JP5434661B2 - Porous film and power storage device - Google Patents
Porous film and power storage device Download PDFInfo
- Publication number
- JP5434661B2 JP5434661B2 JP2010035890A JP2010035890A JP5434661B2 JP 5434661 B2 JP5434661 B2 JP 5434661B2 JP 2010035890 A JP2010035890 A JP 2010035890A JP 2010035890 A JP2010035890 A JP 2010035890A JP 5434661 B2 JP5434661 B2 JP 5434661B2
- Authority
- JP
- Japan
- Prior art keywords
- porous film
- layer
- film
- porosity
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003860 storage Methods 0.000 title claims description 12
- 239000010410 layer Substances 0.000 claims description 108
- -1 polypropylene Polymers 0.000 claims description 76
- 239000004743 Polypropylene Substances 0.000 claims description 73
- 229920001155 polypropylene Polymers 0.000 claims description 71
- 229920005989 resin Polymers 0.000 claims description 71
- 239000011347 resin Substances 0.000 claims description 71
- 230000035699 permeability Effects 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 27
- 239000002344 surface layer Substances 0.000 claims description 20
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- 229920001971 elastomer Polymers 0.000 claims description 16
- 239000000806 elastomer Substances 0.000 claims description 16
- 230000005611 electricity Effects 0.000 claims description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 8
- 229910001416 lithium ion Inorganic materials 0.000 claims description 8
- 229920005672 polyolefin resin Polymers 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 3
- 239000010408 film Substances 0.000 description 152
- 238000000034 method Methods 0.000 description 52
- 239000002131 composite material Substances 0.000 description 20
- 230000000704 physical effect Effects 0.000 description 18
- 239000000126 substance Substances 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 12
- 239000011146 organic particle Substances 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 239000003484 crystal nucleating agent Substances 0.000 description 10
- 208000028659 discharge Diseases 0.000 description 9
- 238000007599 discharging Methods 0.000 description 9
- 238000001125 extrusion Methods 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000003963 antioxidant agent Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 5
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229920005629 polypropylene homopolymer Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000009998 heat setting Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- LENQNCFDLSESTC-UHFFFAOYSA-N N-cyclohexyl-2-[6-[2-(cyclohexylamino)-2-oxoethyl]naphthalen-2-yl]acetamide Chemical compound C1(CCCCC1)NC(=O)CC1=CC2=CC=C(C=C2C=C1)CC(=O)NC1CCCCC1 LENQNCFDLSESTC-UHFFFAOYSA-N 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920013716 polyethylene resin Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920005633 polypropylene homopolymer resin Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- ADOBXTDBFNCOBN-UHFFFAOYSA-N 1-heptadecene Chemical compound CCCCCCCCCCCCCCCC=C ADOBXTDBFNCOBN-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000446313 Lamella Species 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000012632 extractable Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 239000011242 organic-inorganic particle Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 229940106006 1-eicosene Drugs 0.000 description 1
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 1
- BLEGBZJBAPLQMY-UHFFFAOYSA-N 2-n,2-n-dicyclohexylnaphthalene-2,6-dicarboxamide Chemical compound C1=CC2=CC(C(=O)N)=CC=C2C=C1C(=O)N(C1CCCCC1)C1CCCCC1 BLEGBZJBAPLQMY-UHFFFAOYSA-N 0.000 description 1
- MBSRTKPGZKQXQR-UHFFFAOYSA-N 2-n,6-n-dicyclohexylnaphthalene-2,6-dicarboxamide Chemical compound C=1C=C2C=C(C(=O)NC3CCCCC3)C=CC2=CC=1C(=O)NC1CCCCC1 MBSRTKPGZKQXQR-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- WNEYWVBECXCQRT-UHFFFAOYSA-N 5-methylhept-1-ene Chemical compound CCC(C)CCC=C WNEYWVBECXCQRT-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OXLHAVSOCCRWLA-UHFFFAOYSA-N OC(NC(O)=O)=O.C1=CC=C(C=CC=C2)C2=C1 Chemical compound OC(NC(O)=O)=O.C1=CC=C(C=CC=C2)C2=C1 OXLHAVSOCCRWLA-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 238000012661 block copolymerization Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BUZRUIZTMOKRPB-UHFFFAOYSA-N carboxycarbamic acid Chemical compound OC(=O)NC(O)=O BUZRUIZTMOKRPB-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cell Separators (AREA)
Description
本発明は、多孔性フィルムおよび蓄電デバイスに関する。さらに詳しくは、非水溶媒電池、またはキャパシタに用いられるセパレータに好適に使用できる、空孔率が高く、かつ加工性に優れた多孔性フィルムおよびそれをセパレータとして用いた蓄電デバイスに関する。 The present invention relates to a porous film and an electricity storage device. More specifically, the present invention relates to a porous film having a high porosity and excellent workability, which can be suitably used for a non-aqueous solvent battery or a separator used in a capacitor, and an electricity storage device using the porous film as a separator.
リチウム電池やリチウムイオン電池などの非水溶媒電池は、使用する電解液が有機溶媒であり、水系電池の水溶液溶媒と比較して電池の発熱に対して安全性に劣るという問題がある。そのため、従来、非水溶媒電池、中でもエネルギー密度の大きなリチウムイオン電池の安全性を改善するために、ポリエチレンを主とするオレフィン系材料の微孔性多孔膜を用いたセパレータが使用されてきた。ポリエチレンが主として使用されるのは、ポリエチレンが有機溶媒中で使用可能なことに加え、電池が短絡などによって異常発熱した場合に適切な温度(130℃前後)でポリエチレンが溶融し、多孔構造が閉塞すること(シャットダウン)により安全性の確保が可能となるからである。 A non-aqueous solvent battery such as a lithium battery or a lithium ion battery has a problem that the electrolytic solution used is an organic solvent and is inferior in safety against heat generation of the battery as compared with an aqueous solvent of an aqueous battery. Therefore, conventionally, in order to improve the safety of non-aqueous solvent batteries, particularly lithium ion batteries having a large energy density, a separator using a microporous porous film of an olefin-based material mainly composed of polyethylene has been used. Polyethylene is mainly used because polyethylene can be used in an organic solvent, and when the battery abnormally generates heat due to a short circuit, etc., the polyethylene melts at an appropriate temperature (around 130 ° C) and the porous structure is blocked. This is because safety can be ensured by doing (shutdown).
しかしながら、近年、ハイブリッド自動車(HEV)用電池、工具用電池等のような大型電池は、高出力化が進んでおり、130℃より高い温度に急激に上昇するため適切な温度(130℃前後)でシャットダウンする機能が必ずしも求められず、高安全性が求められる。さらに、HEV用電池では、10年以上もの長寿命と、さらに厳しい安全性を保障できることも重要となる。 However, in recent years, large batteries such as hybrid vehicle (HEV) batteries and tool batteries have been increased in output and rapidly rise to temperatures higher than 130 ° C. The function to shut down is not always required, and high safety is required. Furthermore, it is important for HEV batteries to be able to guarantee a long service life of 10 years or more and more stringent safety.
ポリエチレンを用いたセパレータがリチウムイオン電池などの非水溶媒電池用セパレータに提案されている(例えば特許文献1,2)。しかしながら、空孔率、透気性が低く、HEV用電池のような高出力用電池に適していない。 A separator using polyethylene has been proposed as a separator for a non-aqueous solvent battery such as a lithium ion battery (for example, Patent Documents 1 and 2). However, the porosity and air permeability are low, and it is not suitable for a high output battery such as a HEV battery.
ポリエチレンを用いたセパレータでは電池の高温試験に対しては140℃以下の温度で収縮が生じ易く電極間の短絡による発熱が生じるなど耐熱性に劣ることが問題であった。そのため、ポリエチレンよりも耐熱性が高いポリプロピレンの多孔性膜を用いたセパレータが提案されている(例えば特許文献3)。しかし、高空孔率、高透気性のため、厚み方向の強度が低く、厚み方向への圧力がかかる高い張力でロールを通過させたり巻いたりするようなプロセスでは工程通過性および電池加工性が低下する場合がある。 A separator using polyethylene has a problem in that it is inferior in heat resistance such as heat generation due to a short circuit between the electrodes due to a tendency to shrink at a temperature of 140 ° C. or less for a battery high temperature test. Therefore, a separator using a polypropylene porous film having higher heat resistance than polyethylene has been proposed (for example, Patent Document 3). However, due to the high porosity and high air permeability, the strength in the thickness direction is low, and in processes where the roll is passed or wound with high tension that applies pressure in the thickness direction, process passability and battery processability are reduced. There is a case.
また、耐熱性に優れ、大型電池のような高出力用途に適しているポリプロピレン不織布をセパレータに用いる提案もされている(例えば特許文献4)。しかし、この場合には、繊維を構成材料とした不織布を基材としているために数μm程度の大きな平均孔径を有していることから、貫通孔に起因する欠点を有している可能性が非常に高く、微短絡が起こりやすいことが示唆され、電池巻取時の初期不良が起こりやすく、HEV用電池のような長寿命、またさらに厳しい安全性に対しては十分に補償できない。さらに、不織布を用いる限り膜厚が大きくなり体積増加は必至であり、電池の小型軽量化という時代の流れに逆行してしまう問題点もある。 In addition, a proposal has been made to use a polypropylene non-woven fabric that is excellent in heat resistance and suitable for high-power applications such as a large battery as a separator (for example, Patent Document 4). However, in this case, since the base material is a nonwoven fabric made of fibers, it has a large average pore diameter of about several μm, so there is a possibility that it has a defect due to the through hole. It is very high, and it is suggested that a fine short circuit is likely to occur, an initial failure at the time of winding the battery is likely to occur, and it is not possible to sufficiently compensate for a long life as in the HEV battery and a further severe safety. Furthermore, as long as the nonwoven fabric is used, the film thickness becomes large and the volume increase is inevitable, and there is also a problem that goes against the trend of the era of battery miniaturization and weight reduction.
また、多孔質基材の表面から内部にまで樹脂粒子集合体を充填した複合多孔膜の提案がなされている(たとえば特許文献5)。この場合には充填した樹脂粒子によって、厚み方向の強度は高くなるが、空孔率、透気性が低く、HEV用電池のような高出力用電池に適していない。 In addition, a composite porous membrane filled with resin particle aggregates from the surface to the inside of a porous substrate has been proposed (for example, Patent Document 5). In this case, although the strength in the thickness direction is increased by the filled resin particles, the porosity and air permeability are low, and it is not suitable for a high output battery such as a HEV battery.
また、多孔質基材の表面に高軟化点の有機粒子または無機粒子層を塗布する提案がなされている(たとえば特許文献6)。この場合には有機粒子または無機粒子層によって厚み方向の強度は高くなるが、空孔率、透気性が低く、HEV用電池のような高出力用電池に適していない。 In addition, proposals have been made to apply organic particles or inorganic particle layers having a high softening point to the surface of a porous substrate (for example, Patent Document 6). In this case, the strength in the thickness direction is increased by the organic particle or inorganic particle layer, but the porosity and air permeability are low, and it is not suitable for a high output battery such as a HEV battery.
本発明の課題は上記した問題点を解決することにある。すなわち、巻取時の加工性に優れ、セパレータとして用いた際に優れた特性を示す多孔性フィルムを提供することを目的とする。 An object of the present invention is to solve the above-described problems. That is, it aims at providing the porous film which is excellent in the workability at the time of winding, and shows the characteristic outstanding when used as a separator.
