に記載の透水性フィルム。 The water permeable film according to claim 6, wherein the high melt tension polypropylene is a polypropylene (A ') cage having a long chain branch in the main chain skeleton.
  8.  前記延伸樹脂フィルムの空孔率が28~80%であることを特徴とする請求項1~7のいずれか一項に記載の透水性フィルム。 The water-permeable film according to any one of claims 1 to 7, wherein the stretched resin film has a porosity of 28 to 80%.
  9.  前記表面処理剤(C)が、平均分子量が1,000~15,000の水溶性アニオン系界面活性剤、平均分子量が1,000~15,000の水溶性カチオン系界面活性剤、および平均分子量が1,000~15,000の水溶性非イオン系界面活性剤からなる群より選択される表面処理剤であることを特徴とする請求項1~8のいずれか一項に記載の透水性フィルム。 The surface treatment agent (C) is a water-soluble anionic surfactant having an average molecular weight of 1,000 to 15,000, a water-soluble cationic surfactant having an average molecular weight of 1,000 to 15,000, and an average molecular weight. The water permeable film according to any one of claims 1 to 8, which is a surface treatment agent selected from the group consisting of 1,000 to 15,000 water-soluble nonionic surfactants. .
  10.  前記延伸樹脂フィルムが、更に無機微細粉末の分散剤(E)を含むことを特徴とする請求項1~9のいずれか一項に記載の透水性フィルム。 The water-permeable film according to any one of claims 1 to 9, wherein the stretched resin film further contains a dispersant (E) of an inorganic fine powder.
  11.  前記延伸樹脂フィルムのJIS-K7128-3:1998の直角形引裂法、試験速度Aに基づき測定される、フィルム延伸軸に直交する方向での引裂強さ(kgf/mm)と、同引裂試験時における試験片の破断までの変位量(mm)との積が、10~200kgfであることを特徴とする請求項1~10のいずれか一項に記載の透水性フィルム。 The tear strength (kgf / mm) in the direction perpendicular to the film stretching axis, measured based on the JIS-K7128-3: 1998 right-angled tearing method, test speed A of the stretched resin film, and the tear test The water permeable film according to any one of claims 1 to 10, wherein the product of the amount of displacement until the test piece is broken (mm) is 10 to 200 kgf.
  12.  前記延伸樹脂フィルムのみから構成されることを特徴とする請求項1~11のいずれか一項に記載の透水性フィルム。 The water-permeable film according to any one of claims 1 to 11, wherein the water-permeable film comprises only the stretched resin film.
  13.  前記延伸樹脂フィルムを基材層とし、その少なくとも片面に更に表面層を設けた構造を有することを特徴とする請求項1~11のいずれか一項に記載の透水性フィルム。 12. The water permeable film according to claim 1, wherein the stretched resin film has a structure in which a base layer is provided and a surface layer is further provided on at least one surface thereof.
  14.  前記延伸樹脂フィルムが1軸延伸フィルムであることを特徴とする請求項1~13のいずれか一項に記載の透水性フィルム。 The water-permeable film according to any one of claims 1 to 13, wherein the stretched resin film is a uniaxially stretched film.
  15.  前記延伸樹脂フィルムが2軸延伸フィルムであることを特徴とする請求項1~13のいずれか一項に記載の透水性フィルム。 The water-permeable film according to any one of claims 1 to 13, wherein the stretched resin film is a biaxially stretched film.
  16.  前記2軸延伸樹脂フィルムが製造ライン方向と製造ラインに直交する方向に逐次延伸した2軸延伸樹脂フィルムであることを特徴とする請求項15に記載の透水性フィルム。 The water-permeable film according to claim 15, wherein the biaxially stretched resin film is a biaxially stretched resin film that is sequentially stretched in a production line direction and a direction orthogonal to the production line.
  17.  前記2軸延伸樹脂フィルムが製造ライン方向と製造ラインに直交する方向に同時に延伸した2軸延伸樹脂フィルムであることを特徴とする請求項15に記載の透水性フィルム。 The water-permeable film according to claim 15, wherein the biaxially stretched resin film is a biaxially stretched resin film that is simultaneously stretched in a production line direction and a direction orthogonal to the production line.
  18.  結晶性ポリオレフィン系樹脂(A)18~42重量%と、熱可塑性エラストマー(B)5~15重量%と、表面処理剤(C)により表面を親水化処理された無機微細粉末(D)45~75重量%とを含有する樹脂組成物を用いて樹脂シートを製造し、次いで、前記樹脂シートを延伸することによりJIS-Z0221:1976に基づき測定される透水度が0.1~2000秒である延伸樹脂フィルムを製造する工程を含むことを特徴とする、前記延伸樹脂フィルムを含む透水性フィルムの製造方法。 18 to 42% by weight of crystalline polyolefin resin (A), 5 to 15% by weight of thermoplastic elastomer (B), and 45 to 45% of inorganic fine powder (D) whose surface is hydrophilized with a surface treatment agent (C) A resin sheet is produced using a resin composition containing 75% by weight, and the water permeability measured in accordance with JIS-Z0221: 1976 is then 0.1 to 2000 seconds by stretching the resin sheet. The manufacturing method of the water-permeable film containing the said stretched resin film characterized by including the process of manufacturing a stretched resin film.
