JP5853951B2 - Method for producing microporous plastic film roll - Google Patents

Method for producing microporous plastic film roll Download PDF

Info

Publication number
JP5853951B2
JP5853951B2 JP2012516248A JP2012516248A JP5853951B2 JP 5853951 B2 JP5853951 B2 JP 5853951B2 JP 2012516248 A JP2012516248 A JP 2012516248A JP 2012516248 A JP2012516248 A JP 2012516248A JP 5853951 B2 JP5853951 B2 JP 5853951B2
Authority
JP
Japan
Prior art keywords
plastic film
microporous plastic
film
microporous
film roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012516248A
Other languages
Japanese (ja)
Other versions
JPWO2012133097A1 (en
Inventor
一ノ宮 崇
崇 一ノ宮
松本 忠
忠 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012516248A priority Critical patent/JP5853951B2/en
Publication of JPWO2012133097A1 publication Critical patent/JPWO2012133097A1/en
Application granted granted Critical
Publication of JP5853951B2 publication Critical patent/JP5853951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H27/00Special constructions, e.g. surface features, of feed or guide rollers for webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • B65H18/10Mechanisms in which power is applied to web-roll spindle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/10Materials
    • B65H2401/11Polymer compositions
    • B65H2401/111Elastomer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/18Rollers composed of several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/50Surface of the elements in contact with the forwarded or guided material
    • B65H2404/53Surface of the elements in contact with the forwarded or guided material with particular mechanical, physical properties
    • B65H2404/531Surface of the elements in contact with the forwarded or guided material with particular mechanical, physical properties particular coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/135Surface texture; e.g. roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/171Physical features of handled article or web
    • B65H2701/1718Porous or permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/175Plastic
    • B65H2701/1752Polymer film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、微多孔プラスチックフィルムロールの製造方法に関する。   The present invention relates to a method for producing a microporous plastic film roll.

従来、2次電池用セパレータなどに用いられる微多孔プラスチックフィルムを、搬送しロール状に巻き取る上で、微多孔に起因すると思われるしわや破れを回避することが非常に困難とされていた。   Conventionally, when a microporous plastic film used for a secondary battery separator or the like is transported and wound into a roll, it has been extremely difficult to avoid wrinkles and tears that may be caused by microporosity.

非特許文献1には、一般的なフィルムのしわの発生限界値を理論的に求め、折れしわの防止方法と題して対策を提案している。本文献によれば、しわの発生限界値は張力とアライメント角によって表され、特に張力に関する限界値は、フィルムの厚みやヤング率、幅、摩擦係数によって決まるとしている。また、対策としては、上記パラメータによって決まったしわの限界値をまたぐように、トレードオフとなるスリップ限界値を予測しながらフィルムの張力を調整することを提案している。しかしながら、本発明者等の知見によれば、微多孔プラスチックフィルムのように、破れに対する強度が低く、厚み方向に潰れやすいフィルムでは、張力を自由に調整することが難しく、上述の方法のみで、しわと破れを両立するように搬送することは困難であった。   Non-Patent Document 1 theoretically obtains a wrinkle generation limit value of a general film, and proposes a countermeasure under a method for preventing a wrinkle. According to this document, the wrinkle generation limit value is expressed by the tension and the alignment angle. In particular, the limit value regarding the tension is determined by the thickness, Young's modulus, width, and friction coefficient of the film. Further, as a countermeasure, it has been proposed to adjust the film tension while predicting the slip limit value which is a trade-off so as to straddle the wrinkle limit value determined by the above parameters. However, according to the knowledge of the present inventors, it is difficult to adjust the tension freely with a film that has a low strength against tearing and is easily crushed in the thickness direction, such as a microporous plastic film. It was difficult to carry the sheet so as to achieve both wrinkles and tears.

一方、特許文献1には、高密度磁気記録媒体用ポリエステルフィルムの、ブツやしわなどハンドリング上の課題を解決するために、フィルム表面に粒子を配置し、粗さや摩擦係数を制御することを提案している。しかしながら、本発明者等の知見によれば、微多孔プラスチックフィルムでは、フィルム表面の平滑性によって摩擦係数が増大しているわけではないため、特許文献1の方法により、粒子の配置によってしわを回避することは困難であった。また、破れに対しても粒子は何ら解決策とならない。   On the other hand, Patent Document 1 proposes to control the roughness and friction coefficient by arranging particles on the film surface in order to solve the handling problems such as blisters and wrinkles of the polyester film for high-density magnetic recording media. doing. However, according to the knowledge of the present inventors, in the microporous plastic film, the friction coefficient is not increased due to the smoothness of the film surface. It was difficult to do. Also, particles are no solution for breaking.

非特許文献2には、静摩擦係数と物質の特性について記載がある。静摩擦係数は分子間力に起因する剪断強度τと物質の硬度Hの比に比例し、Hが大きく、τの小さい材質(銀やフッ素樹脂、鉛など)を選ぶことで摩擦を低減できるとある。しかしながら、当文献の主旨は摩擦のメカニズムを明らかにして、空気潤滑下の実質的な摩擦現象を明らかにすることが目的であり、微多孔プラスチックフィルムのしわや破れの両立について、具体的な対策を明示するには至っていない。   Non-Patent Document 2 describes the static friction coefficient and the material characteristics. The coefficient of static friction is proportional to the ratio of the shear strength τ due to intermolecular force and the hardness H of the substance, and it is said that friction can be reduced by selecting a material with a large H and a small τ (silver, fluororesin, lead, etc.) . However, the main purpose of this document is to clarify the friction mechanism and to clarify the actual friction phenomenon under air lubrication, and to take concrete measures against coexistence of wrinkling and tearing of microporous plastic film. It has not yet been revealed.

また、非特許文献3には、非特許文献1に記載の理論を、実際の生産工程に応用した場合の実例を記載している。搬送しわ低減には、摩擦係数の低減が有効との考察はあるものの、本発明者等の知見によれば、微多孔プラスチックフィルムのように、独時の摩擦発生メカニズムに対する対策が必要であり、非特許文献3にはしわや破れの両立について対策を明示するには至っていない。   Non-Patent Document 3 describes an example in which the theory described in Non-Patent Document 1 is applied to an actual production process. Although there is a consideration that reduction of the friction coefficient is effective for reducing wrinkles in conveyance, according to the knowledge of the present inventors, it is necessary to take measures against a unique friction generation mechanism, such as a microporous plastic film, Non-Patent Document 3 does not clearly indicate a countermeasure for coexistence of wrinkles and tears.

特許文献2には、フィルムロールに押し当てて、空気を排除しながら巻取るための押圧ゴムローラや、搬送ローラの表面のゴム層の摩擦係数を低減するために、ダイヤモンドライクカーボン(以下DLC)を表面に形成する技術についての提案がなされている。しかしながら、本発明者等の知見によれば、DLC層による摩擦係数低減効果は、薄いDLC層の高い硬度により表面の微小変形を防止し、真実接触面積を減らすことで実現するため、微多孔プラスチックフィルム自身の柔軟性で摩擦係数が高くなる現象に対して効果が少ない。   In Patent Document 2, diamond-like carbon (hereinafter referred to as DLC) is used in order to reduce the friction coefficient of a rubber layer on the surface of a pressing roller or a conveying roller that is pressed against a film roll while removing air. Proposals have been made on techniques for forming on the surface. However, according to the knowledge of the present inventors, the effect of reducing the friction coefficient by the DLC layer is realized by preventing the micro deformation of the surface by the high hardness of the thin DLC layer and reducing the true contact area. It is less effective against the phenomenon that the coefficient of friction increases due to the flexibility of the film itself.

一方、特許文献3には、搬送ローラの表面を金属で構成し、表面粗さを平滑にした上で摩擦係数を減らすことで、フィルムに発生するすり傷を防止する手段が提案されている。しかし、本発明者等の知見によれば、特許文献3が対象としているような面の平滑な合成樹脂フィルムでは、ローラの粗さを平滑にすることで突起を減らし、空気潤滑と思われる現象を利用して摩擦係数を減らすことが期待できるが、微多孔プラスチックフィルムのように、空気が微多孔から抜けてしまうようなフィルムでは、空気潤滑が期待できず平滑な金属面との接触で逆に摩擦係数が上がってしまうこととなり、前述のようなしわや破れを防止することができない。   On the other hand, Patent Document 3 proposes a means for preventing scratches generated on the film by forming the surface of the transport roller with metal, smoothing the surface roughness, and reducing the friction coefficient. However, according to the knowledge of the present inventors, in a synthetic resin film having a smooth surface as described in Patent Document 3, the phenomenon is considered to be air lubrication by reducing the protrusions by smoothing the roughness of the roller. It can be expected that the friction coefficient will be reduced by using the film.However, in the case of a film in which air escapes from the micropore, such as a microporous plastic film, air lubrication cannot be expected, and the reverse will occur due to contact with a smooth metal surface. In this case, the coefficient of friction increases, and the wrinkles and tears as described above cannot be prevented.

このように、従来は微多孔プラスチックフィルムをしわや破れなく搬送しロール状に巻き取るための適当な技術が存在しなかった。   Thus, conventionally, there has been no suitable technique for transporting a microporous plastic film without wrinkles or tearing and winding it into a roll.

特開平11−314333号公報JP 11-314333 A 特開2004−251373号公報JP 2004-251373 A 特開2001−63884号公報JP 2001-63884 A

橋本巨著、「ウェブハンドリングの基礎理論と応用」、初版、株式会社加工技術研究会、2008年4月、p.131−155Hashimoto, “Basic theory and application of web handling”, first edition, Processing Technology Research Group, April 2008, p. 131-155 橋本巨著、「コンバーテック」、2009年7月号、株式会社加工技術研究会、2009年7月、p.36−43Hashimoto, “Convertech”, July 2009 issue, Processing Technology Research Group, July 2009, p. 36-43 森川亮著、「コンバーテック」2010年11月号、株式会社加工技術研究会、2010年11月、p.58−63Ryo Morikawa, “Convertech” November 2010 issue, Processing Technology Research Group, November 2010, p. 58-63

本発明の目的は、微多孔の存在により、従来しわや破れによってハンドリングの難しかった、微多孔プラスチックフィルムの製造方法を提供することにある。   An object of the present invention is to provide a method for producing a microporous plastic film, which has been difficult to handle due to wrinkles and tears due to the presence of micropores.

上記目的を達成するために、本発明は、複数の搬送ローラのうち、少なくとも一つの搬送ローラとして、表面粗さRzJIS(μm)が0.3≦RzJIS≦30、表面の材質がフッ素樹脂もしくはシリコーンゴム、もしくはこれらを含有する複合素材であるものを用い、内部に貫通孔を有する微多孔プラスチックフィルムを搬送し、ロール状に巻き取ることを特徴とする微多孔プラスチックフィルムロールの製造方法を提供する。   In order to achieve the above object, the present invention provides a surface roughness RzJIS (μm) of 0.3 ≦ RzJIS ≦ 30 and a surface material of fluororesin or silicone as at least one of the plurality of transport rollers. Provided is a method for producing a microporous plastic film roll, characterized by using a rubber or a composite material containing these, transporting a microporous plastic film having a through-hole inside and winding it into a roll. .

また、本発明の更に好ましい形態によれば、前記搬送ローラの表面の材質がポリテトラフルオロエチレンであることを特徴とする記載のプラスチックフィルムロールの製造方法を提供する。   According to a further preferred aspect of the present invention, there is provided the method for producing a plastic film roll according to the above, wherein the material of the surface of the transport roller is polytetrafluoroethylene.

また、本発明の好ましい形態によれば、前記微多孔プラスチックフィルムのガーレ透気抵抗度が10〜1000秒/100mlである微多孔プラスチックフィルムロールの製造方法を提供する。   Moreover, according to the preferable form of this invention, the manufacturing method of the microporous plastic film roll whose Gurley permeability resistance of the said microporous plastic film is 10-1000 second / 100ml is provided.