上記目的を達成するための本発明は、クッション率が30%以下であり、空孔率が60〜90%であり、かつ内層Aの両面に表層Bが積層された3層構成を有し、内層Aには融点もしくは軟化温度が100℃未満のエラストマーを1〜20質量%含み、表層Bには上記エラストマー量が内層Aより少ない多孔性フィルムを特徴とする。 The present invention for achieving the above objective is a cushion of not more than 30%, a porosity of Ri 60% to 90% der, and has a three-layer structure in which the surface layer B is laminated on both sides of the inner layer A The inner layer A contains 1 to 20% by mass of an elastomer having a melting point or softening temperature of less than 100 ° C., and the surface layer B is characterized by a porous film having a smaller amount of the elastomer than the inner layer A.
本発明の多孔性フィルムは、巻取時の加工性に優れ、セパレータとして用いた際に優れた特性を示す多孔性フィルムを提供することができる。 The porous film of the present invention is excellent in workability at the time of winding, and can provide a porous film that exhibits excellent characteristics when used as a separator.
本発明の多孔性フィルムは、クッション率が30%以下であり、かつ空孔率が60〜90%の範囲内であることが、多孔性フィルムの工程通過性、捲回式電池を作製する際の電池加工性および電池の内部抵抗低減、さらには出力密度向上の観点から好ましい。従来は、空孔率が60〜90%の範囲内ではクッション率が高くなり、厚み方向の強度が低く、厚み方向への圧力が加わった際に、表面フィブリルによる表面の凹凸が平滑になってしまい摩擦係数が高くなるために、多孔性フィルムの工程通過性および捲回式電池を作製する際の加工性が低下する場合があった。また、クッション率が30%以下である場合は、空孔率が低くなってしまい、電池の内部抵抗が高く、さらには出力密度を高くできない場合があった。すなわち、上記の範囲にクッション率と空孔率とを両立させることが従来は困難であったが、本発明においては、例えば有機粒子を特定のタイミングでコーティングしたり、3層以上の複合構成とし、表面層は内部の層より空孔率の低くしたりすることにより、達成し得たものである。詳細については、後述する。 When the porous film of the present invention has a cushion ratio of 30% or less and a porosity within a range of 60 to 90%, the processability of the porous film, when producing a wound battery From the viewpoints of battery workability, reduction of internal resistance of the battery, and improvement of output density. Conventionally, when the porosity is in the range of 60 to 90%, the cushion rate is high, the strength in the thickness direction is low, and when the pressure in the thickness direction is applied, the surface unevenness due to the surface fibrils becomes smooth. Since the friction coefficient increases, the processability of the porous film and the workability when producing a wound battery may be reduced. Further, when the cushion rate is 30% or less, the porosity is lowered, the internal resistance of the battery is high, and the output density may not be increased. That is, in the past, it was difficult to achieve both a cushion ratio and a porosity in the above range. However, in the present invention, for example, organic particles are coated at a specific timing, or a composite structure of three or more layers is formed. The surface layer can be achieved by making the porosity lower than that of the inner layer. Details will be described later.
まず、多孔性フィルムについて説明する。本発明における多孔性フィルムは、フィルムの両表面を貫通し、透気性を発現せしめる微細な貫通孔を多数有している。多孔性フィルムを構成する樹脂は、ポリオレフィン系樹脂、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド、フッ素系樹脂などいずれでも構わないが、耐熱性、成形性、生産コストの低減、耐薬品性、耐酸化・還元性などの観点からポリオレフィン系樹脂が望ましい。 First, the porous film will be described. The porous film in this invention has many fine through-holes which penetrate the both surfaces of a film and express air permeability. The resin constituting the porous film may be any of polyolefin resin, polycarbonate, polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine resin, etc., but heat resistance, moldability, production cost reduction, chemical resistance In view of oxidation resistance and reduction resistance, polyolefin resins are desirable.
上記ポリオレフィン系樹脂を構成する単量体成分としては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、3−メチルペンテン−1、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、5−エチル−1−ヘキセン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−エイコセン、 ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5−メチル−2−ノルボルネンなどが挙げられ、これらの単独重合体や上記単量体成分から選ばれる少なくとも2種以上の共重合体、およびこれら単独重合体や共重合体のブレンド物などが挙げられるが、これらに限定されるわけではない。上記の単量体成分以外にも、例えば、ビニルアルコール、無水マレイン酸などを共重合、グラフト重合しても構わないが、これらに限定されるわけではない。上記の中で、耐熱性、透気性、空孔率などの観点からポリプロピレンが好ましい。 Examples of the monomer component constituting the polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methyl-1-butene, 1-hexene and 4-methyl. -1-pentene, 5-ethyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene, vinyl And cyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2-norbornene, and the like. These homopolymers and at least two kinds of copolymers selected from the above monomer components, Examples include, but are not limited to, blends of copolymers and copolymers. In addition to the above monomer components, for example, vinyl alcohol, maleic anhydride or the like may be copolymerized or graft polymerized, but is not limited thereto. Among these, polypropylene is preferable from the viewpoints of heat resistance, air permeability, porosity, and the like.
本発明の多孔性フィルムに貫通孔を形成する方法としては、大別して湿式法と乾式法に分類することができる。湿式法とは、ポリプロピレンをマトリックス樹脂とし、シート化後に抽出する被抽出物を添加、混合し、被抽出物の良溶媒を用いて添加剤のみを抽出することで、マトリックス樹脂中に空隙(貫通孔)を生成せしめる方法がある。一方、乾式法としては、たとえば、溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成するラメラ延伸法という方法が挙げられる。また、無機粒子、またはマトリックス樹脂であるポリプロピレンなどに非相溶な樹脂を粒子として多量添加し、シートを形成して延伸することにより粒子と樹脂界面で開裂を発生させ、空隙を形成する方法も例示できる。さらには、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる、β晶法と呼ばれる方法も採用できる。 The method for forming through-holes in the porous film of the present invention can be roughly classified into a wet method and a dry method. In the wet method, polypropylene is used as the matrix resin, the extractables extracted after sheeting are added and mixed, and only the additive is extracted using the good solvent of the extractables. There is a method of generating holes. On the other hand, as a dry method, for example, by adopting low-temperature extrusion and a high draft ratio at the time of melt extrusion, the lamella structure in the film before stretching formed into a sheet is controlled, and this is uniaxially stretched so that at the lamella interface There is a method called a lamellar stretching method for generating cleavage and forming voids. There is also a method in which a large amount of incompatible resin is added as particles to inorganic particles or polypropylene as a matrix resin, and a sheet is formed and stretched to cause cleavage at the particle-resin interface to form voids. It can be illustrated. Furthermore, it is called the β crystal method, in which voids are formed in the film by utilizing the crystal density difference and crystal transition between α type crystal (α crystal) and β type crystal (β crystal), which are polymorphs of polypropylene. A method can also be adopted.
本発明の多孔性フィルムは、工程を簡略化できることから乾式法が望ましく、中でもフィルムを二軸配向させ、物性均一化や薄膜でありながら高い強度を維持できるという観点からβ晶法を用いることが好ましい。β晶法を用いてフィルムに貫通孔を形成するためには、ポリプロピレン樹脂中にβ晶を多量に形成させることが重要となるが、そのためにはβ晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いることが好ましい。β晶核剤としては顔料系化合物やアミド系化合物などを挙げることができるが、特に特開平5−310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の添加量としては、ポリプロピレン樹脂全体を100質量部とした場合、0.05〜0.5質量部であることが好ましく、0.1〜0.3質量部であればより好ましい。β晶形成能としては、50〜100%であることが好ましい。より好ましくは60〜100%である。β晶形成能が50%未満であると、フィルム製造初期の段階でβ晶分率が低く、延伸工程でβ晶からα晶へ結晶転移させてもフィルム中の空隙が形成されにくい。 Since the porous film of the present invention can simplify the process, the dry method is desirable. Among them, the β crystal method is used from the viewpoint that the film can be biaxially oriented and the physical properties can be uniformed and high strength can be maintained while being a thin film. preferable. In order to form through-holes in the film using the β crystal method, it is important to form a large amount of β crystals in the polypropylene resin. For this purpose, it is added to the polypropylene resin, which is called a β crystal nucleating agent. Thus, a crystallization nucleating agent that selectively forms β crystals is preferably used as an additive. Examples of the β crystal nucleating agent include pigment-based compounds and amide-based compounds. Particularly, amide-based compounds disclosed in JP-A-5-310665 can be preferably used. The addition amount of the β crystal nucleating agent is preferably 0.05 to 0.5 parts by mass, more preferably 0.1 to 0.3 parts by mass when the entire polypropylene resin is 100 parts by mass. . The β crystal forming ability is preferably 50 to 100%. More preferably, it is 60 to 100%. If the β-crystal forming ability is less than 50%, the β crystal fraction is low at the initial stage of film production, and voids in the film are not easily formed even if the crystal transition from β crystal to α crystal is performed in the stretching process.
本発明の多孔性フィルムをポリプロピレン樹脂を用いて構成する場合、ポリプロピレン樹脂はメルトフローレート(以下、MFRと表記する、測定条件は230℃、2.16kg)が2〜30g/10分の範囲のアイソタクチックポリプロピレン樹脂であることが好ましい。MFRが上記した好ましい範囲を外れると二軸延伸フィルムを得ることが困難となる場合がある。より好ましくは、MFRが3〜20g/10分である。 When the porous film of the present invention is constituted by using a polypropylene resin, the polypropylene resin has a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 minutes. It is preferable that it is an isotactic polypropylene resin. If the MFR is out of the above preferred range, it may be difficult to obtain a biaxially stretched film. More preferably, the MFR is 3 to 20 g / 10 minutes.
また、アイソタクチックポリプロピレン樹脂のアイソタクチックインデックスは、90〜99.9%であれば好ましく、アイソタクチックインデックスが90%未満であると、樹脂の結晶性が低く、高い透気性を達成するのが困難な場合がある。アイソタクチックポリプロピレン樹脂は、市販されている樹脂を用いることができる。 Further, the isotactic index of the isotactic polypropylene resin is preferably 90 to 99.9%, and if the isotactic index is less than 90%, the resin has low crystallinity and achieves high air permeability. It can be difficult. As the isotactic polypropylene resin, a commercially available resin can be used.
本発明で用いるポリプロピレン樹脂としては、ホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα−オレフィン成分を5質量%以下の範囲で共重合した樹脂を用いることもできる。なお、ポリプロピレンへのコモノマー(共重合成分)の導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。 As the polypropylene resin used in the present invention, it is possible to use a homopolypropylene resin, as well as from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, polypropylene with an ethylene component or butene, Resins obtained by copolymerizing α-olefin components such as hexene and octene in the range of 5% by mass or less can also be used. The form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
本発明で用いるポリプロピレン樹脂は、二軸延伸を行って貫通孔を形成する場合、延伸時の空隙形成効率の向上や、孔径が拡大することによる透気性向上の観点から、ポリプロピレン80〜99質量部と融点もしくは軟化温度は100℃以下のエラストマー20〜1質量部の質量比率とした混合物とすることが好ましい。ただし、ポリプロピレン80〜99質量部と融点もしくは軟化温度は100℃未満のエラストマーを20〜1質量部の質量比率とした混合物としてもエラストマーの融点もしくは軟化温度でただちに閉孔することはなく、通常、ポリプロピレンの(融点−20℃)〜(融点+10℃)の範囲にて閉孔することが多い。融点もしくは軟化温度は100℃未満のエラストマーを20質量部以上とすると、製膜性が悪化するとともに、好ましい耐熱性を付与するために必要なステンターでの熱固定工程までに閉孔してしまいセパレータとして用いられにくくなる。 When the polypropylene resin used in the present invention is biaxially stretched to form a through-hole, 80 to 99 parts by mass of polypropylene is used from the viewpoint of improving void formation efficiency during stretching and improving air permeability by increasing the hole diameter. The melting point or softening temperature is preferably a mixture having a mass ratio of 20 to 1 part by mass of an elastomer having a temperature of 100 ° C. or less. However, 80 to 99 parts by mass of polypropylene and the melting point or softening temperature are not immediately closed at the melting point or softening temperature of the elastomer as a mixture in which the mass ratio of the elastomer of less than 100 ° C. is 20 to 1 part by mass, In many cases, the pores are closed in the range of (melting point−20 ° C.) to (melting point + 10 ° C.) of polypropylene. If the melting point or softening temperature is less than 100 ° C. and the amount of the elastomer is 20 parts by mass or more, the film-forming property is deteriorated and the separator is closed before the heat setting step with a stenter necessary for imparting preferable heat resistance. It becomes difficult to be used as.
