JP4705335B2 - Separator for electronic parts and method for manufacturing the same - Google Patents

Separator for electronic parts and method for manufacturing the same Download PDF

Info

Publication number
JP4705335B2
JP4705335B2 JP2004080296A JP2004080296A JP4705335B2 JP 4705335 B2 JP4705335 B2 JP 4705335B2 JP 2004080296 A JP2004080296 A JP 2004080296A JP 2004080296 A JP2004080296 A JP 2004080296A JP 4705335 B2 JP4705335 B2 JP 4705335B2
Authority
JP
Japan
Prior art keywords
separator
porous structure
solvent
nonwoven fabric
fibrous sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004080296A
Other languages
Japanese (ja)
Other versions
JP2005268096A (en
JP2005268096A5 (en
Inventor
正則 高畑
博己 戸塚
仁英 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2004080296A priority Critical patent/JP4705335B2/en
Publication of JP2005268096A publication Critical patent/JP2005268096A/en
Publication of JP2005268096A5 publication Critical patent/JP2005268096A5/ja
Application granted granted Critical
Publication of JP4705335B2 publication Critical patent/JP4705335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電子部品、特にリチウムイオン二次電池又はポリマーリチウム二次電池に使用されるセパレータ及びその製造方法に関するものである。   The present invention relates to a separator used for an electronic component, particularly a lithium ion secondary battery or a polymer lithium secondary battery, and a method for producing the same.

国際公開WO01/67536号公報International Publication No. WO01 / 67536 特開2003−317802号公報JP 2003-317802 A 特許第2992598号公報Japanese Patent No. 2992598 特開2002−42867号公報JP 2002-42867 A 特開2003−317693号公報。JP2003-317893A.

近年、産業機器、民生機器に関わらず、電気・電子機器の需要増加、及びハイブリッド自動車の開発により、電子部品であるリチウムイオン二次電池及びポリマーリチウム二次電池の需要が著しく増加している。これらの電気・電子機器は小型化、高機能化が日進月歩で進行しており、リチウムイオン二次電池及びポリマーリチウム二次電池においても、小型化、高機能化が要求されている。   In recent years, regardless of industrial equipment and consumer equipment, demand for electrical / electronic equipment and development of hybrid vehicles has greatly increased demand for lithium-ion secondary batteries and polymer lithium secondary batteries, which are electronic components. These electric / electronic devices are steadily becoming smaller and more functional. Lithium ion secondary batteries and polymer lithium secondary batteries are also required to be smaller and more functional.

リチウムイオン二次電池及びポリマーリチウム二次電池は、活物質とリチウム含有酸化物とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンと混合してアルミニウム製集電体上にシート化した正極と、リチウムイオンを吸蔵放出し得る炭素質材料とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンと混合して銅製集電体上にシート化した負極と、多孔質電解質膜とを、正極、電解質膜、負極の順に捲回もしくは積層して形成された電極体に駆動用電解液を含浸させ、アルミニウムケースにより封止された構造のものである。従来、上記リチウムイオン二次電池及びポリマーリチウム二次電池のセパレータとしてはポリフッ化ビニリデン、ポリエチレン等のポリオレフィン系の多孔質膜や不織布が使用されている。   The lithium ion secondary battery and the polymer lithium secondary battery are a positive electrode in which an active material, a lithium-containing oxide, and a binder such as polyvinylidene fluoride are mixed with 1-methyl-2-pyrrolidone to form a sheet on an aluminum current collector. A negative electrode formed by mixing a carbonaceous material capable of inserting and extracting lithium ions and a binder such as polyvinylidene fluoride with 1-methyl-2-pyrrolidone into a sheet on a copper current collector, and a porous electrolyte membrane, An electrode body formed by winding or laminating a positive electrode, an electrolyte membrane, and a negative electrode in this order is impregnated with a driving electrolyte and sealed with an aluminum case. Conventionally, polyolefin-based porous membranes and nonwoven fabrics such as polyvinylidene fluoride and polyethylene have been used as separators for the lithium ion secondary battery and polymer lithium secondary battery.

ところで、上記リチウムイオン二次電池及びポリマーリチウム二次電池は、前述の通り小型化が進んでいるためにセパレータも薄膜化が要求されている。しかしながら、従来のセパレータを薄膜化すると、正極、負極間で内部短絡が発生したり、電池の安全性に寄与するシャットダウン効果が発現できなくなったり、或いは電子部品を駆動させるために必要である駆動用電解液を十分保持できなくなるという問題が発生するのみならず、機械的強度の低下により製造工程での作業性、生産性を損ない、製品の信頼性の低下などの問題が発生する。なお、ここでいうシャットダウンとは、電池内温度が何らかの異常によって上昇した際に、140℃乃至150℃付近でセパレータの微細孔が閉塞されて電流の流れを止めてしまう現象である。   By the way, since the lithium ion secondary battery and the polymer lithium secondary battery are miniaturized as described above, the separator is also required to be thin. However, when a conventional separator is made thin, an internal short circuit occurs between the positive electrode and the negative electrode, a shutdown effect that contributes to the safety of the battery cannot be realized, or driving that is necessary for driving electronic components In addition to the problem that the electrolytic solution cannot be sufficiently retained, problems such as a decrease in mechanical strength and a decrease in product reliability due to loss of workability and productivity in the manufacturing process occur. The shutdown here is a phenomenon in which when the temperature in the battery rises due to some abnormality, the fine pores of the separator are closed at around 140 ° C. to 150 ° C. and the current flow is stopped.

これらの問題を解決する目的で、従来種々の提案がなされている。例えば、特許文献1には、ポリオレフィンを延伸して作製される比較的透気度の値が高い微多孔膜(延伸膜)に針やレーザーで貫通孔を設けたものをセパレータとして使用することが提案されている。しかしながら、このようなセパレータは、その周囲に、例えば電解液に膨潤するポリマー多孔質層を設けた場合、そのポリマー多孔質層を構成する多孔質体が数μm以上の大口径の孔を含んでいると、上記貫通孔とポリマー多孔質層の大口径の孔がセパレータの垂直方向に連通した部分において短絡を起こすという問題があり、また、上記微多孔膜そのものがシャットダウン機能を有していても、常温における通常使用環境において、セパレータ本来の機能である電気絶縁性が低下するという問題がある。   Various proposals have been made for the purpose of solving these problems. For example, in Patent Document 1, it is possible to use, as a separator, a microporous film (stretched film) produced by stretching a polyolefin and having through holes formed by a needle or a laser with a relatively high air permeability value. Proposed. However, in such a separator, for example, when a polymer porous layer that swells in an electrolytic solution is provided around the separator, the porous body constituting the polymer porous layer includes pores having a large diameter of several μm or more. If this is the case, there is a problem that a short-circuit occurs in a portion where the large-diameter hole of the through-hole and the polymer porous layer communicates in the vertical direction of the separator, and even if the microporous membrane itself has a shutdown function In the normal use environment at room temperature, there is a problem that the electrical insulation, which is the original function of the separator, is lowered.

また、特許文献2には、比較的透気度の値が低いポリエチレンテレフタレート製不織布をベースとして、その不織布にフッ化ビニリデン樹脂等の電解液に膨潤する樹脂を複合したセパレータが提案され、また、具体的な製造方法として、電解液を含んだ状態で不織布と樹脂を複合化するウェット製膜法および電解液を含まない状態で複合化させるドライ製膜法が記載されている。しかしながら、特許文献2に記載のセパレータは電池の安全性に寄与するシャットダウン効果が十分に発現されるものではない。また、ウェット製膜法では、電池の組み立て前に、多孔質複合膜に既に電解液が含浸しているので、複合膜をハンドリングする際に大気中の水分を吸収し、電池性能を劣化させる要因となるほか、有機溶媒を乾燥する工程で電解液も揮発する可能性があり、最終的に電池に含まれる電解液量を一定量に維持することができないという問題がある。   Patent Document 2 proposes a separator in which a nonwoven fabric made of polyethylene terephthalate having a relatively low value of air permeability is used as a base, and a composite material that swells in an electrolyte solution such as vinylidene fluoride resin on the nonwoven fabric. As specific manufacturing methods, a wet film forming method in which a nonwoven fabric and a resin are combined in a state containing an electrolytic solution and a dry film forming method in which the composite is formed in a state not including an electrolytic solution are described. However, the separator described in Patent Document 2 does not sufficiently exhibit the shutdown effect that contributes to the safety of the battery. In addition, in the wet film formation method, the electrolyte is already impregnated into the porous composite membrane before assembling the battery. Therefore, when handling the composite membrane, moisture in the atmosphere is absorbed and the battery performance is deteriorated. In addition, there is a possibility that the electrolytic solution may volatilize in the step of drying the organic solvent, and there is a problem that the amount of the electrolytic solution contained in the battery cannot be maintained at a constant amount.

一方ドライ製膜法としては、樹脂と有機溶媒及び可塑剤を塗料化して不織布上に塗布し、有機溶媒を乾燥した後、可塑剤と親和性のある有機溶媒で可塑剤を抽出する方法、樹脂と可塑剤とよりなる溶融物を不織布上に塗布し、冷却により成形した後に、有機溶媒で可塑剤を抽出して多孔質膜を形成する方法、および樹脂を有機溶媒に溶解して得たドープを不織布に含浸させ、有機溶剤に親和性を示すが樹脂を溶解しない他の有機溶媒と接触させて相分離し、多孔質膜を得る方法等が開示されている。しかしながら、これらの方法は、前記の電解液の定量性や電解液への水分混入の危険性は低くなるものの、溶媒により可塑剤を抽出する工程や有機溶媒と接触させる工程が加わるために、製造工程が増えて製造効率が低下するという問題がある。すなわち、可塑剤を有機溶剤で抽出除去する方法は、可塑剤と樹脂との親和性が比較的良好であるために、抽出に時間がかかり、製造効率が悪い。さらに可塑剤を抽出する方法では、形成される多孔質膜の細孔が比較的小さな孔径となりやすいために透気度の値が高くなり、電池性能の向上に寄与しない。また、有機溶媒と親和性がある他の有機溶媒で置換して相分離し多孔質化する方法では、孔構造が特異的となりやすい。つまり、表層にはスキン層が形成されて開口部が少なくなるほか、膜の内部に大きな空隙が生じるために、膜強度が低下し、短絡を起こすという問題を生じる場合がある。   On the other hand, as a dry film forming method, a resin, an organic solvent, and a plasticizer are made into a paint, applied onto a nonwoven fabric, dried, and then the plasticizer is extracted with an organic solvent having an affinity for the plasticizer. And a dope obtained by applying a melt comprising a plasticizer on a nonwoven fabric, forming by cooling, and then forming a porous film by extracting the plasticizer with an organic solvent, and a resin dissolved in the organic solvent Is disclosed in which a nonwoven fabric is impregnated and brought into contact with another organic solvent that has an affinity for an organic solvent but does not dissolve a resin, and phase-separated to obtain a porous membrane. However, although these methods reduce the quantitativeness of the electrolytic solution and the risk of water being mixed into the electrolytic solution, the method includes extraction of a plasticizer with a solvent and contact with an organic solvent. There is a problem that manufacturing efficiency decreases due to an increase in the number of processes. That is, the method of extracting and removing the plasticizer with an organic solvent has a relatively good affinity between the plasticizer and the resin, so that the extraction takes time and the production efficiency is poor. Further, in the method of extracting the plasticizer, the pores of the formed porous film tend to have a relatively small pore diameter, so that the value of air permeability becomes high and does not contribute to the improvement of battery performance. In addition, the pore structure is likely to be specific in the method of phase separation by substitution with another organic solvent having affinity with the organic solvent. In other words, a skin layer is formed on the surface layer, the number of openings is reduced, and a large void is formed inside the film, which may cause a problem that the film strength is lowered and a short circuit is caused.

また、例えば、特許文献3には、フッ化ビニリデン樹脂のドープを離型材上に流延した状態で、不織布を積層し又は埋め込み、非溶剤中で凝固させる湿式成膜法によりセパレータを製造することが開示されている。しかしながら、このような方法で得られるセパレータは、上記の課題である膜厚の均一性等の問題は改善されるが、セパレータの表裏で細孔の孔径が非対称になりやすく、多孔質構造の均一化の問題は改善されない。また、シャットダウン効果も十分発現できない。   Also, for example, in Patent Document 3, a separator is manufactured by a wet film forming method in which a nonwoven fabric is laminated or embedded in a state where a vinylidene fluoride resin dope is cast on a release material and solidified in a non-solvent. Is disclosed. However, the separator obtained by such a method improves the above-mentioned problems such as uniformity of film thickness, but the pore diameter tends to be asymmetric on the front and back of the separator, and the porous structure is uniform. The problem of conversion is not improved. Moreover, the shutdown effect cannot be fully exhibited.

リチウム系電池は、過充電された場合にデンドライトが発生するが、従来の延伸膜をセパレータとして用いたリチウム系電池の場合、過充電により発生したデンドライトが一気にセパレータを貫通することにより、正負極間の急激な短絡を生じ、電池内温度の上昇をきたして危険であり、電池性能を害するという問題がある。この問題を解決するものとして、例えば、特許文献4には、不織布にポリフッ化ビニリデンを内包させたセパレータを用いることが提案されている。この電池では、フッ化ビニリデンが電解液により膨潤し、更には不織布に由来する多くの空隙があるために、微細なデンドライトが成長して、両電極間を過充電の初期段階で微小短絡させ(微細なデンドライトによる短絡)、それによって電池の温度上昇を抑えるものである。しかしながら、エネルギー容量の増大化のニーズに対応して電極の容積を大きく取ってセパレータを薄膜化した場合には、内部短絡が極めて起こりやすくなるという問題がある。   When lithium batteries are overcharged, dendrite is generated, but in the case of lithium batteries using a conventional stretched membrane as a separator, the dendrite generated by overcharging penetrates the separator all at once, so This causes a sudden short circuit, which increases the temperature inside the battery, which is dangerous and harms the battery performance. In order to solve this problem, for example, Patent Document 4 proposes to use a separator in which polyvinylidene fluoride is encapsulated in a nonwoven fabric. In this battery, vinylidene fluoride is swollen by the electrolyte, and further, since there are many voids derived from the nonwoven fabric, fine dendrite grows and short-circuits between both electrodes at the initial stage of overcharging ( Short circuit due to fine dendrite), thereby suppressing battery temperature rise. However, there is a problem that an internal short circuit is very likely to occur when the separator is made thin by increasing the volume of the electrode in response to the need for increasing energy capacity.