  19.  前記熱可塑性エラストマー(B)がスチレン系エラストマーであることを特徴とする請求項18に記載の透水性フィルムの製造方法。 The method for producing a water-permeable film according to claim 18, wherein the thermoplastic elastomer (B) is a styrene-based elastomer.
  20.  前記スチレン系エラストマーが水素添加スチレンブタジエンゴムであることを特徴とする請求項19に記載の透水性フィルムの製造方法。 The method for producing a water-permeable film according to claim 19, wherein the styrene-based elastomer is a hydrogenated styrene-butadiene rubber.
  21.  前記樹脂シートの延伸を、延伸によって製造される延伸樹脂フィルムの空孔率が28~80%となるように行うことを特徴とする請求項18~20のいずれか一項に記載の透水性フィルムの製造方法。 The water-permeable film according to any one of claims 18 to 20, wherein the resin sheet is stretched so that a stretched resin film produced by stretching has a porosity of 28 to 80%. Manufacturing method.
  22.  前記樹脂シートの延伸を、樹脂シートの搬送方向に1軸延伸することを特徴とする請求項18~21のいずれか一項に記載の透水性フィルムの製造方法。 The method for producing a water-permeable film according to any one of claims 18 to 21, wherein the resin sheet is stretched uniaxially in a direction in which the resin sheet is conveyed.
  23.  前記樹脂シートの延伸を、樹脂シートの搬送方向に直交する方向に1軸延伸することを特徴とする請求項22記載の透水性フィルムの製造方法。 The method for producing a water-permeable film according to claim 22, wherein the stretching of the resin sheet is uniaxially stretched in a direction perpendicular to the conveying direction of the resin sheet.
  24.  前記樹脂シートを4~10倍に延伸することを特徴とする請求項22または23に記載の透水性フィルムの製造方法。 The method for producing a water-permeable film according to claim 22 or 23, wherein the resin sheet is stretched 4 to 10 times.
  25.  前記樹脂シートの延伸を、製造ライン方向と製造ラインに直交する方向に逐次2軸延伸することを特徴とする請求項18~21のいずれか一項に記載の透水性フィルムの製造方法。 The method for producing a water-permeable film according to any one of claims 18 to 21, wherein the resin sheet is successively biaxially stretched in a production line direction and a direction perpendicular to the production line.
  26.  前記樹脂シートの延伸を、製造ライン方向と製造ラインに直交する方向に同時2軸延伸することを特徴とする請求項25に記載の透水性フィルムの製造方法。 The method for producing a water permeable film according to claim 25, wherein the resin sheet is simultaneously biaxially stretched in a production line direction and a direction perpendicular to the production line.
  27.  前記樹脂シートを10~90倍の面積延伸倍率で延伸することを特徴とする請求項25または26に記載の透水性フィルムの製造方法。 The method for producing a water-permeable film according to claim 25 or 26, wherein the resin sheet is stretched at an area stretch ratio of 10 to 90 times.
  28.  請求項18~27のいずれか一項に記載の製造方法により製造される透水性フィルム。 A water-permeable film produced by the production method according to any one of claims 18 to 27.
  29.  請求項1~17または28のいずれか一項に記載の透水性フィルムを用いたセパレータ。 A separator using the water-permeable film according to any one of claims 1 to 17 or 28.
  30.  請求項1~17または28のいずれか一項に記載の透水性フィルムを用いた精密濾過膜。 A microfiltration membrane using the water-permeable film according to any one of claims 1 to 17 or 28.
  31.  請求項1~17または28のいずれか一項に記載の透水性フィルムを用いた液体吸収性物品。 A liquid absorbent article using the water-permeable film according to any one of claims 1 to 17 or 28.
PCT/JP2010/069071 2010-04-27 2010-10-27 Water permeable film and method for producing same WO2011135742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800664784A CN102869708A (en) 2010-04-27 2010-10-27 Water permeable film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010102176A JP5564322B2 (en) 2009-04-28 2010-04-27 Water-permeable film and method for producing the same
JP2010-102176 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011135742A1 true WO2011135742A1 (en) 2011-11-03