ここで、融点もしくは軟化温度は100℃以下のエラストマーは、オレフィン系エラストマー、ポリブテン、エチレン−酢酸ビニル−アクリル、イソプレンゴム、スチレン・ブタジエンラバー、水添スチレン・ブタジエンラバー、スチレン・ブチレン・スチレン共重合体、スチレン・エチレン・ブチレン・スチレン共重合体などがあげられる。中でもオレフィン系エラストマーが好ましく、さらに好ましくは、エチレン・α−オレフィン共重合体が好ましい。エチレン・α−オレフィン共重合体としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、オクテン−1を共重合した、融点が60〜90℃の共重合ポリエチレン樹脂(共重合PE樹脂)を好ましく用いることができる。この共重合ポリエチレンは市販されている樹脂、たとえば、ダウ・ケミカル製“Engage(エンゲージ)(登録商標)”(タイプ名:8411、8452、8100など)を挙げることができる。 Here, an elastomer having a melting point or softening temperature of 100 ° C. or less is an olefin-based elastomer, polybutene, ethylene-vinyl acetate-acrylic, isoprene rubber, styrene / butadiene rubber, hydrogenated styrene / butadiene rubber, styrene / butylene / styrene copolymer. And styrene / ethylene / butylene / styrene copolymer. Of these, olefin elastomers are preferred, and ethylene / α-olefin copolymers are more preferred. Examples of the ethylene / α-olefin copolymer include linear low-density polyethylene and ultra-low-density polyethylene. Among them, a copolymer polyethylene resin (copolymer) having a melting point of 60 to 90 ° C. obtained by copolymerizing octene-1. Polymerized PE resin) can be preferably used. Examples of the copolymerized polyethylene include commercially available resins such as “Engage (registered trademark)” (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.
上記共重合ポリエチレン樹脂は本発明のフィルムを構成するポリプロピレン樹脂全体を100質量%としたときに、1〜10質量%含有することが以下に記載する空孔率や平均貫通孔径を好ましい範囲に制御することが容易となるので好ましい。フィルムの機械特性の観点からは1〜7質量%であればより好ましい。多孔性フィルムを構成するポリプロピレン樹脂には、延伸時の空隙形成効率が向上し、孔径が拡大することで透気性が向上するため、ポリプロピレン樹脂にエチレン・α−オレフィン共重合体を1〜10質量%添加することが好ましい。 The copolymer polyethylene resin contains 1 to 10% by mass when the entire polypropylene resin constituting the film of the present invention is 100% by mass, and the porosity and average through-hole diameter described below are controlled within a preferable range. Since it becomes easy to do, it is preferable. From the viewpoint of the mechanical properties of the film, it is more preferably 1 to 7% by mass. In the polypropylene resin constituting the porous film, the void formation efficiency at the time of stretching is improved, and the air permeability is improved by increasing the pore diameter. Therefore, 1 to 10 mass of ethylene / α-olefin copolymer is added to the polypropylene resin. % Addition is preferable.
本発明において、クッション率を30%以下とし、かつ空孔率を60〜90%の範囲内とするには、例えば多孔性フィルム上に有機粒子をコーティングする、あるいは、3層以上の複合構成とし、表面層は内部の層より空孔率の低い層とすることなどが挙げられる。3層以上の複合構成とする場合は、少なくとも一方の表層の空孔率が内層の空孔率よりも低いことが好ましい。 In the present invention, in order to set the cushion rate to 30% or less and the porosity to be in the range of 60 to 90%, for example, a porous film is coated with organic particles, or a composite configuration of three or more layers is used. The surface layer may be a layer having a lower porosity than the internal layer. When the composite structure has three or more layers, it is preferable that the porosity of at least one surface layer is lower than the porosity of the inner layer.
有機粒子をコーティングする場合、有機粒子をコーティング、乾燥することによって、有機粒子がフィルムの厚み方向に浸潤し工程中にて溶融・固化することによって、フィルムの厚み方向に幹となる柱ができ、クッション率が低下する。また、有機粒子を少量コーティングすることによって、空孔率を低下せしめることなく、クッション率を低下させることができる。3層以上の複合構成の積層フィルムの場合、表面層の空孔率を内部の層の空孔率よりも小さくすると表面層のコシが高くなり、クッション率が低下する。表面層を内部の層の空孔率と同等以上とした場合、クッション率が上記範囲を超え高くなってしまう場合がある。クッション率を30%以下とし、かつ空孔率を60〜90%の範囲内とするためには、表面層の空孔率は50〜70%が好ましく、さらに好ましくは60〜70%がセパレータ特性の観点から好ましく、内部の層の空孔率は65〜90%が好ましく、さらに好ましくは70〜85%がセパレータ特性の観点から好ましい。 When coating organic particles, by coating and drying the organic particles, the organic particles infiltrate in the thickness direction of the film and melt and solidify in the process, forming a pillar that becomes the trunk in the thickness direction of the film, Cushion rate decreases. Further, by coating a small amount of organic particles, the cushion rate can be reduced without reducing the porosity. In the case of a laminated film having a composite structure of three layers or more, if the porosity of the surface layer is made smaller than the porosity of the inner layer, the stiffness of the surface layer increases and the cushion rate decreases. When the surface layer is equal to or higher than the porosity of the inner layer, the cushion rate may exceed the above range and become high. In order to set the cushion rate to 30% or less and the porosity to be in the range of 60 to 90%, the porosity of the surface layer is preferably 50 to 70%, more preferably 60 to 70%. In view of the above, the porosity of the inner layer is preferably 65 to 90%, more preferably 70 to 85% from the viewpoint of separator characteristics.
一方、単膜構成の場合、クッション率30%以下を達成するためには、空孔率が60%未満となってしまう場合がある。 On the other hand, in the case of a single membrane configuration, the porosity may be less than 60% in order to achieve a cushion rate of 30% or less.
上記の3層以上の複合構成の積層方法としては、共押出法により積層されたシートを形成し、逐次二軸延伸によって製膜する方法によって積層フィルムを作製する方法などがある。共押出の方法としては、フィードブロック法やマルチマニホールド法を用いて積層させる方法がある。 As a method for laminating a composite structure of three or more layers, there is a method of forming a laminated film by a method of forming sheets laminated by a coextrusion method and sequentially forming a film by biaxial stretching. As a method of coextrusion, there is a method of laminating using a feed block method or a multi-manifold method.
また、表面層の空孔率を内部の層の空孔率よりも小さくする方法としては、内部の層に含まれる融点もしくは軟化温度は100℃未満のエラストマーを1〜20質量部、より好ましくは1〜10質量部とし、表面層の融点もしくは軟化温度は100℃未満のエラストマー量を内部の層以下にする方法が好ましく、表面層はエラストマーが含まれないことがより好ましい。特に、3層の複合構成の場合、内層Aの両面に表層Bが積層され、内層Aには融点もしくは軟化温度が100℃未満のエラストマーを1〜20質量%含み、表層Bには上記エラストマー量が内層Aより少ない態様が好ましい。この場合、表層Bが上記のエラストマーを含んでいないことがより好ましい。 Moreover, as a method of making the porosity of the surface layer smaller than the porosity of the inner layer, the melting point or softening temperature contained in the inner layer is 1 to 20 parts by mass, more preferably 1 to 20 parts by mass of elastomer. The method is preferably 1 to 10 parts by mass, and the melting point or softening temperature of the surface layer is preferably such that the amount of elastomer below 100 ° C. is not more than the inner layer, and the surface layer is more preferably free of elastomer. Particularly, in the case of a three-layer composite structure, the surface layer B is laminated on both surfaces of the inner layer A, the inner layer A contains 1 to 20% by mass of an elastomer having a melting point or softening temperature of less than 100 ° C. An embodiment with less than the inner layer A is preferred. In this case, it is more preferable that the surface layer B does not contain the elastomer.
また、クッション率を30%以下とし、かつ空孔率を60〜90%の範囲内とするためには、積層比としては、内部の層の厚みは全厚みに対し、1/3〜15/17の範囲が好ましく、さらに好ましくは、1/4〜10/12がより好ましい。 Further, in order to make the cushion rate 30% or less and the porosity within the range of 60 to 90%, as the lamination ratio, the thickness of the inner layer is 1/3 to 15 / The range of 17 is preferable, and more preferably 1/4 to 10/12.
上記において、コーティングする有機粒子の素材としては、コーティング塗液塗布後の加熱、例えば150〜170℃で軟化又は溶融することが可能な樹脂であれば特に限定されるものではないが、たとえば、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン及びこれらの共重合体などのポリオレフィン樹脂、ポリスチレン、スチレン・アクリロニトリル共重合体などのポリアクリル樹脂などが好ましく用いられる。ここで、所定の温度で軟化または溶融する有機粒子とは、ガラス板に塗剤を塗布し、当該温度に制御したオーブン中で60秒加熱した場合に、熱により粒子が変形して粒子高さが元の粒子高さの半分以下になるものをいう。 In the above, the material of the organic particles to be coated is not particularly limited as long as it is a resin that can be softened or melted at 150 to 170 ° C., for example, high after application of the coating liquid. Polyolefin resins such as density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene and copolymers thereof, and polyacryl resins such as polystyrene and styrene / acrylonitrile copolymers are preferably used. Here, the organic particles that are softened or melted at a predetermined temperature are those in which a coating agent is applied to a glass plate and heated in an oven controlled to the temperature for 60 seconds, the particles are deformed by heat and the particle height. Means that the particle height is less than half of the original particle height.
上記の有機粒子をコーティングする方法としては、一般に行われるどのような方法を用いてもよいが、例えば、熱可塑性樹脂を溶媒などに分散させて作成した分散液をリバースコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法、スプレーコート法などの塗布方法によりフィルム上に塗布し、乾燥してコーティング層とすればよい。また、分散液を調整する際にはコーティング層における粒子の偏在を防止するために分散剤などを適宜添加してもよい。 As a method for coating the above organic particles, any generally performed method may be used.For example, a dispersion prepared by dispersing a thermoplastic resin in a solvent or the like, a reverse coating method, a bar coating method, What is necessary is just to apply | coat on a film by application | coating methods, such as a gravure coat method, a rod coat method, a die coat method, and a spray coat method, and to make it a coating layer. Further, when adjusting the dispersion, a dispersant or the like may be appropriately added in order to prevent uneven distribution of particles in the coating layer.