また、特許文献5には、電池が異常発熱する環境下および過充電時での安全性を確保する目的で、複合膜中にポリエチレン(PE)粒子等のフィラーを混合してシャットダウン機能をもたせることが提案されている。そして具体的には、PE微粒子が付着した不織布にフッ化ビニリデン樹脂含有塗布液を含浸塗布した後、溶媒水溶液中に浸漬して凝固させ、溶媒を除去することによって製造することが記載されている。しかしながら、特許文献5には、形成されるセパレータにおける細孔の孔径、微粒子の含有量および微粒子と孔径との関係などについては何等考慮が払われていなく、十分なシャットダウン効果の発現は期待できない。さらに上記の特許文献5に記載の製造方法では、フィラー粒子が添加されているため多孔質構造体の孔径が小さくなると、連通孔が閉塞される確率が高くなり、したがって、透気度の値が上昇し、電池性能に支障をきたすという問題がある。また、溶剤が抽出される際に、しわ等の欠陥を生じる場合がある他、膜厚の均一性が阻害される等の問題がある。   Patent Document 5 discloses that a composite film is mixed with a filler such as polyethylene (PE) particles to provide a shutdown function for the purpose of ensuring safety in an environment where the battery is abnormally heated and overcharged. Has been proposed. And specifically, it is described that it is impregnated and coated with a vinylidene fluoride resin-containing coating liquid on a nonwoven fabric to which PE fine particles are adhered, and then immersed in a solvent aqueous solution to solidify and remove the solvent. . However, in Patent Document 5, no consideration is given to the pore diameter of the separator to be formed, the content of fine particles, the relationship between the fine particles and the pore size, and a sufficient shutdown effect cannot be expected. Furthermore, in the manufacturing method described in Patent Document 5, since filler particles are added, if the pore diameter of the porous structure is reduced, the probability that the communication holes are blocked increases, and therefore the air permeability value is reduced. There is a problem that the battery performance rises and hinders battery performance. Further, when the solvent is extracted, there are cases where defects such as wrinkles may occur, and the uniformity of the film thickness is hindered.

フィラー粒子を含む複合膜よりなるセパレータを製造するために、前記した可塑剤を有機溶剤で抽出除去する方法を採用した場合は、形成される多孔質構造体の細孔は孔径が小さいものとなるために、フィラー粒子により連通孔が閉塞されるという問題がある。また、可塑材を用いず、有機溶媒を別の溶媒で置換する方法の場合は、複合体内部の空隙が大きくなりやすいために、ポリエチレン等のフィラー粒子が一定の温度域で溶融しても、その空隙を満遍なく埋めることができず、シャットダウン機能が十分に発現されない等の問題がある。したがって、フィラー粒子を含有させる場合には、フィラー粒子が常温では複合体の連通孔を閉塞せず、かつ溶融時には、素早く孔を埋める必要があり、多孔質構造体の孔径制御は非常に重要な課題となっている。   In the case of adopting the above-described method of extracting and removing the plasticizer with an organic solvent in order to produce a separator made of a composite film containing filler particles, the pores of the formed porous structure have a small pore size. Therefore, there is a problem that the communication hole is blocked by the filler particles. Also, in the case of a method of replacing the organic solvent with another solvent without using a plasticizer, because the voids inside the composite are likely to be large, even if filler particles such as polyethylene melt in a certain temperature range, There is a problem that the gap cannot be filled evenly and the shutdown function is not sufficiently exhibited. Therefore, when filler particles are included, the filler particles do not block the communication holes of the composite at normal temperature, and when melted, it is necessary to quickly fill the holes, and control of the pore size of the porous structure is very important. It has become a challenge.

本発明は、上記のような実状に鑑みて提案されたものであり、その目的は、薄膜で、且つ高イオン伝導性であるにもかかわらず短絡を起こさず、作業性、生産性が極めて良好であり、高い機械的強度を有し、シャットダウン効果も持ち合わせた電子部品用セパレータ及びその製造方法を提供することにある。   The present invention has been proposed in view of the above circumstances, and the object thereof is a thin film and high ion conductivity, but does not cause a short circuit, and has excellent workability and productivity. Another object of the present invention is to provide a separator for electronic parts that has high mechanical strength and also has a shutdown effect, and a method for manufacturing the same.

本発明の電子部品用セパレータは、繊維状シート基材および加熱により溶融する熱可塑性樹脂微粒子を含む多孔質構造体よりなるリチウムイオン二次電池又はポリマーリチウム二次電池のための電子部品用セパレータであって、前記多孔質構造体の細孔の平均孔径が0.1〜15μmであり、前記微粒子が、セパレータに1〜50g/mの範囲で含まれ、且つ前記微粒子の一次平均粒子径が前記孔径の1%〜95%の範囲にあり、前記多孔質構造体はフッ化ビニリデン樹脂よりなり、多数の細孔が繋がってセパレータの一面から他面に連通しており、セパレータ面の垂直方向にピンホール状の垂直な貫通孔を有さず、各細孔の孔径はセパレータの厚さより小さいことを特徴とする。 The separator for electronic parts of the present invention is a separator for electronic parts for a lithium ion secondary battery or a polymer lithium secondary battery comprising a fibrous sheet base material and a porous structure containing thermoplastic resin fine particles that melt upon heating. The average pore size of the pores of the porous structure is 0.1 to 15 μm, the fine particles are contained in the separator in the range of 1 to 50 g / m 2 , and the primary average particle size of the fine particles is wherein Ri 1% to 95% in the range near the pore diameter, the porous structure is made of polyvinylidene fluoride, it communicates with the other surface from one surface of the separator a number of pores connected, vertical separator surface There is no pinhole-shaped vertical through hole in the direction, and the diameter of each pore is smaller than the thickness of the separator .

本発明の電子部品用セパレータの製造方法は、上記の電子部品用セパレータを製造するためのものであって、その第1の態様は、樹脂フィルム上に、加熱により溶融する熱可塑性樹脂微粒子を含む繊維状シート基材を載置する工程、該繊維状シート基材の上に、フッ化ビニリデン樹脂とその良溶媒及び貧溶媒を含有する塗布液を塗工する工程、形成された塗工層を乾燥して溶媒を除去することによって繊維状シート基材の表面及び/又は内部に多孔質構造体を形成する工程、その後樹脂フィルムを除去することによって繊維状シート基材および加熱により溶融する熱可塑性樹脂微粒子を含む多孔質構造体よりなるセパレータを得る工程を含み、該塗布液中に含まれる水分量がカールフィッシャー法による測定で0.7重量%以下であることを特徴とする。また、第2の態様は、樹脂フィルム上に、フッ化ビニリデン樹脂とその良溶媒及び貧溶媒を含有する塗布液を塗工して塗工層を形成する工程、加熱により溶融する熱可塑性樹脂微粒子を含む繊維状シート基材を前記塗工層に重ね合わせる工程、その後、乾燥して溶媒を除去することによって繊維状シート基材の表面及び/又は内部に多孔質構造体を形成する工程、その後樹脂フィルムを除去することによって繊維状シート基材および加熱により溶融する熱可塑性樹脂微粒子を含む多孔質構造体よりなるセパレータを得る工程を含み、該塗布液中に含まれる水分量がカールフィッシャー法による測定で0.7重量%以下であることを特徴とする。   The manufacturing method of the separator for electronic components of this invention is for manufacturing said separator for electronic components, Comprising: The 1st aspect contains the thermoplastic resin microparticles | fine-particles fuse | melted by heating on a resin film. A step of placing a fibrous sheet substrate, a step of applying a coating solution containing a vinylidene fluoride resin and its good solvent and poor solvent on the fibrous sheet substrate, and a formed coating layer The process of forming a porous structure on the surface and / or inside of the fibrous sheet base by removing the solvent by drying, and then the thermoplastic melted by heating the fibrous sheet base by removing the resin film Including a step of obtaining a separator composed of a porous structure containing resin fine particles, wherein the amount of water contained in the coating solution is 0.7% by weight or less as measured by the Karl Fischer method And butterflies. The second aspect is a step of coating a resin film with a coating solution containing a vinylidene fluoride resin and its good and poor solvents to form a coating layer, and thermoplastic resin fine particles that are melted by heating. A step of superimposing a fibrous sheet base material containing the coating layer on the coating layer, and then forming a porous structure on the surface and / or inside of the fibrous sheet base material by drying to remove the solvent, then A step of obtaining a separator composed of a fibrous sheet base material and a porous structure containing thermoplastic resin fine particles that are melted by heating by removing the resin film, and the amount of water contained in the coating liquid is determined by a Karl Fischer method It is characterized by being 0.7% by weight or less.

本発明において、前記繊維状シート基材は、織布、不織布又は網状物(メッシュ)であり、そして前記不織布が、繊維径0.15デニール以下の繊維を少なくとも1重量%以上含むことが好ましい。   In the present invention, the fibrous sheet base material is preferably a woven fabric, a nonwoven fabric or a mesh (mesh), and the nonwoven fabric preferably contains at least 1% by weight of fibers having a fiber diameter of 0.15 denier or less.

また、加熱により溶融する熱可塑性樹脂微粒子は、ポリエチレン及び/又はポリプロピレンからなるものであることが好ましい。   Moreover, it is preferable that the thermoplastic resin fine particles melted by heating are made of polyethylene and / or polypropylene.

以下、本発明を詳細に説明する。
本発明の電子部品用セパレータにおいて、多孔質構造体は多数の細孔を有するものであって、その細孔のバブルポイント法による平均孔径が0.1〜15μmの範囲にあることが必要であり、より好ましくは0.5〜5μmの範囲にある。平均孔径が0.1μm未満の場合は、イオン伝導性を阻害する場合があり好ましくないほか、電解液の含浸性が低下する傾向や、先述の微小なデンドライトとの成長を阻害するので好ましくない。一方、15μmを超えると、特にセパレータを薄膜化した場合に短絡などの不具合を生ずるので好ましくない。なお、バブルポイント法による平均孔径の測定は、西華産業社製のポリメーターで行なった。
Hereinafter, the present invention will be described in detail.
In the separator for electronic parts of the present invention, the porous structure has a large number of pores, and the average pore diameter of the pores by the bubble point method needs to be in the range of 0.1 to 15 μm. More preferably, it exists in the range of 0.5-5 micrometers. When the average pore size is less than 0.1 μm, ion conductivity may be inhibited, which is not preferable. In addition, the impregnation property of the electrolytic solution tends to decrease, and growth with the above-described minute dendrite is inhibited. On the other hand, if the thickness exceeds 15 μm, a problem such as a short circuit occurs particularly when the separator is thinned. The average pore size was measured by a bubble point method using a polymeter manufactured by Seika Sangyo Co., Ltd.

本発明の電子部品用セパレータを構成材料の一つである繊維状シート基材としては、セルロースパルプからなる紙の他、綿、大麻、黄麻等の靭皮繊維、マニラ麻等の葉脈繊維等からなる紙、あるいはレーヨン、キュプラ等の再生セルロース繊維及び再生タンパク繊維等の再生繊維、酢酸セルロース繊維及びプロミックス等の半合成繊維、ナイロンアラミド繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、アクリル繊維、ポリエチレン及びポリプロピレン等のポリオレフィン繊維、ポリビニルアルコール繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、塩化ビニル系繊維、ポリウレタン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、ポリパラフェニレンベンズビスチアゾール繊維、ポリイミド繊維、ポリアミド繊維、ガラス繊維、セラミックス繊維、金属繊維等からなる不織布、織布及び網状物(メッシュ)を挙げることができる。   The fibrous sheet base material, which is one of the constituent materials of the separator for electronic parts of the present invention, is made of paper made of cellulose pulp, bast fibers such as cotton, cannabis, jute, leaf vein fibers such as manila hemp, etc. Recycled fiber such as paper, regenerated cellulose fiber such as rayon and cupra and regenerated protein fiber, semi-synthetic fiber such as cellulose acetate fiber and promix, nylon aramid fiber, polyethylene terephthalate fiber, polyester fiber, acrylic fiber, polyethylene and polypropylene, etc. Polyolefin fiber, polyvinyl alcohol fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, vinyl chloride fiber, polyurethane fiber, polyoxymethylene fiber, polytetrafluoroethylene fiber, polyparaphenylene benzbisthiazole fiber, polyimide fiber, Amide fibers, glass fibers, ceramic fibers, non-woven fabric made of metal fiber or the like, can be mentioned woven and net product (mesh).

不織布は、公知の技術を用いて製造することができる。すなわち、湿式、乾式、乾式パルプ式、スパンボンド式、メルトブロー式、フラッシュ紡糸式、トウ開繊式等により製造することができる。不織布の目開きは、短絡防止の目的からできるだけ小さい方が好ましい。その目的から、不織布に使用する繊維の繊維径は、できるだけ細いものが望ましい。すなわち、本発明では0.15デニール以下の繊維を少なくとも1重量%以上、より好ましくは5重量%以上含むことが好ましい。0.15デニール以下の繊維が1重量%未満の場合は、目開きを小さくする効果が薄れるので好ましくないが、不織布の目開きが比較的大きい場合においても、不織布と複合する後述の多孔質構造体の細孔の孔径が小さい場合は、0.15デニール以下の繊維が必ずしも含まれていなくても、短絡の発生を抑えることが可能である。   A nonwoven fabric can be manufactured using a well-known technique. That is, it can be produced by a wet method, a dry method, a dry pulp method, a spun bond method, a melt blow method, a flash spinning method, a tow opening method, or the like. The opening of the nonwoven fabric is preferably as small as possible for the purpose of preventing a short circuit. For that purpose, the fiber diameter of the fibers used for the nonwoven fabric is desirably as thin as possible. That is, in the present invention, it is preferable to contain at least 1% by weight, more preferably 5% by weight or more of fibers having a denier of 0.15 or less. When the fiber having a denier of 0.15 or less is less than 1% by weight, the effect of reducing the opening is reduced, which is not preferable. However, even when the opening of the nonwoven fabric is relatively large, the porous structure described later is combined with the nonwoven fabric. When the pore diameter of the pores of the body is small, it is possible to suppress the occurrence of a short circuit even if the fiber does not necessarily contain 0.15 denier or less.

繊維状シート基材の膜厚としては、特に規定はないが、電子部品のうち、特にリチウムイオン二次電池及びポリマーリチウム二次電池等に使用する場合は、小型化を可能にするために、セパレータの膜厚が50μm以下、特に5〜30μmの範囲になるように選択するのが好適である。但し、セパレータの膜厚が50μm以上であってもプレス処理を施すことによって薄膜化が十分可能である。一方、上記以外の電子部品によっては必ずしも薄膜である必要はなく、セパレータの膜厚は50μm以上であっても構わない。また、厚膜として用いる用途の場合は、50μm以下の薄膜のセパレータを2枚以上重ねて用いることも可能である。   The film thickness of the fibrous sheet base material is not particularly specified, but among electronic components, particularly when used for lithium ion secondary batteries and polymer lithium secondary batteries, etc., in order to enable miniaturization, It is preferable that the thickness of the separator is selected to be 50 μm or less, particularly 5 to 30 μm. However, even if the film thickness of the separator is 50 μm or more, the film thickness can be sufficiently reduced by performing the press treatment. On the other hand, some electronic components other than those described above do not necessarily need to be a thin film, and the thickness of the separator may be 50 μm or more. In the case of use as a thick film, two or more thin film separators of 50 μm or less can be used in an overlapping manner.