また、本発明の好ましい形態によれば、前記微多孔プラスチックフィルムの空孔率が30%以上であることを特徴とする記載の微多孔プラスチックフィルムロールの製造方法を提供する。   Moreover, according to the preferable form of this invention, the porosity of the said microporous plastic film is 30% or more, The manufacturing method of the microporous plastic film roll of the description characterized by the above-mentioned is provided.

また、本発明の好ましい形態によれば、前記微多孔プラスチックフィルムの微多孔の平均孔径が50〜200nmであることを特徴とする微多孔プラスチックフィルムロールの製造方法を提供する。   Moreover, according to the preferable form of this invention, the microporous average hole diameter of the said microporous plastic film is 50-200 nm, The manufacturing method of the microporous plastic film roll characterized by the above-mentioned is provided.

また、本発明の好ましい形態によれば、前記微多孔プラスチックフィルムのクッション率が15%以上50%未満であることを特徴とする微多孔プラスチックフィルムロールの製造方法を提供する。   Moreover, according to the preferable form of this invention, the cushion rate of the said microporous plastic film is 15% or more and less than 50%, The manufacturing method of the microporous plastic film roll characterized by the above-mentioned is provided.

また、本発明の好ましい形態によれば、前記微多孔プラスチックフィルムの厚みが50μm以下であることを特徴とする微多孔プラスチックフィルムロールの製造方法を提供する。   Moreover, according to the preferable form of this invention, the thickness of the said microporous plastic film is 50 micrometers or less, The manufacturing method of the microporous plastic film roll characterized by the above-mentioned is provided.

また、本発明の好ましい形態によれば、前記微多孔プラスチックフィルムの幅が100mm以上であることを特徴とする微多孔プラスチックフィルムロールの製造方法を提供する。   Moreover, according to the preferable form of this invention, the width | variety of the said microporous plastic film is 100 mm or more, The manufacturing method of the microporous plastic film roll characterized by the above-mentioned is provided.

また、本発明の好ましい形態によれば、前記微多孔プラスチックフィルムと、前記搬送ローラとの静摩擦係数が0.6以下である微多孔プラスチックフィルムロールの製造方法を提供する。   Moreover, according to the preferable form of this invention, the manufacturing method of the microporous plastic film roll whose static friction coefficient of the said microporous plastic film and the said conveyance roller is 0.6 or less is provided.

また、前記微多孔プラスチックフィルムが2次電池もしくはキャパシタ用のセパレータであることを特徴とする微多孔プラスチックフィルムロールの製造方法を提供する。   Further, the present invention provides a method for producing a microporous plastic film roll, wherein the microporous plastic film is a separator for a secondary battery or a capacitor.

本発明において、「搬送ローラ」とは、長さ方向に連続な微多孔プラスチックフィルムを製造工程の上流から下流に搬送するための手段であり、回転自在に支持された円筒体のことをいう。   In the present invention, the “conveying roller” is a means for conveying a microporous plastic film continuous in the length direction from the upstream to the downstream of the production process, and refers to a cylindrical body that is rotatably supported.

本発明において、「RzJIS」とは十点平均粗さのことをいう。   In the present invention, “RzJIS” means ten-point average roughness.

本発明において、「フッ素樹脂」とは、エチレン系炭化水素などの一部にフッ素元素を含む合成樹脂の総称のことをいう。   In the present invention, the “fluororesin” refers to a general term for synthetic resins containing a part of fluorine element such as ethylene hydrocarbon.

本発明において、「シリコーンゴム」とは、ゴム状弾性を示すシリコーン樹脂のことで、シリコーン樹脂とはシリコン(ケイ素)と酸素からなるシロキ酸結合を有す合成樹脂の総称のことをいう。   In the present invention, “silicone rubber” refers to a silicone resin exhibiting rubber-like elasticity, and the silicone resin refers to a generic name for synthetic resins having a siloxane acid bond composed of silicon (silicon) and oxygen.

本発明において、「複合素材」とは前記フッ素樹脂もしくはシリコーン樹脂の性質が有効に寄与できる程度に混合された材質をいい、例えばゴム材料や金属鍍金材料の間に、前記フッ素樹脂もしくはシリコーン樹脂をコーティングもしくは充填されたようなものを含んだもののことをいう。   In the present invention, the “composite material” means a material mixed to such an extent that the properties of the fluororesin or silicone resin can effectively contribute. For example, the fluororesin or silicone resin is interposed between a rubber material and a metal plating material. This includes things that are coated or filled.

本発明において、「微多孔プラスチックフィルム」とは、フィルム内部に多数の微小な孔を有する高分子の薄膜体のことであり、微多孔の一部あるいは全ては貫通孔からなるものをいう。   In the present invention, the “microporous plastic film” refers to a polymer thin film having a large number of micropores inside the film, and a part or all of the microporous is composed of through-holes.

本発明において、「ポリテトラフルオロエチレン」とは略称PTFEと呼ばれるフッ素樹脂の一種であり、別名四フッ化エチレンと呼ばれるもののことをいう。本発明において、「厚み」とは、微多孔プラスチックフィルムロールを構成する体積を、幅と長さで割ったものであり、微多孔を構成する空気層を含んだ厚みのことをいう。   In the present invention, “polytetrafluoroethylene” is a kind of fluorine resin called abbreviated PTFE, which is also called “tetrafluoroethylene”. In the present invention, the “thickness” is a volume obtained by dividing the volume constituting the microporous plastic film roll by the width and the length, and means the thickness including the air layer constituting the microporous.

本発明において、「ガーレ透気抵抗度」とは、日本工業規格 JIS P8117(2009)に示される試験方法で得られるフィルムやシートの空気透過率の指標である。
空気の透気性が高いほど微多孔を通過する時間が短くなり、ガーレ透気抵抗度は小さい値を示す。
In the present invention, “Gurley air resistance” is an index of air permeability of a film or sheet obtained by a test method shown in Japanese Industrial Standard JIS P8117 (2009).
The higher the air permeability, the shorter the time for passing through the micropores, and the Gurley air resistance shows a small value.

本発明において、「空孔率」とは、フィルムの断面積における前記微多孔の面積比率のことをいう。   In the present invention, the “porosity” means the area ratio of the micropores in the cross-sectional area of the film.

本発明において、「微多孔の平均孔径」とは、径の異なる多数の孔から構成される微多孔の径の平均値を示したものである。   In the present invention, the “microporous average pore diameter” refers to the average value of the microporous diameters composed of a large number of pores having different diameters.

本発明において、「クッション率」とは、下式に示すシートの厚み方向に面圧を付与した場合の厚みの変化率のことである。   In the present invention, the “cushion rate” is a rate of change in thickness when a surface pressure is applied in the thickness direction of the sheet represented by the following formula.

クッション率(%)=(1−T1/T2)×100
T1:三豊製作所製ダイヤルゲージにφ10mmの測定子を取り付け、50gの荷重を測定子側からフィルム厚み方向に加えた場合に、フィルムを挟む前の値をゼロとした場合の、フィルムを挟んで30秒後のフィルム厚み
T2:三豊製作所製ダイヤルゲージにφ10mmの測定子を取り付け、500gの荷重を測定子側からフィルム厚み方向に加えた場合に、フィルムを挟む前の値をゼロとした場合の、フィルムを挟んで30秒後のフィルム厚み
本発明において、「2次電池」とは、充放電可能な電池のことを言い、別名蓄電池とも呼ばれるもののことをいう。
Cushion rate (%) = (1−T1 / T2) × 100
T1: When a probe with a diameter of 10 mm is attached to a dial gauge manufactured by Mitoyo Seisakusho and a load of 50 g is applied in the film thickness direction from the probe side, the value before sandwiching the film is set to zero when the film is sandwiched. Film thickness after 2 seconds T2: When a probe of φ10 mm is attached to a dial gauge manufactured by Mitoyo Seisakusho, and a load of 500 g is applied in the film thickness direction from the probe, the value before sandwiching the film is zero. Film thickness 30 seconds after sandwiching the film In the present invention, the “secondary battery” refers to a battery that can be charged and discharged, and also referred to as a storage battery.

本発明において、「セパレータ」とは、電極同士が短絡するのを防止する機能膜のことをいい、微多孔の存在によりイオン電解液を透過するようなものは電池に使用することができるものをいう。   In the present invention, the “separator” refers to a functional film that prevents the electrodes from being short-circuited, and those that are permeable to the ionic electrolyte due to the presence of micropores are those that can be used in batteries. Say.

本発明において、「キャパシタ」とは静電容量により電気エネルギーを蓄電したり放電したりすることのできる受動素子のことをいう。   In the present invention, a “capacitor” refers to a passive element that can store or discharge electrical energy by electrostatic capacitance.

本発明によれば、以下に説明するとおり、しわや破れを防止することで品質に優れた微多孔プラスチックフィルムを高い生産性で製造することのできる微多孔プラスチックフィルムロールの製造方法を得ることができる。   According to the present invention, as described below, it is possible to obtain a microporous plastic film roll manufacturing method capable of manufacturing a microporous plastic film excellent in quality by preventing wrinkles and tearing with high productivity. it can.

本発明の一実施形態の概略側面図である。1 is a schematic side view of an embodiment of the present invention. 本発明の一実施形態の搬送ローラ表面の概略拡大図である。It is a schematic enlarged view of the conveyance roller surface of one Embodiment of this invention. 本発明の一実施形態により製造された微多孔プラスチックフィルムを2次電池用セパレータに適用した例である。It is the example which applied the microporous plastic film manufactured by one Embodiment of this invention to the separator for secondary batteries. 本発明の一実施形態により製造された微多孔プラスチックフィルムの拡大平面図である。It is an enlarged plan view of the microporous plastic film manufactured by one Embodiment of this invention. 搬送ローラのフィルムと接触する部分と、フィルムとの間の静摩擦係数の測定方法を示した概略側面図である。It is the schematic side view which showed the measuring method of the coefficient of static friction between the part which contacts a film of a conveyance roller, and a film.

以下、本発明の最良の実施形態の例を、2次電池用セパレータフィルムに用いられる、微多孔プラスチックフィルムの製造方法に適用した場合を例にとって、図面を参照しながら説明する。   Hereinafter, an example of the best embodiment of the present invention will be described with reference to the drawings, taking as an example the case of applying to a method for producing a microporous plastic film used for a separator film for a secondary battery.

図1は、本発明の一実施形態である微多孔プラスチックフィルムロールの製造工程である搬送・巻取部の概略側面図である。   FIG. 1 is a schematic side view of a conveyance / winding unit which is a manufacturing process of a microporous plastic film roll according to an embodiment of the present invention.

微多孔プラスチックフィルム1は、いかなる方法によって形成しても良い。好ましい例としては、溶融したポリオレフィン系樹脂を、押出機内で高揮発性溶媒と混練した後に、口金から冷却ドラム上に吐出しジェルシートとし、適宜延伸配向工程を経た後、溶媒を洗浄乾燥することで得られる。あるいは結晶核剤を混練したポリオレフィン系樹脂を、口金から冷却ドラム上に吐出し、溶媒を用いず結晶構造の制御を通じて微多孔を形成し、得ても良い。あるいはポリアミドやポリイミドなど、耐熱性のあるポリマーと相溶性の異なる溶媒を組み合わせて、微多孔を形成し、吐出またはコーティングにより微多孔フィルム1を得ても良い。また、前記ポリオレフィン微多孔フィルムの片面もしくは両面に適宜、微多孔の透気性能を維持する限りで耐熱性コーティングなどを実施しても良い。あるいは、紙や不織布のように、合成繊維の集積物として微多孔フィルムを形成しても良い。   The microporous plastic film 1 may be formed by any method. As a preferred example, after melted polyolefin resin is kneaded with a highly volatile solvent in an extruder, it is discharged from a die onto a cooling drum to form a gel sheet, and after appropriately stretching and orientation, the solvent is washed and dried. It is obtained by. Alternatively, a polyolefin resin kneaded with a crystal nucleating agent may be obtained by discharging the resin from a die onto a cooling drum and forming micropores by controlling the crystal structure without using a solvent. Alternatively, a microporous film 1 may be obtained by combining a solvent having a different compatibility with a heat-resistant polymer such as polyamide or polyimide to form micropores and discharging or coating. In addition, heat-resistant coating or the like may be performed on one or both surfaces of the polyolefin microporous film as long as the microporous air permeability is maintained. Alternatively, a microporous film may be formed as an aggregate of synthetic fibers, such as paper or nonwoven fabric.