上記において、3層以上の複合構成とする方法としては、異なる種類の樹脂組成物を、Tダイ成形法あるいはインフレーション成形法からなる共押出法で積層フィルムを成形し、その後、該積層フィルムを延伸して多孔化する方法がある。
本発明の多孔性フィルムは、クッション率が30%以下であることが多孔性フィルムの厚み方向の強度の観点から好ましい。クッション率が30%より高くなると、厚み方向の強度が低く、厚み方向への圧力が加わった際に、表面フィブリルによる表面の凹凸が平滑になってしまうためか、多孔性フィルムの工程通過性および捲回式電池を作製する際の加工性が低下する場合がある。クッション率は、より好ましくは、25%以下であることが好ましい。クッション率の下限については特に設けないが、充放電時の正負極の膨張・収縮の体積変化緩和の観点から10%以上が好ましく、20%がより好ましい。ここでクッション率とは、多孔性フィルムの厚み方向の強度を示す指標であり、多孔性フィルムを形成するフィブリルを強固にすることによりクッション率を低下することができる。具体的には多孔性フィルに有機粒子をコーティングしたり、表面に内層より空孔率の低い層を積層したりすることによってクッション率を低下せしめることができる。3層以上の複合構成の積層フィルムの場合、表層の空孔率が内部の層の空孔率より小さい場合には、厚み方向に荷重が加わった際、空孔率の低い表層が荷重を受け止めて空孔率の高い内部の層には荷重が分散されるためと現時点考察しているが、高い空孔率でもクッション率を低くすることができる。また、クッション率が高くなるために高荷重でもフィルム表面の凹凸が残存するためか、多孔性フィルムの工程通過性および捲回式電池を作製する際の加工性が高くなると考えられる。
In the above, as a method of forming a composite structure of three or more layers, different types of resin compositions are molded into a laminated film by a co-extrusion method consisting of a T-die molding method or an inflation molding method, and then the laminated film is stretched There is a method of making it porous.
The porous film of the present invention preferably has a cushion rate of 30% or less from the viewpoint of strength in the thickness direction of the porous film. If the cushion rate is higher than 30%, the strength in the thickness direction is low, and when the pressure in the thickness direction is applied, surface unevenness due to the surface fibrils becomes smooth, or the process passability of the porous film and In some cases, the workability when producing a wound battery is lowered. The cushion rate is more preferably 25% or less. The lower limit of the cushion rate is not particularly provided, but is preferably 10% or more and more preferably 20% from the viewpoint of volume change relaxation of expansion / contraction of the positive and negative electrodes during charge / discharge. Here, the cushion rate is an index indicating the strength in the thickness direction of the porous film, and the cushion rate can be lowered by strengthening the fibrils forming the porous film. Specifically, the cushion ratio can be lowered by coating the porous film with organic particles or laminating a layer having a lower porosity than the inner layer on the surface. In the case of a laminated film having a composite structure of three or more layers, when the porosity of the surface layer is smaller than the porosity of the inner layer, when the load is applied in the thickness direction, the surface layer with a low porosity will accept the load. At present, it is considered that the load is dispersed in the inner layer having a high porosity, but the cushion ratio can be lowered even with a high porosity. Moreover, it is thought that the processability of a porous film and the workability at the time of producing a winding type battery increase because the cushion ratio increases and the unevenness of the film surface remains even under a high load.
本発明の多孔性フィルムは、空孔率が60〜90%の範囲内であることが、電池の内部抵抗低減、さらには出力密度向上の観点から好ましい。60%未満ではセパレータとして用いた際の特性が不十分となる場合がある。90%を超えるとセパレータ特性、および強度の観点から不十分となる場合がある。より好ましくは70%〜85%であることが好ましい。空孔率は、延伸温度や延伸速度を制御して、延伸時のフィルムの抗張力を低くしてやると高い空孔率を実現することが可能となる。 The porous film of the present invention preferably has a porosity in the range of 60 to 90% from the viewpoint of reducing the internal resistance of the battery and further improving the output density. If it is less than 60%, the characteristics when used as a separator may be insufficient. If it exceeds 90%, it may be insufficient from the viewpoint of separator characteristics and strength. More preferably, it is 70 to 85%. The porosity can be increased by controlling the stretching temperature and stretching speed to lower the tensile strength of the film during stretching.
本発明の多孔性フィルムは、ガーレー透気度が10〜400秒/100mlの範囲内であることが、電池の内部抵抗低減、さらには出力密度向上の観点から好ましい。ガーレー透気度が10秒/100ml未満では空孔率が高くなる、もしくは孔径が大きくなりすぎてしまい、強度が十分保てなくなる場合がある、または、セパレータとして用いたとき電池の寿命が短くなる場合がある。一方、400秒/100mlを超えるとセパレータとして用いた際の特性が不十分となる。より好ましくは10〜300秒/100mlであり、さらに好ましくは10〜230秒/100mlであり、さらに好ましくは10〜200秒/100mlであることが、セパレータ特性の観点から好ましい。ここで、ガーレー透気度とは、シートの空気透過率の指標であり、JIS P 8117(1998)に示されるものである。ガーレー透気度は、延伸工程における延伸条件(延伸方向(縦もしくは横)、延伸方式(縦もしくは横の一軸延伸、縦−横もしくは横−縦逐次二軸延伸、同時二軸延伸、二軸延伸後の再延伸など)、延伸倍率、延伸速度、延伸温度など)などにより制御できる。一軸延伸で行う場合に比べ、二軸延伸で行う場合のほうが、透気度が高くなり、延伸倍率を高くすると透気度が高くなり、低くすると透気度が低くなる。 The porous film of the present invention preferably has a Gurley air permeability in the range of 10 to 400 seconds / 100 ml from the viewpoint of reducing the internal resistance of the battery and further improving the output density. When the Gurley air permeability is less than 10 seconds / 100 ml, the porosity is increased or the pore diameter is too large, and the strength may not be sufficiently maintained, or the battery life is shortened when used as a separator. There is a case. On the other hand, if it exceeds 400 seconds / 100 ml, the characteristics when used as a separator will be insufficient. More preferably, it is 10-300 seconds / 100 ml, More preferably, it is 10-230 seconds / 100 ml, More preferably, it is 10-200 seconds / 100 ml from a viewpoint of a separator characteristic. Here, the Gurley air permeability is an index of the air permeability of the sheet and is shown in JIS P 8117 (1998). Gurley permeability is determined by the stretching conditions (stretching direction (longitudinal or transverse), stretching method (longitudinal or transverse uniaxial stretching, longitudinal-transverse or transverse-longitudinal biaxial stretching, simultaneous biaxial stretching, biaxial stretching). It can be controlled by re-stretching later), stretching ratio, stretching speed, stretching temperature, and the like. Compared to the case of uniaxial stretching, the air permeability is higher in the case of biaxial stretching, the air permeability is increased when the stretching ratio is increased, and the air permeability is decreased when the stretching ratio is decreased.
以下に本発明の多孔性フィルムの製造方法を具体的に説明する。なお、本発明のフィルムの製造方法はこれに限定されるものではない。 Below, the manufacturing method of the porous film of this invention is demonstrated concretely. In addition, the manufacturing method of the film of this invention is not limited to this.
まず、多孔性フィルムを構成するポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂87〜98質量部、市販のMFR2.5g/10分高溶融張力ポリプロピレン樹脂1〜3質量部、市販のMFR8g/10分超低密度ポリエチレン樹脂1〜10質量部にN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド0.2質量部を混合し、二軸押出機を使用して予め所定の割合で混合した原料A、およびMFR8g/10分の市販のホモポリプロピレン樹脂87〜99質量部、市販のMFR2.5g/10分高溶融張力ポリプロピレン樹脂1〜3質量部、市販のMFR8g/10分超低密度ポリエチレン樹脂0〜9質量部にN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド0.2質量部を混合し、二軸押出機を使用して予め所定の割合で混合した原料Bを準備する。 First, as a polypropylene resin constituting the porous film, 87 to 98 parts by mass of a commercially available homopolypropylene resin having an MFR of 8 g / 10 minutes, 1 to 3 parts by mass of a commercially available MFR of 2.5 g / 10 minutes and a high melt tension polypropylene resin, and a commercially available MFR of 8 g. / 10 minutes Ultra low density polyethylene resin 1 to 10 parts by weight, N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide 0.2 part by weight is mixed, and using a twin-screw extruder, a predetermined ratio is obtained in advance. , 87 to 99 parts by mass of commercially available homopolypropylene resin MFR 8 g / 10 min, 1 to 3 parts by mass of high melt tension polypropylene resin MFR 2.5 g / 10 min, commercially available MFR 8 g / 10 min. N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide 0 to 9 parts by mass of a density polyethylene resin Part by mass, to prepare a raw material B that was premixed at a predetermined ratio by using a twin-screw extruder.
次に、原料AをA層用の単軸押出機に、原料BをB層用の単軸押出機に供給し、200〜230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルム1/10/1の積層比になるように積層し、キャストドラム上に吐出し、B層/A層/B層の層構成を有する積層未延伸シートを得る。この際、キャストドラムは表面温度が105〜130℃であることが、キャストフィルムのβ晶分率を高く制御する観点から好ましい。この際、特にシートの端部の成形が後の延伸性に影響するため、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態に基づき、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。 Next, the raw material A is supplied to a single screw extruder for the A layer, and the raw material B is supplied to a single screw extruder for the B layer, and melt extrusion is performed at 200 to 230 ° C. Then, after removing foreign substances and modified polymer with a filter installed in the middle of the polymer tube, the lamination ratio of the porous film 1/10/1 with the multi-manifold type B layer / A layer / B layer composite T-die And discharged onto a cast drum to obtain a laminated unstretched sheet having a layer structure of B layer / A layer / B layer. At this time, the surface temperature of the cast drum is preferably 105 to 130 ° C. from the viewpoint of controlling the β crystal fraction of the cast film to be high. At this time, in particular, since the forming of the end portion of the sheet affects the subsequent stretchability, it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary based on the state of close contact of the entire sheet on the drum.
次に得られた積層未延伸シートを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、高透気性フィルムを得やすいという点で逐次二軸延伸法を採用することが好ましく、特に長手方向に延伸後、幅方向に延伸することが好ましい。 Next, the obtained laminated unstretched sheet is biaxially oriented to form pores in the film. As a biaxial orientation method, the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction. The simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method in that it is easy to obtain a highly air-permeable film, and in particular, it is possible to stretch in the width direction after stretching in the longitudinal direction. preferable.
具体的な延伸条件としては、まず積層未延伸シートを長手方向に延伸する温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては90〜130℃、さらに好ましくは100〜120℃の温度を採用することが好ましい。延伸倍率としては3〜6倍、より好ましくは3〜5倍である。 As specific stretching conditions, first, a temperature at which the laminated unstretched sheet is stretched in the longitudinal direction is controlled. As a temperature control method, a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted. The stretching temperature in the longitudinal direction is preferably 90 to 130 ° C, more preferably 100 to 120 ° C. As a draw ratio, it is 3-6 times, More preferably, it is 3-5 times.
長手方向に延伸後、ステンター式延伸機にフィルム端部を把持させて導入する。そして、好ましくは130〜155℃に加熱して幅方向に6〜12倍、より好ましくは6〜10倍延伸を行う。なお、このときの横延伸速度としては100〜5,000%/分で行うことが好ましく、1,000〜4,000%/分であればより好ましい。ついで、そのままステンター内で熱固定を行い、好ましい耐熱性を付与するが、その温度は横延伸温度以上165℃以下が好ましく、より好ましくは150〜160℃である。さらに、熱固定時にはフィルムの長手方向および/もしくは幅方向に弛緩させながら行ってもよく、特に幅方向の弛緩率を3〜15%とすることが、熱寸法安定性の観点から好ましい。 After stretching in the longitudinal direction, the film end is held by a stenter-type stretching machine and introduced. And it heats to 130-155 degreeC preferably, and extends 6 to 12 times in the width direction, More preferably, it extends 6 to 10 times. The transverse stretching speed at this time is preferably 100 to 5,000% / min, more preferably 1,000 to 4,000% / min. Subsequently, heat setting is performed in the stenter as it is, and preferable heat resistance is imparted. The temperature is preferably from the transverse stretching temperature to 165 ° C., more preferably from 150 to 160 ° C. Furthermore, during heat setting, the film may be relaxed in the longitudinal direction and / or the width direction of the film. In particular, the relaxation rate in the width direction is preferably 3 to 15% from the viewpoint of thermal dimensional stability.
上記に製造方法を記載しているが、本発明はこれらに限定されるものでないことは言うまでもない。 Although the manufacturing method is described above, it cannot be overemphasized that this invention is not limited to these.