本発明の電子部品用セパレータにおいて、表面及び/又は内部に1種類以上の粒子を含んだ繊維状シート基材の表面及び/又は内部にフッ化ビニリデン樹脂の多孔質構造体が含まれるものが好ましく、例えば繊維状シート基材が不織布又は織布の場合は、フッ化ビニリデン樹脂が不織布又は織布内部の繊維の間に保持されており、また、繊維状シート基材が網状物(メッシュ)の場合はフッ化ビニリデン樹脂がメッシュの間に保持されているものである。ここでいう網状物(メッシュ)には、フィルム面に対して垂直方向に多数の貫通孔を有するフィルムも含む。   In the separator for electronic parts of the present invention, it is preferred that the surface and / or the inside of the fibrous sheet base material containing one or more kinds of particles contains a porous structure of vinylidene fluoride resin. For example, when the fibrous sheet substrate is a nonwoven fabric or a woven fabric, the vinylidene fluoride resin is held between the fibers in the nonwoven fabric or the woven fabric, and the fibrous sheet substrate is a mesh (mesh). In this case, the vinylidene fluoride resin is held between the meshes. The net-like material (mesh) here includes a film having a large number of through holes in a direction perpendicular to the film surface.

この場合、不織布または織布内部の繊維の間に保持されたポリフッ化ビニリデン、又はメッシュ間に保持されたフッ化ビニリデン樹脂は、多孔質構造体の形態であることが、電池にした場合のイオン伝導性が優れているために必要であるが、内部短絡を防ぐために、多孔質構造体は、セパレータの一面から他面に多数の細孔の繋がりによって連通していることが必要であり、その細孔の孔径はセパレータの厚さより小さいことが必要である。そしてセパレータ面の実質的に垂直方向にピンホール状の貫通孔を有さないことが必要である。ここで、貫通孔とはセパレータのいずれか一方の面から、もう一方の面を実質的に垂直に見た時に、セパレータを構成する部材で全く覆われずに、貫通して見える部分を意味する。このような貫通孔を有するセパレータは、短絡を起こしやすく、したがって充放電性能を著しく阻害する場合がある。   In this case, the polyvinylidene fluoride held between the fibers in the nonwoven fabric or the woven fabric, or the vinylidene fluoride resin held between the meshes is in the form of a porous structure. Necessary because of its excellent conductivity, but in order to prevent internal short circuit, the porous structure needs to be connected from one side of the separator to the other side by the connection of a large number of pores. It is necessary that the pore diameter is smaller than the thickness of the separator. And it is necessary not to have a pinhole-like through-hole in the direction substantially perpendicular to the separator surface. Here, the through-hole means a portion that can be seen through from one of the surfaces of the separator when the other surface is viewed substantially vertically without being covered by the member constituting the separator. . A separator having such a through-hole tends to cause a short circuit, and thus may significantly impede charge / discharge performance.

本発明において、繊維状シート基材の表面及び/又は内部に含ませるフッ化ビニリデン樹脂としては、フッ化ビニリデンホモポリマー又はフッ化ビニリデンを含むコポリマーを挙げることができる。フッ化ビニリデンホモポリマーは、フッ化ビニリデンのモノマーの付加重合反応により得られ、その重合方法としては、ラジカル重合、カチオン重合、アニオン重合、光・放射線重合、懸濁重合、乳化重合、溶液重合、塊状重合等を挙げることができる。また、フッ化ビニリデンを含むコポリマーは、フッ化ビニリデンと他のモノマーを共重合させた樹脂であり、他のモノマーとしては、例えばエチレン、プロピレン等のオレフィン系単量体、フッ化ビニル、3フッ化エチレン、3フッ化塩化エチル、4フッ化エチレン、6フッ化プロピレン、フルオロアルキルビニルエーテル等の含フッ素単量体、マレイン酸モノメチル、シトラコン酸モノメチル等のカルボキシル基含有単量体、及びアリルグリシジンエーテル、クロトン酸グリシジルエステル等のエポキシ基含有ビニル単量体、等を挙げることができる。これらの中でも特に、フッ化ビニリデンと4フッ化エチレン又は6フッ化プロピレンのいずれか1種類以上とからなるコポリマーが好ましい。   In the present invention, examples of the vinylidene fluoride resin contained on the surface and / or inside of the fibrous sheet base material include a vinylidene fluoride homopolymer or a copolymer containing vinylidene fluoride. The vinylidene fluoride homopolymer is obtained by addition polymerization reaction of vinylidene fluoride monomer. The polymerization methods include radical polymerization, cationic polymerization, anionic polymerization, light / radiation polymerization, suspension polymerization, emulsion polymerization, solution polymerization, Examples thereof include bulk polymerization. The copolymer containing vinylidene fluoride is a resin obtained by copolymerizing vinylidene fluoride and other monomers. Examples of the other monomers include olefinic monomers such as ethylene and propylene, vinyl fluoride, and 3 fluorine. Fluorinated monomers such as ethylene fluoride, ethyl trifluoride, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether, carboxyl group-containing monomers such as monomethyl maleate and monomethyl citraconic acid, and allyl glycidin Examples thereof include an epoxy group-containing vinyl monomer such as ether and glycidyl crotonic acid ester. Among these, a copolymer composed of vinylidene fluoride and any one or more of ethylene tetrafluoride or propylene hexafluoride is particularly preferable.

また、繊維状シート基材の表面及び/又は内部に保持させる加熱により溶融する熱可塑性樹脂微粒子は、1g/m〜50g/mの範囲で含有させることが必要であり、望ましくは3g/m以上30g/m以下の量で含有させる。含有量が1g/mより少ないと、電池の安全性に寄与するシャットダウン効果が得られず、50g/mより多いとセパレータの膜厚が厚くなり過ぎたり、イオン移動を阻害することにより、インピーダンスの増大を招く。また、保持させる微粒子は、軟化点の異なる2種類以上のものを用いるのが好ましい。 The thermoplastic resin particles to melt by heating to the holding surface and / or inside of the fiber sheet substrate, it is necessary to be contained in a range of 1g / m 2 ~50g / m 2 , preferably 3 g / m 2 or more 30 g / m 2 is contained in the following amounts. If the content is less than 1 g / m 2 , the shutdown effect that contributes to the safety of the battery cannot be obtained, and if it is more than 50 g / m 2 , the thickness of the separator becomes too thick, or by inhibiting ion migration, Impedance increases. Further, it is preferable to use two or more kinds of fine particles to be held having different softening points.

加熱により溶融する熱可塑性樹脂微粒子としては、ポリエチレンからなる粒子及びポリプロピレンからなる粒子が好ましい。また、その熱可塑性樹脂は、110〜180℃の範囲の軟化点を有することが好ましい。それら微粒子の一次平均粒子径は、多孔質構造体における細孔の平均孔径の1〜95%の範囲にあることが必要である。微粒子の一次平均粒子径が細孔の平均孔径の1%より小さい場合は、電池内部の温度が通常使用温度域よりも上昇して微粒子が溶融した場合に、多孔質構造体及び不織布に由来する目開きを塞ぐことが困難となるため、安全性を維持する上で不具合が生ずる。一方、95%よりも大きい場合は、多孔質構造体及び不織布に由来する目開きが狭くなり、イオン伝導性等の電池性能を左右する種々の特性を阻害するほか、微粒子が前述した微細なデンドライトの成長を阻害することがあり、耐過充電特性に対するアドバンテージが得られなくなる。すなわち、本発明においては、多孔質構造体の細孔の平均孔径に応じて、微粒子の一次粒子径を上記の範囲に設定して、多孔質構造体との間に適度の隙間を作るようにすることにより、過充電防止に効果のある微小なデンドライトの生成及びその電極間の微小短絡を阻害しないセパレータを得ることが可能になる。なお、本発明において、粒子の一次平均粒子径とは、SEM写真にて、粒子の長径及び短径の平均値を粒子径として、サンプリング粒子数n=100の平均値である。   The thermoplastic resin fine particles that melt by heating are preferably polyethylene particles and polypropylene particles. The thermoplastic resin preferably has a softening point in the range of 110 to 180 ° C. The primary average particle diameter of these fine particles needs to be in the range of 1 to 95% of the average pore diameter of the pores in the porous structure. When the primary average particle size of the fine particles is smaller than 1% of the average pore size of the fine pores, the temperature inside the battery rises above the normal use temperature range, and the fine particles are melted to derive from the porous structure and the nonwoven fabric. Since it becomes difficult to close the opening, a problem occurs in maintaining safety. On the other hand, when it is larger than 95%, the openings derived from the porous structure and the non-woven fabric are narrowed, which inhibits various properties that affect the battery performance such as ionic conductivity, and the fine dendrites described above are fine particles. The growth of the battery may be hindered, and the advantage over the anti-overcharge characteristic cannot be obtained. That is, in the present invention, according to the average pore diameter of the pores of the porous structure, the primary particle diameter of the fine particles is set in the above range so as to create an appropriate gap between the porous structure and the porous structure. By doing so, it is possible to obtain a separator that does not hinder the generation of minute dendrites that are effective in preventing overcharge and the minute short circuit between the electrodes. In the present invention, the primary average particle diameter of the particles is an average value of sampling particles number n = 100 in the SEM photograph, where the average value of the long and short diameters of the particles is the particle diameter.

以上のように、本発明においては、微粒子の一次平均粒子径を、多孔質構造体の細孔の平均孔径よりも小さい上記の範囲に設計することにより、通常使用の温度条件では多孔質構造体や不織布の目開きを完全に埋めることはないために、従来のセパレータと同等かまたはそれ以上の電池性能を付与することができる。また、本発明においては、微粒子の存在によりセパレータの密度をあげることができるため、従来の微粒子が存在しない不織布と多孔質構造体のみより構成される複合膜セパレータの場合に比して、通常使用温度域での短絡を防ぐことができ、電池歩留まりを格段に向上できるという利点をも有する。例えば、従来の不織布と多孔質構造体のみより構成される複合膜セパレータを20μm程度以下に薄膜化した場合には、短絡が頻発していたが、本発明のセパレータでは短絡は発生しない。 As described above, in the present invention, the average primary particle diameter of the fine particles, by designing a small above ranges than the average pore diameter of the pores of the porous structure, the porous structure at a temperature of normal use In addition, since the openings of the nonwoven fabric are not completely filled, battery performance equivalent to or higher than that of a conventional separator can be imparted. In the present invention, since the density of the separator can be increased by the presence of fine particles, it is usually used as compared with the case of a composite membrane separator composed only of a nonwoven fabric and a porous structure without conventional fine particles. Short circuit in the temperature range can be prevented, and the battery yield can be significantly improved. For example, when a composite membrane separator composed only of a conventional nonwoven fabric and a porous structure is thinned to about 20 μm or less, short-circuiting frequently occurs, but short-circuiting does not occur in the separator of the present invention.

次に、本発明の電子部品用セパレータの製造方法について述べる。本発明においては、前記多孔質構造体を塗工法のみによって形成し、塗工後の塗面に含まれる溶媒を除去する工程において、他の溶媒による溶媒置換や抽出などの手段を用いず、実質的に乾燥工程の1パスだけでセパレータを形成することができる。本発明においては、後述するように、塗布液中に、少なくとも樹脂を実質的には溶解しない溶媒(貧溶媒)及び樹脂を実質的に溶解する溶媒(良溶媒)とともに樹脂を添加するが、乾燥工程の条件を制御することによって、効率的に多孔質構造体を形成することが可能である。良溶媒及び貧溶媒は後述するような種々の溶剤があげられるが、共沸や、乾燥の温度差及び蒸気圧の差が大きい組み合わせは、ピンホールに代表される貫通孔の発生頻度を高める点で好ましくなく、また製造効率上も望ましくない。良溶媒と貧溶媒の沸点差は、50℃以内、特に30℃以内とすることが製造効率上好ましい。50℃を超す場合には、製造のプロセス速度があげられないほか、乾燥エネルギーが大きくなり好ましくない。また、50℃を超す場合は、乾燥条件を段階的に設定する場合に、プロセス方向への瞬時の条件切り替えが実質的に不可能となるために、大量生産には不向きであるという問題もある。   Next, the manufacturing method of the separator for electronic components of this invention is described. In the present invention, the porous structure is formed only by the coating method, and in the step of removing the solvent contained in the coated surface after the coating, a method such as solvent substitution with another solvent or extraction is not used. Thus, the separator can be formed by only one pass of the drying process. In the present invention, as described later, the resin is added to the coating solution together with at least a solvent that does not substantially dissolve the resin (poor solvent) and a solvent that substantially dissolves the resin (good solvent). By controlling the process conditions, it is possible to efficiently form a porous structure. The good solvent and the poor solvent include various solvents as will be described later. However, the combination of azeotropic or a large difference in drying temperature and vapor pressure increases the frequency of occurrence of through holes typified by pinholes. In addition, it is not preferable in terms of production efficiency. The difference in boiling point between the good solvent and the poor solvent is preferably 50 ° C. or less, particularly 30 ° C. or less, in view of production efficiency. If the temperature exceeds 50 ° C., the production process speed cannot be increased, and the drying energy increases, which is not preferable. In addition, when it exceeds 50 ° C., when drying conditions are set stepwise, instantaneous condition switching in the process direction becomes practically impossible, which is not suitable for mass production. .