このようにして得られた微多孔プラスチックフィルム1は、孔構造の制御や強度を実現するため、適宜1軸もしくは2軸延伸されることが好ましい。   The microporous plastic film 1 thus obtained is preferably uniaxially or biaxially stretched as appropriate in order to achieve control of the pore structure and strength.

図4は前記微多孔プラスチックフィルム1の一例における拡大平面図である。図のように、プラスチックフィルム1の微多孔は、いかなる手段によって形成しても良い。孔の周りを構成する樹脂層の部分は、延伸配向により形成する場合、図のように繊維状の柱となり、これをフィブリル18と呼ぶことがある。この微多孔の一部もしくは全部が貫通孔17として機能することとなる。   FIG. 4 is an enlarged plan view of an example of the microporous plastic film 1. As shown in the figure, the microporosity of the plastic film 1 may be formed by any means. When the resin layer portion constituting the periphery of the hole is formed by stretching orientation, it becomes a fibrous column as shown in the figure, and this may be called a fibril 18. A part or all of the micropores function as the through holes 17.

図3は円筒形状のリチウムイオン2次電池の一部を模式的に分解した説明図である。ケース11の内部には正極14と負極15の間に、これら電極同士の短絡を防止する絶縁材料として、セパレータ16が配置されている。ケース内部はリチウムイオン電解液が充填されており、セパレータ16は絶縁性能と同時に電解液中のイオン透過性能が求められる。このため、本願発明の製造方法により製造される一部もしくは全面に貫通孔を有する微多孔プラスチックフィルム1が好適である。   FIG. 3 is an explanatory view schematically showing a part of a cylindrical lithium ion secondary battery. Inside the case 11, a separator 16 is disposed between the positive electrode 14 and the negative electrode 15 as an insulating material that prevents a short circuit between the electrodes. The inside of the case is filled with a lithium ion electrolytic solution, and the separator 16 is required to have an ion permeation performance in the electrolytic solution as well as an insulating performance. For this reason, the microporous plastic film 1 which has a through-hole in the one part or the whole surface manufactured by the manufacturing method of this invention is suitable.

微多孔プラスチックフィルム1は、図1のように搬送ローラ群2によって所定の速度で搬送され、所定の張力で巻芯6上にフィルムロール12として巻き上げられる。図1においては、搬送ローラ群2はモータなどの駆動源32により、ベルトやチェーンなどの駆動伝達手段4を介して駆動される。駆動伝達手段4はプーリー5により必要な張力を与えられ支持される。ここで、搬送ローラ群2は、全てにおいて必ずしも駆動源32により駆動される必要はなく、ベアリングにより回転可能に支持されておればアイドラーとしてフィルム1の搬送を補助することが可能である。この場合、フィルム1の傷や摩耗粉を嫌う場合には、好ましくはベアリングを介して間接駆動しても良いし、極力ローラの慣性やベアリングの摩擦ロスを低減するのが良い。   The microporous plastic film 1 is conveyed at a predetermined speed by the conveying roller group 2 as shown in FIG. 1, and is wound up as a film roll 12 on the core 6 with a predetermined tension. In FIG. 1, the transport roller group 2 is driven by a drive source 32 such as a motor via a drive transmission means 4 such as a belt or a chain. The drive transmission means 4 is supported by a necessary tension given by a pulley 5. Here, the transport roller group 2 does not necessarily have to be driven by the drive source 32 in all cases, and can support the transport of the film 1 as an idler as long as the transport roller group 2 is rotatably supported by a bearing. In this case, when the scratches and abrasion powder of the film 1 are disliked, the film 1 may be driven indirectly through a bearing, or the inertia of the roller and the friction loss of the bearing may be reduced as much as possible.

ここで電池用セパレータなどに好適な微多孔プラスチックフィルム1は一般に、その微多孔の潰れによりヒステリシスロスや真実接触面積の増加を招き、接触する物体との静摩擦係数が増大する。特に、図1のように搬送ローラ群2によりフィルム1を搬送する場合、ローラとフィルムが接触する部分で上記要因による静摩擦係数が増大する他、通常孔の無いフィルムを搬送する場合に期待できる空気潤滑が、この微多孔を通じた空気抜けにより行われず高い摩擦係数を生むこととなる。前述したように、摩擦係数の増加は、搬送ローラ上や搬送ローラ間でしわや破れの問題を発生するため、これを回避するために、本願発明では、複数ある搬送ローラ群2の内、少なくとも一つの搬送ローラの表面の静摩擦係数を小さくすることで、速度差により生じる応力を低減し、微多孔プラスチックフィルムの破れを防止することに成功した。   Here, the microporous plastic film 1 suitable for a battery separator or the like generally causes a hysteresis loss and an increase in a real contact area due to the collapse of the micropore, and increases a coefficient of static friction with a contacting object. In particular, when the film 1 is transported by the transport roller group 2 as shown in FIG. 1, the static friction coefficient due to the above factors increases at the portion where the roller and the film are in contact with each other. Lubrication is not performed due to air escape through the micropores, resulting in a high coefficient of friction. As described above, the increase in the friction coefficient causes problems of wrinkles and tears on the transport rollers and between the transport rollers. To avoid this problem, in the present invention, at least of the plurality of transport roller groups 2. By reducing the static friction coefficient on the surface of one transport roller, the stress caused by the speed difference was reduced and the microporous plastic film was successfully prevented from being torn.

搬送ローラ2の静摩擦係数を低減するためには、該表面の十点平均表面粗さは0.3≦RzJIS(μm)≦30とする。RzJISを0.3μm以上とすると、微多孔プラスチックフィルム1の中の微多孔が潰れることで増加する真実接触面積を小さいまま維持することができ、静摩擦係数を低減する。また、微多孔プラスチックフィルム1は透気性能により空気が微多孔から抜けるため接触面積が大きくなりがちであるが、搬送ローラ2の表面が適度に荒れていることで静摩擦係数を低減することができる。一方、搬送ローラ2表面の粗さが大きくなりすぎると加工が難しくなり、RzJISが30μmを超えると高価で精度の低いローラ表面となる。また、このように粗さが大きすぎると表面突起一つ一つとフィルムの接触面積が増大するために静摩擦係数が逆に増大することとなる。より好ましくはRzJISは2≦RzJIS(μm)≦10の範囲とするのが良い。   In order to reduce the static friction coefficient of the conveying roller 2, the ten-point average surface roughness of the surface is set to 0.3 ≦ RzJIS (μm) ≦ 30. When RzJIS is set to 0.3 μm or more, the true contact area, which is increased by crushing the micropores in the microporous plastic film 1, can be kept small, and the static friction coefficient is reduced. Further, the microporous plastic film 1 tends to have a large contact area because air escapes from the microporous due to the air permeability, but the static friction coefficient can be reduced by appropriately roughening the surface of the conveying roller 2. . On the other hand, if the roughness of the surface of the conveying roller 2 becomes too large, processing becomes difficult, and if RzJIS exceeds 30 μm, the roller surface becomes expensive and low in accuracy. If the roughness is too large, the contact area between each surface protrusion and the film increases, so that the coefficient of static friction increases conversely. More preferably, RzJIS is in the range of 2 ≦ RzJIS (μm) ≦ 10.

また、本願発明者が鋭意検討した結果、微多孔プラスチックのような透気性と孔の潰れが生じるようなフィルムに対して、低い摩擦係数を実現するためには、搬送ローラ2の表面材質としては、DLC(ダイヤモンドライクカーボン)のような接触面の硬さにより低摩擦を狙うような表面ではなく、分子間力により低摩擦を実現する必要があることを見いだした。これはいくら前記ローラ2の表面材質を硬くしても微多孔プラスチックフィルム1の表面が潰れて、真実接触面積が減らないためである。   In addition, as a result of intensive studies by the inventor of the present application, in order to achieve a low coefficient of friction for a film such as a microporous plastic in which air permeability and hole collapse occur, The present inventors have found that it is necessary to realize low friction by intermolecular force rather than a surface that aims at low friction due to the hardness of the contact surface such as DLC (diamond-like carbon). This is because no matter how hard the surface material of the roller 2 is, the surface of the microporous plastic film 1 is crushed and the real contact area is not reduced.

よって、微多孔プラスチックフィルム1と接触する搬送ローラ群2の表面材質としては、一般にゴムが使われることが多いのに対して、本願発明では分子間力が小さい材質としてフッ素樹脂もしくはシリコーンゴム、もしくはこれらを含有する複合素材を適用する。フッ素樹脂の厚みとしては、耐久性および処理斑をより良くするという観点から、数十μm、好ましくは10〜100μm程度が好適である。フッ素樹脂は一般に300〜400℃で焼成することが好ましい。樹脂やゴムの上にコーティングする場合には、100℃以下で成形するのが好ましい。この場合、ローラ表面の精度を得るためには研磨を併用すると効果的である。また、フッ素樹脂をローラ上に形成する方法は好ましくは、コーティングや吹きつけ、あるいははめ込みにより形成してもよい。例えば、テープ状やチューブ状のフッ素樹脂をローラに被覆することで形成しても良い。テープ状もしくはチューブ状のフッ素樹脂をローラに被覆する場合は、厚みとして数mm程度のものが形成しやすく好ましい。   Therefore, as the surface material of the transport roller group 2 that comes into contact with the microporous plastic film 1, rubber is generally used, whereas in the present invention, the material having a small intermolecular force is a fluororesin or silicone rubber, or A composite material containing these is applied. The thickness of the fluororesin is several tens of μm, preferably about 10 to 100 μm, from the viewpoint of improving durability and processing spots. In general, the fluororesin is preferably fired at 300 to 400 ° C. When coating on resin or rubber, it is preferable to mold at 100 ° C. or lower. In this case, in order to obtain the accuracy of the roller surface, it is effective to use polishing together. Moreover, the method of forming the fluororesin on the roller is preferably formed by coating, spraying, or fitting. For example, it may be formed by coating a roller with a tape-like or tube-like fluororesin. When a roller is coated with a tape-shaped or tube-shaped fluororesin, a thickness of about several mm is preferable because it is easy to form.

シリコーンゴムの場合、厚みとしては、数mmが好ましく、1〜10mmほどの厚みを設けるのが好ましい。   In the case of silicone rubber, the thickness is preferably several mm, and it is preferable to provide a thickness of about 1 to 10 mm.

搬送ローラ母材2Aとしては、鋼、ステンレス鋼、アルミ合金、CFRPなどを用いることが好適である。   As the transport roller base material 2A, it is preferable to use steel, stainless steel, an aluminum alloy, CFRP, or the like.

ここで、複合素材とは、前記フッ素樹脂もしくはシリコーンゴムの低摩擦に寄与する性質が有効に作用する程度に混合された材質をいう。例えばゴム材料や金属鍍金材料の間にコーティングもしくは充填されたようなものを含む。図2はこのような複合素材9の一例であり、搬送ローラ母材2Aの上に施工された、硬質クロム鍍金層7の粗さの間に、フッ素樹脂8を含浸させたものである。このとき、微多孔プラスチックフィルム1と接触する部分は、金属鍍金層7とフッ素樹脂8がランダムに点在するような構成となり、フッ素樹脂の摩擦係数低減機能と、金属鍍金層の耐摩耗性のメリットをそれぞれ有効に機能させることができる。   Here, the composite material refers to a material mixed to such an extent that the property of contributing to low friction of the fluororesin or silicone rubber acts effectively. For example, it includes a material coated or filled between a rubber material and a metal plating material. FIG. 2 shows an example of such a composite material 9 in which a fluororesin 8 is impregnated between the roughness of the hard chrome plating layer 7 applied on the conveying roller base material 2A. At this time, the portion in contact with the microporous plastic film 1 is configured such that the metal plating layer 7 and the fluororesin 8 are randomly scattered, and the function of reducing the friction coefficient of the fluororesin and the wear resistance of the metal plating layer. Each merit can function effectively.