本発明の多孔性フィルムは、特にポリプロピレンを用いた場合、有機溶媒を保持することが可能であるために、電解液に有機溶媒を使用する蓄電デバイスのセパレータとして用いることが可能である。また、本発明の多孔性フィルムは、高空孔率かつ高い透気度を有することからセパレータとしての抵抗が低くなり、上記蓄電デバイスの中でもリチウムイオン電池やリチウムイオンキャパシタに好ましく使用することができる。 In particular, when polypropylene is used, the porous film of the present invention can retain an organic solvent, and thus can be used as a separator for an electricity storage device that uses an organic solvent as an electrolytic solution. Moreover, since the porous film of the present invention has a high porosity and high air permeability, the resistance as a separator is low, and among the above electricity storage devices, it can be preferably used for lithium ion batteries and lithium ion capacitors.
本発明の蓄電デバイスとしては、有機溶媒を使用する非水電解液二次電池や電気二重層キャパシタなどがある。特に電池容量と出力密度のバランスからリチウムイオン電池が好適である。充放電することにより繰り返し使用できることから、IT機器、生活機器、ハイブリット自動車、電気自動車などの電源に使用することができる。特に上記の用途には 電池容量と出力密度のバランスからリチウムイオン電池が好適である。本発明の多孔性フィルムを用いた蓄電デバイスは、高空孔率かつ高い透気度を有することからハイブリット自動車、電気自動車などの電源に好適に使用することができる。 Examples of the electricity storage device of the present invention include a non-aqueous electrolyte secondary battery using an organic solvent and an electric double layer capacitor. In particular, a lithium ion battery is suitable from the balance of battery capacity and output density. Since it can be used repeatedly by charging and discharging, it can be used for power supplies of IT equipment, daily life equipment, hybrid cars, electric cars and the like. In particular, a lithium ion battery is suitable for the above-mentioned use from the balance of battery capacity and output density. Since the electricity storage device using the porous film of the present invention has a high porosity and high air permeability, it can be suitably used for a power source such as a hybrid vehicle and an electric vehicle.
以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。 Hereinafter, the present invention will be described in detail by way of examples. The characteristics were measured and evaluated by the following methods.
(1)クッション率
ダイアルゲージ(三豊製作所製No2109−10)に10mmφ平型の標準測定子(No101117)を取り付け、50g荷重を加えた場合の厚みをT1(μm)と500g荷重を加えた場合の厚みをT2(μm)を測定し下記式により求めた。
(1) Cushion ratio A 10 mmφ flat standard measuring element (No101117) is attached to a dial gauge (Mitoyo Seisakusho No. 2109-10), and the thickness when 50 g load is applied is the thickness when T1 (μm) and 500 g load are applied. The thickness was determined by the following formula after measuring T2 (μm).
クッション率(%)=(1−T2/T1)×100
なお、厚み測定は荷重を加えた後、30秒後に測定を行った。この測定は測定位置を変えて、10点測定しその平均値を用いた。
Cushion rate (%) = (1−T2 / T1) × 100
The thickness was measured 30 seconds after applying the load. In this measurement, the measurement position was changed, 10 points were measured, and the average value was used.
(2)空孔率
試料フィルムを3×3cmの正方形に切り取り、電子天秤(島津製作所製電子上皿天秤、UW220H)を用いて質量W(g)測定した。また、ダイアルゲージ式厚み計(JIS B 7503(1997)、PEACOCK製UPRIGHT DIAL GAUGE(No.25)に5mmφ平型の測定子を取り付け、125g荷重を加えて、厚みを5点測定し、その平均厚みをD(cm)とした。空孔率は、以下の式より求めた。
(2) Porosity The sample film was cut into a 3 × 3 cm square, and the mass W (g) was measured using an electronic balance (Electronic pan balance manufactured by Shimadzu Corporation, UW220H). Also, a dial gauge thickness gauge (JIS B 7503 (1997), UPAIGHT DIAL GAUGE (No. 25) manufactured by PEACOCK was attached with a 5 mmφ flat type probe, 125 g load was applied, the thickness was measured at five points, and the average The thickness was defined as D (cm), and the porosity was determined from the following equation.
空孔率=100−(100(W/ρ)/(9×D))
上記式中のρは、延伸前のフィルムの比重または多孔性フィルムをプレスで無孔化したフィルムの比重を示す。ρはJIS K 7112(1999)のD法に準拠して、23±1℃で勾配管の溶媒はエタノール/水で測定した。
Porosity = 100− (100 (W / ρ) / (9 × D))
Ρ in the above formula indicates the specific gravity of the film before stretching or the specific gravity of the film obtained by making the porous film non-porous by pressing. ρ was measured according to JIS K 7112 (1999), method D, 23 ± 1 ° C., and the solvent of the gradient tube was ethanol / water.
ただし、各層の空孔率については、以下で算出した。多孔性フィルムをレザー刃を用いて厚み方向に切断し、エイコーエンジニアリング社製IB−5型イオンコーターを用いてイオンコートを行い、日本電子社製電界放射走査電子顕微鏡(JSM−6700F)を用いて各層の断面を撮影倍率3000倍で観察した。各層について、得られた画像データ(スケールバーなどの表示がない、観察部のみの画像)をプラネトロン社製Image−ProPlus Ver.4.5を用いて画像解析を行い、開孔部の面積割合を算出した。画像解析方法としては、まず平坦化フィルタ(暗い、10ピクセル)を1回実行し輝度斑を修正した後、メディアンフィルタ(カーネルサイズ3×3)を1回実行しノイズを除去した。次いで、局部イコライゼーションフィルタ(対数分布、小ウィンドウ100、ステップ1)を1回実行し開孔部以外を明るく強調させ、コントラスト調整(コントラスト100)を行った。最後に、空間較正を行い、カウント/サイズ項目において、面積検出の下限値を0.5μm2に設定しカウントを行うことで0.5μm2以下の黒点(ノイズ)を除去した開孔部のみを検出した。その検出された開孔部の全面積に対する面積比をカウント/サイズ項目の面積比測定により求めることで、各層について、開孔部の面積割合を算出した。
この開孔部の面積割合を、予め単膜の多孔性フィルムについて作成した開孔部面積割合と空孔率の検量線を適用して算出した空孔率を各層の空孔率とした。
However, the porosity of each layer was calculated as follows. The porous film is cut in the thickness direction using a leather blade, ion-coated using an IB-5 type ion coater manufactured by Eiko Engineering, and using a field emission scanning electron microscope (JSM-6700F) manufactured by JEOL. The cross section of each layer was observed at a photographing magnification of 3000 times. For each layer, the obtained image data (the image of only the observation part without the display of the scale bar or the like) was transferred to Image-ProPlus Ver. Image analysis was performed using 4.5, and the area ratio of the aperture was calculated. As an image analysis method, first, a flattening filter (dark, 10 pixels) was executed once to correct luminance spots, and then a median filter (kernel size 3 × 3) was executed once to remove noise. Next, the local equalization filter (logarithmic distribution, small window 100, step 1) was executed once to brightly emphasize areas other than the apertures, and contrast adjustment (contrast 100) was performed. Finally, spatial calibration is performed, and in the count / size item, the lower limit value of area detection is set to 0.5 μm 2 and counting is performed to remove only the apertures from which black spots (noise) of 0.5 μm 2 or less are removed. Detected. The area ratio of the opening portion was calculated for each layer by obtaining the area ratio of the detected opening portion with respect to the total area by counting the area ratio of the count / size item.
The area ratio of the open area was calculated by applying a calibration curve of the open area area ratio and the porosity prepared in advance for a single porous film as the porosity of each layer.
なお、単膜多孔性フィルムの作製方法を以下に示す。各層の樹脂を押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱した熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。その得られた未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、105℃で縦方向に5倍延伸後、127℃で1秒保持し、95℃に冷却した後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で横方向に7倍に延伸し、テンター内で横方向に5%の弛緩を与えつつ、160℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルム得た。 In addition, the preparation methods of a single membrane porous film are shown below. The resin of each layer is supplied to an extruder, melt-extruded at 220 ° C., foreign matter is removed with a 25 μm cut sintered filter, and then discharged onto a cast drum whose surface temperature is controlled at 120 ° C. with a T-die. The film was cast so as to be indirect for 15 seconds, and was formed into a sheet shape by blowing hot air heated to 120 ° C. using an air knife from the non-drum surface side of the film to obtain an unstretched sheet. The obtained unstretched sheet was preheated through a roll group maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a circumferential speed difference, stretched five times in the longitudinal direction at 105 ° C., and then at 127 ° C. Hold for 1 second, cool to 95 ° C, hold both ends with clips and introduce into tenter, preheat at 150 ° C, stretch 7 times in the transverse direction at 150 ° C, 5% in the transverse direction in the tenter The film was heat-set at 160 ° C. while being relaxed, and then uniformly cooled and then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 μm.
(3)ガーレー透気度
JIS P 8117(1998)のB法に準拠して、23℃、65%RHにて測定した(単位:秒/100ml)。積層したサンプルについて同様の測定を、場所を変えて5回行い、得られたガーレー透気度の平均値を当該サンプルのガーレー透気度とした。
(3) Gurley air permeability Measured at 23 ° C. and 65% RH in accordance with JIS P 8117 (1998), method B (unit: second / 100 ml). The same measurement was performed on the laminated samples five times at different locations, and the average value of the obtained Gurley air permeability was taken as the Gurley air permeability of the sample.
(4)β晶形成能
樹脂またはフィルム5mgをサンプルとしてアルミパンに採取し、示差走査熱量計(DSC)(セイコー電子工業製 RDC220)を用いて測定した。まず、窒素雰囲気下で20℃から20℃/分で250℃まで昇温し、そのまま5分間保持する。次いで、20℃/分で25℃まで降温し、そのまま5分間保持する。そして、再度20℃/分で250℃まで昇温し測定を行った。2回目の昇温の際に観察される145〜157℃の温度域のポリプロピレンのβ晶融解ピークと158℃以上に観察されるポリプロピレンのα晶融解ピークについて、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、各々の融解熱量を算出した。なお、融解熱量の較正はインジウムを用いて行う。β晶形成能はβ晶融解熱量(ΔHβ)、α晶融解熱量(ΔHα)から以下の式で算出する。
β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
なお、積層フィルムを入手して、各層のβ晶形成能を測定する際は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体を構成する成分を採取し、測定することができる。
(4) β-crystal forming ability 5 mg of resin or film was sampled on an aluminum pan and measured using a differential scanning calorimeter (DSC) (Seiko Denshi Kogyo RDC220). First, the temperature is raised from 20 ° C. to 250 ° C. at 20 ° C./min in a nitrogen atmosphere, and kept as it is for 5 minutes. Next, the temperature is lowered to 25 ° C. at 20 ° C./min, and kept for 5 minutes. And it heated up to 250 degreeC again at 20 degree-C / min, and measured. With respect to the β-crystal melting peak of polypropylene in the temperature range of 145 to 157 ° C. observed at the second temperature increase and the α-crystal melting peak of polypropylene observed at 158 ° C. or higher, the flat portion on the high temperature side is drawn as a reference. The amount of heat of fusion was calculated from the area of the region surrounded by the baseline and peak. The heat of fusion is calibrated using indium. The β crystal forming ability is calculated from the β crystal melting heat (ΔHβ) and α crystal melting heat (ΔHα) by the following formula.
β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHβ)] × 100
In addition, when obtaining a laminated film and measuring the β crystal forming ability of each layer, it is possible to collect and measure the components constituting each layer by scraping each layer of the film according to the laminated thickness. .