本発明において、微粒子としてポリエチレン粒子を含むセパレータを作製する場合、その粒子が溶融しない温度条件で処理することが好ましいが、フッ化ビニリデン樹脂を溶解可能な溶媒は、沸点が高いものが多いために、実質的には70〜180℃の加熱温度が必要となる。このため、乾燥風量を多くすることによって乾燥を早期に行いつつ、更にはプロセス速度を上げることによって、できるだけ短時間で乾燥を終了すればよい。加熱温度が70℃より低いと、乾燥効率が悪く製造効率があがらない。一方、180℃を超える範囲では、微粒子の多くが溶融してしまうためにシャットダウン機能の付与に悪影響がある。また、一般的には、乾燥条件は段階的に設定し、良溶媒を先に乾燥させた後に貧溶媒を乾燥させることが多孔質構造体を形成する上で好ましいが、セパレータの膜性能上は、共沸しなければ、両溶媒は必ずしもはっきりと分けて乾燥しなくてもよい。乾燥は、多孔質構造体の空隙率や、孔径の制御を適宜行いつつ乾燥条件を決定することによって行なうことが望ましい。本発明では、上記のように溶媒処方の組み合わせ、乾燥温度及び送風量の各条件を適宜選択することによって、セパレータのシャットダウン機能及びその他の電池性能の最適化と、製造効率向上の両立を実現することができる。また、本発明では、上記従来技術におけるような、溶媒などによる貧溶媒、残留溶媒の除去工程を設ける必要がなく、塗工後に乾燥工程を一度経由するだけで、セパレータとして最適な多孔質構造体を簡便に製造することができる。したがって、製造効率が非常に良好なことから、安価で良質なセパレータを大量に提供することが可能となる。   In the present invention, when preparing a separator containing polyethylene particles as fine particles, it is preferable to treat the particles under a temperature condition where the particles do not melt. However, many solvents capable of dissolving the vinylidene fluoride resin have a high boiling point. In practice, a heating temperature of 70 to 180 ° C. is required. For this reason, it is only necessary to finish the drying in as short a time as possible by increasing the drying speed and further increasing the process speed while performing the drying at an early stage. When the heating temperature is lower than 70 ° C., the drying efficiency is poor and the production efficiency is not increased. On the other hand, when the temperature exceeds 180 ° C., most of the fine particles are melted, which adversely affects the provision of the shutdown function. In general, drying conditions are set in stages, and it is preferable to dry the poor solvent after drying the good solvent first, in order to form a porous structure. If not azeotroped, both solvents do not necessarily have to be separated and dried. The drying is desirably performed by determining the drying conditions while appropriately controlling the porosity and the pore diameter of the porous structure. In the present invention, the combination of the solvent formulation, the drying temperature, and the air flow rate are appropriately selected as described above, thereby realizing both the optimization of the separator shutdown function and other battery performance and the improvement of the production efficiency. be able to. Further, in the present invention, it is not necessary to provide a process for removing a poor solvent and a residual solvent using a solvent as in the above prior art, and a porous structure optimal as a separator can be obtained by passing a drying process once after coating. Can be easily produced. Therefore, since the production efficiency is very good, it is possible to provide a large amount of inexpensive and high-quality separators.

また、本発明では、前記多孔質構造体を形成するための塗布液に、樹脂を溶解する良溶媒を少なくとも2種以上含み、かつ、前記樹脂を溶解しない貧溶媒を少なくとも1種以上含んでもよい。塗布液のハンドリング性からは、塗布液粘度をある程度低くすることが重要であるため、比較的低粘度である補助的な良溶媒を、これとは異なる主たる良溶媒と併用して、塗布液粘度を低減することが望ましい。このような補助的良溶媒の選択は、上記の溶媒粘度のほか、前記の貧溶媒との乾燥バランスや、溶媒同士の共沸性を考慮して選択すればよい。本発明における補助的良溶媒は1種類に限らず複数種用いてもよく、また、実質的に樹脂を溶かさない貧溶媒でなければ如何なるものでも使用でき、上記の選択指針によって適宜選択すればよい。   In the present invention, the coating liquid for forming the porous structure may contain at least two good solvents that dissolve the resin and at least one poor solvent that does not dissolve the resin. . Since it is important to reduce the viscosity of the coating solution to some extent from the handling properties of the coating solution, an auxiliary good solvent having a relatively low viscosity is used in combination with a main good solvent different from this, and the coating solution viscosity It is desirable to reduce Such an auxiliary good solvent may be selected in consideration of the above solvent viscosity, the drying balance with the poor solvent, and the azeotropic property of the solvents. The auxiliary good solvent in the present invention is not limited to one type, and may be used in plural types, and any non-poor solvent that does not substantially dissolve the resin can be used, and may be appropriately selected according to the above selection guidelines. .

本発明において、フッ化ビニリデン樹脂及び貧溶媒等を溶解した塗布液において、前記溶媒として吸湿性が高いものを用いる場合には、できる限り水分の混入を防ぐことが必要である。本発明では、塗布液は、カールフィッシャー法による測定で水分量が0.7重量%以下であることが必要であり、好ましくは、0.5重量%以下である。水分量が0.7重量%を超すと、ゲル化が早期に進み塗布液の保存期間が極端に短くなったり、形成される多孔質構造体の膜厚が著しく不均一なものとなり、膜厚が厚いところでは塗布液が水分混入によるゲル化によって孔径が極端に小さくなり、0.1μm未満の孔径の割合が多くなる。また、ゲル化が溶媒の乾燥によって固化する際に収縮するため、膜厚の薄い部分(非ゲル部分)を引っ張って、15μmを越える孔径の割合が多くなる。そしてゲルは部分的な発生であるため、全体として多孔質構造体は孔径が大きい部分が多くなり、結果として、バブルポイント法による平均孔径は15μmを越えた大きなものとなり、そしてフィラー粒子の一次平均粒子径が孔径の1%より低い値になる。また、ゲルの固化部分では、局所的にイオン移動が低下するため、電池性能が低下するほか、サイクル特性にも悪影響を及ぼす。   In the present invention, in a coating solution in which a vinylidene fluoride resin, a poor solvent, and the like are dissolved, when a highly hygroscopic solvent is used as the solvent, it is necessary to prevent moisture from being mixed in as much as possible. In the present invention, the coating solution needs to have a water content of 0.7% by weight or less, preferably 0.5% by weight or less, as measured by the Karl Fischer method. If the water content exceeds 0.7% by weight, gelation progresses early and the storage period of the coating solution becomes extremely short, or the film thickness of the porous structure formed becomes extremely uneven. When the thickness is thick, the pore size becomes extremely small due to gelation of the coating liquid due to water mixing, and the proportion of pore sizes less than 0.1 μm increases. Further, since gelation shrinks when solidified by drying of the solvent, the portion having a thin film thickness (non-gel portion) is pulled, and the ratio of the pore diameter exceeding 15 μm increases. And since the gel is a partial occurrence, the porous structure as a whole has a large number of pores, and as a result, the average pore size by the bubble point method is larger than 15 μm, and the primary average of the filler particles The particle size is lower than 1% of the pore size. Further, in the solidified portion of the gel, ion migration is locally reduced, so that the battery performance is lowered and the cycle characteristics are also adversely affected.

本発明の製造方法の第1の態様においては、樹脂フィルム上に、微粒子を含む繊維状シート基材を載置し、その上にフッ化ビニリデン樹脂とその良溶媒及び貧溶媒を含有する塗布液を塗工し、形成された塗工層を乾燥して溶媒を除去することによって繊維状シート基材の表面及び/又は内部に多孔質構造体を形成してそれらを一体化する。その後、樹脂フィルムを除去することによって、繊維状シート基材および微粒子を含む多孔質構造体よりなるセパレータを得ることができる。また、第2の態様においては、樹脂フィルム上に、フッ化ビニリデン樹脂とその良溶媒及び貧溶媒を含有する塗布液を塗工して塗工層を形成し、微粒子を含む繊維状シート基材を前記塗工層に重ね合わせ(ウェットラミネーション)、その後、乾燥して溶媒を除去することによって繊維状シート基材の表面及び/又は内部に多孔質構造体を形成する。その後樹脂フィルムを除去することによって繊維状シート基材および微粒子を含む多孔質構造体よりなるセパレータを得ることができる。   In the 1st aspect of the manufacturing method of this invention, the fibrous sheet base material containing microparticles | fine-particles is mounted on the resin film, and the coating liquid which contains a vinylidene fluoride resin, its good solvent, and a poor solvent on it , And the formed coating layer is dried to remove the solvent, thereby forming a porous structure on the surface and / or inside of the fibrous sheet base material and integrating them. Then, the separator which consists of a porous structure containing a fibrous sheet base material and microparticles | fine-particles can be obtained by removing a resin film. Further, in the second aspect, a fibrous sheet base material containing fine particles, wherein a coating layer is formed by coating a coating film containing a vinylidene fluoride resin and its good and poor solvents on a resin film. Is laminated on the coating layer (wet lamination), and then dried to remove the solvent, thereby forming a porous structure on the surface and / or inside of the fibrous sheet substrate. Thereafter, by removing the resin film, a separator composed of a fibrous sheet base material and a porous structure containing fine particles can be obtained.

本発明においては、上記いずれの方法も好適に用いられるが、例えば不織布の空隙率が大きい場合は、後者の方法が好ましい。すなわち、前者の場合は、樹脂フィルム上に不織布を重ねた上に塗布液を塗工するために、不織布を構成する繊維間の空隙に空気が残存しやすく、塗工欠点となる場合があるためである。しかしながら、前者の方法は、予め不織布を樹脂フィルムと同軸に巻いておくことが可能であるため、後者の方法のように不織布を別に巻き出すための巻き出し機構が不要であるため、より効率の良い製造が可能である。したがって、空隙率が比較的低く成膜性に問題のない不織布の場合には、前者の方法が適している。不織布の空隙率は、電池設計を優先して決めるべきであり、その設計要求によって不織布の複合方法を適宜選択すればよい。後者の方法では、例えば不織布の空隙率の大小に関わらず、塗工欠点のない均質なセパレータを製造することが可能であるが、いずれの方法を用いる場合であっても、上記の空隙率に代表される不織布の諸物性を考慮してその製造方法を選択すれば、均質なセパレータを製造することが可能である。   In the present invention, any of the above methods is preferably used. For example, when the nonwoven fabric has a large porosity, the latter method is preferable. That is, in the former case, since the coating liquid is coated on the nonwoven fabric on the resin film, air tends to remain in the gaps between the fibers constituting the nonwoven fabric, which may be a coating defect. It is. However, since the former method can previously wrap the non-woven fabric coaxially with the resin film, there is no need for an unwinding mechanism for unwinding the non-woven fabric as in the latter method. Good manufacturing is possible. Therefore, in the case of a nonwoven fabric having a relatively low porosity and no problem in film formability, the former method is suitable. The porosity of the non-woven fabric should be determined with priority given to battery design, and the composite method of non-woven fabric may be appropriately selected according to the design requirements. In the latter method, for example, it is possible to produce a homogeneous separator without coating defects regardless of the porosity of the nonwoven fabric. If a manufacturing method is selected in consideration of various physical properties of a representative nonwoven fabric, a homogeneous separator can be manufactured.

本発明においては、上記の不織布との複合方法において、前記樹脂フィルムの使用が非常に重要である。樹脂フィルムの選択は、樹脂フィルム上に塗工される塗布液との親和性及び形成される多孔質構造体との剥離性に関連して形成されるセパレータの性状に影響を及ぼす。本発明では、多孔質構造体に対する剥離強度が0.1〜75g/20mmであり、より好ましくは0.1〜40g/20mmである樹脂フィルムを選択することが好ましい。すなわち、塗工、乾燥後の樹脂フィルム上に形成された多孔質構造体を20mmの幅で切り出したテープ状の試験片を準備し、その試験片に端部における多孔質構造体の一部を剥離し、その端部における多孔質構造体の端部と、もう一方の剥離していない端部とをテンシロンの上下のチャックにそれぞれ固定し、50mm/secの速度で引っ張り測定した場合に得られる剥離の引っ張り荷重を5点測定し、その平均値を、上記切り出し幅である20mmの幅で割った値を剥離強度として評価値とする。   In the present invention, it is very important to use the resin film in the method of combining with the nonwoven fabric. The selection of the resin film affects the properties of the separator formed in relation to the affinity with the coating liquid applied on the resin film and the releasability from the formed porous structure. In this invention, it is preferable to select the resin film whose peeling strength with respect to a porous structure is 0.1-75 g / 20mm, More preferably, it is 0.1-40 g / 20mm. That is, a tape-shaped test piece obtained by cutting out the porous structure formed on the resin film after coating and drying to a width of 20 mm was prepared, and a part of the porous structure at the end portion was prepared on the test piece. It is obtained when peeling and fixing the end of the porous structure at the end and the other non-peeled end to the upper and lower chucks of Tensilon and measuring the tension at a speed of 50 mm / sec. The tensile load for peeling is measured at five points, and the average value divided by the width of 20 mm, which is the cutout width, is taken as the evaluation value as the peeling strength.

本発明においては、上記で定義される剥離強度は0.1〜75g/20mmが好ましく、より好ましくは0.1〜40g/20mmである。すなわち、特に第2の態様のウェットラミネーションを用いる方法の場合には、前記の如く不織布を複合する前に樹脂フィルム上に塗布液を塗工するが、樹脂フィルムの剥離強度が0.1g/20mm未満のような比較的離型性が良好な樹脂フィルムでは、塗布液粘度が低い場合には塗工直後の湿潤状態にある塗工面が安定せず、塗布液の単位面積あたりの塗布量が、塗工直後からウェットラミネーションを実施するまでの間で変動してしまい、セパレータの面方向で多孔質構造体の単位面積あたりの重量が変動してしまう。この現象は本質的には、樹脂フィルムの表面張力に由来するものである。また、これとは別に、樹脂フィルムの剥離強度が0.1g/20mm未満の場合には、乾燥工程においてセパレータが樹脂フィルムから剥離する場合があり好ましくない。一方、75g/20mmを超すような接着性が高いフィルムでは、上記のような変動は認められないが、樹脂フィルムからセパレータを効率的に剥離し取り出すことが困難となるため好ましくない。一方、樹脂フィルム上に不織布を載置して重ねた後、その上に塗工する本発明の第1の態様の製造方法においては、塗布液が直接的に不織布上に塗工されるために塗布液は塗工後において不織布に絡むため流動しにくく、樹脂フィルムの剥離強度が0.1g/20mm未満の場合であっても、上記のような塗布量のバラツキは発生しないが、乾燥工程においてセパレータが樹脂フィルムから剥離する場合があり好ましくない。一方、上記第1の態様の製造方法において、剥離強度が75g/20mmを超す樹脂フィルムを用いる場合には、樹脂フィルムからセパレータを効率的に剥離し取り出すことが困難となるため好ましくない。   In the present invention, the peel strength defined above is preferably 0.1 to 75 g / 20 mm, and more preferably 0.1 to 40 g / 20 mm. That is, particularly in the case of the method using the wet lamination of the second aspect, the coating liquid is applied onto the resin film before the non-woven fabric is combined as described above, but the peel strength of the resin film is 0.1 g / 20 mm. In the case of a resin film with relatively good releasability, such as less than, when the coating solution viscosity is low, the coated surface in a wet state immediately after coating is not stable, and the coating amount per unit area of the coating solution is It fluctuates between immediately after coating and until wet lamination is performed, and the weight per unit area of the porous structure varies in the surface direction of the separator. This phenomenon is essentially derived from the surface tension of the resin film. Apart from this, when the peel strength of the resin film is less than 0.1 g / 20 mm, the separator may peel off from the resin film in the drying step, which is not preferable. On the other hand, in the film having high adhesiveness exceeding 75 g / 20 mm, the above-mentioned fluctuation is not observed, but it is not preferable because it is difficult to efficiently peel and remove the separator from the resin film. On the other hand, in the manufacturing method according to the first aspect of the present invention, after the nonwoven fabric is placed on the resin film and stacked, the coating liquid is applied directly onto the nonwoven fabric. Since the coating liquid is entangled with the nonwoven fabric after coating, it does not flow easily, and even when the peel strength of the resin film is less than 0.1 g / 20 mm, there is no variation in the coating amount as described above. The separator may peel off from the resin film, which is not preferable. On the other hand, in the manufacturing method of the first aspect, when a resin film having a peel strength exceeding 75 g / 20 mm is used, it is difficult to efficiently peel and remove the separator from the resin film.