Family

ID=44862108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069071 WO2011135742A1 (en) 2010-04-27 2010-10-27 Water permeable film and method for producing same

Country Status (2)

Country Link
CN (1) CN102869708A (en)
WO (1) WO2011135742A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080025A (en) * 2012-09-28 2014-05-08 Yupo Corp Resin oriented film and production method thereof, and laminate using the resin oriented film
JP5701461B1 (en) * 2014-03-03 2015-04-15 株式会社ユポ・コーポレーション Labeled plastic container
WO2016047022A1 (en) * 2014-09-26 2016-03-31 シーアイ化成株式会社 Polyolefin-type porous film having excellent concealability and tactile properties
WO2018222400A1 (en) * 2017-05-30 2018-12-06 Bose Corporation Breathable earpieces
CN117164995A (en) * 2023-09-28 2023-12-05 雄县夏氏包装有限公司 Polypropylene waterproof breathable film and production process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266150A (en) * 1988-04-19 1989-10-24 Showa Electric Wire & Cable Co Ltd Moisture-permeable film
JPH11116715A (en) * 1997-10-16 1999-04-27 Jsr Corp Porous film or sheet
JP2000198866A (en) * 1999-01-06 2000-07-18 Asahi Chem Ind Co Ltd Fluid-penetrable finely porous film and its production
JP2001181423A (en) * 1999-12-28 2001-07-03 Yupo Corp Porous resin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266150A (en) * 1988-04-19 1989-10-24 Showa Electric Wire & Cable Co Ltd Moisture-permeable film
JPH11116715A (en) * 1997-10-16 1999-04-27 Jsr Corp Porous film or sheet
JP2000198866A (en) * 1999-01-06 2000-07-18 Asahi Chem Ind Co Ltd Fluid-penetrable finely porous film and its production
JP2001181423A (en) * 1999-12-28 2001-07-03 Yupo Corp Porous resin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080025A (en) * 2012-09-28 2014-05-08 Yupo Corp Resin oriented film and production method thereof, and laminate using the resin oriented film
JP5701461B1 (en) * 2014-03-03 2015-04-15 株式会社ユポ・コーポレーション Labeled plastic container
WO2015132812A1 (en) * 2014-03-03 2015-09-11 株式会社ユポ・コーポレーション Film and plastic container with label
WO2016047022A1 (en) * 2014-09-26 2016-03-31 シーアイ化成株式会社 Polyolefin-type porous film having excellent concealability and tactile properties
JP2016069414A (en) * 2014-09-26 2016-05-09 シーアイ化成株式会社 Polyolefin-based porous film excellent in concealment property and touch sensitivity
WO2018222400A1 (en) * 2017-05-30 2018-12-06 Bose Corporation Breathable earpieces
CN117164995A (en) * 2023-09-28 2023-12-05 雄县夏氏包装有限公司 Polypropylene waterproof breathable film and production process thereof

Also Published As

Publication number Publication date
CN102869708A (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US8680169B2 (en) Porous polypropylene film
JP4902537B2 (en) Polyethylene multilayer microporous membrane and battery separator and battery using the same
US20200303705A1 (en) Microporous polyolefin film, separator for battery, and production processes therefor
CN107431166B (en) Laminated polyolefin microporous membrane, battery separator and method for producing same
CN107851766B (en) Battery separator and method for manufacturing same
EP3222656B1 (en) Microporous polyolefin film, separator for battery, and production processes therefor
KR20090071296A (en) Microporous polyolefin multi layer film and preparing method thereof
EP2274787B1 (en) Microporous polyolefin film with thermally stable porous layer at high temperature
KR20080027233A (en) Method for producing polyolefin microporous membrane
US20190190037A1 (en) Polyolefin microporous membrane, battery separator and production method
JP5653713B2 (en) Water-permeable film and method for producing the same
KR20170016827A (en) Battery separator and production method therefor
WO2011135742A1 (en) Water permeable film and method for producing same
JP5564322B2 (en) Water-permeable film and method for producing the same
US10770707B2 (en) Battery separator and method of manufacturing same
JP5705605B2 (en) Polypropylene resin porous sheet and method for producing polypropylene resin porous sheet
TWI730999B (en) Laminated polyolefin microporous membrane, battery separator and method for producing the same, and method for producing laminated polyolefin microporous membrane wound body
CN111466810A (en) Porous membrane wipes and methods of making and using same
JP7135709B2 (en) porous film
JP7172498B2 (en) porous film
JP6262596B2 (en) Gas separator and method for producing the same
JP2018001450A (en) Laminated porous film and method for producing the same
CN111533935A (en) Polyolefin microporous membrane, battery separator, and method for producing same
JP2023151346A (en) Resin sheet and method for producing resin sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066478.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850757

Country of ref document: EP

Kind code of ref document: A1