(5)積層比
多孔性フィルムの積層比は、レザー刃を用いて厚み方向に切断し、切断面を日本電子(株)製JSM−6700Fの電界放射走査電子顕微鏡を用いて10,000倍で表面観察を行い、JEOL PC−SEM 6700のソフト中にある「2点間測長」を用いて各層の厚みを測定する。同じサンプルについて同様の測定を場所を変えて5回行い、得られた厚さの平均値を当該層の厚みとし、これを用いて積層比を算出した。なお、測定条件は下記に示す通りである。
(5) Lamination ratio The lamination ratio of the porous film was cut in the thickness direction using a leather blade, and the cut surface was 10,000 times using a field emission scanning electron microscope of JSM-6700F manufactured by JEOL Ltd. Surface observation is performed, and the thickness of each layer is measured using “measurement between two points” in the software of JEOL PC-SEM 6700. The same measurement was performed for the same sample five times at different locations, and the average value of the obtained thicknesses was taken as the thickness of the layer, and the lamination ratio was calculated using this. Measurement conditions are as shown below.
加速電圧:1kV
対物絞り:4
二次電子検出キー:ON
モード:2
エミッション:10μm
オートリセット:OFF
観察モード:LEM
スキャンローテーション:0
ダイナミックフォーカス:0
(6)電池特性
宝泉(株)製のリチウムコバルト酸化物(LiCoO2)厚みが40μmの正極を使用し、幅200mm、長さ4,000mmに切断した。また、宝泉(株)製の厚みが50μmの黒鉛負極を使用し、幅200mm、長さ4,000mmに切断した。プロピレンカーボネート:ジメチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPF6を濃度1モル/リットルとなるように溶解させ、電解液とした。
Acceleration voltage: 1 kV
Objective aperture: 4
Secondary electron detection key: ON
Mode: 2
Emission: 10 μm
Auto reset: OFF
Observation mode: LEM
Scan rotation: 0
Dynamic focus: 0
(6) Battery characteristics A positive electrode having a lithium cobalt oxide (LiCoO 2 ) thickness of 40 μm manufactured by Hosen Co., Ltd. was used and cut into a width of 200 mm and a length of 4,000 mm. Further, a graphite negative electrode having a thickness of 50 μm manufactured by Hosen Co., Ltd. was used and cut into a width of 200 mm and a length of 4,000 mm. LiPF 6 was dissolved as a solute in a mixed solvent of propylene carbonate: dimethyl carbonate = 3: 7 (volume ratio) to a concentration of 1 mol / liter to obtain an electrolytic solution.
次に、上記の帯状正極を、各実施例・比較例のセパレータ用フィルムを介して、上記シート状負極と重ね、渦巻状に巻回して渦巻状電極体としたのち、有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った後、上記電解液を電池ケース内に注入した。電池ケースの開口部を封口し、電池の予備充電を行い、筒形の有機電解液二次電池を作製した。各実施例・比較例につき、電池を200個ずつ作製した。 Next, the above belt-like positive electrode is overlapped with the sheet-like negative electrode through the separator film of each Example / Comparative Example and wound into a spiral to form a spiral electrode body, and then a bottomed cylindrical battery After filling the case and welding the positive and negative electrode lead bodies, the electrolyte was poured into the battery case. The opening of the battery case was sealed and the battery was precharged to produce a cylindrical organic electrolyte secondary battery. For each of the examples and comparative examples, 200 batteries were produced.
A.電池加工性
渦巻状電極体を200個作製する過程でのセパレータ起因の不良を調べた。不良内容は、渦巻状電極体作製時のセパレータの位置ずれ、セパレータのしわ、セパレータの破断である。不良となった電極体の個数により、以下の基準で評価した。
A. Battery processability A defect due to the separator in the process of producing 200 spiral electrode bodies was examined. The defective contents are the position shift of the separator, the wrinkle of the separator, and the breakage of the separator at the time of producing the spiral electrode body. Evaluation was performed according to the following criteria depending on the number of defective electrode bodies.
○:0個
△:1個または2個
×:3個以上
B.出力特性
作製した各二次電池について、25℃の雰囲気下、充電を1,600mAで4.2Vまで3.5時間、放電を1,600mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。さらに、充電を1,600mAで4.2Vまで3.5時間、放電を16,000mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。
○: 0 △: 1 or 2 ×: 3 or more Output characteristics For each of the fabricated secondary batteries, charging and discharging operations were performed under an atmosphere of 25 ° C. with charging at 1,600 mA up to 4.2 V for 3.5 hours and discharging at 1,600 mA up to 2.7 V. The capacity was examined. Further, a charging / discharging operation was performed in which charging was performed at 1,600 mA to 4.2 V for 3.5 hours, and discharging was performed at 16,000 mA to 2.7 V, and the discharge capacity was examined.
[(16,000mAでの放電容量)/(1,600mAでの放電容量)]×100の計算式で得られる値を以下の基準で評価した。なお、試験個数は20個測定し、その平均値で評価した。 The value obtained by the formula of [(discharge capacity at 16,000 mA) / (discharge capacity at 1,600 mA)] × 100 was evaluated according to the following criteria. In addition, 20 test pieces were measured, and the average value was evaluated.
○:85%以上
△:80%以上85%未満
×:80%未満
C.放置試験
宝泉(株)製のリチウムコバルト酸化物(LiCoO2)厚みが50μmの正極を使用し、幅60mm、長さ900mmに切断した。また、宝泉(株)製の厚みが60μmの黒鉛負極を使用し、幅60mm、長さ920mmに切断した。プロピレンカーボネート:ジメチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPF6を濃度1モル/リットルとなるように溶解させ、電解液とした。
○: 85% or more Δ: 80% or more and less than 85% ×: less than 80% C.I. Leaving test A positive electrode having a thickness of 50 μm made of lithium cobalt oxide (LiCoO 2 ) manufactured by Hosen Co., Ltd. was used and cut into a width of 60 mm and a length of 900 mm. Further, a graphite negative electrode having a thickness of 60 μm manufactured by Hosen Co., Ltd. was used and cut into a width of 60 mm and a length of 920 mm. LiPF 6 was dissolved as a solute in a mixed solvent of propylene carbonate: dimethyl carbonate = 3: 7 (volume ratio) to a concentration of 1 mol / liter to obtain an electrolytic solution.
次に、上記の帯状正極を、各実施例・比較例のセパレータ用フィルムを介して、上記シート状負極と重ね、渦巻状に巻回して渦巻状電極体とし、次いで、有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った後、上記電解液を電池ケース内に注入した。電池ケースの開口部を封口し、電池の予備充電を行い、筒形の有機電解液二次電池を作製した。各実施例・比較例につき、電池を20個ずつ作製した。作製した各二次電池について、25℃の雰囲気下、充電を1,400mAで4.2Vまで1.5時間、放電を1,400mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。さらに、充電を1,400mAで4.2Vま1.5時間行った後、60℃の雰囲気下で、2ヶ月放置した後、1,400mAで2.7Vまで放電を行った。 Next, the above-mentioned belt-like positive electrode is overlapped with the above-mentioned sheet-like negative electrode through the separator film of each Example / Comparative Example and wound in a spiral shape to form a spiral electrode body, and then a bottomed cylindrical battery After filling the case and welding the positive and negative electrode lead bodies, the electrolyte was poured into the battery case. The opening of the battery case was sealed and the battery was precharged to produce a cylindrical organic electrolyte secondary battery. Twenty batteries were produced for each example and comparative example. For each of the fabricated secondary batteries, charging and discharging operations were performed in an atmosphere of 25 ° C. to charge the battery up to 4.2 V at 1,400 mA for 1.5 hours and to discharge to 2.7 V at 1,400 mA. Examined. Further, the battery was charged at 1,400 mA to 4.2 V for 1.5 hours, then left at 60 ° C. for 2 months, and then discharged at 1,400 mA to 2.7 V.
[(放置後放電容量)/(初期放電容量)]×100の計算式で得られる値を以下の基準で評価した。なお、試験個数は20個測定し、その平均値で評価した。 The value obtained by the formula of [(discharge capacity after standing) / (initial discharge capacity)] × 100 was evaluated according to the following criteria. In addition, 20 test pieces were measured, and the average value was evaluated.
○:85%以上
△:80%以上85%未満
×:80%未満または1個以上が20%未満
放電容量が80%未満になる要因は、渦巻状電極体作製時のセパレータのキズなどである。
○: 85% or more Δ: 80% or more and less than 85% ×: Less than 80% or one or more is less than 20% The factors that cause the discharge capacity to be less than 80% are scratches on the separator when the spiral electrode body is manufactured. .
以下に実施例に基づいて本発明をより具体的に説明するが、本発明はこれらに限定されるものでないことは言うまでもない。 Hereinafter, the present invention will be described more specifically based on examples, but it goes without saying that the present invention is not limited thereto.
(実施例1)
まず、下記の組成を二軸押出機で300℃でコンパウンドして、樹脂A、Bのチップを準備した。
Example 1
First, the following composition was compounded at 300 ° C. with a twin-screw extruder to prepare chips of resins A and B.
<ポリプロピレン樹脂A>
住友化学(株)製ホモポリプロピレンFSX80E4(以下、PP−1と表記)を92質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF−814(以下、HMS−PPと表記)を1質量部、エチレン−オクテン−1共重合体であるダウ・ケミカル製 Engage8411(メルトインデックス:18g/10分、融点72℃、以下、単にPEと表記)を7質量部に加えて、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、Nu−100、以下、単にβ晶核剤と表記)を0.2質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.15、0.1質量部(以下、単に酸防剤と表記し、特に記載のない限り3:2の質量比で使用)をドライブレンド後2軸押出機で280℃にコンパウンドし、チップとした。
<Polypropylene resin A>
92 parts by mass of Sumitomo Chemical Co., Ltd. homopolypropylene FSX80E4 (hereinafter referred to as PP-1), 1 part by mass of Basel polypropylene PF-814 (hereinafter referred to as HMS-PP), which is a high melt tension polypropylene resin, Engage 8411 (melt index: 18 g / 10 min, melting point 72 ° C., hereinafter simply referred to as PE) made by Dow Chemical, which is an ethylene-octene-1 copolymer, is added to 7 parts by mass, and N is a β crystal nucleating agent. , N′-dicyclohexyl-2,6-naphthalenedicarboxamide (manufactured by Shin Nippon Rika Co., Ltd., Nu-100, hereinafter simply referred to as β crystal nucleating agent) is 0.2 part by mass, and further an antioxidant. Ciba Specialty Chemicals IRGANOX1010 and IRGAFOS168 are 0.15 and 0.1 parts by mass (hereinafter simply referred to as an antioxidant). It noted, unless otherwise 3: the use) with 2 mass ratio compounded to 280 ° C. in a twin-screw extruder after the dry blend was a chip.
<ポリプロピレン樹脂B>
住友化学(株)製ホモポリプロピレンFSX80E4(以下、PP−1と表記)を99質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF−814(以下、HMS−PPと表記)を1質量部、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、Nu−100、以下、単にβ晶核剤と表記)を0.2質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.15、0.1質量部(以下、単に酸防剤と表記し、特に記載のない限り3:2の質量比で使用)をドライブレンド後2軸押出機で280℃にコンパウンドし、チップとした。
<Polypropylene resin B>
99 parts by mass of homopolypropylene FSX80E4 (hereinafter referred to as PP-1) manufactured by Sumitomo Chemical Co., Ltd., 1 part by mass of Basel polypropylene PF-814 (hereinafter referred to as HMS-PP) which is a high melt tension polypropylene resin, 0.2 parts by mass of N, N′-dicyclohexyl-2,6-naphthalene dicarboxyamide (Nippon Rika Co., Ltd., Nu-100, hereinafter simply referred to as β crystal nucleating agent) which is a β crystal nucleating agent Further, IRGANOX 1010 and IRGAFOS 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, are 0.15 and 0.1 parts by mass (hereinafter simply referred to as acid inhibitors, unless otherwise specified, in a mass ratio of 3: 2). Used) was dry blended and then compounded at 280 ° C. with a twin screw extruder to obtain chips.