このようなフッ素樹脂を鍍金層に複合させるような場合、表面処理の強度を得るのに加工方法としては前述のような高温で焼成させることが好ましく、搬送ローラ母材2Aとしては、高温で歪みが生じないようあらかじめ熱処理を行った鋼などを用いることができる。   When such a fluororesin is combined with the plating layer, the processing method is preferably fired at a high temperature as described above to obtain the strength of the surface treatment, and the conveying roller base material 2A is distorted at a high temperature. Steel that has been heat-treated in advance so as not to occur can be used.

上記機能を満たす目的においては、金属鍍金との複合素材である必要はなく、例えばセラミックスやゴム、その他の樹脂との複合素材であっても良い。また、ローラ表面を、前記フッ素樹脂もしくはシリコーンゴムあるいはその両方で被覆しても良い。   For the purpose of satisfying the above functions, it is not necessary to be a composite material with a metal plating, and may be a composite material with, for example, ceramics, rubber, or other resin. The roller surface may be covered with the fluororesin or silicone rubber or both.

ここでも複合素材とは、フッ素樹脂もしくはシリコーンゴムに対して、セラミックなどの硬質材が点在することで耐摩耗性や粗さをコントロールする機能を得るものである。   Here, the composite material is to obtain a function of controlling wear resistance and roughness by interspersing a hard material such as ceramic with respect to the fluororesin or silicone rubber.

このような材質を選定することで、前記微多孔プラスチックフィルム1との間の静摩擦係数を小さくすることができる。   By selecting such a material, the coefficient of static friction with the microporous plastic film 1 can be reduced.

これらの粗さと材質の併用により、前記微多孔プラスチックフィルム1との間の静摩擦係数を破れやしわを防止するのに必要な値まで低減することができる。いいかえると、分子間力の小さい材質を選定し、なおかつ接触面積が微多孔プラスチックフィルムの面が潰れた場合においても有効に減少するように、上記範囲とする場合においてのみ、摩擦係数を有効に減少させることができる。   By using these roughness and material in combination, the coefficient of static friction with the microporous plastic film 1 can be reduced to a value necessary for preventing tearing and wrinkling. In other words, the friction coefficient is effectively reduced only when the material is selected within the above range so that the material with small intermolecular force is selected and the contact area is effectively reduced even when the surface of the microporous plastic film is crushed. Can be made.

特に複合素材においては、鍍金層7だけで上記粗さを得るのではなく、フッ素樹脂もしくはシリコーンゴムを鍍金層などの母材上に成形し、必要に応じ研磨などの最終仕上げを経た後の粗さが、前記RzJISの範囲を満たす必要がある。   In particular, in the case of a composite material, the above-mentioned roughness is not obtained only by the plating layer 7, but the roughening after a fluororesin or silicone rubber is formed on a base material such as a plating layer and subjected to final finishing such as polishing as necessary. However, it is necessary to satisfy the range of RzJIS.

静摩擦係数の好ましい値としては、0.6以下とすることができる。更に上記範囲内で十点平均粗さの値を大きく、もしくは材質との組み合わせを行えば、静摩擦係数を更に好ましい値として0.5以下とすることができる。   A preferable value of the static friction coefficient can be 0.6 or less. Furthermore, if the value of the ten-point average roughness is increased within the above range, or a combination with the material is performed, the static friction coefficient can be further reduced to 0.5 or less.

例えば、搬送ローラ2の材質として、よりこの好ましくは、フッ素樹脂のなかでもポリテトラフルオロエチレンが好適である。フッ素樹脂は耐熱性や離型性など各々組成によって特徴があるが、前記樹脂は特に分子間力による摩擦係数低減に有効であった。粗さと材質の組み合わせにより、より好ましい静摩擦係数の値として0.3以下を発現することも可能である。   For example, the material of the transport roller 2 is more preferably polytetrafluoroethylene among fluororesins. The fluororesin is characterized by its composition such as heat resistance and releasability, but the resin is particularly effective in reducing the friction coefficient due to intermolecular force. Depending on the combination of roughness and material, it is possible to express a value of 0.3 or less as a more preferable value of the static friction coefficient.

前述の通り、微多孔プラスチックフィルム1は用途に応じて、上記微多孔を通して気体や液体を透過させる性能が要求される。特に前述したリチウムイオン2次電池用セパレータでは、電解質の透過性能を空気の透過性能により間接的に測定する方法が一般的に行われる。   As described above, the microporous plastic film 1 is required to have a performance of allowing gas or liquid to permeate through the microporous depending on the application. In particular, in the above-described separator for a lithium ion secondary battery, a method of indirectly measuring the electrolyte permeation performance by the air permeation performance is generally performed.

微多孔プラスチックフィルムの透気性はJIS P8117(2009)に記載のガーレ透気抵抗度によって測定することができ、その好ましい範囲としては10〜1000秒/100mlとすることで、電池やコンデンサのセパレータとして有用な電解質透過性を発揮することができる。ガーレ透気抵抗度が10秒/100ml以上であると、絶縁性が適度に保たれ、セパレータにした場合の短絡の危険が低くなる他、強度が確保できるため本発明の搬送ローラとの組み合わせにおいて、フィルム搬送時の破れをより回避しやすくなる。一方、ガーレ透気抵抗度が1000秒/100ml以下であると、貫通孔性が確保できるため、必要な気体や液体の透過性を阻害しない。特にリチウムイオン2次電池用セパレータとして用いた場合には、電解質の透過性が保たれ電池の充放電を速やかに行うことができる。前述した搬送ローラ群2をこのような微多孔プラスチックフィルム1の製造方法として採用することで、電池などのセパレータとして有効な高い機能を有する微多孔プラスチックフィルム1でも静摩擦係数を低減し、しわや破れを回避することができるのである。   The air permeability of the microporous plastic film can be measured by the Gurley air resistance described in JIS P8117 (2009). The preferred range is 10 to 1000 seconds / 100 ml, so that it can be used as a battery or capacitor separator. Useful electrolyte permeability can be exhibited. When the Gurley air resistance is 10 seconds / 100 ml or more, the insulating property is maintained moderately, and the risk of short circuit in the case of using a separator is reduced. In addition, the strength can be secured, so in combination with the transport roller of the present invention It becomes easier to avoid tearing during film conveyance. On the other hand, if the Gurley air resistance is 1000 seconds / 100 ml or less, the through-hole property can be ensured, so that the required gas or liquid permeability is not hindered. In particular, when used as a separator for a lithium ion secondary battery, the electrolyte permeability is maintained and the battery can be charged and discharged quickly. By adopting the above-described transport roller group 2 as a method for producing such a microporous plastic film 1, even the microporous plastic film 1 having a high function effective as a separator for a battery or the like can reduce the coefficient of static friction and can be wrinkled or broken. Can be avoided.

また、張力Tによって微多孔プラスチックフィルム1は搬送ローラへ押しつけられる。このときの面圧は張力×巻付角で表される。この面圧により微多孔プラスチックフィルムでは空気が微多孔から抜けると共に、微多孔の潰れにより搬送ローラとの間で高い摩擦を生むこととなる。本願発明の搬送ローラを用いてよりしわや破れの防止効果がある微多孔プラスチックフィルム1とはこの面圧による潰れが多いフィルムであり、これをパラメータ化したものが「クッション率」である。クッション率は荷重50gと500gをそれぞれダイヤルゲージの測定子を通してフィルムの厚み方向に加えた場合の厚み変化率のことである。   Further, the microporous plastic film 1 is pressed against the transport roller by the tension T. The surface pressure at this time is expressed as tension × winding angle. With this surface pressure, in the microporous plastic film, air escapes from the micropore, and high friction is generated between the microporous plastic film and the conveying roller due to the collapse of the micropore. The microporous plastic film 1 that has the effect of preventing wrinkles and tears by using the transport roller of the present invention is a film that is crushed by this surface pressure. The cushion rate is the rate of change in thickness when a load of 50 g and 500 g is applied in the thickness direction of the film through a gauge gauge.

クッション率を測定する際の荷重はバネや錘などいかなる方法でも良いが、測定子にモーメントが極力かからないよう錘を測定子もしくは指示計の上に設置するのが良い。   The load for measuring the cushion rate may be any method such as a spring or a weight, but it is preferable to install the weight on the measuring element or indicator so that the moment is not applied to the measuring element as much as possible.

本願発明に好適な微多孔プラスチックフィルムは、クッション率が15%以上50%未満である。クッション率が15%以上であれば、本願発明の搬送ローラにて摩擦の増加を防止しながら、微多孔プラスチックフィルム1の微多孔の貫通性がある程度保たれ、必要な気体や液体の透過を阻害しない。特にリチウムイオン2次電池用セパレータとして用いた場合には、電解質の透過性を確保し、電池の充放電を速やかに行うことができる。一方、クッション率が50%未満であると、透気抵抗が適度に保たれ、セパレータにした場合の短絡の危険を防止できる他、フィルム搬送時に破れにくくなる。前述した搬送ローラ群2をこのようなクッション率が15%以上50%未満の微多孔プラスチックフィルム1の製造方法として採用することで、電池などのセパレータとして有効な高い機能を有する微多孔プラスチックフィルム1でもクッション率と共に増加する静摩擦係数を低減し、しわや破れを回避することができるのである。   The microporous plastic film suitable for the present invention has a cushion rate of 15% or more and less than 50%. If the cushion rate is 15% or more, the microporous plastic film 1 is maintained with a certain degree of microporous penetration while preventing an increase in friction with the transport roller of the present invention, and obstructs permeation of necessary gases and liquids. do not do. In particular, when used as a separator for a lithium ion secondary battery, electrolyte permeability can be ensured and the battery can be charged and discharged quickly. On the other hand, if the cushion rate is less than 50%, the air permeability resistance is appropriately maintained, the risk of a short circuit in the case of using a separator can be prevented, and it is difficult to break during film conveyance. By adopting the above-described transport roller group 2 as a method for producing such a microporous plastic film 1 having a cushion ratio of 15% or more and less than 50%, the microporous plastic film 1 having a high function effective as a separator for a battery or the like. However, the coefficient of static friction that increases with the cushion rate can be reduced, and wrinkles and tears can be avoided.

あわせて、クッション率と共に摩擦係数を著しく増加させないためには微多孔プラスチックフィルム1の空孔率が50%以下であるとよく、特に30%以下が好ましい。前記微多孔プラスチックフィルムを、2次電池用セパレータとして使用する場合には、高出力を得るため、もしくは充放電時間を短縮するには、イオン透過性に優れた高い空孔率の微多孔が好ましい。好ましくは30%以上、更に好ましくは50〜80%程度が好適といえる。また、破れの観点から空孔率は80%以下であることが必須といえる。   At the same time, the porosity of the microporous plastic film 1 is preferably 50% or less, particularly preferably 30% or less, in order not to significantly increase the friction coefficient together with the cushion rate. When the microporous plastic film is used as a separator for a secondary battery, in order to obtain a high output or to shorten the charge / discharge time, a high porosity microporous having excellent ion permeability is preferable. . It is preferably 30% or more, more preferably about 50 to 80%. Further, it can be said that the porosity is 80% or less from the viewpoint of tearing.

ここで、微多孔プラスチックフィルム1の空孔率は、いくつかの測定手段が考え得るが、本発明の測定方法としては、該フィルム1を所定量サンプリングし、その重量と樹脂の該フィルムを構成する樹脂の密度から樹脂部分の体積Vaを計算し、一方測定したフィルム厚みとフィルム幅、長さから計算した体積Vbから、数式1にて求める。該フィルムの厚みについては、好ましくは搬送ローラ上で投受光式もしくは反射式レーザセンサにて連続式に求める方法を適用できる。その他に、放射線や赤外線センサを使った手段、巻き取ったフィルム1をサンプリングして、低荷重にてダイヤルゲージにて測定する方法を用いることができる。   Here, the porosity of the microporous plastic film 1 can be considered by several measuring means. As a measuring method of the present invention, a predetermined amount of the film 1 is sampled, and the film of the weight and the resin is constituted. The volume Va of the resin part is calculated from the density of the resin to be measured, and the volume Vb calculated from the measured film thickness, film width, and length is obtained from Equation 1. Regarding the thickness of the film, a method of preferably obtaining the film continuously by a light projecting / receiving type or a reflection type laser sensor on the conveying roller can be applied. In addition, means using a radiation or infrared sensor, a method of sampling the wound film 1 and measuring it with a dial gauge at a low load can be used.