また、剥離強度が上記範囲にある樹脂フィルムを用いる別の利点として、以下に述べる内容が多孔質構造体の細孔の孔径を制御する上で重要である。すなわち、上記のいずれの複合方法においても共通するが、剥離強度を0.1g/20mmに近い低い範囲に設計した場合は、樹脂フィルムの接するセパレータ面の細孔の孔径が、塗工表層にあたるセパレータ面のものに比べて大きくなり、逆に75g/20mmに近い高い範囲に設計した場合は、樹脂フィルムに接するセパレータ面の細孔の孔径が、塗工表層にあたるセパレータ面のものに比べて小さくなる。また、0.1g/20mm未満の場合は、樹脂フィルムに接する側のセパレータ面の細孔が閉塞する場合があり、75g/20mmを超す場合は、塗工表層にあたるセパレータ面の細孔が閉塞しやすくなる。これらの現象の原因は必ずしも明らかではないが、不織布の表面張力が異なる材質を用いた場合でも同様の孔径の表裏非対称性が生ずることから、表面張力の強さによって生ずるものと考えられる。したがって、本発明では、電池設計からの要求から不織布の材質を固定しても、その不織布に複合される多孔質構造体を含むセパレータの表裏両面における孔径の対称性を、樹脂フィルムの表面性で制御することが可能となる。つまり、本発明では、従来は不織布の材質によって必ずしも上記の表裏両面の細孔の孔径の対称性が制御できなかったことに比較して、樹脂フィルムの剥離強度の設定によって、孔径の対称性を制御が可能である。   Further, as another advantage of using a resin film having a peel strength in the above range, the following contents are important in controlling the pore diameter of the porous structure. That is, although it is common to any of the above composite methods, when the peel strength is designed to be in a low range close to 0.1 g / 20 mm, the pore diameter of the pore on the separator surface in contact with the resin film is the separator corresponding to the coating surface layer. In contrast, when designed in a high range close to 75 g / 20 mm, the pore diameter of the separator surface in contact with the resin film is smaller than that of the separator surface corresponding to the coating surface layer. . In addition, if it is less than 0.1 g / 20 mm, the pores on the separator surface on the side in contact with the resin film may be blocked, and if it exceeds 75 g / 20 mm, the pores on the separator surface corresponding to the coating surface layer may be blocked. It becomes easy. Although the cause of these phenomena is not necessarily clear, even when materials having different surface tensions of the nonwoven fabric are used, the same front and back asymmetry of the pore diameter occurs, and it is considered that the phenomenon is caused by the strength of the surface tension. Therefore, in the present invention, even if the material of the nonwoven fabric is fixed due to the demand from the battery design, the symmetry of the pore diameter on both the front and back surfaces of the separator including the porous structure composited with the nonwoven fabric is the same as the surface property of the resin film. It becomes possible to control. In other words, in the present invention, the symmetry of the pore diameter can be controlled by setting the peel strength of the resin film as compared with the conventional case where the pore diameter symmetry of the pores on the front and back surfaces cannot always be controlled by the material of the nonwoven fabric. Control is possible.

上記の如く本発明の電子部品用セパレータは、薄膜で且つ高イオン伝導性であっても作業性、生産性を損なうことのない機械的強度を有しており、そして、それを用いたリチウムイオン二次電池およびポリマーリチウム二次電池は、内部短絡を起こさず、シャットダウン効果により過充電に対して高い安全性も持ち合わせている。   As described above, the separator for electronic parts of the present invention has a mechanical strength that does not impair workability and productivity even if it is a thin film and has high ion conductivity, and lithium ion using the separator. The secondary battery and the polymer lithium secondary battery do not cause an internal short circuit and have high safety against overcharge due to a shutdown effect.

以下に本発明のセパレータについて、その製造方法の一例を挙げて説明するが、本発明のセパレータの製造方法はこれのみに限定されるものではなく、他の製造方法でも本発明のセパレータを製造することは可能である。   Hereinafter, the separator of the present invention will be described with an example of the production method thereof. However, the method of producing the separator of the present invention is not limited to this, and the separator of the present invention is produced by other production methods. It is possible.

本発明の電子部品用セパレータにおいては、繊維状シート基材の内部にフッ化ビニリデン樹脂が含まれているものであり、このような電子部品用セパレータを得るためには、加熱により溶融する熱可塑性樹脂微粒子を繊維状シート基材に含ませ、そして樹脂フィルムに重ね合わせた繊維状シート基材にフッ化ビニリデン樹脂の良溶媒及び貧溶媒を含む溶液を塗布した後乾燥するか、繊維状シート基材にフッ化ビニリデン樹脂の良溶媒及び貧溶媒を含む溶液を塗布した後乾燥するか、又は繊維状シート基材に、フッ化ビニリデン樹脂の良溶媒及び貧溶媒を含む溶液を含浸した後乾燥することにより得ることができる。   In the separator for electronic parts of the present invention, the vinylidene fluoride resin is contained inside the fibrous sheet base material, and in order to obtain such a separator for electronic parts, a thermoplastic that melts by heating. The resin fine particle is included in the fibrous sheet base material, and then applied to the fibrous sheet base material superposed on the resin film and then dried or coated with a solution containing a good solvent and a poor solvent of vinylidene fluoride resin. Apply a solution containing a good solvent and a poor solvent of vinylidene fluoride resin to the material and then dry, or impregnate a fibrous sheet base material with a solution containing the good solvent and the poor solvent of vinylidene fluoride resin and dry Can be obtained.

なお、本発明の電子部品用セパレータは、繊維状シート基材の内部にフッ化ビニリデン樹脂の多孔質構造体が含まれていると共に、繊維状シート基材の片面又は両面にフッ化ビニリデン樹脂の多孔質構造体よりなる被膜が形成されていてもよい。   The separator for electronic parts of the present invention includes a porous structure of vinylidene fluoride resin inside the fibrous sheet base material, and a vinylidene fluoride resin on one or both sides of the fibrous sheet base material. A film made of a porous structure may be formed.

セパレータは次のようにして作製される。まず最初に、フッ化ビニリデン樹脂を溶媒に添加する。溶媒としてはフッ化ビニリデン樹脂が溶解するもの(以下、「良溶媒」という。)を選択しなければならない。良溶媒の例として、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、N,N−ジメチルスルホキシド等が挙げられる。フッ化ビニリデン樹脂の分散、溶解は、市販の攪拌機を使用して行うことができる。フッ化ビニリデン樹脂は、上記例示した良溶媒に室温で容易に溶解するので、溶解のために特に加熱する必要はない。その後、フッ化ビニリデン樹脂が溶解しない溶媒(以下、「貧溶媒」という。)を更に添加混合する。貧溶媒としては、良溶媒より沸点の高い溶媒を選択する。貧溶媒の例として、フタル酸ジブチル、エチレングリコール、ジエチレングリコール、グリセリン等が挙げられる。塗布液におけるフッ化ビニリデン樹脂の濃度は、得られるセパレータの特性を考慮に入れて適宜設定することができる。   The separator is manufactured as follows. First, a vinylidene fluoride resin is added to a solvent. As the solvent, a solvent capable of dissolving the vinylidene fluoride resin (hereinafter referred to as “good solvent”) must be selected. Examples of the good solvent include N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, N, N-dimethylsulfoxide and the like. The dispersion and dissolution of the vinylidene fluoride resin can be performed using a commercially available stirrer. Since the vinylidene fluoride resin is easily dissolved in the above-exemplified good solvent at room temperature, it is not particularly necessary to heat it for dissolution. Thereafter, a solvent in which the vinylidene fluoride resin does not dissolve (hereinafter referred to as “poor solvent”) is further added and mixed. As the poor solvent, a solvent having a boiling point higher than that of the good solvent is selected. Examples of the poor solvent include dibutyl phthalate, ethylene glycol, diethylene glycol, glycerin and the like. The concentration of the vinylidene fluoride resin in the coating solution can be appropriately set in consideration of the characteristics of the obtained separator.

一方、繊維状シート基材には、加熱により溶融する熱可塑性樹脂微粒子を散布等の方法で予め含ませておく。次いで、その繊維状シート基材を樹脂フィルムに載置して重ね合わせ、前記で得たフッ化ビニリデン樹脂含有塗布液を繊維状シート基材上に塗布する。樹脂フィルムとしてはポリプロピレンやポリエチレンテレフタレート等の樹脂フィルムを挙げることができる。樹脂フィルムには離型処理、易接着処理等の表面処理を施してもよい。樹脂フィルムとして、柔軟性を有するものが電子部品用セパレータの表面保護膜の機能も有するため好ましい。又、柔軟性を有する樹脂フィルムを用いた場合は、下記の乾燥工程後、樹脂フィルムに電子部品用セパレータが保持されたままの積層物の状態で巻き取って保管・搬送することも可能となるため好ましい。   On the other hand, the fibrous sheet base material contains thermoplastic resin fine particles that melt by heating in advance by a method such as spraying. Next, the fibrous sheet base material is placed on and superposed on the resin film, and the obtained vinylidene fluoride resin-containing coating solution is applied onto the fibrous sheet base material. Examples of the resin film include resin films such as polypropylene and polyethylene terephthalate. The resin film may be subjected to a surface treatment such as a mold release treatment or an easy adhesion treatment. As a resin film, what has a softness | flexibility is preferable since it also has the function of the surface protective film of the separator for electronic components. In addition, when a resin film having flexibility is used, after the following drying process, it is possible to wind up and store and transport the laminate in a state where the separator for electronic parts is held on the resin film. Therefore, it is preferable.

フッ化ビニリデン樹脂を繊維状シート基材上に塗布する方法としては、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等により塗布又はキャスティング法等を挙げることができる。これにより、繊維状シート基材の内部にフッ化ビニリデン樹脂が浸入する。次に、塗布された繊維状シート基材上のフッ化ビニリデン樹脂を含む塗布物から溶媒を乾燥により蒸発させて多孔質構造体を形成する。得られたセパレータを樹脂フィルムから剥離して、本発明の電子部品用セパレータを得ることができる。   Examples of the method for applying the vinylidene fluoride resin on the fibrous sheet base material include application or casting by dip coating, spray coating, roll coating, doctor blade method, gravure coating, screen printing, etc. be able to. As a result, the vinylidene fluoride resin enters the inside of the fibrous sheet base material. Next, the solvent is evaporated by drying from the coated material containing the vinylidene fluoride resin on the coated fibrous sheet substrate to form a porous structure. The obtained separator can be peeled from the resin film to obtain the electronic component separator of the present invention.

以下に、本発明の電子部品用セパレータの実施例を記載するが、本発明は以下の実施例に限定されるものではない。なお、平均孔径は、セパレータと上記樹脂フィルムとが直接接しない面及び接する面の両方をバブルポイント法で測定し、両者を比較の上、孔径が小さい方を測定値とした。また、厚さ方向の孔径分布は電子顕微鏡により観察した。なお、本発明における多孔質構造体の平均孔径は、塗布液の調整、乾燥条件およびプレス条件を適宜選択することによって制御した。   Although the Example of the separator for electronic components of this invention is described below, this invention is not limited to a following example. The average pore diameter was measured by the bubble point method on both the surface where the separator and the resin film were not in direct contact with each other and the surface where the separator was in contact. The pore size distribution in the thickness direction was observed with an electron microscope. In addition, the average pore diameter of the porous structure in the present invention was controlled by appropriately selecting the adjustment of the coating liquid, drying conditions, and pressing conditions.

重量平均分子量30万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整した塗布液を得た。この溶液中に含まれる水分量をカールフィッシャー法で測定したところ、0.6重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に粒径5μmで軟化点が113℃のポリエチレン粒子を1g/m保持させておいたものを載置し、その不織布に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する厚さが20μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は15g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 10 weights The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this solution was measured by the Karl Fischer method, it was 0.6% by weight. Next, on the resin film surface made of polyethylene terephthalate, a 10 μm thick nonwoven fabric made of polyethylene terephthalate fiber was used to hold 1 g / m 2 of polyethylene particles having a particle size of 5 μm and a softening point of 113 ° C. And the said coating liquid was apply | coated to the nonwoven fabric by the casting method. Next, the solvent in the coating solution contained in the nonwoven fabric is evaporated by heat, and the resin film is peeled off, whereby an electron having a thickness of 20 μm having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. A separator for parts was obtained. The peel strength of the resin film with respect to the porous structure was 15 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の平均孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により多孔質構造体の細孔の平均孔径を測定したところ6.0μmであることから、ポリエチレン粒子の一次平均粒子径は細孔の孔径に対して83.3%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The average pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. The average pore size of the pores of the porous structure measured by the bubble point method was 6.0 μm, and it was confirmed that the primary average particle size of the polyethylene particles was 83.3% with respect to the pore size of the pores. did.

重量平均分子量30万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が5重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.65重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に粒径1μmで軟化点が113℃のポリエチレン粒子と粒径が1μmで軟化点が132℃のポリエチレン粒子を15g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが10μmの本発明の電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は0.5g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 5 wt. The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this coating solution was measured by the Karl Fischer method, it was 0.65% by weight. Next, on a resin film surface made of polyethylene terephthalate, a polyethylene particle having a particle size of 1 μm and a softening point of 113 ° C. and a polyethylene particle having a particle size of 1 μm and a softening point of 132 ° C. on a 10 μm thick nonwoven fabric made of polyethylene terephthalate fiber in advance. Was kept at 15 g / m 2 , and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts of the present invention having a thickness of 10 μm. The peel strength of the resin film with respect to the porous structure was 0.5 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は殆ど認められなかった。バブルポイント法により細孔の平均孔径を測定したところ2.1μmであることから、ポリエチレン粒子の一次平均粒子径は、細孔の孔径に対して47.6%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Further, almost no inclination of the pore size distribution was observed in the thickness direction of the separator. When the average pore diameter of the pores was measured by the bubble point method and found to be 2.1 μm, it was confirmed that the primary average particle diameter of the polyethylene particles was 47.6% with respect to the pore diameter of the pores.