ポリプロピレン樹脂AのチップをA層用、およびポリプロピレン樹脂BのチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/10/1の積層比になるよう積層し、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱し熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。引き続き80℃の表面温度とした冷却用金属ドラムと接触させた。その接触時間は、40秒であった。 Supply polypropylene resin A chips for layer A and polypropylene resin B chips to separate single screw extruders for layer B, melt extrude at 220 ° C, and remove foreign matter with a 25μm cut sintered filter , The multi-manifold type B layer / A layer / B layer composite T die is laminated so that the porous film has a lamination ratio of 1/10/1, and is discharged onto a cast drum whose surface temperature is controlled at 120 ° C. The film was cast so as to be indirectly on the drum for 15 seconds, and heated to 120 ° C. by using an air knife from the non-drum surface side of the film, and formed into a sheet while being in close contact with hot air to obtain an unstretched sheet. Subsequently, it was brought into contact with a cooling metal drum having a surface temperature of 80 ° C. The contact time was 40 seconds.
得た未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、105℃で縦方向に5倍延伸後、127℃で1秒保持し、95℃に冷却した。一旦冷却後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で横方向に7倍に延伸した。次いで、テンター内で横方向に5%の弛緩を与えつつ、160℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。物性値を表1、2に示した。 The obtained unstretched sheet is preheated through a roll group maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference, stretched 5 times in the longitudinal direction at 105 ° C., and then at 127 ° C. for 1 second. Hold and cool to 95 ° C. After cooling, it was introduced into a tenter while holding both ends with clips, preheated at 150 ° C., and stretched 7 times in the transverse direction at 150 ° C. Next, the film was heat-set at 160 ° C. while giving a relaxation of 5% in the transverse direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 μm. The physical property values are shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性と優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものであった。 The obtained porous film had high processability and excellent battery characteristics, and the porous film had high air permeability.
(実施例2)
熱固定温度162℃に変更した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
(Example 2)
A porous film having a thickness of 25 μm was obtained in the same manner as in Example 1 except that the heat setting temperature was changed to 162 ° C. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性と優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものであった。 The obtained porous film had high processability and excellent battery characteristics, and the porous film had high air permeability.
(実施例3)
ポリプロピレン樹脂AのチップをA層用、およびポリプロピレン樹脂BのチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/4/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
(Example 3)
Supply polypropylene resin A chips for layer A and polypropylene resin B chips to separate single screw extruders for layer B, melt extrude at 220 ° C, and remove foreign matter with a 25μm cut sintered filter , Except that the multi-manifold type B layer / A layer / B layer composite T-die was laminated so that the porous film would be 1/4/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. The same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性と優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものであった。 The obtained porous film had high processability and excellent battery characteristics, and the porous film had high air permeability.
(実施例4)
ポリプロピレン樹脂AのチップをA層用、およびポリプロピレン樹脂BのチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/2/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
Example 4
Supply polypropylene resin A chips for layer A and polypropylene resin B chips to separate single screw extruders for layer B, melt extrude at 220 ° C, and remove foreign matter with a 25μm cut sintered filter , Except that multi-manifold type B layer / A layer / B layer composite T-die was laminated so that the porous film would be 1/2/1 and discharged to a cast drum whose surface temperature was controlled at 120 ° C The same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性と優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものであった。 The obtained porous film had high processability and excellent battery characteristics, and the porous film had high air permeability.
(実施例5)
ポリプロピレン樹脂AのチップをA層用、およびポリプロピレン樹脂BのチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/12/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
(Example 5)
Supply polypropylene resin A chips for layer A and polypropylene resin B chips to separate single screw extruders for layer B, melt extrude at 220 ° C, and remove foreign matter with a 25μm cut sintered filter , Except that the multi-manifold type B layer / A layer / B layer composite T-die was laminated so that the porous film would be 1/12/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. The same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性と優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものであった。 The obtained porous film had high processability and excellent battery characteristics, and the porous film had high air permeability.
(実施例6)
<ポリプロピレン樹脂C>
住友化学(株)製ホモポリプロピレンFSX80E4を98質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF−814を1質量部、エチレン−オクテン−1共重合体であるダウ・ケミカル製 Engage8411を1質量部に加えて、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、Nu−100)を0.2質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.15、0.1質量部をドライブレンド後2軸押出機で280℃にコンパウンドし、チップとした。
(Example 6)
<Polypropylene resin C>
98 parts by mass of homopolypropylene FSX80E4 manufactured by Sumitomo Chemical Co., Ltd., 1 part by mass of Basel polypropylene PF-814 which is a high melt tension polypropylene resin, and 1 mass of Engage 8411 manufactured by Dow Chemical which is an ethylene-octene-1 copolymer. 0.2 part by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide (Shin Nihon Rika Co., Ltd., Nu-100), which is a β crystal nucleating agent, and an antioxidant Each of IRGANOX1010 and IRGAFOS168 manufactured by Ciba Specialty Chemicals, which were 0.15 and 0.1 parts by mass, was dry blended and then compounded at 280 ° C. with a twin screw extruder to obtain chips.
ポリプロピレン樹脂AのチップをA層用およびポリプロピレン樹脂CのチップをB層用の単軸押出機に、別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/4/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。 A polypropylene resin A chip is supplied to a single screw extruder for layer A and a polypropylene resin C chip is supplied to a separate single screw extruder for layer B, melt extruded at 220 ° C., and a 25 μm cut sintered filter After removing the foreign matter, the multi-manifold type B layer / A layer / B layer composite T die was laminated so that the porous film was 1/4/1, and the cast drum whose surface temperature was controlled at 120 ° C. Except for discharging, the same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性と優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものであった。 The obtained porous film had high processability and excellent battery characteristics, and the porous film had high air permeability.
(実施例7)
<ポリプロピレン樹脂D>
住友化学(株)製ホモポリプロピレンFSX80E4を92質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF−814を1質量部、ポリオレフィン系エラストマー樹脂として、メタロセン触媒法による低密度ポリエチレン(住友化学工業(株)製、“エクセレンFX”CX5016;MFR:17g/10分(190℃)、Tm:91℃)を7質量部に加えて、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、Nu−100)を0.2質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.15、0.1質量部をドライブレンド後2軸押出機で280℃にコンパウンドし、チップとした。
(Example 7)
<Polypropylene resin D>
92 parts by mass of homopolypropylene FSX80E4 manufactured by Sumitomo Chemical Co., Ltd., 1 part by mass of Basel polypropylene PF-814, which is a high melt tension polypropylene resin, and low-density polyethylene by a metallocene catalyst method (Sumitomo Chemical ( Co., Ltd., “Excellen FX” CX5016; MFR: 17 g / 10 min (190 ° C., Tm: 91 ° C.) is added to 7 parts by mass, and β, crystal nucleating agent N, N′-dicyclohexyl-2,6 -0.2 parts by mass of naphthalene dicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., Nu-100), and IRGANOX 1010 and IRGAFOS 168 by Ciba Specialty Chemicals, which are antioxidants, 0.15 and 0.1 mass, respectively After dry blending, compound with a twin screw extruder at 280 ° C. Tsu was a flop.
ポリプロピレン樹脂DのチップをA層用およびポリプロピレン樹脂BのチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/10/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。 The polypropylene resin D chip is supplied to the single-layer extruder for the A layer and the polypropylene resin B chip for the B layer, melt-extruded at 220 ° C., and foreign matter is removed with a 25 μm cut sintered filter. Example except that the multi-manifold type B layer / A layer / B layer composite T-die was laminated so that the porous film would be 1/10/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. The same operation as 1 was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性と優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものであった。 The obtained porous film had high processability and excellent battery characteristics, and the porous film had high air permeability.
(参考例8)
ポリプロピレン樹脂Aを単軸押出機に供給して220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出し、縦方向延伸後、得られた多孔質フィルムの片面(溶融押出時にドラムに接触した面、以下D面と表記)にコロナ放電処理を施した。塗剤として、三井化学(株)製ケミパール“WP100”を10質量部、イオン交換水90質量部を混合した懸濁液を準備した。塗剤をマイヤーバー#4にてコーティングした。続いて、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で横方向に7倍に延伸した。次いで、テンター内で横方向に5%の弛緩を与えつつ、160℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
( Reference Example 8)
Polypropylene resin A is supplied to a single screw extruder, melt extruded at 220 ° C., foreign matter is removed with a 25 μm cut sintered filter, and then discharged from a T-die onto a cast drum whose surface temperature is controlled at 120 ° C. After the directional stretching, corona discharge treatment was performed on one side of the obtained porous film (the side in contact with the drum during melt extrusion, hereinafter referred to as the D side). As a coating agent, a suspension prepared by mixing 10 parts by mass of Chemipearl “WP100” manufactured by Mitsui Chemicals, Inc. and 90 parts by mass of ion-exchanged water was prepared. The coating was coated with Meyer bar # 4. Subsequently, both ends were introduced into a tenter while being gripped by clips, preheated at 150 ° C., and stretched 7 times in the transverse direction at 150 ° C. Next, the film was heat-set at 160 ° C. while giving a relaxation of 5% in the transverse direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
(参考例9)
ポリプロピレン樹脂Aを単軸押出機に供給して220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出し、縦方向延伸後、得られた多孔質フィルムの片面(溶融押出時にドラムに接触した面、以下D面と表記)にコロナ放電処理を施した。塗剤として、三井化学(株)製ケミパール“WP100”を5質量部、イオン交換水95質量部を混合した懸濁液を準備した。塗剤をマイヤーバー#4にてコーティングした。続いて、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で横方向に7倍に延伸した。次いで、テンター内で横方向に5%の弛緩を与えつつ、160℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
( Reference Example 9)
Polypropylene resin A is supplied to a single screw extruder, melt extruded at 220 ° C., foreign matter is removed with a 25 μm cut sintered filter, and then discharged from a T-die onto a cast drum whose surface temperature is controlled at 120 ° C. After the directional stretching, corona discharge treatment was performed on one side of the obtained porous film (the side in contact with the drum during melt extrusion, hereinafter referred to as the D side). As a coating agent, a suspension prepared by mixing 5 parts by mass of Chemipearl “WP100” manufactured by Mitsui Chemicals, Inc. and 95 parts by mass of ion-exchanged water was prepared. The coating was coated with Meyer bar # 4. Subsequently, both ends were introduced into a tenter while being gripped by clips, preheated at 150 ° C., and stretched 7 times in the transverse direction at 150 ° C. Next, the film was heat-set at 160 ° C. while giving a relaxation of 5% in the transverse direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
(比較例1)
ポリプロピレン樹脂Aを単軸押出機に供給して220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出た以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
(Comparative Example 1)
Except for supplying polypropylene resin A to a single screw extruder, performing melt extrusion at 220 ° C., removing foreign matter with a 25 μm cut sintered filter, and then discharging it from a T-die to a cast drum whose surface temperature was controlled at 120 ° C. The same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、優れた電池特性を有するものの、得られた多孔性フィルムは、加工性が不十分であった。 Although the obtained porous film had excellent battery characteristics, the obtained porous film had insufficient processability.
(比較例2)
ポリプロピレン樹脂Dを単軸押出機に供給して220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出た以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
(Comparative Example 2)
Except for supplying polypropylene resin D to a single screw extruder, performing melt extrusion at 220 ° C, removing foreign matter with a 25 µm cut sintered filter, and then discharging it from a T-die to a cast drum whose surface temperature was controlled at 120 ° C. The same operation as in Example 1 was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、優れた電池特性を有するものの、得られた多孔性フィルムは、加工性が不十分であった。 Although the obtained porous film had excellent battery characteristics, the obtained porous film had insufficient processability.