Figure 0005853951
Figure 0005853951

本願発明の微多孔プラスチックフィルム1の平均孔径は50〜200nmである。平均孔径は50nm以上であると、電池用セパレータとして用いた場合、電解質の透過性がある程度確保され、電池の充放電を速やかに行うことができるようになる。一方平均孔径が200nm未満であると、セパレータにした場合の短絡の危険を防止できる他、フィルム搬送時の破れをある程度回避しやすくなる。   The average pore diameter of the microporous plastic film 1 of the present invention is 50 to 200 nm. When the average pore diameter is 50 nm or more, when used as a battery separator, electrolyte permeability is ensured to some extent, and the battery can be quickly charged and discharged. On the other hand, when the average pore diameter is less than 200 nm, it is possible to prevent a short circuit when using a separator, and to easily avoid tearing during film conveyance to some extent.

2次電池もしくはキャパシタのセパレータに好適な、厚みが50μm以下の場合、上記のように摩擦係数が高いと特にしわや破れが発生しやすくなるため、本発明の搬送ローラ2を好適に適用できる。   When the thickness is 50 μm or less, which is suitable for a secondary battery or capacitor separator, wrinkles and tears are particularly likely to occur when the friction coefficient is high as described above, and therefore the transport roller 2 of the present invention can be suitably applied.

また、微多孔プラスチックフィルム1の幅が100mmを超えるとしわの発生が顕著である。これは、ひとつには搬送ローラ間の平行度不良(アライメントエラー)が存在するために、微多孔プラスチックフィルム1がモーメントを受けることになる。このしわを誘発するモーメントは、2本の搬送ローラの回転軸が成す角をαとした場合、α×フィルム1の幅に比例することとなる。αは搬送ローラ間が完全に平行な場合に0となる角度であり、アライメントエラーを代表するものである。従って、アライメントエラーがαだけある場合に、微多孔プラスチックフィルム1の幅を小さくするとしわを誘発するモーメントが減じることになる。本願発明者が実験により鋭意検討した結果、幅が100mmを境としてしわが発生する頻度が大きくことなることが分かった。   Further, when the width of the microporous plastic film 1 exceeds 100 mm, wrinkles are prominent. One reason for this is that the microporous plastic film 1 receives a moment because there is a poor parallelism (alignment error) between the conveying rollers. The moment for inducing this wrinkle is proportional to α × the width of the film 1 where α is the angle formed by the rotation axes of the two transport rollers. α is an angle that becomes 0 when the conveyance rollers are completely parallel, and represents an alignment error. Therefore, when the alignment error is only α, reducing the width of the microporous plastic film 1 reduces the moment that induces wrinkles. As a result of intensive studies by the inventor of the present application, it has been found that the frequency of occurrence of wrinkles with a width of 100 mm as a boundary varies greatly.

加えて、微多孔プラスチックフィルム1は、製膜や各加工工程で歪をうけるため、平面性が完全に均一ではないことが多い。上述したローラ平行度という幾何学的に生じるモーメントの他に、フィルムの平面性が作り出すしわが存在することとなる。従って、しわが生じやすくなるピークがアライメント以外にも存在し、特に前記幅が500mmを超えると更にしわが発生しやすくなる。このように本願発明者等は、微多孔プラスチックフィルム1の幅が100mmを超えた場合、特に500mmを超えた場合に非常にハンドリングが難しくなるが、搬送ローラとの静摩擦係数を小さくすることで、上記のような平行度不良や平面性の悪い微多孔プラスチックフィルム1の搬送においても、しわの発生を防止し、破れとの両立を見いだすことができた。   In addition, since the microporous plastic film 1 is distorted during film formation and each processing step, the planarity is often not completely uniform. In addition to the geometrical moment of roller parallelism described above, there are wrinkles created by the flatness of the film. Therefore, there is a peak other than alignment where wrinkles are likely to occur, and particularly when the width exceeds 500 mm, wrinkles are more likely to occur. In this way, the inventors of the present application are very difficult to handle when the width of the microporous plastic film 1 exceeds 100 mm, particularly when it exceeds 500 mm, but by reducing the static friction coefficient with the transport roller, In the conveyance of the microporous plastic film 1 having poor parallelism and poor flatness as described above, it was possible to prevent wrinkling and to find a balance with tearing.

また、更に好ましくは、上記のように微多孔プラスチックフィルム1と、搬送ローラ群2との間の静摩擦係数を前記手段で低減した上で、しわ伸ばし手段と併用することで更に搬送部での微多孔プラスチックフィルム1に生じるしわを防止することができる。   More preferably, the coefficient of static friction between the microporous plastic film 1 and the conveying roller group 2 is reduced by the above-mentioned means as described above, and further used in combination with the wrinkle-stretching means to further reduce the fineness in the conveying unit. Wrinkles generated in the porous plastic film 1 can be prevented.

図1において、複数ある搬送ローラ2の内、少なくとも1つのローラについて、前記のような表面にて静摩擦係数を低減することがしわや破れ防止に有効であるとした。この場合、搬送ローラ2の全てを上記静摩擦係数としても良いが、例えば破れが発生しやすい箇所や、しわが発生しやすい箇所などに適用すればよい。また、搬送ローラ2とフィルム1の滑りを避けたい箇所においては、搬送ローラ2の摩擦係数は下げずに、代わりにしわ伸ばし手段19を使うと効果的である。すなわち好ましい例としては、搬送ローラ2の全体もしくは一部にフィルム1と接触する部分の摩擦係数が0.7以下、更に好ましくは0.5以下とした搬送ローラ2を配置し、搬送ローラ2の摩擦係数を小さくできないような箇所や、摩擦係数を小さくしてもしわの入りやすい箇所、例えば平行度があわせにくいような箇所にしわ伸ばし手段を適宜配置することが効果的である。   In FIG. 1, it is said that reducing the coefficient of static friction on the surface as described above is effective in preventing wrinkles and tearing among at least one of the plurality of transport rollers 2. In this case, all of the conveying rollers 2 may have the static friction coefficient, but may be applied to, for example, a location where tearing is likely to occur or a location where wrinkles are likely to occur. Further, in a portion where it is desired to avoid the slippage between the transport roller 2 and the film 1, it is effective to use the wrinkle-stretching means 19 instead without reducing the friction coefficient of the transport roller 2. That is, as a preferable example, the conveyance roller 2 having a friction coefficient of 0.7 or less, more preferably 0.5 or less, disposed on the whole or a part of the conveyance roller 2 is arranged. It is effective to appropriately arrange wrinkle-stretching means in places where the friction coefficient cannot be reduced, or places where wrinkles are likely to occur even if the friction coefficient is reduced, for example, places where parallelism is difficult to adjust.

ここで、搬送ローラ2と前記プラスチックフィルム1との静摩擦係数は、下記の測定方法で測定する。ひとつは図5のように、回転しないよう固定したローラ2に、フィルム1を所定の角度θ(rad)で巻き付け、重量がW(N)の錘を吊した場合の滑り始めの張力T(N)をバネばかり31により読みとることで、数式2により知ることができる。このとき、錘の重量Wは後述する好ましい張力条件から決定するのがよく、測定するフィルム1の幅はいずれでも良いが、例えば扱い易い0.1mとするとW=1N/m×0.1m〜30N/m×0.1m=0.1N〜3Nが好ましい。これは、静摩擦係数が上記荷重範囲を大きく外れると、孔の潰れの様相が変わり値が変化するためである。
また他の方法では、新東科学株式会社製ポータブル製摩擦測定器“ミューズ”の接触子に前記フィルム1を貼り付け、ローラ2に該接触子を接触させて測定する。上記張力範囲をローラ表面に対する面圧に換算すると、面圧をp[Pa]、張力をT[N/m]、ローラ径をD[m]とするとp=2T/Dの関係にある。例えば、ローラ径D=0.1mの場合、上記好ましい張力範囲の面圧pの範囲は20〜600Paとなる。“ミューズ”における錘は0.4Nの質量であり、直径0.03mであるため、面圧p=570Paとなり上記好ましい範囲と同様の値となる。
Here, the static friction coefficient between the conveyance roller 2 and the plastic film 1 is measured by the following measuring method. As shown in FIG. 5, the tension T (N (N) at the start of sliding when the film 1 is wound around a roller 2 fixed so as not to rotate at a predetermined angle θ (rad) and a weight with a weight W (N) is suspended. ) Can be obtained from Equation 2 by reading only the spring 31. At this time, the weight W of the weight is preferably determined from the preferable tension condition described later, and the width of the film 1 to be measured may be any, but for example, if it is easy to handle 0.1 m, W = 1 N / m × 0.1 m to 30N / m × 0.1m = 0.1N to 3N is preferable. This is because, when the static friction coefficient greatly deviates from the above load range, the aspect of hole collapse changes and the value changes.
In another method, the film 1 is attached to a contact of a portable friction measuring device “Muse” manufactured by Shinto Kagaku Co., Ltd., and the contact is brought into contact with a roller 2 for measurement. When the above tension range is converted to the surface pressure against the roller surface, the surface pressure is p [Pa], the tension is T [N / m], and the roller diameter is D [m], and the relationship is p = 2 T / D. For example, when the roller diameter D = 0.1 m, the range of the surface pressure p in the preferable tension range is 20 to 600 Pa. Since the weight in “Muse” has a mass of 0.4 N and a diameter of 0.03 m, the surface pressure is p = 570 Pa, which is the same value as the above preferred range.

Figure 0005853951
Figure 0005853951

図1において、フィルム1の張力は図1のモータ31のトルクによって付与しても良いし、特に微多孔プラスチックフィルムのように破れやすく潰れやすいフィルムを搬送する場合には、押込圧により張力を付与して低張力でも制御できるダンサーローラを用いても良い。この場合、モータ31やモータ32は速度や回転数制御とするのが好ましい。   In FIG. 1, the tension of the film 1 may be applied by the torque of the motor 31 of FIG. 1, and when a film that is easy to break such as a microporous plastic film is transported, the tension is applied by indentation pressure. A dancer roller that can be controlled even at low tension may be used. In this case, the motor 31 and the motor 32 are preferably controlled for speed and rotation speed.

張力値としては、適宜必要な値を選択すれば本発明の効果を得ることができるが、破れや潰れを回避しやすくするという観点から、好ましくは一般的な樹脂フィルムに比べ低く設定するとより効果的である。例えば、1N/m〜30N/mとするのが良い。   As the tension value, the effect of the present invention can be obtained if a necessary value is selected as appropriate, but from the viewpoint of easily avoiding tearing and crushing, it is more effective if it is preferably set lower than a general resin film. Is. For example, it is good to set it as 1 N / m-30 N / m.

更に好ましくは張力を5N/m〜20N/mの範囲とすることで、機械の張力制御を適切な精度で実施しながら、破れやしわの発生をより防止しやすくなる。   More preferably, by setting the tension in the range of 5 N / m to 20 N / m, it becomes easier to prevent the occurrence of tears and wrinkles while performing the tension control of the machine with appropriate accuracy.

ここで、搬送ローラ群2の間での破れの原因は主に、わずかながら生じている搬送ローラ間の速度差に起因する。これは複数のモータなどにより駆動する場合には、速度制御誤差はゼロではなく、また図1の例では搬送ローラ群2を駆動する駆動調整手段4とプーリーの滑りや、プーリ−の外径誤差によっても速度差が生じることとなる。このような場合に、微多孔プラスチックフィルムは前述した微多孔の存在により、速度差による応力が孔に集中し破れやすい。   Here, the cause of the tear between the transport roller groups 2 is mainly due to a slight speed difference between the transport rollers. This is because the speed control error is not zero when driven by a plurality of motors and the like, and in the example of FIG. 1, the drive adjusting means 4 that drives the transport roller group 2 and the pulley slip, and the pulley outer diameter error. Depending on this, a speed difference will occur. In such a case, the microporous plastic film is easily broken due to the stress due to the speed difference concentrated on the pores due to the presence of the micropore described above.

速度差によって破れが発生するメカニズムを説明すると、滑りがゼロである場合、例えば図1の搬送ローラ21の回転周速をV2、搬送ローラ23の回転周速をV1とし、V2>V1であるとすると、微多孔プラスチックフィルム1が速度差によって引っ張られたときの歪εはおおよそ、数式3と考えて良い。この歪により発生する応力σ1は、微多孔プラスチックフィルム1の、長さ方向のヤング率をEとした場合に、フックの法則より数式4の通りとなる。   Explaining the mechanism by which tearing occurs due to the speed difference. When the slip is zero, for example, the rotational peripheral speed of the transport roller 21 in FIG. 1 is V2, the rotational peripheral speed of the transport roller 23 is V1, and V2> V1. Then, the strain ε when the microporous plastic film 1 is pulled due to the speed difference may be roughly considered as Equation 3. The stress σ1 generated by this strain is expressed by Equation 4 according to Hooke's law, where E is the Young's modulus in the length direction of the microporous plastic film 1.

Figure 0005853951
Figure 0005853951

Figure 0005853951
Figure 0005853951

一方、巻芯などにより、微多孔プラスチックフィルム1に付与される単位幅あたりの工程張力をTとすると、微多孔プラスチックフィルム1の厚みをtとした場合、応力σ2は数式5となる。   On the other hand, when the process tension per unit width applied to the microporous plastic film 1 by a winding core is T, the stress σ2 is expressed by Equation 5 when the thickness of the microporous plastic film 1 is t.

Figure 0005853951
Figure 0005853951

破れは微多孔プラスチックフィルム1の破断応力σbとした場合、数式6の不等式を満たした場合に発生する。ここでσbは引張試験器などで微多孔プラスチックフィルム1の破断試験を行うことで知ることができるが、特に微多孔を持つフィルムの場合、製造工程中の刃物による連続裁断部によりフィルム1の端部にスクラッチが入り、裁断部が更なる応力集中を起こして前記引張試験で得られた破断応力よりも小さい値で破れが発生することが多い。従って、本願発明者はσ1を極力小さい値とすることで、破れを防止することを見いだした。搬送ローラ群2の前記フィルムと接触する部分と前記フィルムとの静摩擦係数を小さくすることで、速度差により生じる歪εを防止し、応力がσbを超えないようにする。これにより、破れを防止することに成功した。   The tear occurs when the inequality of Expression 6 is satisfied when the breaking stress σb of the microporous plastic film 1 is used. Here, σb can be known by performing a rupture test of the microporous plastic film 1 with a tensile tester or the like. In many cases, scratches enter the part, the cut part causes further stress concentration, and tearing occurs at a value smaller than the breaking stress obtained in the tensile test. Therefore, the inventor of the present application has found that σ1 is made as small as possible to prevent the tearing. By reducing the coefficient of static friction between the portion of the transport roller group 2 that contacts the film and the film, the strain ε caused by the speed difference is prevented, and the stress does not exceed σb. This succeeded in preventing tearing.

Figure 0005853951
Figure 0005853951

以上の微多孔プラスチックフィルムの製造を用いて、2次電池セパレータ用微多孔プラスチックフィルムロールを製造した結果を説明する。   The result of manufacturing a microporous plastic film roll for a secondary battery separator using the above microporous plastic film manufacturing will be described.

[実施例1]
ポリプロピレンの結晶構造を制御し、2軸延伸工程にて図4のような貫通孔を形成したポリプロピレン微多孔プラスチックフィルム1を、図1のような搬送ローラ2で搬送し、巻芯6上に連続的に巻き取って微多孔プラスチックフィルムロール12を製造した。該ポリプロピレン微多孔フィルムのガーレ透気抵抗度は500秒/100mlであり、空孔率は70%、平均孔径は100nm、クッション率は17%となっている。フィルム1の幅は600mm、厚みは60μmである。厚みは投受光式レーザセンサにより測定し、測定した厚みに基づき、数式6により空孔率を求めた。
[Example 1]
A polypropylene microporous plastic film 1 in which a through-hole as shown in FIG. 4 is formed in a biaxial stretching process by controlling the crystal structure of polypropylene is conveyed by a conveying roller 2 as shown in FIG. Was wound up to produce a microporous plastic film roll 12. The Gurley permeability resistance of the polypropylene microporous film is 500 seconds / 100 ml, the porosity is 70%, the average pore diameter is 100 nm, and the cushion rate is 17%. The width of the film 1 is 600 mm and the thickness is 60 μm. The thickness was measured by a light emitting / receiving laser sensor, and the porosity was determined by Equation 6 based on the measured thickness.

ここで、透気性能はJISP8117(2001)に基づき、ガーレ透気抵抗度(秒/100ml)で代表することができる。ガーレ透気抵抗度は100mlの空気を一定圧力で押した場合の微多孔膜の通過時間のことであり、透気性が高いほど空気が抜ける時間がガーレ透気抵抗度の値が小さくなる。   Here, the air permeation performance can be represented by the Gurley air permeation resistance (second / 100 ml) based on JISP8117 (2001). The Gurley air resistance is the passage time of the microporous membrane when 100 ml of air is pressed at a constant pressure. The higher the air permeability, the smaller the time for the air to escape, the smaller the value of the Gurley air resistance.

ここで微多孔プラスチックフィルム1の平均孔径はいかなる方法で測定しても良いが、以下の測定器および条件で測定することができる。   Here, the average pore diameter of the microporous plastic film 1 may be measured by any method, but can be measured by the following measuring device and conditions.

測定器:POROUS MATERIALS,Inc製自動細孔径分布測定器
“PERM−POROMETER”
試験液:3M製“フロリナート”FC−40
試験温度:25℃
試験ガス:空気
解析ソフト:Capwin
測定条件:Capllary Flow Porometry−Wet up,Dry downのdefault条件による自動測定
換算式:d=Cγ/P×10^3
d:細孔直径(nm)、C:定数、γ:フロリナートの表面張力(16mN/m)、P:圧力(Pa)
図1のように、巻取直前の搬送ローラ21と搬送ローラ23、搬送ローラ24はベルトによりモータ32により駆動され、一定速度となるよう制御される。ここでは搬送ローラ22は張力を測定するために軸受に荷重測定器が設置される。張力の合力方向がローラの摩擦力によって変化しないように、搬送ローラ22はモータ32によっては駆動されず、フィルム1に従動する。
Measuring instrument: POROUS MATERIALS, Inc. automatic pore size distribution measuring instrument
“PERM-POROMETER”
Test solution: 3M “Fluorinert” FC-40
Test temperature: 25 ° C
Test gas: Air Analysis software: Capwin
Measurement conditions: Capillary Flow Porometry-Wet up, Automatic measurement based on Dry down default conditions Conversion formula: d = Cγ / P × 10 ^ 3
d: pore diameter (nm), C: constant, γ: surface tension of fluorinate (16 mN / m), P: pressure (Pa)
As shown in FIG. 1, the conveying roller 21, the conveying roller 23, and the conveying roller 24 immediately before winding are driven by a motor 32 by a belt and controlled so as to have a constant speed. Here, a load measuring device is installed in the bearing for measuring the tension of the transport roller 22. The conveyance roller 22 is driven by the film 1 without being driven by the motor 32 so that the resultant direction of tension is not changed by the frictional force of the roller.

巻芯6は巻取軸により回転支持され、モータ31によって一定張力となるように駆動される。本実施例では搬送ローラ21〜搬送ローラ24の4本のフィルム1と接触する部分の静摩擦係数が0.7以下となるように、これら搬送ローラ21,搬送ローラ22,搬送ローラ23、搬送ローラ24表面にフッ素樹脂であるテトラフルオロエチレン−パーフルオロアルキルビニールエーテル共重合体(PFA)と金属の複合素材を図2のような形で形成した。このときの該ローラ表面の表面粗さは、株式会社ミツトヨ製接触式表面粗さ測定器にて、触針材質ダイヤモンド、触針先端半径2μm、測定力0.75mNのもと、日本工業規格 JISB0601(2001)に基づき、十点平均粗さRzJISを求めた。   The winding core 6 is rotatably supported by a winding shaft and is driven by a motor 31 so as to have a constant tension. In this embodiment, the conveyance roller 21, the conveyance roller 22, the conveyance roller 23, and the conveyance roller 24 are set so that the static friction coefficient of the conveyance roller 21 to the conveyance roller 24 in contact with the four films 1 is 0.7 or less. A composite material of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), which is a fluororesin, and a metal was formed on the surface as shown in FIG. At this time, the surface roughness of the roller was measured using a contact type surface roughness measuring instrument manufactured by Mitutoyo Co., Ltd., with a stylus material diamond, a stylus tip radius of 2 μm, and a measuring force of 0.75 mN. Based on (2001), ten-point average roughness RzJIS was determined.

この結果、前記新東科学製ミューズにて測定した前記フィルム1との静摩擦係数は0.55であった。このときの接触子の面圧pは約570Paである。   As a result, the coefficient of static friction with the film 1 measured by the Shinto Kagaku Muse was 0.55. The contact pressure p at this time is about 570 Pa.

微多孔プラスチックフィルムロール1の製造条件としては、搬送速度は10m/分、張力20N/mで、巻長1000mごとにフィルムロールを自動巻替器により取り出した。   The production conditions of the microporous plastic film roll 1 were a conveyance speed of 10 m / min and a tension of 20 N / m, and the film roll was taken out by an automatic rewinder every winding length of 1000 m.

上記組み合わせ条件を表1にまとめた。   The above combination conditions are summarized in Table 1.

[実施例2]
フィルム1の厚みを20μmとしたものを実施例1と同じ条件で巻き取り、微多孔プラスチックフィルムロール12を製造した。本フィルムの空孔率は実施例と変わらず、ガーレ透気抵抗度は厚みが薄くなったため100秒/100mlとなった。
[Example 2]
A film having a thickness of 20 μm was wound up under the same conditions as in Example 1 to produce a microporous plastic film roll 12. The porosity of this film was the same as in the Examples, and the Gurley air resistance was 100 seconds / 100 ml because the thickness was reduced.

[実施例3]
実施例2に対して、搬送ローラ21〜搬送ローラ24の4本のフィルム1と接触する部分の摩擦係数が0.5以下となるように、これらローラ表面にポリテトラフルオロエチレン(PTFE)と金属の複合膜を図2のような形で形成した。該ローラ表面の表面粗さは、実施例1と同じ条件で十点平均粗さを測定した。
[Example 3]
In contrast to Example 2, polytetrafluoroethylene (PTFE) and metal are formed on the surfaces of these rollers so that the friction coefficient of the portions in contact with the four films 1 of the conveying rollers 21 to 24 is 0.5 or less. The composite membrane was formed in the form as shown in FIG. As the surface roughness of the roller surface, ten-point average roughness was measured under the same conditions as in Example 1.

[実施例4]
実施例3に対して、ガーレ透気抵抗度400秒/100ml、空孔率を40%としたフィルム1を巻き取り、微多孔プラスチックフィルムロール12を製造した。
[Example 4]
In contrast to Example 3, the film 1 having a Gurley air resistance of 400 seconds / 100 ml and a porosity of 40% was wound up to produce a microporous plastic film roll 12.

[実施例5]
実施例3に対して、搬送ローラ21〜搬送ローラ24の4本のフィルム1と接触する部分のローラの摩擦係数が0.5以下を満たす表面粗さが小さいものを適用して、微多孔プラスチックフィルムロール12を製造した。
[Example 5]
A microporous plastic having a small surface roughness satisfying a friction coefficient of 0.5 or less is applied to the rollers of the conveyance rollers 21 to 24 in contact with the four films 1 in the third embodiment. A film roll 12 was produced.

[実施例6]
実施例3に対して、ガーレ透気抵抗度900秒/100ml、空孔率30%としたフィルム1を巻き取り、微多孔プラスチックフィルムロール12を製造した。
[Example 6]
The film 1 having a Gurley air permeability resistance of 900 seconds / 100 ml and a porosity of 30% was wound up on Example 3 to produce a microporous plastic film roll 12.

[比較例1]
実施例2、3と同じガーレ透気抵抗度100秒/100ml、空孔率70%、厚み20μmのフィルム1を、搬送ローラ21〜搬送ローラ24の4本のフィルム1と接触する部分が表面粗さがRzJIS=0.1μmの硬質クロム鍍金(Hcr)で搬送し、巻き取ることで微多孔プラスチックフィルム12を製造した。
[Comparative Example 1]
The same Gurley permeability resistance as in Examples 2 and 3 is 100 sec / 100 ml, the porosity is 70%, and the thickness of 20 μm is the surface roughness of the part where the four films 1 of the transport rollers 21 to 24 are in contact with the film 1. The microporous plastic film 12 was manufactured by carrying and winding with a hard chromium plating (Hcr) having a thickness of RzJIS = 0.1 μm.

[比較例2]
実施例2、3と同じガーレ透気抵抗度100秒/100ml、空孔率70%、厚み20μmのフィルム1を、搬送ローラ21〜搬送ローラ24の4本のフィルム1と接触する部分が表面粗さがRzJIS=3μmのダイヤモンドライクカーボン(DLC)コーティングした状態で搬送し、巻き取ることで微多孔プラスチックフィルム12を製造した。
[Comparative Example 2]
The same Gurley permeability resistance as in Examples 2 and 3 is 100 sec / 100 ml, the porosity is 70%, and the thickness of 20 μm is the surface roughness of the part where the four films 1 of the transport rollers 21 to 24 are in contact with the film 1. The microporous plastic film 12 was manufactured by conveying and winding the diamond-like carbon (DLC) coated with a thickness of RzJIS = 3 μm.

[比較例3]
実施例3と同じ搬送ローラで、空孔率0%、つまり2次電池用セパレータとして有効な貫通微多孔の空いていないフィルム1を搬送し、巻き取ることで2軸延伸ポリプロピレンフィルムロールを製造した。
[Comparative Example 3]
A biaxially stretched polypropylene film roll was manufactured by transporting and winding the film 1 having no porosity, which is effective as a secondary battery separator, with the same transporting roller as in Example 3, and being effective as a secondary battery separator. .

[比較例4]
実施例2と同じガーレ透気抵抗度100秒/100ml、空孔率70%、厚み20μmのフィルム1を、搬送ローラ21〜搬送ローラ24の4本のフィルム1と接触する部分が表面粗さがRzJIS=0.1μmのPTFEと金属の複合膜とした状態で搬送し、巻き取ることで微多孔プラスチックフィルム12を製造した。
[Comparative Example 4]
The surface roughness of the film 1 having the same Gurley gas resistance of 100 seconds / 100 ml, the porosity of 70% and the thickness of 20 μm as in Example 2 is in contact with the four films 1 of the transport rollers 21 to 24. The microporous plastic film 12 was manufactured by conveying and winding in a state of a composite film of PTFE and metal of RzJIS = 0.1 μm.

表1に実施例および比較例にて2次セパレータ用微多孔プラスチックフィルムロール1を製造した結果を示す。   Table 1 shows the results of manufacturing the microporous plastic film roll 1 for the secondary separator in Examples and Comparative Examples.

ここで“しわ”の判定方法としては、搬送部分で生じたしわがフィルムロール1にまでおよび、巻き上がったロールとしてしわが観察できたものを“×”、搬送部ではしわが確認できたが、巻き上がったロールとしては観察できなかったものを“△”、それ以外を“○”と判定した。   Here, as a determination method of “wrinkle”, the wrinkle generated in the conveyance part reaches the film roll 1 and “x” indicates that the wrinkle was observed as a rolled-up roll. The rolls that could not be observed as rolls were judged as “Δ”, and the others as “◯”.

“破れ”の判定方法については、巻き長1000m以内で搬送中に破れが発生した場合には“×”、90000m以内で搬送中に一度でも破れが発生した場合は“△”、それ以外を“○”と判定した。   Regarding the method of determining “break”, “X” is indicated when a break occurs during conveyance within a winding length of 1000 m, “△” is indicated when break occurs even during conveyance within 90,000 m, and “ “Yes”.

2次電池用セパレータの性能としては前記ガーレ透気抵抗度を用いる。2次電池用セパレータとしては、絶縁破壊を伴わないような微小な貫通孔によって、できるだけイオンを抵抗なく透過させることが好ましい。性能としてはガーレ透気抵抗度が高い方が好ましい。そこで、ガーレ透気抵抗度が1000秒/100ml以上を“×”、200〜1000秒/100mlを“△”、10〜200秒/100ml以下を“○”とした。   The Gurley gas resistance is used as the performance of the secondary battery separator. As a separator for a secondary battery, it is preferable to allow ions to pass through as little as possible through a minute through hole that does not cause dielectric breakdown. As performance, it is preferable that the Gurley air resistance is higher. Therefore, the Gurley gas permeability resistance was set to “X” when the gas resistance was 1000 sec / 100 ml or more, “Δ” when 200 to 1000 sec / 100 ml, and “◯” when 10 to 200 sec / 100 ml or less.

表1の通り、実施例1では搬送ローラ2の微多孔プラスチックフィルム1と接触する部分にPFA複合素材を用いて、前記フィルム1との摩擦係数を0.6以下とすることで、2次電池用セパレータとして必要な空孔率、ガーレ透気抵抗度を実現しながら、しわを完全に防止し、破れの頻度を非常に少ない状態で微多孔プラスチックフィルムロールを製造することができた。   As shown in Table 1, in Example 1, a secondary battery is obtained by using a PFA composite material for a portion of the transport roller 2 that contacts the microporous plastic film 1 and having a coefficient of friction with the film 1 of 0.6 or less. The microporous plastic film roll was able to be manufactured in a state where wrinkles were completely prevented and the frequency of tearing was very low while realizing the porosity and the Gurley gas permeability resistance necessary for the separator for use.

実施例2ではフィルム厚みが減少した分、透気性能が向上する反面、破れやしわのリスクが増大するが、実施例1と同様PFA複合膜により、静摩擦係数を0.6以下とすることで、しわと破れを最小限にとどめることができた。   In Example 2, the air permeability improves as the film thickness decreases, but the risk of tearing and wrinkles increases. However, by using the PFA composite film as in Example 1, the static friction coefficient is set to 0.6 or less. , Minimizing wrinkles and tears.

実施例3では、実施例2と同様の薄くて空孔率の高い扱いの難しいフィルムを、PTFE複合膜により更に静摩擦係数を0.6以下とすることで、しわおよび破れを防止することができた。   In Example 3, wrinkles and tears can be prevented by reducing the static friction coefficient to 0.6 or less with a PTFE composite film, which is the same thin film as in Example 2 and difficult to handle. It was.

実施例4では、空孔率が減少したことで透気性能は若干劣るものの、実施例3と同じPTFE複合膜によっても摩擦係数が更に下がることで、しわや破れは同じように良好な結果となった。   In Example 4, although the air permeability performance is slightly inferior due to the decrease in the porosity, the friction coefficient is further lowered by the same PTFE composite film as in Example 3, so that wrinkles and tears are equally good results. became.

実施例5では複合膜の粗さが実施例1〜4までによりも小さくなったため静摩擦係数は若干上昇し、しわが観察されたが、PTFEにより静摩擦係数が0.6以下を実現できており、巻き上がったフィルムからはしわは観察されず良好であった。   In Example 5, since the roughness of the composite film was smaller than in Examples 1 to 4, the static friction coefficient slightly increased and wrinkles were observed, but PTFE was able to realize a static friction coefficient of 0.6 or less, Wrinkles were not observed from the rolled up film, which was good.

実施例6では、フィルムの透気性能が下がり(ガーレ透気抵抗度が大きくなり)クッション率も低いことから、静摩擦係数は最も低く、実施例4などと同等の複合膜では通常のフィルム並の良好な搬送性を示した。   In Example 6, since the air permeability performance of the film is lowered (Gurley air resistance is increased) and the cushion rate is also low, the coefficient of static friction is the lowest, and the composite film equivalent to Example 4 and the like is equivalent to a normal film. Good transportability was shown.

一方、比較例1では、搬送ローラ表面が粗さの小さいHcr鍍金であり、微多孔プラスチックフィルムの透気性とクッション性により接触面積が大きく摩擦の大きい状態であり、静摩擦係数が0.6を大きく上回った。この結果、巻き上がったフィルムロールにはセパレータ性能を劣化させるしわが観察され、かつ高い頻度で破れが発生し、生産性の低い状態となった。   On the other hand, in Comparative Example 1, the surface of the conveying roller is Hcr plated with a small roughness, the contact area is large and the friction is large due to the air permeability and cushioning property of the microporous plastic film, and the coefficient of static friction is increased to 0.6. Exceeded. As a result, wrinkles that deteriorate the separator performance were observed in the rolled up film roll, and tearing occurred frequently, resulting in a low productivity state.

比較例2では、搬送ローラ表面にDLCをコーティングすることで比較例1よりも摩擦係数が改善したが、依然として静摩擦係数が0.6を上回っており、搬送ローラ間の速度差を吸収できず、破れを回避することができなかった。   In Comparative Example 2, the friction coefficient was improved compared to Comparative Example 1 by coating DLC on the surface of the transport roller, but the static friction coefficient was still higher than 0.6, and the speed difference between the transport rollers could not be absorbed. I couldn't avoid the tears.

比較例3では、セパレータとして有効な微多孔が存在しない透明ポリプロピレンフィルムであり、微多孔ゆえに発生する前述した搬送上の問題は皆無であるが、バッテリセパレータとしての透気性能を発現しないことが分かる。   In Comparative Example 3, it is a transparent polypropylene film that does not have micropores that are effective as separators, and there are no problems with the above-described transport caused by microporosity, but it does not show air permeability as a battery separator. .

比較例4では、搬送ローラ表面をPTFEの複合素材としたが、粗さが平滑すぎるため、所望の摩擦係数まで低減できず、搬送ローラ間の速度差を吸収できず、破れを回避することができなかった。   In Comparative Example 4, the surface of the transport roller is made of a PTFE composite material. However, since the roughness is too smooth, the desired friction coefficient cannot be reduced, the speed difference between the transport rollers cannot be absorbed, and tearing can be avoided. could not.

このように、本発明によれば、2次電池用セパレータに好適な透気性能を持つ微多孔プラスチックフィルムロールを、しわ破れや破れなく搬送し、巻き取ることで製造することができる。   Thus, according to the present invention, a microporous plastic film roll having air permeability suitable for a secondary battery separator can be produced by being transported and wound without wrinkle tearing or tearing.

Figure 0005853951
Figure 0005853951

本発明は、2次電池用セパレータに限らず、キャパシタ用セパレータやその他分離膜、濾過膜、光学反射基材、印刷膜など微多孔プラスチックフィルムを用いることができる分野に広く応用することができるが、その応用範囲がこれらに限られるものではない。   The present invention is not limited to secondary battery separators, but can be widely applied to fields where microporous plastic films such as capacitor separators and other separation membranes, filtration membranes, optical reflective substrates, and printed membranes can be used. The application range is not limited to these.

1 微多孔プラスチックフィルム
12 微多孔プラスチックフィルムロール
2 搬送ローラ群
21 搬送ローラA
22 搬送ローラB
23 搬送ローラC
2A 搬送ローラ母材
3 駆動源
4 駆動伝達手段
5 プーリー
6 巻芯
7 金属鍍金層
8 フッ素樹脂層
9 複合材質
10 リチウムイオン2次電池の分解模式図
11 ケース
13 電極タブ
14 正極
15 負極
16 微多孔プラスチックフィルムからなるセパレータ
17 貫通孔
18 フィブリル
19 しわ伸ばし手段
30 錘
31 バネ測り
A 搬送方向
W 錘の重量
DESCRIPTION OF SYMBOLS 1 Microporous plastic film 12 Microporous plastic film roll 2 Conveyance roller group 21 Conveyance roller A
22 Transport roller B
23 Transport roller C
2A Transport roller base material 3 Drive source 4 Drive transmission means 5 Pulley 6 Winding core 7 Metal plating layer 8 Fluorine resin layer 9 Composite material 10 Disassembled schematic diagram of lithium ion secondary battery 11 Case 13 Electrode tab 14 Positive electrode 15 Negative electrode 16 Microporous Separator made of plastic film 17 Through hole 18 Fibril 19 Wrinkle stretching means 30 Weight 31 Spring measurement
A Transport direction W Weight of weight

Claims (9)

複数の搬送ローラのうち、少なくとも一つの搬送ローラとして、表面粗さRzJIS(μm)が0.3≦RzJIS≦30、表面の材質が金属鍍金の粗さの間にフッ素樹脂が含浸された金属鍍金とフッ素樹脂との複合素材、または金属鍍金の粗さの間にシリコーンゴムが含浸された金属鍍金とシリコーンゴムとの複合素材であるものを用い、内部に貫通孔を有する微多孔プラスチックフィルムを搬送し、ロール状に巻き取ることを特徴とする微多孔プラスチックフィルムロールの製造方法。 Among the plurality of transport rollers, as at least one transport roller, a metal plating in which a surface roughness RzJIS (μm) is 0.3 ≦ RzJIS ≦ 30 and the surface material is impregnated with a fluororesin between the metal plating roughnesses. A microporous plastic film with through-holes inside is transported using a composite material composed of styrene and fluorine resin, or a composite material of metal plating and silicone rubber impregnated with silicone rubber between the roughness of the metal plating And a method for producing a microporous plastic film roll, which is wound into a roll. 前記微多孔プラスチックフィルムのガーレ透気抵抗度が10〜1000秒/100mlである請求項に記載の微多孔プラスチックフィルムロールの製造方法。 The method for producing a microporous plastic film roll according to claim 1 , wherein the Gurley gas resistance of the microporous plastic film is 10 to 1000 seconds / 100 ml. 前記微多孔プラスチックフィルムの空孔率が30%以上であることを特徴とする請求項1または2に記載の微多孔プラスチックフィルムロールの製造方法。 The method for producing a microporous plastic film roll according to claim 1 or 2 , wherein a porosity of the microporous plastic film is 30% or more. 前記微多孔プラスチックフィルムの微多孔の平均孔径が50〜200nmであることを特徴とする請求項1〜のいずれかに記載の微多孔プラスチックフィルムロールの製造方法。 The method for producing a microporous plastic film roll according to any one of claims 1 to 3 , wherein the microporous plastic film has a microporous average pore diameter of 50 to 200 nm. 前記微多孔プラスチックフィルムのクッション率が15%以上50%未満であることを特徴とする請求項1〜のいずれかに記載の微多孔プラスチックフィルムロールの製造方法。 The method for producing a microporous plastic film roll according to any one of claims 1 to 4 , wherein a cushion ratio of the microporous plastic film is 15% or more and less than 50%. 前記微多孔プラスチックフィルムの厚みが50μm以下であることを特徴とする請求項1〜のいずれかに記載の微多孔プラスチックフィルムロールの製造方法。 The method for producing a microporous plastic film roll according to any one of claims 1 to 5 , wherein the thickness of the microporous plastic film is 50 µm or less. 前記微多孔プラスチックフィルムの幅が100mm以上であることを特徴とする請求項1〜のいずれかに記載の微多孔プラスチックフィルムロールの製造方法。 The method for producing a microporous plastic film roll according to any one of claims 1 to 6 , wherein the width of the microporous plastic film is 100 mm or more. 前記微多孔プラスチックフィルムと、前記搬送ローラとの静摩擦係数が0.6以下であることを特徴とする請求項1〜のいずれかに記載の微多孔プラスチックフィルムロールの製造方法。 The method for producing a microporous plastic film roll according to any one of claims 1 to 7 , wherein a coefficient of static friction between the microporous plastic film and the transport roller is 0.6 or less. 前記微多孔プラスチックフィルムが2次電池もしくはキャパシタ用のセパレータとして用いられるものであることを特徴とする請求項1〜のいずれかに記載の微多孔プラスチックフィルムロールの製造方法。
The method for producing a microporous plastic film roll according to any one of claims 1 to 8 , wherein the microporous plastic film is used as a separator for a secondary battery or a capacitor.
JP2012516248A 2011-03-30 2012-03-22 Method for producing microporous plastic film roll Active JP5853951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012516248A JP5853951B2 (en) 2011-03-30 2012-03-22 Method for producing microporous plastic film roll

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011074642 2011-03-30
JP2011074642 2011-03-30
JP2012516248A JP5853951B2 (en) 2011-03-30 2012-03-22 Method for producing microporous plastic film roll
PCT/JP2012/057311 WO2012133097A1 (en) 2011-03-30 2012-03-22 Process for producing roll of microporous plastic film

Publications (2)

Publication Number Publication Date
JPWO2012133097A1 JPWO2012133097A1 (en) 2014-07-28
JP5853951B2 true JP5853951B2 (en) 2016-02-09

Family

ID=46930825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012516248A Active JP5853951B2 (en) 2011-03-30 2012-03-22 Method for producing microporous plastic film roll

Country Status (6)

Country Link
US (1) US20140014762A1 (en)
JP (1) JP5853951B2 (en)
KR (1) KR101883191B1 (en)
CN (1) CN103459283B (en)
TW (1) TW201302895A (en)
WO (1) WO2012133097A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6092093B2 (en) * 2011-12-27 2017-03-08 東レ株式会社 Manufacturing apparatus and manufacturing method of microporous plastic film roll
EP2781296B1 (en) * 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
KR102270352B1 (en) 2014-10-10 2021-06-30 스미또모 가가꾸 가부시키가이샤 Method for manufacturing separator web, method for manufacturing separator, separator web, and apparatus for manufacturing separator web
JP5999721B2 (en) * 2014-10-17 2016-09-28 株式会社日本製鋼所 Fiber reinforced resin intermediate and method for producing the same
JP5960916B1 (en) * 2014-12-25 2016-08-02 住友化学株式会社 Slit device and separator winding body manufacturing method
CN105966951A (en) * 2016-06-30 2016-09-28 重庆浩立塑胶有限公司 Device for winding plastic film
CN107565080B (en) * 2016-06-30 2022-06-07 住友化学株式会社 Separator winding core, separator wound body, and method for manufacturing separator wound body
WO2018205026A1 (en) * 2017-05-11 2018-11-15 6511660 Canada Inc. Systems and methods for spectral identification and optical sorting of materials
GB201708404D0 (en) * 2017-05-25 2017-07-12 Hexcel Composites Ltd Improvements in or relating to slitting
JP2021527170A (en) * 2018-06-14 2021-10-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Roller devices for guiding flexible substrates, use of roller devices for transporting flexible substrates, vacuum processing equipment, and methods for processing flexible substrates.
CN109081159B (en) * 2018-08-27 2024-06-14 平湖市华达塑料制品有限公司 Novel pearl cotton winding machine
JP7275064B2 (en) * 2020-03-31 2023-05-17 富士フイルム株式会社 Method for manufacturing resin pattern, method for manufacturing conductive pattern, laminated polyester film, photosensitive transfer material, resin pattern, and touch panel
KR102633263B1 (en) * 2022-01-14 2024-02-05 국방과학연구소 Fiber optic spool performance test system and test method therof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281854A (en) * 1988-09-19 1990-03-22 Toray Ind Inc Method for conveying plastic film
JPH10316781A (en) * 1997-05-20 1998-12-02 Nitto Denko Corp Porous membrane and its production
JP2010219037A (en) * 2009-02-23 2010-09-30 Toray Ind Inc Porous film, and electricity storage device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139242A (en) * 1996-11-11 1998-05-26 Sony Corp Guide roll device
JP3923176B2 (en) 1998-05-06 2007-05-30 帝人株式会社 Laminated biaxially oriented polyester film
JP2000084458A (en) * 1998-09-16 2000-03-28 Sony Corp Guide roll apparatus and coating apparatus
JP2001063884A (en) 1999-08-27 2001-03-13 Toray Ind Inc Manufacture of sheet roll body and device therefor
JP2003326653A (en) * 2002-05-17 2003-11-19 Toray Ind Inc Laminated film
JP2004251373A (en) 2003-02-20 2004-09-09 Toray Ind Inc Roll, sheet rolled body manufacturing method and sheet take-up device
WO2005063496A1 (en) * 2003-12-26 2005-07-14 Toray Industries, Inc. Biaxially oriented white polypropylene film for thermal transfer recording and receiving sheet for thermal transfer recording therefrom
US7582904B2 (en) * 2004-11-26 2009-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device and method for manufacturing thereof, and television device
JP4730235B2 (en) * 2006-07-13 2011-07-20 富士ゼロックス株式会社 Image forming apparatus
WO2008021884A2 (en) * 2006-08-08 2008-02-21 Toray Plastics (America) , Inc. Lumirror Divison Anti-iridescent easy handling ultraclear thermoplastic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281854A (en) * 1988-09-19 1990-03-22 Toray Ind Inc Method for conveying plastic film
JPH10316781A (en) * 1997-05-20 1998-12-02 Nitto Denko Corp Porous membrane and its production
JP2010219037A (en) * 2009-02-23 2010-09-30 Toray Ind Inc Porous film, and electricity storage device

Also Published As

Publication number Publication date
TW201302895A (en) 2013-01-16
JPWO2012133097A1 (en) 2014-07-28
KR20130143104A (en) 2013-12-30
WO2012133097A1 (en) 2012-10-04
CN103459283A (en) 2013-12-18
KR101883191B1 (en) 2018-07-30
CN103459283B (en) 2016-07-06
US20140014762A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5853951B2 (en) Method for producing microporous plastic film roll
JP6092093B2 (en) Manufacturing apparatus and manufacturing method of microporous plastic film roll
JP3819929B1 (en) Fluororesin tube and manufacturing method thereof
JP6773022B2 (en) Manufacturing method of microporous plastic film
JP5361557B2 (en) Resin composition and fixing member using the same
KR20170093789A (en) Microporous polyolefin film, separator for battery, and production processes therefor
JP3840464B2 (en) Fluororesin tube, fixing roll, fixing belt and image fixing device
JP2008247610A (en) Method and device for winding sheet-like material, and manufacturing method of roll of the same
JPWO2016132810A1 (en) Method for producing microporous plastic film
JP2011181459A (en) Method of manufacturing of coating type separator
JP5076910B2 (en) Oil supply member
JP6836743B2 (en) Manufacturing method of microporous plastic film
JP2003254324A (en) Fluoro-resin tubular material
JP2004029757A (en) Endless belt and its manufacturing method, and image fixing device using same
JP2010070334A (en) Method and device for conveying sheet-like material, and method for manufacturing roll of the sheet-like material
JPWO2016067916A1 (en) Grooved roller, and plastic film manufacturing apparatus and method using the same
JP2005230968A (en) Grooved roller and slitter
US10677587B2 (en) Method for measuring curl in separator, slit device, and curl measurement device
JP2020049738A (en) Method for producing biaxially oriented film
JP4130260B2 (en) Endless belt and image fixing device
JP4209182B2 (en) Release agent application member and fixing device
US20200119322A1 (en) Film wound body
JP4052740B2 (en) Composite sheet and laminated belt
JP2023111872A (en) Contact roll, film winding device, and manufacturing method for film roll
US20190081361A1 (en) Separator core and separator roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R151 Written notification of patent or utility model registration

Ref document number: 5853951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151