重量平均分子量50万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が5重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.5重量%であった。次にポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に粒径3μmで軟化点が113℃のポリエチレン粒子と粒径が3μmで軟化点が148℃のポリプロピレン粒子を30g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが25μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は65g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 5 weights The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.5% by weight. Next, polyethylene particles having a particle size of 3 μm and a softening point of 113 ° C. and polypropylene particles having a particle size of 3 μm and a softening point of 148 ° C. on a 10 μm-thick non-woven fabric made of polyethylene terephthalate fiber in advance on the resin film surface made of polyethylene terephthalate. What was kept at 30 g / m 2 was placed, and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts having a thickness of 25 μm. The peel strength of the resin film with respect to the porous structure was 65 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ4.2μmであることから、ポリエチレン粒子の一次平均粒子径は、細孔の孔径に対して71.4%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. No inclination of the pore size distribution was observed in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method and found to be 4.2 μm, it was confirmed that the primary average particle diameter of the polyethylene particles was 71.4% with respect to the pore diameter of the pores.

重量平均分子量20万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が8重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.5重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に粒径3μmで軟化点が132℃のポリエチレン粒子と粒径が3μmで軟化点が148℃のポリプロピレン粒子を5g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが27μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は17g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 200,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 8 weights The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.5% by weight. Next, a polyethylene film having a particle size of 3 μm and a softening point of 132 ° C. and a polypropylene particle having a particle size of 3 μm and a softening point of 148 ° C. on a 10 μm-thick non-woven fabric made of polyethylene terephthalate fiber are formed on the resin film surface made of polyethylene terephthalate. Of 5 g / m 2 was placed, and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts having a thickness of 27 μm. The peel strength of the resin film with respect to the porous structure was 17 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ4.8μmであることから、ポリエチレン粒子及びポリプロピレン粒子の一次平均粒子径は、細孔の孔径に対して62.5%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method and found to be 4.8 μm, it was confirmed that the primary average particle diameter of the polyethylene particles and the polypropylene particles was 62.5% with respect to the pore diameter of the pores. .

重量平均分子量30万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.51重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ15μmの不織布に粒径0.5μmで軟化点が132℃のポリエチレン粒子を10g/m保持させておいたものを載置し、その不織布上に上記溶液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが15μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は16g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 10 weights The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.51% by weight. Next, on a resin film surface made of polyethylene terephthalate, polyethylene particles having a particle size of 0.5 μm and a softening point of 132 ° C. were held at 10 g / m 2 in a 15 μm-thick nonwoven fabric made of polyethylene terephthalate fibers. The solution was placed on the nonwoven fabric by a casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was subjected to press treatment to obtain an electronic component separator having a thickness of 15 μm. The peel strength of the resin film with respect to the porous structure was 16 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ1.5μmであることから、ポリエチレン粒子の一次平均粒子径は細孔の孔径に対して33.3%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method and found to be 1.5 μm, it was confirmed that the primary average particle diameter of the polyethylene particles was 33.3% with respect to the pore diameter of the pores.

重量平均分子量50万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が8重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.41重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ15μmの不織布に粒径5μmで軟化点が113℃のポリエチレン粒子と粒径が9μmで軟化点が148℃のポリプロピレン粒子を8g/m保持させておいたものを載置し、この不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが20μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は13g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 8 weights The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this coating solution was measured by the Karl Fischer method, it was 0.41% by weight. Next, a polyethylene film having a particle size of 5 μm and a softening point of 113 ° C. and a polypropylene particle having a particle size of 9 μm and a softening point of 148 ° C. on a non-woven fabric having a thickness of 15 μm previously made of polyethylene terephthalate fibers on the resin film surface made of polyethylene terephthalate Was kept at 8 g / m 2 , and the coating solution was applied onto the nonwoven fabric by a casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts having a thickness of 20 μm. In addition, the peeling strength with respect to the porous structure of the resin film was 13 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ10.5μmであることから、ポリエチレン粒子およびポリプロピレン粒子の一次平均粒子径は、細孔の孔径に対してそれぞれ47.6%および85.7%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. The average pore diameter of the pores measured by the bubble point method was 10.5 μm, so the primary average particle diameters of the polyethylene particles and the polypropylene particles were 47.6% and 85.7% with respect to the pore diameters of the pores, respectively. It was confirmed that.

重量平均分子量20万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が8重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.45重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ15μmの不織布に粒径12μmで軟化点が132℃のポリエチレン粒子と粒径が1μmで軟化点が148℃のポリプロピレン粒子を3g/m保持させておいたものを載置し、その不織布上に上記溶液をキャスティング法により塗布した。次に、不織布の内部に含まれる溶液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが18μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は18g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 200,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 8 weights The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.45% by weight. Next, on a resin film surface made of polyethylene terephthalate, polyethylene particles having a particle size of 12 μm and a softening point of 132 ° C. and polypropylene particles having a particle size of 1 μm and a softening point of 148 ° C. on a non-woven fabric having a thickness of 15 μm previously made of polyethylene terephthalate fibers Was kept at 3 g / m 2 , and the solution was applied onto the nonwoven fabric by a casting method. Next, the solvent in the solution contained in the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts having a thickness of 18 μm. The peel strength of the resin film with respect to the porous structure was 18 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により該セパレータの平均孔径を測定したところ14.1μmであることから、ポリエチレン粒子及びポリプロピレン粒子の一次平均粒子径は、細孔の孔径に対して、それぞれ85.1%および7.1%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. The average pore diameter of the separator measured by the bubble point method was 14.1 μm, so the primary average particle diameters of the polyethylene particles and the polypropylene particles were 85.1% and 7.1 respectively with respect to the pore diameter. %.

重量平均分子量50万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が5重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.48重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ20μmの不織布に粒径0.5μmで軟化点が113℃のポリエチレン粒子と粒径が5μmで軟化点が148℃のポリプロピレン粒子を50g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが25μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は21g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 5 weights The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this coating solution was measured by the Karl Fischer method, it was 0.48% by weight. Next, a polyethylene film having a particle size of 0.5 μm and a softening point of 113 ° C. and a particle size of 5 μm and a softening point of 148 ° C. on a 20 μm-thick nonwoven fabric made of polyethylene terephthalate fiber in advance on the resin film surface made of polyethylene terephthalate The polypropylene particles held at 50 g / m 2 were placed, and the coating solution was applied onto the nonwoven fabric by a casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts having a thickness of 25 μm. The peel strength of the resin film with respect to the porous structure was 21 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ5.9μmであることから、ポリエチレン粒子及びポリプロピレン粒子の一次平均粒子径は、細孔の孔径に対して、それぞれ8.5%および84.7%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. The average pore diameter of the pores measured by the bubble point method was 5.9 μm, so the primary average particle diameters of the polyethylene particles and the polypropylene particles were 8.5% and 84.7, respectively, with respect to the pore diameter of the pores. %.

重量平均分子量30万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が5重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.39重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ20μmの不織布に粒径3μmで軟化点が113℃のポリエチレン粒子と粒径が3μmで軟化点が148℃のポリプロピレン粒子を3g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜よりなる厚さが28μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は16g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 5 wt. The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.39% by weight. Next, a polyethylene film having a particle size of 3 μm and a softening point of 113 ° C. and a polypropylene particle having a particle size of 3 μm and a softening point of 148 ° C. on a 20 μm-thick non-woven fabric made of polyethylene terephthalate fiber in advance on the resin film surface made of polyethylene terephthalate Was held at 3 g / m 2 , and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the thickness of the composite film having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers by evaporating the solvent in the coating solution contained in the nonwoven fabric by heat and peeling the resin film Obtained a separator for electronic parts having a thickness of 28 μm. The peel strength of the resin film with respect to the porous structure was 16 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ4.6μmであることから、ポリエチレン粒子及びポリプロピレン粒子の一次平均粒子径は、細孔の孔径に対してそれぞれ65.2%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. The average pore diameter of the pores measured by the bubble point method was 4.6 μm, and it was confirmed that the primary average particle diameters of the polyethylene particles and the polypropylene particles were 65.2% of the pore diameters of the pores, respectively. did.

重量平均分子量20万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が5重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.54重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ20μmの不織布に粒径5μmで軟化点が113℃のポリエチレン粒子と粒径が5μmで軟化点が132℃のポリエチレン粒子を10g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、樹脂フィルムを剥離することによって、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが30μmの電子部品用セパレータを得た。なお、樹脂フィルムの多孔質構造体に対する剥離強度は17g/20mmであった。 A vinylidene fluoride homopolymer having a weight average molecular weight of 200,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 5 wt. The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.54% by weight. Next, a polyethylene film having a particle size of 5 μm and a softening point of 113 ° C. and a polyethylene particle having a particle size of 5 μm and a softening point of 132 ° C. on a 20 μm-thick non-woven fabric made of polyethylene terephthalate fiber on the resin film surface made of polyethylene terephthalate. Of 10 g / m 2 was placed, and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat, and the resin film was peeled off to obtain a composite membrane having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a separator for electronic parts having a thickness of 30 μm. The peel strength of the resin film with respect to the porous structure was 17 g / 20 mm.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ6.3μmであることから、ポリエチレン粒子及びポリプロピレン粒子の一次平均粒子径は細孔の孔径に対して79.4%であることを確認した。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method, it was 6.3 μm. Therefore, it was confirmed that the primary average particle diameter of the polyethylene particles and the polypropylene particles was 79.4% with respect to the pore diameter of the pores.

実施例1において、不織布を構成する繊維の一部を繊維径が0.1デニールのものが10重量%になるように置き換えた以外は、実施例1と同様にして、電子部品用セパレータを得た。この際の不織布の厚さは9μmであった。また得られた電子部品用セパレータの厚さは18μmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ5.7μmであることから、ポリエチレン粒子の一次平均粒子径は細孔の孔径に対して87.7%であることを確認した。   In Example 1, a separator for an electronic component was obtained in the same manner as in Example 1, except that a part of the fibers constituting the nonwoven fabric was replaced so that the fiber diameter was 0.1 denier so that the weight would be 10% by weight. It was. The thickness of the nonwoven fabric at this time was 9 μm. Moreover, the thickness of the obtained separator for electronic components was 18 μm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method and found to be 5.7 μm, it was confirmed that the primary average particle diameter of the polyethylene particles was 87.7% with respect to the pore diameter of the pores.

実施例1において、不織布を構成する繊維の一部を繊維径が0.1デニールのものが50重量%になるように置き換えた以外は、実施例1と同様にして電子部品用セパレータを得た。この際の不織布の厚さは8μmであった。また得られた電子部品用セパレータの厚さは16μmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ5.5μmであることから、ポリエチレン粒子の一次平均粒子径は細孔の孔径に対して90.9%であることを確認した。   In Example 1, a separator for an electronic component was obtained in the same manner as in Example 1 except that a part of the fibers constituting the nonwoven fabric was replaced so that the fiber diameter was 0.1 denier so that it was 50% by weight. . The thickness of the nonwoven fabric at this time was 8 μm. The thickness of the obtained separator for electronic parts was 16 μm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method and found to be 5.5 μm, it was confirmed that the primary average particle diameter of the polyethylene particles was 90.9% with respect to the pore diameter of the pores.

実施例1において、ポリエチレンテレフタレートよりなる樹脂フィルムに直接キャスティング法により、実施例1と同様の塗布液を塗工し、塗布直後に湿潤状態にある塗工面上に、実施例1のポリエチレン粒子を保持した不織布をウェットラミネーションにより重ねた。それ以外は実施例1と同様にして、電子部品用セパレータを得た。得られた電子部品用セパレータの厚さは19μmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ5.9μmであることから、ポリエチレン粒子の一次平均粒子径は細孔の孔径に対して84.7%であることを確認した。   In Example 1, the same coating solution as in Example 1 was applied to a resin film made of polyethylene terephthalate by direct casting, and the polyethylene particles of Example 1 were retained on the coated surface in a wet state immediately after application. The laminated nonwoven fabrics were stacked by wet lamination. Other than that was carried out similarly to Example 1, and obtained the separator for electronic components. The thickness of the obtained separator for electronic parts was 19 μm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method and found to be 5.9 μm, it was confirmed that the primary average particle diameter of the polyethylene particles was 84.7% with respect to the pore diameter of the pores.

実施例12の不織布を用いた他は、実施例13と同様にして電子部品用セパレータを得た。得られた電子部品用セパレータの厚さは18μmであった。この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ5.7μmであることから、ポリエチレン粒子の一次平均粒子径は細孔の孔径に対して87.7%であることを確認した。   An electronic component separator was obtained in the same manner as in Example 13 except that the nonwoven fabric of Example 12 was used. The thickness of the obtained separator for electronic parts was 18 μm. When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method and found to be 5.7 μm, it was confirmed that the primary average particle diameter of the polyethylene particles was 87.7% with respect to the pore diameter of the pores.

[比較例1]
厚さ20μmのポリエチレンテレフタレート繊維よりなる不織布を比較用の電子部品用セパレータとした。
[Comparative Example 1]
A nonwoven fabric made of polyethylene terephthalate fiber having a thickness of 20 μm was used as a separator for electronic parts for comparison.

[比較例2]
重量平均分子量30万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.54重量%であった。次に、ポリエチレンテレフタレートからなる保持材面に、ポリエチレンテレフタレート繊維よりなる厚さ15μmの不織布を載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する厚さが30μmの比較用のセパレータを得た。
[Comparative Example 2]
A vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 10 weights The coating liquid adjusted so that it might become% was obtained. The amount of water contained in this coating solution was measured by the Karl Fischer method and found to be 0.54% by weight. Next, a 15 μm-thick nonwoven fabric made of polyethylene terephthalate fibers was placed on the holding material surface made of polyethylene terephthalate, and the coating solution was applied onto the nonwoven fabric by a casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat to obtain a comparative separator having a thickness of 30 μm having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers.

この電子部品用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータ膜の厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ3.7μmであった。   When this electronic component separator was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected to one side of the separator from the other side by a large number of pores. The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore size distribution was not recognized in the thickness direction of the separator film, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore size of the pores was measured by the bubble point method, it was 3.7 μm.

[比較例3]
重量平均分子量50万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.59重量%であった。次に、ポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ10μmの不織布に粒径3μmで軟化点が113℃のポリエチレン粒子と粒径が1μmで軟化点が132℃のポリエチレン粒子を0.5g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する厚さが15μmの比較用のセパレータを得た。
[Comparative Example 3]
A vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 10 weights The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this coating solution was measured by the Karl Fischer method, it was 0.59% by weight. Next, on the resin film surface made of polyethylene terephthalate, polyethylene particles having a particle size of 3 μm and a softening point of 113 ° C. and polyethylene particles having a particle size of 1 μm and a softening point of 132 ° C. on a 10 μm thick nonwoven fabric made of polyethylene terephthalate fiber in advance. Was held at 0.5 g / m 2 , and the coating solution was applied onto the nonwoven fabric by the casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat to obtain a comparative separator having a thickness of 15 μm having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers.

この比較用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ3.5μmであった。   When this separator for comparison was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected by a large number of pores connected from one side of the separator to the other, The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When the average pore diameter of the pores was measured by the bubble point method, it was 3.5 μm.

[比較例4]
重量平均分子量20万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドン及びジメチルアセトアミド(良溶媒)に溶解し、フタル酸ジブチル(貧溶媒)を添加してフッ化ビニリデンホモポリマー成分が8重量%になるように調整した塗布液を得た。この塗布液中に含まれる水分量をカールフィッシャー法で測定したところ、0.50重量%であった。次にポリエチレンテレフタレートからなる樹脂フィルム面に、予めポリエチレンテレフタレート繊維よりなる厚さ20μmの不織布に粒径1μmで軟化点が113℃のポリエチレン粒子と粒径が5μmで軟化点が148℃のポリプロピレン粒子を60g/m保持させておいたものを載置し、その不織布上に上記塗布液をキャスティング法により塗布した。次に、不織布の内部に含まれる塗布液中の溶剤を熱により蒸発させ、不織布繊維間にフッ化ビニリデンホモポリマーの多孔質構造体を有する複合膜を得た。これにプレス処理を施し、厚さが40μmの比較用のセパレータを得た。
[Comparative Example 4]
A vinylidene fluoride homopolymer having a weight average molecular weight of 200,000 is dissolved in 1-methyl-2-pyrrolidone and dimethylacetamide (good solvent), dibutyl phthalate (poor solvent) is added, and the vinylidene fluoride homopolymer component is 8 weights The coating liquid adjusted so that it might become% was obtained. When the amount of water contained in this coating solution was measured by the Karl Fischer method, it was 0.50% by weight. Next, polyethylene particles having a particle size of 1 μm and a softening point of 113 ° C. and polypropylene particles having a particle size of 5 μm and a softening point of 148 ° C. on a 20 μm-thick non-woven fabric made of polyethylene terephthalate fibers in advance on the resin film surface made of polyethylene terephthalate. What was kept at 60 g / m 2 was placed, and the coating solution was applied onto the nonwoven fabric by a casting method. Next, the solvent in the coating liquid contained inside the nonwoven fabric was evaporated by heat to obtain a composite film having a porous structure of vinylidene fluoride homopolymer between the nonwoven fabric fibers. This was pressed to obtain a comparative separator having a thickness of 40 μm.

この比較用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることを確認した。バブルポイント法により細孔の平均孔径を測定したところ5.8μmであった。   When this separator for comparison was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected by a large number of pores connected from one side of the separator to the other, The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore diameter distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. When an average pore diameter of the pores was measured by a bubble point method, it was 5.8 μm.

[比較例5]
厚さ20μmのポリエチレン製延伸多孔質膜を比較用の電子部品用セパレータとした。[比較例6]
厚さ10μmのポリエチレン製延伸多孔質膜を比較用の電子部品用セパレータとした。
[Comparative Example 5]
A stretched polyethylene membrane having a thickness of 20 μm was used as a separator for electronic parts for comparison. [Comparative Example 6]
A polyethylene stretched porous membrane having a thickness of 10 μm was used as a separator for electronic parts for comparison.

[比較例7]
実施例1におけると同様にして塗布液をキャスティング法により塗布して得た塗工物を、乾燥せずに水に浸漬して溶媒置換し、その後に乾燥した以外は、実施例1と同様にして比較例用セパレータを得た。この比較用セパレータの膜厚は24μmであった。
この比較用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に細孔の繋がりによって通じていることが認められるものの、セパレータ内の孔が、多数のポリエチレン粒子で閉塞している状態が確認された。また、各細孔の孔径はセパレータの厚さより小さかった。また、樹脂フィルムとの接触面側のセパレータ表面は細孔の開き方がまばらであり、極薄いスキン層が形成されていることが認められた。バブルポイント法により細孔の平均孔径を測定したところ、孔径は3.2μmであり、ポリエチレン粒子の粒径よりも小さいことが分かった。
[Comparative Example 7]
The coating material obtained by applying the coating solution by the casting method in the same manner as in Example 1 was immersed in water without being dried, replaced with a solvent, and then dried, and then the same as in Example 1. Thus, a separator for a comparative example was obtained. The thickness of this comparative separator was 24 μm.
When this comparative separator was observed with an electron microscope, it was found that there were no through holes such as pinholes, and that the porous structure communicated from one side of the separator to the other side by pores. However, it was confirmed that the pores in the separator were closed with a large number of polyethylene particles. Moreover, the hole diameter of each pore was smaller than the thickness of the separator. Further, it was confirmed that the separator surface on the contact surface side with the resin film had sparsely opened pores, and an extremely thin skin layer was formed. When the average pore size of the pores was measured by the bubble point method, it was found that the pore size was 3.2 μm, which was smaller than the particle size of the polyethylene particles.

[比較例8]
実施例1の貧溶媒をトリプロピレングリコールに換えた以外は、実施例1と同様に処理して塗工物を得た。その塗工物を貧溶媒を残した状態まで半乾燥した。次に、塗工面内に残っている貧溶媒をアルコールで抽出した後、再度乾燥して比較用セパレータを得た。得られた比較用セパレータの膜厚は25μmであった。
この比較用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に細孔の繋がりが認められ、各細孔の孔径はセパレータの厚さより小さかった。しかし、このセパレータを電子顕微鏡で観察したところ、多孔質構造化しているものの、表面近傍の孔径が非常に大きいことがわかった。また、多孔質構造体の内部において、ポリエチレン粒子で孔が塞がれている状態が多数観察された。バブルポイント法により細孔の平均孔径を測定したところ、孔径は3.4μmであり、ポリエチレン粒子の粒径よりも小さいことが確認された。
[Comparative Example 8]
A coated material was obtained in the same manner as in Example 1 except that the poor solvent in Example 1 was changed to tripropylene glycol. The coated product was semi-dried until the poor solvent remained. Next, after the poor solvent remaining in the coated surface was extracted with alcohol, it was dried again to obtain a comparative separator. The film thickness of the obtained comparative separator was 25 μm.
When this separator for comparison was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was found to be connected to pores from one side of the separator to the other. The pore diameter was smaller than the thickness of the separator. However, when this separator was observed with an electron microscope, it was found that the pore diameter in the vicinity of the surface was very large although it was porous. Moreover, many states in which the pores were closed with polyethylene particles were observed inside the porous structure. When the average pore size of the pores was measured by the bubble point method, it was confirmed that the pore size was 3.4 μm, which was smaller than the particle size of the polyethylene particles.

[比較例9]
実施例1において、ポリエチレン粒子の代わりに、平均粒子径が25μの燐酸カルシウム粒子を塗布液に対して10重量%混合し分散した後に、実施例1と同様に処理して塗工物を得た。それを乾燥した後、更に希硝酸にて燐酸カルシウムを分解し、水洗後、再度乾燥して比較用セパレータを得た。得られた比較用セパレータの膜厚は28μmであった。
この比較用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔が認められ、前記多孔質構造体は、セパレータの片面からもう一方の面に孔の繋がりが認められた。孔各々の径は繊維状シート基材の厚さとほぼ同等であり、また、バブルポイント法により細孔の平均孔径を測定したところ26μmであった。
[Comparative Example 9]
In Example 1, instead of polyethylene particles, calcium phosphate particles having an average particle diameter of 25 μ were mixed and dispersed in a coating solution by 10% by weight, and then treated in the same manner as in Example 1 to obtain a coated product. . After drying it, the calcium phosphate was further decomposed with dilute nitric acid, washed with water, and dried again to obtain a comparative separator. The film thickness of the obtained comparative separator was 28 μm.
When this comparative separator was observed with an electron microscope, through-holes such as pinholes were observed, and in the porous structure, connection of holes was recognized from one side of the separator to the other side. The diameter of each hole was almost the same as the thickness of the fibrous sheet substrate, and the average hole diameter measured by the bubble point method was 26 μm.

[比較例10]
実施例1において貧溶媒を用いない以外は、実施例1と同様にして膜厚22μmの比較用セパレータを得た。得られた比較用セパレータを電子顕微鏡により観察したところ、膜厚方向への連通孔は少なくポリエチレン粒子による閉塞個所が多数確認された。バブルポイント法により細孔の平均孔径を測定したところ0.06μmであった。
[Comparative Example 10]
A comparative separator having a film thickness of 22 μm was obtained in the same manner as in Example 1 except that no poor solvent was used in Example 1. When the obtained comparative separator was observed with an electron microscope, there were few communication holes in the film thickness direction, and a large number of blocked portions with polyethylene particles were confirmed. When an average pore diameter of the pores was measured by a bubble point method, it was 0.06 μm.

[比較例11]
実施例1において、ジメチルアセトアミドを用いない以外は、実施例1と同様にして比膜厚21μmの比較用セパレータを得た。その場合、実施例1に比べて約1.5倍の乾燥時間を要した。
この比較用セパレータを電子顕微鏡で観察したところ、ピンホールなどの貫通孔は存在せず、前記多孔質構造体は、セパレータの片面からもう一方の面に多数の細孔の繋がりによって通じており、各細孔の孔径はセパレータの厚さより小さかった。また、セパレータの厚さ方向で孔径分布の傾斜は認められず、厚さ方向に均質な多孔質構造であることは確認できた。しかしながら、セパレータは全体的に細孔の孔径が小さく、ポリエチレン粒子で閉塞している個所を多々観察された。バブルポイント法により細孔の平均孔径を測定したところ、孔径は0.05μmであり、ポリエチレン粒子の一次平均粒子径以下の孔径であることが分かった。
[Comparative Example 11]
In Example 1, a comparative separator having a specific film thickness of 21 μm was obtained in the same manner as in Example 1 except that dimethylacetamide was not used. In that case, about 1.5 times as much drying time as Example 1 was required.
When this separator for comparison was observed with an electron microscope, there were no through holes such as pinholes, and the porous structure was connected by a large number of pores connected from one side of the separator to the other, The pore diameter of each pore was smaller than the thickness of the separator. Moreover, the inclination of the pore size distribution was not recognized in the thickness direction of the separator, and it was confirmed that the porous structure was homogeneous in the thickness direction. However, the separator had a small pore diameter as a whole, and many places where the separator was clogged with polyethylene particles were observed. When the average pore diameter of the pores was measured by the bubble point method, the pore diameter was 0.05 μm, and it was found that the pore diameter was not more than the primary average particle diameter of the polyethylene particles.

[比較例12]
実施例1において、35℃85%RHの雰囲気下、開放系で作製した塗布液を用いた以外は、実施例1と同様にして比較用セパレータを作製した。得られた比較用セパレータの多孔質膜は、目視上、細孔密度の濃淡がはっきりわかる非常に不均一な膜であった。その膜厚は約24μmであった。なお、使用した塗布液の水分量は、カールフィッシャー法で測定した結果、1.7重量%であった。
[Comparative Example 12]
A comparative separator was produced in the same manner as in Example 1 except that the coating liquid produced in an open system was used in an atmosphere of 35 ° C. and 85% RH. The porous film of the obtained separator for comparison was a very non-uniform film in which the density of pore density can be clearly seen visually. The film thickness was about 24 μm. The water content of the coating solution used was 1.7% by weight as measured by the Karl Fischer method.

上記実施例及び比較例で得られた電子部品用セパレータをリチウムイオン二次電池に使用した場合の特性を下記のように評価した。   The characteristics when the electronic component separators obtained in the above Examples and Comparative Examples were used in lithium ion secondary batteries were evaluated as follows.

〔イオン伝導度〕
上記26種のセパレータに関してイオン伝導度を評価した。測定には、前記26種のセパレータを使用しコイン型セルを作製した。その結果を表1に示す。なお、測定環境、測定装置は次の通りである。
測定環境:20℃50%RH
測定装置:Solartron社製 SI 1287 1255B
[Ionic conductivity]
Ionic conductivity was evaluated for the 26 types of separators. For the measurement, a coin-type cell was prepared using the 26 kinds of separators. The results are shown in Table 1. The measurement environment and measurement apparatus are as follows.
Measurement environment: 20 ° C, 50% RH
Measuring device: Solartron's SI 1287 1255B

Figure 0004705335
Figure 0004705335

表1より明らかなように、本発明の実施例1から14のセパレータは、比較例のものに比して、全般的にイオン伝導性が格段に優れていることが明らかである。これは、低透気度であるということと、電極とセパレータとがセパレータ表面の樹脂層により隙間なく接触していることがイオン伝導性を良くした要因であると考えられる。一方、比較例の中にもイオン伝導性が良好なものが散見されるが、以下に述べる他の特性において、必ずしも良好な結果が得られなかった。   As is clear from Table 1, it is clear that the separators of Examples 1 to 14 of the present invention are generally superior in ionic conductivity as compared with the comparative example. It is considered that this is because the low air permeability and the contact between the electrode and the separator with the resin layer on the separator surface without any gap are the factors that improve the ion conductivity. On the other hand, some of the comparative examples have good ionic conductivity, but good results were not always obtained in other characteristics described below.

〔引張最大点荷重〕
機械的強度の尺度として、上記実施例及び比較例の26種についてJIS K 7161に準拠し引張最大点荷重により引張強度を測定した。その結果を表2に示す。測定環境、測定装置、測定条件は次の通りである。
測定環境:25℃65%RH
測定装置:ORIENTEC社製 UCT−500
初期試料長:10mm
引張速度:50mm/min
引張方向:長尺方向(MD)
[Tensile maximum point load]
As a measure of mechanical strength, the tensile strength was measured by the maximum tensile point load according to JIS K 7161 for 26 types of the above-mentioned Examples and Comparative Examples. The results are shown in Table 2. The measurement environment, measurement device, and measurement conditions are as follows.
Measurement environment: 25 ° C 65% RH
Measuring equipment: UCT-500 manufactured by ORIENTEC
Initial sample length: 10 mm
Tensile speed: 50 mm / min
Tensile direction: Longitudinal direction (MD)

Figure 0004705335
Figure 0004705335

表2より明らかなように、実施例のセパレータは、厚みあたりの最大点荷重が比較例のものと同等以上の強度を有している。したがって、電池製造時に作業性、生産性を損なうことのないセパレータであるといえる。比較例の中でも強度の高いものもあるが、これらについては、多孔質構造体の孔が閉塞状態に近いものもあり、先に示したようにイオン伝導性に劣るか、あるいは後述のシャットダウン性能に劣るものであった。   As is clear from Table 2, the separators of the examples have a strength equal to or greater than that of the comparative example in terms of the maximum point load per thickness. Therefore, it can be said that the separator does not impair workability and productivity during battery production. Although some of the comparative examples have high strength, there are those in which the pores of the porous structure are close to the closed state, and as described above, the ion conductivity is inferior, or the shutdown performance described later is achieved. It was inferior.

〔シャットダウン性〕
上記26種のセパレータに関してシャットダウン性を評価した。測定には、前記26種のセパレータを使用しコイン型セルを作製した。その結果を表3に示す。試験方法としては、満充電したコイン型セルに更に充電を行い、その際の電池内部の温度変化を測定し、温度が下がり始めた点をシャットダウン温度とした。
[Shutdown]
Shutdown performance was evaluated for the 26 types of separators. For the measurement, a coin-type cell was prepared using the 26 kinds of separators. The results are shown in Table 3. As a test method, the fully charged coin cell was further charged, the temperature change inside the battery at that time was measured, and the point at which the temperature began to fall was defined as the shutdown temperature.

Figure 0004705335
Figure 0004705335

表3より明らかなように、実施例のセパレータは、シャットダウン性を有するセパレータであり、電池の安全性に寄与することが分かる。比較例7〜12に関しては、ポリエチレン粒子かまたはポリプロピレン粒子が多孔質構造体の孔を閉塞しており、これらの粒子と多孔質構造体及び繊維とが密着状態にあるために、これら粒子の軟化点以上に温度上昇し、シャットダウン機能が発現しても、上記の粒子とその他の材質との間隙が極めて少ないために、微小デンドライトの成長が抑制されて、過充電における電池反応を抑制しきれなかったものと推察される。一方、実施例のセパレータは、微粒子と他部材との間隙が十分あるために、その間隙を通って微小デンドライトが成長し、過充電による電池反応の暴走を抑制したことと、これとほぼ同時にシャットダウン機能が発現して、二重の安全性機能が働いたものと推察される。   As can be seen from Table 3, the separator of the example is a separator having a shutdown property and contributes to the safety of the battery. Regarding Comparative Examples 7 to 12, since the polyethylene particles or the polypropylene particles block the pores of the porous structure, and the particles, the porous structure, and the fibers are in a close contact state, the softening of these particles Even if the temperature rises above the point and the shutdown function is manifested, the gap between the above particles and other materials is extremely small, so the growth of minute dendrites is suppressed and the battery reaction during overcharging cannot be suppressed. Inferred. On the other hand, since the separator of the example has a sufficient gap between the fine particles and other members, a minute dendrite grows through the gap and the runaway of the battery reaction due to overcharge is suppressed, and the shutdown is almost simultaneously performed. It is inferred that the function appeared and the double safety function worked.

比較例4及び5に関しては、電池反応の暴走が抑制されたものの、イオン伝導性に劣り、本発明の評価項目全てを満足するものは、比較例の中には見出せなかった。

Regarding Comparative Examples 4 and 5, although the runaway of the battery reaction was suppressed, it was inferior in ionic conductivity and could not be found in the Comparative Examples because it satisfied all the evaluation items of the present invention.

Claims (14)

繊維状シート基材および加熱により溶融する熱可塑性樹脂微粒子を含む多孔質構造体よりなるリチウムイオン二次電池又はポリマーリチウム二次電池のための電子部品用セパレータであって、前記多孔質構造体の細孔の平均孔径が0.1〜15μmであり、前記微粒子が、セパレータに1〜50g/mの範囲で含まれ、且つ前記微粒子の一次平均粒子径が前記孔径の1%〜95%の範囲にあり、前記多孔質構造体はフッ化ビニリデン樹脂よりなり、多数の細孔が繋がってセパレータの一面から他面に連通しており、セパレータ面の垂直方向にピンホール状の垂直な貫通孔を有さず、各細孔の孔径はセパレータの厚さより小さいことを特徴とする電子部品用セパレータ。 A separator for electronic parts for a lithium ion secondary battery or a polymer lithium secondary battery comprising a fibrous sheet substrate and a porous structure containing thermoplastic resin fine particles that melt upon heating, wherein the porous structure The pores have an average pore size of 0.1 to 15 μm, the fine particles are contained in the separator in a range of 1 to 50 g / m 2 , and the primary average particle size of the fine particles is 1% to 95% of the pore size. range near is, the porous structure is made of polyvinylidene fluoride, communicates with the other surface from one surface of the separator a number of pores connected, pinhole-shaped vertical penetration in the vertical direction of the separator surface The separator for electronic components characterized by not having a hole and having a pore diameter smaller than the thickness of the separator. 前記繊維状シート基材が、織布、不織布又は網状物であることを特徴とする請求項1に記載の電子部品用セパレータ。   The separator for electronic parts according to claim 1, wherein the fibrous sheet base material is a woven fabric, a nonwoven fabric or a net-like material. 前記不織布が、繊維径0.15デニール以下の繊維を少なくとも1重量%以上含むことを特徴とする請求項2に記載の電子部品用セパレータ。   The separator for electronic parts according to claim 2, wherein the nonwoven fabric contains at least 1% by weight of fibers having a fiber diameter of 0.15 denier or less. 前記微粒子が、ポリエチレン及び/又はポリプロピレンからなることを特徴とする請求項1に記載の電子部品用セパレータ。   The separator for electronic parts according to claim 1, wherein the fine particles are made of polyethylene and / or polypropylene. 前記多孔質構造体が、繊維状シート基材の表面及び/又は内部に形成されていることを特徴とする請求項1に記載の電子部品用セパレータ。   The separator for an electronic component according to claim 1, wherein the porous structure is formed on a surface and / or inside of a fibrous sheet base material. セパレータの厚さが5〜30μmであることを特徴とする請求項1乃至のいずれかに記載の電子部品用セパレータ。 Electronic component separator according to any one of claims 1 to 5 the thickness of the separator is characterized in that it is a 5 to 30 [mu] m. 請求項1に記載の電子部品用セパレータを得るための製造方法であって、樹脂フィルム上に、加熱により溶融する熱可塑性樹脂微粒子を含む繊維状シート基材を載置する工程、該繊維状シート基材の上に、フッ化ビニリデン樹脂とその良溶媒及び貧溶媒を含有する塗布液を塗工する工程、形成された塗工層を乾燥して溶媒を除去することによって繊維状シート基材の表面及び/又は内部に多孔質構造体を形成する工程、その後樹脂フィルムを除去することによって繊維状シート基材および加熱により溶融する熱可塑性樹脂微粒子を含む多孔質構造体よりなるセパレータを得る工程を含み、該塗布液中に含まれる水分量がカールフィッシャー法による測定で0.7重量%以下であることを特徴とする電子部品用セパレータの製造方法。 It is a manufacturing method for obtaining the separator for electronic components of Claim 1, Comprising: The process of mounting the fibrous sheet base material containing the thermoplastic resin microparticles | fine-particles melted by heating on this resin film, This fibrous sheet A step of applying a coating solution containing a vinylidene fluoride resin and its good and poor solvents on the substrate, and drying the formed coating layer to remove the solvent, thereby removing the solvent from the fibrous sheet substrate. A step of forming a porous structure on the surface and / or inside, and then a step of obtaining a separator comprising a fibrous sheet base material and a porous structure containing thermoplastic resin fine particles that are melted by heating by removing the resin film. A method for producing a separator for electronic parts, characterized in that the amount of water contained in the coating liquid is 0.7% by weight or less as measured by the Karl Fischer method. 請求項1に記載の電子部品用セパレータを得るための製造方法であって、樹脂フィルム上に、フッ化ビニリデン樹脂とその良溶媒及び貧溶媒を含有する塗布液を塗工して塗工層を形成する工程、加熱により溶融する熱可塑性樹脂微粒子を含む繊維状シート基材を前記塗工層に重ね合わせる工程、その後、乾燥して溶媒を除去することによって繊維状シート基材の表面及び/又は内部に多孔質構造体を形成する工程、その後樹脂フィルムを除去することによって繊維状シート基材および加熱により溶融する熱可塑性樹脂微粒子を含む多孔質構造体よりなるセパレータを得る工程を含み、該塗布液中に含まれる水分量がカールフィッシャー法による測定で0.7重量%以下であることを特徴とする電子部品用セパレータの製造方法。 It is a manufacturing method for obtaining the separator for electronic components of Claim 1, Comprising: On the resin film, the coating liquid containing a vinylidene fluoride resin, its good solvent, and a poor solvent is applied, and a coating layer is formed. A step of forming, a step of superimposing a fibrous sheet base material containing thermoplastic resin fine particles that melt upon heating on the coating layer, and then drying to remove the solvent and / or the surface of the fibrous sheet base material A step of forming a porous structure inside, and then a step of obtaining a separator composed of a fibrous sheet base material and a porous structure containing thermoplastic resin fine particles melted by heating by removing the resin film, A method for producing a separator for electronic parts, wherein the amount of water contained in the liquid is 0.7% by weight or less as measured by the Karl Fischer method. 前記塗布液における貧溶媒の沸点が、良溶媒の沸点よりも高いことを特徴とする請求項7又は8に記載の電子部品用セパレータの製造方法。 The method for producing a separator for electronic parts according to claim 7 or 8 , wherein the boiling point of the poor solvent in the coating solution is higher than the boiling point of the good solvent. 前記繊維状シート基材が、織布、不織布又は網状物であることを特徴とする請求項7又は8に記載の電子部品用セパレータの製造方法。 The method for producing a separator for electronic parts according to claim 7 or 8 , wherein the fibrous sheet base material is a woven fabric, a nonwoven fabric or a net-like material. 前記不織布が、繊維径0.15デニール以下の繊維を少なくとも1重量%以上含むことを特徴とする請求項10に記載の電子部品セパレータの製造方法。 The method for producing an electronic component separator according to claim 10 , wherein the nonwoven fabric contains at least 1% by weight of fibers having a fiber diameter of 0.15 denier or less. 前記微粒子がポリエチレン及び/又はポリプロピレンからなることを特徴とする請求項7又は8に記載の電子部品用セパレータの製造方法。 The method for producing a separator for electronic parts according to claim 7 or 8 , wherein the fine particles are made of polyethylene and / or polypropylene. セパレータの厚さが5〜30μmであることを特徴とする請求項7又は8に記載の電子部品用セパレータの製造方法。 The method for producing a separator for electronic parts according to claim 7 or 8 , wherein the separator has a thickness of 5 to 30 µm. 前記樹脂フィルムの多孔質構造体に対する剥離強度が0.1〜75g/20mmであることを特徴とする請求項7又は8に記載の電子部品用セパレータの製造方法。 The method for producing a separator for electronic parts according to claim 7 or 8 , wherein the peel strength of the resin film with respect to the porous structure is 0.1 to 75 g / 20 mm.
JP2004080296A 2004-03-19 2004-03-19 Separator for electronic parts and method for manufacturing the same Expired - Lifetime JP4705335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080296A JP4705335B2 (en) 2004-03-19 2004-03-19 Separator for electronic parts and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080296A JP4705335B2 (en) 2004-03-19 2004-03-19 Separator for electronic parts and method for manufacturing the same

Publications (3)

Publication Number Publication Date
JP2005268096A JP2005268096A (en) 2005-09-29
JP2005268096A5 JP2005268096A5 (en) 2006-09-14
JP4705335B2 true JP4705335B2 (en) 2011-06-22

Family

ID=35092409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080296A Expired - Lifetime JP4705335B2 (en) 2004-03-19 2004-03-19 Separator for electronic parts and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4705335B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066967A1 (en) * 2005-12-06 2007-06-14 Lg Chem, Ltd. Organic/ inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same
DE102007042554B4 (en) 2007-09-07 2017-05-11 Carl Freudenberg Kg Nonwoven with particle filling
BRPI0908031B1 (en) 2008-02-20 2020-06-09 Freudenberg Carl Kg layer with a main body of fibers, process for preparing a layer, using a layer and fuel cells, batteries or capacitors
KR101301446B1 (en) * 2011-03-28 2013-08-28 삼성전기주식회사 Secondary battery fibrous separation membrane and method thereof
DE102011003186A1 (en) * 2011-01-26 2012-07-26 Evonik Degussa Gmbh Thin, macroporous polymer films
JP5829552B2 (en) * 2012-03-06 2015-12-09 三菱製紙株式会社 Method for producing separator for metal ion secondary battery
KR101894134B1 (en) * 2015-03-30 2018-09-04 주식회사 엘지화학 A multi-layered separator based cellulose
EP3667769A4 (en) 2018-01-17 2020-10-14 Lg Chem, Ltd. Separator and electrochemical device including same
WO2019163635A1 (en) 2018-02-20 2019-08-29 三菱製紙株式会社 Nonwoven fabric coating machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215749A (en) * 1993-01-13 1994-08-05 Sumitomo Electric Ind Ltd Diaphragm and battery using thereof
JP2003317693A (en) * 2002-04-24 2003-11-07 Teijin Ltd Separator for lithium ion secondary cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215749A (en) * 1993-01-13 1994-08-05 Sumitomo Electric Ind Ltd Diaphragm and battery using thereof
JP2003317693A (en) * 2002-04-24 2003-11-07 Teijin Ltd Separator for lithium ion secondary cell

Also Published As

Publication number Publication date
JP2005268096A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
KR100699215B1 (en) Separator for electric component and method for producing the same
JP4676728B2 (en) Separator for electronic parts and method for manufacturing the same
JP5031835B2 (en) Heat-resistant ultrafine fiber separation membrane and secondary battery using the same
JP4705334B2 (en) Separator for electronic parts and method for manufacturing the same
JP5591704B2 (en) Batteries having inorganic / organic porous membrane
JP4974448B2 (en) Manufacturing method of separator for electronic parts
JP4832430B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP4163894B2 (en) Separator for lithium ion secondary battery
JP5495210B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
KR102366306B1 (en) A separator for an electrochemical device and a method for preparing the same
JP5837437B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US9755208B2 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
JP2992598B2 (en) Lithium ion battery
JP2011035373A (en) Separator for power storage device
KR20150141403A (en) Complex fibrous separator, manufacturing method thereof and secondary battery using the same
JPWO2013054889A1 (en) Microporous membrane and method for producing the same
JP4705335B2 (en) Separator for electronic parts and method for manufacturing the same
CN105619991B (en) A kind of composite lithium ion cell diaphragm material and preparation method thereof
JP2016182817A (en) Laminate
JP2016182816A (en) Laminate and method for producing the same
JP2006351365A (en) Separator for electronic components, and the electronic component
JP4017744B2 (en) Solid-type polymer electrolyte membrane and method for producing the same
JP2010287697A (en) Separator for energy storage device
JP5951982B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350