(比較例3)
ポリプロピレン樹脂Bのチップを単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイにて、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱し熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。引き続き80℃の表面温度とした冷却用金属ドラムとの接触時間は、40秒であった。
(Comparative Example 3)
A polypropylene resin B chip is supplied to a single screw extruder, melt extruded at 220 ° C., foreign matter is removed with a 25 μm-cut sintered filter, and a cast drum whose surface temperature is controlled to 120 ° C. with a T-die. Discharge, cast indirectly on the drum for 15 seconds, heat to 120 ° C using an air knife from the non-drum surface side of the film, blow into hot air, and form into a sheet shape to obtain an unstretched sheet It was. Subsequently, the contact time with the cooling metal drum having a surface temperature of 80 ° C. was 40 seconds.
得た未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、135℃で縦方向に4倍延伸後、135℃で1秒保持し、95℃に冷却した。一旦冷却後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で横方向に7倍に延伸した。次いで、テンター内で横方向に5%の弛緩を与えつつ、162℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。 The obtained unstretched sheet was preheated through a roll group maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference, stretched four times in the longitudinal direction at 135 ° C., and then at 135 ° C. for 1 second. Hold and cool to 95 ° C. After cooling, it was introduced into a tenter while holding both ends with clips, preheated at 150 ° C., and stretched 7 times in the transverse direction at 150 ° C. Next, the film was heat-set at 162 ° C. while giving 5% relaxation in the transverse direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性を有するものの、出力特性が不十分であった。 Although the obtained porous film had high processability, the output characteristics were insufficient.
(比較例4)
ポリプロピレン樹脂AのチップをA層用、およびポリプロピレン樹脂BのチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/10/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして、フィルムの非ドラム面側からエアーナイフを用いて120℃に加熱し熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。引き続き80℃の表面温度とした冷却用金属ドラムとの接触時間は、40秒であった。
(Comparative Example 4)
Supply polypropylene resin A chips for layer A and polypropylene resin B chips to separate single screw extruders for layer B, melt extrude at 220 ° C, and remove foreign matter with a 25μm cut sintered filter The multi-manifold type B layer / A layer / B layer composite T-die is laminated so that the porous film becomes 1/10/1, and discharged onto a cast drum whose surface temperature is controlled at 120 ° C. The film was cast so as to be indirect for 15 seconds, heated to 120 ° C. using an air knife from the non-drum surface side of the film, and then formed into a sheet shape while sprayed with hot air to obtain an unstretched sheet. Subsequently, the contact time with the cooling metal drum having a surface temperature of 80 ° C. was 40 seconds.
得た未延伸シートを105℃に保ったロール群に通して予熱し、105℃に保ち周速差を設けたロール間に通し、135℃で縦方向に4倍延伸後、135℃で1秒保持し、95℃に冷却した。一旦冷却後、両端をクリップで把持しつつテンターに導入して150℃で予熱し、150℃で横方向に7倍に延伸した。次いで、テンター内で横方向に5%の弛緩を与えつつ、162℃で熱固定をし、均一に徐冷した後、室温まで冷却して巻き取り、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。 The obtained unstretched sheet was preheated through a roll group maintained at 105 ° C., passed between rolls maintained at 105 ° C. and provided with a peripheral speed difference, stretched four times in the longitudinal direction at 135 ° C., and then at 135 ° C. for 1 second. Hold and cool to 95 ° C. After cooling, it was introduced into a tenter while holding both ends with clips, preheated at 150 ° C., and stretched 7 times in the transverse direction at 150 ° C. Next, the film was heat-set at 162 ° C. while giving 5% relaxation in the transverse direction in the tenter, uniformly cooled, then cooled to room temperature and wound up to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性を有するものの、出力特性が不十分であった。 Although the obtained porous film had high processability, the output characteristics were insufficient.
(比較例5)
ポリプロピレン樹脂AチップをA層用およびB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/10/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
(Comparative Example 5)
Polypropylene resin A chips are supplied to separate single screw extruders for A layer and B layer, melt extruded at 220 ° C., foreign matter is removed with a 25 μm cut sintered filter, and multi-manifold type B layer / The same operation as in Example 1 was performed except that the porous film was laminated with an A layer / B layer composite T die so that the porous film became 1/10/1 and was discharged onto a cast drum whose surface temperature was controlled at 120 ° C. A porous film having a thickness of 25 μm was obtained. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものの、加工性が不十分であった。 The obtained porous film had excellent battery characteristics, and the porous film had high air permeability but had insufficient workability.
(比較例6)
ポリプロピレン樹脂BチップをA層用、およびポリプロピレン樹脂AチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/10/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。
(Comparative Example 6)
Supply polypropylene resin B chips to separate single screw extruders for A layer and polypropylene resin A chips for B layer, melt extrude at 220 ° C, remove foreign matter with a 25μm cut sintered filter, Example 1 except that the porous film was laminated with a manifold type B layer / A layer / B layer composite T die so that the porous film would be 1/10/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. The same operation was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、優れた電池特性を有し、多孔性フィルムは、高い透気性を有するものの、加工性が不十分であった。 The obtained porous film had excellent battery characteristics, and the porous film had high air permeability but had insufficient workability.
(比較例7)
<ポリプロピレン樹脂E>
住友化学(株)製ホモポリプロピレンFSX80E4を92質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF−814を1質量部、高密度ポリエチレン(プライムポリマー(株)製、“ハイゼックス”HA2200J;MFR:5.2g/10分(190℃)、Tm:132℃)を7質量部に加えて、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、Nu−100)を0.2質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.15、0.1質量部をドライブレンド後2軸押出機で280℃にコンパウンドし、チップとした。
(Comparative Example 7)
<Polypropylene resin E>
92 parts by mass of homopolypropylene FSX80E4 manufactured by Sumitomo Chemical Co., Ltd., 1 part by mass of polypropylene PF-814 manufactured by Basell, which is a high melt tension polypropylene resin, high density polyethylene (manufactured by Prime Polymer Co., Ltd., “Hi-X” HA2200J; 5.2 g / 10 min (190 ° C., Tm: 132 ° C.) was added to 7 parts by mass, and β-crystal nucleating agent N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide (Shin Nippon Rika ( Co., Ltd., Nu-100) 0.2 parts by weight, and further, 0.15 parts by weight of IRGANOX 1010 and IRGAFOS 168 by Ciba Specialty Chemicals, which are antioxidants, and 0.1 parts by weight after dry blending with a twin screw extruder Compounded at 280 ° C. to form a chip.
ポリプロピレン樹脂EチップをA層用、およびポリプロピレン樹脂BチップをB層用の別々の単軸押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、マルチマニホールド型のB層/A層/B層複合Tダイにて多孔性フィルムが1/10/1になるように積層し、120℃に表面温度を制御したキャストドラムに吐出した以外は実施例1と同様の操作を行い、厚さ25μmの多孔性フィルムを得た。各物性値を表1、2に示した。 Supply polypropylene resin E chip for A layer and polypropylene resin B chip for separate single screw extruders for B layer, melt extrusion at 220 ° C, remove foreign matter with a 25μm cut sintered filter, Example 1 except that the porous film was laminated with a manifold type B layer / A layer / B layer composite T die so that the porous film would be 1/10/1 and discharged onto a cast drum whose surface temperature was controlled at 120 ° C. The same operation was performed to obtain a porous film having a thickness of 25 μm. Each physical property value is shown in Tables 1 and 2.
得られた多孔性フィルムは、高い加工性を有するものの、出力特性が不十分であった。 Although the obtained porous film had high processability, the output characteristics were insufficient.
本発明による多孔性フィルムは、巻取時の加工性に優れ、セパレータとして用いた際に優れた特性である多孔性フィルムを提供することができる。 The porous film according to the present invention is excellent in workability during winding and can provide a porous film having excellent characteristics when used as a separator.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010035890A JP5434661B2 (en) | 2009-02-23 | 2010-02-22 | Porous film and power storage device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009038921 | 2009-02-23 | ||
JP2009038921 | 2009-02-23 | ||
JP2010035890A JP5434661B2 (en) | 2009-02-23 | 2010-02-22 | Porous film and power storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010219037A JP2010219037A (en) | 2010-09-30 |
JP5434661B2 true JP5434661B2 (en) | 2014-03-05 |
Family
ID=42977619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010035890A Active JP5434661B2 (en) | 2009-02-23 | 2010-02-22 | Porous film and power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5434661B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI1011646A2 (en) * | 2009-06-20 | 2016-03-22 | Treofan Germany Gmbh & Co Kg | microporous sheet for batteries having shutdown function |
JP5083479B2 (en) * | 2011-02-03 | 2012-11-28 | 東レ株式会社 | Porous film, separator for electricity storage device, and electricity storage device |
JP5853951B2 (en) * | 2011-03-30 | 2016-02-09 | 東レ株式会社 | Method for producing microporous plastic film roll |
JP6040777B2 (en) * | 2013-01-11 | 2016-12-07 | 宇部興産株式会社 | Polypropylene porous membrane |
CN105518905B (en) * | 2013-09-10 | 2017-12-22 | 东丽株式会社 | Secondary cell barrier film and secondary cell |
JP7015159B2 (en) * | 2017-12-08 | 2022-02-02 | 旭化成株式会社 | Multi-layer separator, its winding body and manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289657A (en) * | 2005-04-06 | 2006-10-26 | Asahi Kasei Chemicals Corp | Multilayered porous film |
JP5228388B2 (en) * | 2007-07-12 | 2013-07-03 | 東レ株式会社 | Porous film and power storage device |
-
2010
- 2010-02-22 JP JP2010035890A patent/JP5434661B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010219037A (en) | 2010-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107250234B (en) | Polyolefin microporous membrane, method for producing same, and battery separator | |
JP5440171B2 (en) | Storage device separator | |
JP5907066B2 (en) | Porous polypropylene film, separator for electricity storage device, and electricity storage device | |
US8785032B2 (en) | Multilayer porous film, separator for batteries, and battery | |
JP5672007B2 (en) | Porous polypropylene film roll | |
WO2017170289A1 (en) | Polyolefin microporous membrane, production method for polyolefin microporous membrane, battery separator, and battery | |
JP5245483B2 (en) | Polypropylene porous film, method for producing the same, and power storage device | |
TW201922498A (en) | Polyolefin composite porous film, method for producing same, battery separator, and battery | |
JP5732853B2 (en) | Porous film and power storage device | |
KR20080078651A (en) | Microporous polyolefin membrane, process for producing the same, separator for cell, and cell | |
JP5434661B2 (en) | Porous film and power storage device | |
US11242440B2 (en) | Polyolefin microporous membrane and production method thereof | |
JP5554445B1 (en) | Battery separator and battery separator manufacturing method | |
WO2020195380A1 (en) | Microporous polyolefin membrane, separator for secondary batteries, and secondary battery | |
JP5251193B2 (en) | Porous polyolefin film | |
JP5083479B2 (en) | Porous film, separator for electricity storage device, and electricity storage device | |
JP5672015B2 (en) | Biaxially oriented porous film and power storage device | |
WO2014103713A1 (en) | Porous polyolefin film and method for producing same, and storage device separator formed using same | |
JP2012117047A (en) | Porous polypropylene film, and separator for electricity storing device | |
WO2019103947A9 (en) | Separator for electric storage device | |
WO2021033736A1 (en) | Polyolefin microporous membrane | |
JP2010108922A (en) | Porous laminated film and electricity energy storage device | |
JP2014062244A (en) | Porous film and electricity storage device | |
JP2010100845A (en) | Method for producing porous polyolefin film | |
WO2023002818A1 (en) | Polyolefin multilayer microporous membrane, laminated polyolefin multilayer microporous membrane, and battery separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131125 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5434661 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |