WO2020059471A1 - Positive electrode active material for secondary battery, and method for producing same - Google Patents

Positive electrode active material for secondary battery, and method for producing same Download PDF

Info

Publication number
WO2020059471A1
WO2020059471A1 PCT/JP2019/034407 JP2019034407W WO2020059471A1 WO 2020059471 A1 WO2020059471 A1 WO 2020059471A1 JP 2019034407 W JP2019034407 W JP 2019034407W WO 2020059471 A1 WO2020059471 A1 WO 2020059471A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
positive electrode
active material
electrode active
particles
Prior art date
Application number
PCT/JP2019/034407
Other languages
French (fr)
Japanese (ja)
Inventor
朱里 細野
恭崇 飯田
Original Assignee
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019097568A external-priority patent/JP6669920B1/en
Application filed by 株式会社田中化学研究所 filed Critical 株式会社田中化学研究所
Priority to CN201980061771.2A priority Critical patent/CN112740442A/en
Priority to KR1020217011795A priority patent/KR102648286B1/en
Priority to EP19861675.7A priority patent/EP3855541A4/en
Publication of WO2020059471A1 publication Critical patent/WO2020059471A1/en
Priority to US17/202,407 priority patent/US20210210757A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a secondary battery and a method for producing the same, and more particularly, to a positive electrode active material for a secondary battery capable of exhibiting excellent cycle characteristics under any environment of ordinary temperature and high temperature, and a method for producing the same. .
  • secondary batteries have been used in a wide variety of fields, such as mobile devices and vehicles that use or use electricity as a power source.
  • a lithium metal composite oxide powder containing nickel, cobalt, and manganese is used as the positive electrode active material of the secondary battery.
  • secondary batteries are required to be able to exhibit a high output stably in response to environmental changes such as ambient temperature. Therefore, the positive electrode active material for a secondary battery is required to have a stable and excellent cycle characteristic even when the environment such as the ambient temperature fluctuates.
  • the lithium nickel cobalt manganese composite oxide cathode material of Patent Document 1 contains primary single crystal particles and a small amount of secondary aggregated particles, and the primary single crystal particles have a particle size of 0.5 to 10 ⁇ m and a particle size of 5 ⁇ m or less. The particle size is controlled so that the cumulative% of the particles exceeds 60%.
  • Patent Document 1 Although excellent cycle characteristics can be obtained under a slightly high temperature condition, there is room for improvement in obtaining excellent cycle characteristics over a temperature range from room temperature to high temperature.
  • the conventional positive electrode active material for a secondary battery discloses improvement in cycle characteristics under a predetermined temperature condition.
  • the usage environment of the secondary battery may fluctuate depending on the usage conditions and installation environment of the equipment to be mounted, such as the ambient temperature. Therefore, there is a need for a positive electrode active material for a secondary battery that can stably exhibit excellent cycle characteristics even when the use environment such as the ambient temperature fluctuates.
  • an object of the present invention is to provide a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under both normal temperature and high temperature environments, and a method for producing the same.
  • An embodiment of the present invention provides a positive electrode active material for a secondary battery having a layered structure including at least one of nickel, cobalt, and manganese, which is a secondary particle that is an aggregate of single crystal particles and / or a plurality of primary particles.
  • the average particle strength of the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ⁇ 1.0 ⁇ m is 200 MPa or more;
  • D50 particle diameter
  • the average particle strength of the positive electrode active material for a secondary battery refers to the positive electrode active material particles for a secondary battery arbitrarily selected from a particle diameter (D50) ⁇ 1.0 ⁇ m having a cumulative volume percentage of 50% by volume.
  • the particle strength (MPa) 2.8 ⁇ the weight at the time of crushing (N) / ( ⁇ , based on the value of the weight at the time of crushing (N) measured by Shimadzu Micro Compression Testing Machine MCT-510.
  • X particle diameter (mm) x particle diameter (mm)) this operation is performed for 10 particles, and the average particle intensity is calculated from each particle intensity of 10 particles.
  • An embodiment of the present invention provides a positive electrode active material for a secondary battery having a layered structure including at least one of nickel, cobalt, and manganese, which is a secondary particle that is an aggregate of single crystal particles and / or a plurality of primary particles.
  • the average particle strength of the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ⁇ 1.0 ⁇ m is 200 MPa or more;
  • the rate of change of the lattice constant before and after the cycle test was calculated as (a axis before the cycle test / a axis after the cycle test)
  • ⁇ 100 A
  • ⁇ 100 C
  • a positive electrode active material for a secondary battery in which at least one of A and C in a cycle test at 25 ° C. and 60 ° C. is 99.30% or more and 100.90% or less.
  • the “cycle test” means that a laminate cell is prepared using a positive electrode active material for a secondary battery, charged at 4.2 V / CC, 2 C, discharged at 3.0 V / CC, 2 C at 25 ° C., 1000 cycles, 60 cycles.
  • a charge / discharge test at 500 ° C. cycles.
  • An embodiment of the present invention is an active material for a secondary battery in which the cumulative volume percentage is 50% by volume and the particle diameter D50 is 2.0 ⁇ m or more and 20.0 ⁇ m or less.
  • An embodiment of the present invention is an active material for a secondary battery having a BET specific surface area of 0.1 m 2 / g or more and 5.0 m 2 / g or less.
  • An embodiment of the present invention is a secondary battery including the above-described positive electrode active material for a secondary battery.
  • An aspect of the present invention is to provide a composite hydroxide particle containing at least one of nickel (Ni), cobalt (Co) and manganese (Mn) with a lithium (Li) compound and at least one of Ni, Co and Mn.
  • a step of adding a mixture of lithium compound and composite hydroxide particles by adding at least an atomic ratio of 1.00 ⁇ Li / M1 ⁇ 1.30 to a metal element (M1) composed of at least one kind of metal element (M1);
  • the mixture is represented by the following formula p ⁇ ⁇ 600q + 1603 (where q is an atomic ratio of Li to the total of at least one metal element (M1) of Ni, Co and Mn (Li / M1); 1.00 ⁇ q ⁇ 1.30, p is a main firing temperature, and means a firing temperature represented by 940 ° C.
  • a calcination step performed before the main sintering step, wherein the sintering temperature is 300 ° C. or more and 800 ° C. or less; (2) a tempering step performed after the main firing step, wherein the firing temperature is 600 ° C. or more and 900 ° C.
  • M2 is Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge , P, Pb, Si, Sb, Nb, Ta, Re, and Bi, which means at least one metal element selected from the group consisting of: A method for producing a positive electrode active material for a secondary battery, the method including at least one step of the above.
  • the particle size distribution width of the composite hydroxide particles is set to 0.40 ⁇ (D90 ⁇ D10) /D50 ⁇ 1.00.
  • a ratio of a surface area (S) of the mixture including a contact surface with the sheath to a volume (V) of the mixture when the mixture is filled in a sheath is as follows: This is a method for producing a positive electrode active material for a secondary battery in which 0.08 ⁇ S / V ⁇ 2.00.
  • the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ⁇ 1.0 ⁇ m have an average particle strength of 200 MPa or more, and the powder X-ray diffraction pattern using CuK ⁇ rays
  • D50 particle diameter
  • the full width at half maximum of the diffraction peak on the high angle side is ⁇
  • ⁇ / ⁇ is By satisfying 0.97 ⁇ ⁇ / ⁇ 1.25, it is possible to obtain a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under both normal temperature and high temperature environments.
  • the average particle strength of particles having a particle diameter (D50) of ⁇ 1.0 ⁇ m having a cumulative volume percentage of 50% by volume is 200 MPa or more, and X in a cycle test of a positive electrode using CuK ⁇ radiation.
  • a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics can be obtained.
  • a mixture of a lithium compound and composite hydroxide particles having an atomic ratio of 1.00 ⁇ Li / M1 ⁇ 1.30 is subjected to main firing to obtain p ⁇ ⁇ 600q + 1603 (where q is , At least the atomic ratio (Li / M1) of Li to the total of the metal elements (M1) composed of at least one of Ni, Co and Mn, where 1.00 ⁇ q ⁇ 1.30, and p is the firing temperature. 940 ° C. ⁇ p ⁇ 1100 ° C.) to produce a positive electrode active material for a secondary battery capable of exhibiting excellent cycle characteristics under both normal temperature and high temperature environments by firing at a firing temperature of 940 ° C. ⁇ p ⁇ 1100 ° C. Can be.
  • FIGS. 1A and 1B are schematic diagrams schematically illustrating an example of a lithium secondary battery.
  • the positive electrode active material for a secondary battery of the present invention is a secondary particle formed by agglomeration of single crystal particles and / or a plurality of primary particles, and has a layered structure containing at least one of nickel, cobalt, and manganese. Having.
  • the shape of the positive electrode active material for a secondary battery of the present invention is not particularly limited, and has various shapes. Examples thereof include a substantially spherical shape, a substantially cubic shape, and a substantially rectangular parallelepiped shape.
  • the positive electrode active material for a secondary battery of the present invention includes one of single crystal particles and secondary particles formed by aggregating a plurality of primary particles, or both single crystal particles and secondary particles.
  • FIG. 1 which is a scanning electron microscope (SEM) image of the positive electrode active material for a secondary battery of the present invention, contains both single crystal particles and secondary particles. As shown in FIG. 1, single crystal particles are in the form of primary particles, and secondary particles are particles formed by aggregating a plurality of primary particles.
  • the crystal structure of the positive electrode active material for a secondary battery of the present invention is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structure is P3, P31, P32, R3, P-3, R-3, P312, P321, P3112, P3121, P3212, P3221, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P61, P65, P62, P64, P63, P-6, P6 / m, P63 / m, P622, From P6122, P6522, P6222, P6422, P6322, P6mm, P6cc, P63cm, P63mc, P-6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P63 / mcm, P63 / mmc It belongs to any one space group selected from the group consisting of:
  • the monoclinic crystal structure is composed of P2, P21, C2, Pm, Pc, Cm, Cc, P2 / m, P21 / m, C2 / m, P2 / c, P21 / c, and C2 / c. It belongs to any one space group selected from the group.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal structure belonging to C2 / m. Particularly preferred is a structure.
  • the cumulative volume percentage of the positive electrode active material for a secondary battery of the present invention is in the range of a particle diameter (D50) of 50% by volume (hereinafter sometimes simply referred to as “D50”) ⁇ 1.0 ⁇ m, that is, (D50) ⁇
  • D50 particle diameter
  • the average particle strength of the particles in the range of 1.0 ⁇ m to (D50) +1.0 ⁇ m is 200 MPa or more. This excellent average particle strength is considered to be due to the fact that the positive electrode active material for a secondary battery of the present invention contains single crystal particles.
  • the average particle strength of ⁇ 1.0 ⁇ m is not particularly limited as long as it is 200 MPa or more, but the lower limit is 230 MPa from the viewpoint of exhibiting more excellent cycle characteristics under both normal temperature and high temperature environments.
  • the upper limit of the average particle strength of (D50) ⁇ 1.0 ⁇ m is not particularly limited, but, for example, is preferably 3000 MPa, more preferably 2200 MPa, and still more preferably 1000 MPa from the viewpoint of efficient production. 700 MPa is particularly preferred.
  • the above lower limit and upper limit can be arbitrarily combined.
  • the lower limit of D50 of the positive electrode active material for a secondary battery of the present invention is not particularly limited, but is preferably 2.0 ⁇ m, more preferably 2.5 ⁇ m, and particularly preferably 3.0 ⁇ m from the viewpoint of improving the handling properties.
  • the upper limit of D50 of the positive electrode active material for a secondary battery is preferably 20.0 ⁇ m, particularly preferably 15.0 ⁇ m, from the viewpoint of improving the density and ensuring a contact surface with the electrolytic solution.
  • the above lower limit and upper limit can be arbitrarily combined.
  • the full width at half maximum of the diffraction peak on the low angle side of two diffraction peaks appearing in the range of 2 ⁇ 64.5 ⁇ 1 °.
  • Is ⁇ and ⁇ is the full width at half maximum of the diffraction peak on the high angle side
  • ⁇ / ⁇ is the configuration of the full width at half maximum of the diffraction peak in which 0.97 ⁇ ⁇ / ⁇ ⁇ 1.25, or CuK ⁇ ray was used.
  • ⁇ / ⁇ is not particularly limited as long as it is 0.97 or more and 1.25 or less, but from the viewpoint of obtaining more excellent cycle characteristics stably at both normal temperature and high temperature, from 1.00 to 1.25.
  • the following is more preferable, and the range of 1.03 to 1.13 is particularly preferable.
  • the rate of change of the lattice constant In the range of the average particle strength in the range of (D50) ⁇ 1.0 ⁇ m and the cycle test at 25 ° C. and 60 ° C., at least one of A and C is 99.30% or more.
  • a lattice constant change rate of 100.90% or less it is possible to obtain a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under both normal temperature and high temperature environments. That is, in the 25 ° C. cycle test (normal temperature cycle test) and the 60 ° C. cycle test (high temperature cycle test), the rate of change of at least one of the a-axis and c-axis lattice constants is 99.30% or more and 100.
  • the inventors of the present invention have found that the control at 90% or less contributes to imparting excellent cycle characteristics under both normal temperature and high temperature environments. This is considered to be due to the fact that the change in the crystal structure of the positive electrode active material for the secondary battery before and after the cycle test was reduced in the normal temperature and high temperature cycle tests.
  • both A and C are preferably from 99.30% to 100.90%, and both A and C are particularly preferably from 99.32% to 100.90%.
  • the composition of the positive electrode active material for a secondary battery of the present invention is not particularly limited as long as the composition contains at least one metal element of nickel, cobalt, and manganese.
  • the following general formula (1) Li [Li a (M1 x M2 y ) 1-a ] O 2 + b (1)
  • a is preferably 0 ⁇ a ⁇ 0.30, more preferably 0 ⁇ a ⁇ 0.20, and particularly preferably 0 ⁇ a ⁇ 0.10.
  • B is not particularly limited.
  • M1 is 1 of Ni, Co and Mn.
  • the composition of Ni, Co and Mn is not particularly limited, but the Ni composition range is preferably from 10 mol% to 90 mol%, more preferably from 30 mol% to 80 mol%, and more preferably 50 mol% or more.
  • the content of Co is particularly preferably 60 mol% or less. Is preferably from 10 mol% to 50 mol%, more preferably from 10 mol% to 30 mol%, and the Mn composition range is preferably from 0 mol% to 50 mol%, more preferably from 0 mol% to 40 mol%, and M2 is Fe. , Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge, P, Pb, Si, Sb, Nb, Ta, Re and Bi. And at least one type of metal element). Among them, by including M2 which is an arbitrary metal element, more excellent cycle characteristics can be obtained stably at both normal temperature and high temperature environments. Among these arbitrary metal elements, Zr and Al are preferable.
  • the positive electrode active material for a secondary battery of the present invention can be used, for example, as a positive electrode active material for a lithium ion secondary battery.
  • the BET specific surface area of the positive electrode active material for a secondary battery of the present invention is not particularly limited, for example, the lower limit is 0.10 m 2 from the viewpoint of improving density and ensuring a contact surface with an electrolyte. / G is preferred, and 0.30 m 2 / g is particularly preferred.
  • the upper limit is preferably 5.0 m 2 / g, more preferably 4.0 m 2 / g, particularly preferably 2.0 m 2 / g. The above lower limit and upper limit can be arbitrarily combined.
  • composite hydroxide particles having at least one of nickel, cobalt, and manganese are prepared.
  • the composite hydroxide particles are a precursor of a positive electrode active material for a secondary battery.
  • the precursor used in the present invention may be a composite oxide having at least one of nickel, cobalt and manganese.
  • the method for preparing the composite hydroxide particles is as follows.
  • a nickel salt solution for example, a sulfate solution
  • a cobalt salt solution for example, a sulfate solution
  • a manganese salt solution for example, a sulfate solution
  • a complexing agent for example, a complexing agent and a pH adjusting agent are appropriately added to react in a reaction vessel to prepare composite hydroxide particles
  • a slurry suspension containing the particles is obtained.
  • a solvent for the suspension for example, water is used.
  • the complexing agent to be added to the metal salt solution is not particularly limited as long as it can form a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion donor (ammonium sulfate, chloride, etc.) Ammonium, ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetate, and glycine.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the pH adjusting agent and the complexing agent are appropriately and continuously supplied to the reaction tank in addition to the metal salt solution, the metals (one or more of nickel, cobalt, and manganese) of the metal salt solution undergo a coprecipitation reaction, Composite hydroxide particles are prepared.
  • the temperature of the reaction vessel is controlled, for example, in the range of 10 ° C. to 80 ° C., preferably 20 to 70 ° C., and the pH value in the reaction vessel is adjusted to a pH of 9 ° C.
  • the substance in the reaction vessel is appropriately stirred while controlling the pH within a range of from pH 13 to preferably pH 11 to 13.
  • the reaction tank include a continuous type in which the formed composite hydroxide particles overflow to separate them, and a batch type in which the composite hydroxide particles are not discharged out of the system until the end of the reaction.
  • the composite oxide particles obtained as described above are filtered from the suspension, washed with water, and heat-treated to obtain powdery composite hydroxide particles. If necessary, a step of narrowing (D90-D10) / D50 of the particle size distribution width of the obtained composite hydroxide particles may be added by, for example, a dry classifier.
  • the lower limit of D50 of the composite hydroxide particles that are the precursor of the positive electrode active material for a secondary battery of the present invention is not particularly limited, but is preferably 2.0 ⁇ m, more preferably 2.5 ⁇ m, from the viewpoint of improving handling properties. And 3.0 ⁇ m are particularly preferred.
  • the upper limit of D50 of the composite hydroxide particles is preferably 25.0 ⁇ m, particularly preferably 20.0 ⁇ m, from the viewpoint of enhancing the reaction with the lithium compound during firing. The above lower limit and upper limit can be arbitrarily combined.
  • the particle size distribution of the composite hydroxide particles is not particularly limited, but the lower limit of the value of (D90 ⁇ D10) / D50 is preferably 0.40, and more preferably 0.50, from the viewpoint of an efficient production range. Is more preferable, and 0.70 is particularly preferable.
  • the upper limit of the value of (D90 ⁇ D10) / D50 of the composite hydroxide particles is set at 1 because the superior cycle characteristics can be obtained under a normal temperature environment and the superior cycle characteristics can be obtained under a high temperature environment. 0.000 is more preferable, 0.96 is more preferable, and 0.80 is particularly preferable from the viewpoint of obtaining further excellent cycle characteristics under a normal temperature environment.
  • the above lower limit and upper limit can be arbitrarily combined.
  • a lithium compound is added to the obtained powdery composite hydroxide particles to prepare a mixture of the composite hydroxide particles and the lithium compound.
  • the lithium compound is added so that the atomic ratio satisfies 1.00 ⁇ Li / M1 ⁇ 1.30.
  • the lithium compound is not particularly limited as long as it is a compound having lithium, and examples thereof include lithium carbonate and lithium hydroxide.
  • the obtained mixture is fired (hereinafter, sometimes referred to as main firing) at a firing temperature represented by the following formula.
  • main firing the formula p ⁇ ⁇ 600q + 1603 (where q is the atomic ratio of Li to the total of at least one metal element (M1) of Ni, Co and Mn) (Li / M1). 00 ⁇ q ⁇ 1.30, p is a main firing temperature, and means firing at a firing temperature represented by 940 ° C. ⁇ p ⁇ 1100 ° C.).
  • the firing time in the firing step at the above firing temperature is not particularly limited, but is, for example, preferably 5 to 20 hours, and particularly preferably 8 to 15 hours.
  • the rate of temperature rise in the main firing is preferably 50 to 550 ° C./h, more preferably 100 to 400 ° C./h, and 140 ° C. to 380 ° C./h from the viewpoint of keeping the material temperature and the temperature of the firing furnace equal. Is particularly preferred.
  • the atmosphere for the main firing is not particularly limited, and examples thereof include air and oxygen.
  • the firing furnace used for the main firing is not particularly limited, and examples thereof include a stationary box furnace and a roller hearth continuous furnace.
  • the surface area (S) including the contact surface of the filler with the sheath and the filler is not particularly limited, but is preferably 0.08 mm 2 / mm 3 from the viewpoint of making the temperature of the filling uniform.
  • the upper limit is not particularly limited, but is preferably 2.00 mm 2 / mm 3 from the viewpoint of productivity, more preferably 0.68 mm 2 / mm 3, and particularly preferably 0.36mm 2 / mm 3.
  • the above lower limit and upper limit can be arbitrarily combined.
  • a sheath having an inner size of 130 mm ⁇ 130 mm ⁇ 88 mm or 280 mm ⁇ 280 mm ⁇ 88 mm is exemplified.
  • the calcining step is a step for releasing the gas contained in the raw material and oxidizing the same to make the crystallinity of the positive electrode active material for a secondary battery more preferable.
  • the calcination is, for example, preferably at least 300 ° C and at most 800 ° C, particularly preferably at least 650 ° C and at most 760 ° C.
  • the calcination time of the calcination is not particularly limited, but is, for example, preferably 1 to 20 hours, and particularly preferably 3 to 10 hours.
  • the rate of temperature rise in the preliminary firing is preferably 50 to 550 ° C / h, more preferably 100 to 400 ° C / h, and 140 ° C to 380 ° C / h from the viewpoint of keeping the material temperature and the temperature of the firing furnace equal. Is particularly preferred.
  • the atmosphere for the preliminary firing is not particularly limited, and examples thereof include air and oxygen.
  • the firing furnace used for the preliminary firing is not particularly limited, and examples thereof include a stationary box furnace and a roller hearth continuous furnace.
  • the tempering step is a step for making the crystallinity of the positive electrode active material for a secondary battery more preferable.
  • the tempering step is, for example, preferably at least 600 ° C and no more than 900 ° C, particularly preferably at least 650 ° C and no more than 860 ° C.
  • the firing time for tempering is not particularly limited, but is, for example, preferably 1 to 20 hours, and particularly preferably 3 to 10 hours.
  • the temperature rising rate in the tempering is preferably 50 to 550 ° C./h, more preferably 100 to 400 ° C./h, and 140 to 380 ° C./h from the viewpoint of keeping the material temperature and the temperature of the firing furnace equal. Particularly preferred.
  • the tempering atmosphere is not particularly limited, but includes, for example, air and oxygen.
  • the firing furnace used for tempering is not particularly limited, and examples thereof include a stationary box furnace and a roller hearth continuous furnace.
  • the step of adding at least one metal component selected from the above is a step for making the crystallinity of the positive electrode active material for a secondary battery more preferable.
  • One example of a lithium secondary battery using the positive electrode active material for a secondary battery of the present invention as a positive electrode active material is a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and disposed between the positive electrode and the negative electrode. Electrolyte solution.
  • FIG. 2 is a schematic diagram showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 shown in FIG. 2 is manufactured as follows.
  • a pair of separators 1 having a band shape, a band-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a band-shaped negative electrode 3 having a negative electrode lead 31 at one end are separated from each other by a separator 1.
  • the positive electrode 2, the separator 1, and the negative electrode 3 are laminated in this order and wound to form an electrode group 4.
  • the bottom of the battery can 5 is sealed, and the electrode group 4 is impregnated with the electrolytic solution 6. Then, an electrolyte is disposed between the positive electrode 2 and the negative electrode 3. Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing body 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is not particularly limited.
  • the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the axis of winding is a circle, an ellipse, a rectangle, and a rounded rectangle.
  • Columnar shapes can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or a shape defined by JIS C # 8500 can be adopted.
  • Examples of the shape defined by the standard include a cylindrical shape and a square shape.
  • the lithium secondary battery is not limited to the above-described wound configuration, and may be a stacked configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • the stacked lithium secondary battery include a so-called coin battery, a button battery, and a paper (or sheet) battery.
  • a positive electrode mixture containing a positive electrode active material (a positive electrode active material for a secondary battery of the present invention), a conductive material and a binder is prepared, and the positive electrode mixture is supported on a positive electrode current collector. It can be manufactured by
  • a carbon material As the conductive material of the positive electrode of the lithium secondary battery, a carbon material can be used. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Carbon black is a fine particle and has a large surface area.By adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be increased, and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture can be appropriately selected depending on the use conditions and the like, but is preferably 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, the ratio can be reduced.
  • thermoplastic resin As a binder included in the positive electrode of the lithium secondary battery, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), and ethylene tetrafluoride / propylene hexafluoride / vinylidene fluoride.
  • Fluororesins such as polymers, propylene hexafluoride / vinylidene fluoride copolymers, and tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene; These thermoplastic resins may be used alone or in combination of two or more.
  • thermoplastic resins a fluororesin and a polyolefin resin are used as a binder, and the ratio of the fluororesin to the whole positive electrode mixture is 1% by mass to 10% by mass, and the ratio of the polyolefin resin is 0.1% by mass to 2% by mass. % Or less, it is possible to obtain a positive electrode mixture in which both the adhesion to the positive electrode current collector and the bonding force inside the positive electrode mixture are high.
  • a belt-shaped member formed using a metal material such as Al, Ni, or stainless steel can be used as the positive electrode current collector included in the positive electrode of the lithium secondary battery.
  • a material formed into a thin film using Al as a forming material is preferable because it is easy to process and inexpensive.
  • the method for supporting the positive electrode mixture on the positive electrode current collector is not particularly limited.
  • a method in which the positive electrode mixture is pressure-formed on the positive electrode current collector may be mentioned.
  • the positive electrode mixture is paste-formed using an organic solvent, the obtained positive electrode mixture paste is applied to at least one surface of the positive electrode current collector, dried, pressed and fixed, so that the positive electrode A mixture may be carried.
  • organic solvent examples include, for example, amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; Ester solvents such as methyl acetate; amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP). These may be used alone or in combination of two or more.
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • Ester solvents such as methyl acetate
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the paste of the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode can be manufactured by the method described above.
  • the negative electrode of the lithium secondary battery may be capable of doping and undoping lithium ions at a potential lower than that of the positive electrode, and an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector, a negative electrode An electrode made of the active material alone can be used.
  • the negative electrode active material of the negative electrode of the lithium secondary battery is a carbon material, a chalcogen compound (oxide, sulfide, etc.), a nitride, a metal, or an alloy. Doping and undoping of lithium ions at a lower potential than the positive electrode is performed. Possible materials are listed.
  • Examples of the carbon material that can be used as the negative electrode active material of the lithium secondary battery include natural graphite, graphite such as artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds. be able to.
  • Examples of the sulfide that can be used as the negative electrode active material of the lithium secondary battery include titanium sulfide represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS.
  • nitride usable as a negative electrode active material of a lithium secondary battery for example, Li 3 N, Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3).
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more.
  • these carbon materials, oxides, sulfides, and nitrides may be either crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material of the lithium secondary battery include lithium metal, silicon metal, tin metal, and the like.
  • alloys usable as the negative electrode active material of the lithium secondary battery include lithium alloys such as Li-Al, Li-Ni, Li-Si, Li-Sn, and Li-Sn-Ni; silicon such as Si-Zn alloy; it may also be mentioned; Sn-Mn, Sn-Co , Sn-Ni, Sn-Cu, tin alloys such as Sn-La; Cu 2 Sb, alloys such as La 3 Ni 2 Sn 7.
  • These metals and alloys are mainly used alone as a negative electrode after being processed into a foil shape, for example.
  • the potential of the negative electrode hardly changes from an uncharged state to a fully charged state during charging (good potential flatness), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is low.
  • a carbon material containing graphite as a main component such as natural graphite or artificial graphite, is preferred because of its high property (good cycle characteristics).
  • the shape of the carbon material is not particularly limited, and may be, for example, any of a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, and an aggregate of fine powder. May be.
  • the negative electrode mixture of the lithium secondary battery may contain a binder, if necessary.
  • the binder include thermoplastic resins, and examples thereof include PVdF, thermoplastic polyimide, carboxymethyl cellulose, and polyolefin resins such as polyethylene and polypropylene. These may be used alone or in combination of two or more.
  • Examples of the negative electrode current collector included in the negative electrode of the lithium secondary battery include a band-shaped member formed of a metal material such as Cu, Ni, and stainless steel. Among them, it is preferable to use Cu as a forming material and process it into a thin film, since it is difficult to form an alloy with lithium and easy to process.
  • the method for supporting the negative electrode mixture on the negative electrode current collector is not particularly limited.
  • a separator included in the lithium secondary battery for example, polyethylene, a polyolefin resin such as polypropylene, a fluorine resin, a material such as a nitrogen-containing aromatic polymer, a porous film, a nonwoven fabric, a material having a form such as a woven fabric. Can be used. Further, one or more of these materials may be used to form a separator, or these materials may be laminated to form a separator.
  • Examples of the separator of the lithium secondary battery include separators described in JP-A-2000-30686 and JP-A-10-324758.
  • the thickness of the separator can be appropriately selected depending on the use conditions and the like, but it is preferable that the thickness be reduced as long as the mechanical strength is maintained, in that the volume energy density of the lithium secondary battery increases and the internal resistance decreases. And more preferably about 5 to 200 ⁇ m, particularly preferably about 5 to 40 ⁇ m.
  • the separator of the lithium secondary battery preferably has a porous film containing a thermoplastic resin.
  • the function of shutting off the current at the short-circuit point and preventing the excessive current from flowing (shut down) It is preferred to have.
  • the shutdown is performed by overheating of the separator at the short-circuited portion due to the short-circuit, and when the operating temperature exceeds a previously assumed use temperature, the porous film in the separator softens or melts to close the micropores. Then, even if the temperature in the lithium secondary battery rises to a certain high temperature after the separator is shut down, it is preferable that the shut down state be maintained without causing film breakage due to the temperature.
  • the temperature-resistant separator After the separator shuts down, even if the temperature inside the lithium secondary battery rises to a certain high temperature, the temperature-resistant separator does not break down, and as a separator, the heat-resistant porous layer and the porous film are laminated. And the resulting laminated film.
  • the heat-resistant porous layer By using such a laminated film as a separator, the heat resistance of the secondary battery can be further increased.
  • the heat-resistant porous layer may be laminated on both sides of the porous film.
  • the heat-resistant porous layer is a layer having higher heat resistance than the porous film.
  • the heat-resistant porous layer may be formed from an inorganic powder (first heat-resistant porous layer), may be formed from a heat-resistant resin (second heat-resistant porous layer), and includes a heat-resistant resin and a filler. (Third heat-resistant porous layer).
  • first heat-resistant porous layer may be formed from a heat-resistant resin
  • second heat-resistant porous layer may be formed from a heat-resistant resin
  • the heat-resistant porous layer can be formed by an easy method such as coating.
  • the heat-resistant porous layer is formed from an inorganic powder
  • examples of the inorganic powder used for the heat-resistant porous layer include inorganic substances such as metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates, and sulfates. Of these, and among these, a powder made of an inorganic material having low conductivity (high insulation) is preferably used. Specific examples include alumina powder, silica powder, titanium dioxide powder, calcium carbonate powder and the like. Such inorganic powders may be used alone or in combination of two or more.
  • alumina powder is preferred because of its high chemical stability. Further, it is more preferable that all of the particles constituting the inorganic powder are alumina particles, all of the particles constituting the inorganic powder are alumina particles, and some or all of the particles are substantially spherical alumina particles. Is more preferable.
  • the heat-resistant porous layer is formed from a heat-resistant resin
  • a heat-resistant resin for example, polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyether ketone, aromatic polyester, Examples thereof include polyethersulfone and polyetherimide.
  • polyamide, polyimide, polyamideimide, polyethersulfone, and polyetherimide are preferred, and polyamide, polyimide, and polyamideimide are more preferred.
  • the heat-resistant resin used for the heat-resistant porous layer is more preferably a nitrogen-containing aromatic polymer such as an aromatic polyamide (para-oriented aromatic polyamide or meta-oriented aromatic polyamide), aromatic polyimide, or aromatic polyamide-imide, Particularly preferred is an aromatic polyamide, and particularly preferred from the viewpoint of productivity is a para-oriented aromatic polyamide (hereinafter sometimes referred to as para-aramid).
  • aromatic polyamide para-oriented aromatic polyamide or meta-oriented aromatic polyamide
  • aromatic polyimide aromatic polyimide
  • aromatic polyamide-imide aromatic polyamide-imide
  • para-aramid para-oriented aromatic polyamide
  • examples of the heat-resistant resin include poly-4-methylpentene-1 and a cyclic olefin polymer.
  • the heat resistance of the laminated film used as the separator of the lithium secondary battery that is, the thermal rupture temperature of the laminated film can be further increased.
  • these heat-resistant resins when using a nitrogen-containing aromatic polymer, it may be due to the polarity in the molecule, compatibility with the electrolytic solution, that is, the liquid retention in the heat-resistant porous layer may be improved, The rate of impregnation of the electrolyte during the production of the lithium secondary battery is also high, and the charge / discharge capacity of the lithium secondary battery is further increased.
  • the thermal rupture temperature of the laminated film depends on the type of heat-resistant resin, and is selected and used according to the use scene and purpose. Specifically, when the above nitrogen-containing aromatic polymer is used as the heat-resistant resin, the cyclic olefin-based polymer is heated to about 400 ° C., and when poly-4-methylpentene-1 is used, to about 250 ° C. When used, the thermal rupture temperature can be controlled to about 300 ° C., respectively. When the heat-resistant porous layer is made of an inorganic powder, the thermal rupture temperature can be controlled to, for example, 500 ° C. or more.
  • the para-aramid is obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond has a para-position of an aromatic ring or an alignment position corresponding thereto (for example, 4,4 ′).
  • aromatic polyimide a wholly aromatic polyimide produced by condensation polymerization of an aromatic diacid anhydride and a diamine is preferable.
  • aromatic dianhydride used for the condensation polymerization examples include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4 , 4'-benzophenonetetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and the like No.
  • diamine used for the condensation polymerization examples include oxydianiline, paraphenylenediamine, benzophenonediamine, 3,3′-methylenedianiline, 3,3′-diaminobensophenone, and 3,3′-diaminodiphenylsulfone. , 1,5-naphthalenediamine and the like.
  • a polyimide soluble in a solvent can be suitably used.
  • a polyimide which is a polycondensate of 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride and an aromatic diamine.
  • aromatic polyamide-imide for example, those obtained from the condensation polymerization thereof using an aromatic dicarboxylic acid and an aromatic diisocyanate, those obtained from the condensation polymerization thereof using an aromatic dianhydride and an aromatic diisocyanate are included.
  • aromatic dicarboxylic acid include isophthalic acid and terephthalic acid.
  • aromatic dianhydride include trimellitic anhydride.
  • aromatic diisocyanate include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, ortho tolylene diisocyanate, and m-xylene diisocyanate.
  • the thickness of the heat-resistant porous layer of the laminated film is preferably a thin heat-resistant porous layer, more preferably 1 ⁇ m or more and 10 ⁇ m or less, further preferably 1 ⁇ m or more and 5 ⁇ m or less. More preferably, it is 4 ⁇ m or less.
  • the heat-resistant porous layer has fine pores, and the size (diameter) of the pores is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the heat-resistant porous layer is formed to include a heat-resistant resin and a filler
  • the same heat-resistant resin as that used for the second heat-resistant porous layer can be used.
  • the filler at least one selected from the group consisting of organic powders, inorganic powders, and mixtures thereof can be used.
  • the particles constituting the filler preferably have an average particle diameter of 0.01 ⁇ m or more and 1 ⁇ m or less.
  • organic powder examples include, for example, a homopolymer or a copolymer of two or more of styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, and methyl acrylate; PTFE, tetrafluoroethylene-6-fluoropropylene copolymer, fluorocarbon resin such as tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride; melamine resin; urea resin; polyolefin resin; polymethacrylate; A powder consisting of Such organic powders may be used alone or in combination of two or more. Among these organic powders, PTFE powder is preferred because of its high chemical stability.
  • the same powder as the inorganic powder used for the heat-resistant porous layer can be exemplified.
  • the content of the filler depends on the specific gravity of the material of the filler, for example, when all of the particles constituting the filler are alumina particles
  • the mass of the filler is preferably 5 parts by mass or more and 95 parts by mass or less, more preferably 20 parts by mass or more and 95 parts by mass or less, Preferably it is 30 parts by mass or more and 90 parts by mass or less. These ranges can be appropriately set depending on the specific gravity of the material of the filler.
  • the shape of the filler is not particularly limited, and examples thereof include shapes such as a substantially spherical shape, a plate shape, a column shape, a needle shape, and a fibrous shape, and any particles can be used, but since it is easy to form uniform pores,
  • the particles are substantially spherical particles.
  • the substantially spherical particles include particles having an aspect ratio of particles (major axis of particles / minor axis of particles) of 1.0 or more and 1.5 or less. The aspect ratio of the particles can be measured by an electron micrograph.
  • the porous film preferably has fine pores and has a shutdown function.
  • the porous film contains a thermoplastic resin.
  • the size of the micropores in the porous film is preferably as small as possible, more preferably 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the porosity of the porous film can be appropriately selected depending on the use conditions and the like, but is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less.
  • the porous film containing a thermoplastic resin closes the micropores by softening or melting of the thermoplastic resin constituting the porous film. be able to.
  • thermoplastic resin used for the porous film can be used without any particular limitation as long as it does not dissolve in the electrolytic solution of the lithium secondary battery.
  • specific examples include polyolefin resins such as polyethylene and polypropylene, and thermoplastic polyurethane resins. A mixture of two or more of these may be used.
  • the porous film preferably contains polyethylene.
  • polyethylene include polyethylene such as low-density polyethylene, high-density polyethylene, and linear polyethylene, and ultrahigh-molecular-weight polyethylene having a molecular weight of 1,000,000 or more.
  • the thermoplastic resin constituting the porous film preferably contains at least ultrahigh molecular weight polyethylene.
  • the thermoplastic resin may preferably contain a wax composed of a polyolefin having a low molecular weight (weight average molecular weight of 10,000 or less).
  • the thickness of the porous film in the laminated film can be appropriately selected according to the conditions of use and the like, it is preferably 3 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 25 ⁇ m or less.
  • the thickness of the laminated film can be appropriately selected depending on the use conditions and the like, but is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the thickness of the heat-resistant porous layer is A ( ⁇ m) and the thickness of the porous film is B ( ⁇ m)
  • the value of A / B is preferably 0.1 or more and 1.0 or less.
  • the separator has a gas permeability resistance of 50 seconds / 100 cc or more and 300 seconds / hour according to the Gurley method defined in JIS P # 8117 in order to allow the electrolyte to pass well when the battery is used (during charge / discharge). It is preferably 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator can be appropriately selected depending on the use conditions and the like, but is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less.
  • the separator used may be a laminate of separators having different porosity.
  • the electrolytic solution of the lithium secondary battery contains an electrolyte and an organic solvent.
  • the electrolyte is selected from the group consisting of LiPF 6 containing fluorine, LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3. It is preferable to use one containing at least one kind.
  • organic solvent contained in the electrolytic solution examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2.
  • Carbonates such as -di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran, Ethers such as 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyl Amides such as acetamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propane sultone; or those obtained by further introducing a fluoro group into these organic solvents ( In which one or more of the hydrogen atoms of the organic
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate, and a mixed solvent of cyclic carbonate and ether are more preferable.
  • a mixed solvent of the cyclic carbonate and the non-cyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate is preferable.
  • the electrolytic solution using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of a negative electrode. It has many features that it is hardly decomposable even when a graphite material such as artificial graphite is used.
  • an electrolyte containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent it is preferable to use an electrolyte containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent.
  • a mixed solvent containing dimethyl carbonate and ethers having a fluorine substituent such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether performs charge / discharge at a high current rate.
  • the capacity retention ratio is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolyte.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound or a polymer compound containing at least one polyorganosiloxane chain or polyoxyalkylene chain can be used. Further, a so-called gel type in which a non-aqueous electrolyte is held in a polymer compound can also be used.
  • the solid electrolyte may serve as a separator, and in such a case, the separator may not be required.
  • the positive electrode active material having the above-described configuration uses the positive electrode active material for a secondary battery of the present invention, a lithium secondary battery using the positive electrode active material can be used in an excellent cycle at room temperature and high temperature. It can be characteristic.
  • a lithium secondary battery may exhibit excellent cycle characteristics at normal temperature and high temperature. it can.
  • the lithium secondary battery having the above-described configuration includes the positive electrode having the positive electrode active material for a secondary battery of the present invention, it exhibits excellent cycle characteristics at ordinary temperatures and high temperatures in both environments. can do.
  • nickel, cobalt, and manganese composite hydroxide particles used in Examples 1, 2, 6, and 7 The nickel, cobalt, and manganese composite hydroxide particles used in Examples 3 and 4 and Comparative Examples 2 and 3 were dry-classified. Thus, nickel, cobalt, and manganese composite hydroxide particles having a D50 of 4.2 to 4.4 ⁇ m and a (D90-D10) / D50 of 0.78 to 0.88 were prepared.
  • the produced hydroxide overflows from the overflow tube of the reaction tank and is continuously taken out, filtered, washed, dehydrated, and dried at 100 ° C. to be a precursor of a positive electrode active material for a secondary battery.
  • Nickel, cobalt and manganese composite hydroxide particles were obtained. D50 of the nickel, cobalt and manganese composite hydroxide particles was 11.6 ⁇ m, and (D90 ⁇ D10) / D50 was 0.90.
  • D50 and (D90-D10) / D50 of the nickel, cobalt and manganese composite hydroxide particles used in Examples 1 to 7 and Comparative Examples 1 to 4 are shown in Table 1 below.
  • the values of D50, D90 and D10 in Table 1 below were measured using a laser diffraction particle size distribution analyzer (LA-950, manufactured by Horiba Seisakusho Co., Ltd.) using 0.1 g of nickel, cobalt and manganese composite hydroxide particles as 0%.
  • the solution was added to 50 ml of a 0.2% by mass aqueous sodium hexametaphosphate solution to obtain a dispersion in which the particles were dispersed.
  • the particle size distribution of the obtained dispersion was measured to obtain a volume-based cumulative particle size distribution curve.
  • the value of the particle diameter (D10) viewed from the fine particle side at the time of 10% accumulation and the value of the particle diameter (D50) viewed from the fine particle side at the time of 50% accumulation are 90%.
  • the value of the particle size (D90) viewed from the fine particle side at the time of% accumulation was defined as the average particle size of the nickel, cobalt, and manganese composite hydroxide particles.
  • the nickel, cobalt, and manganese composite hydroxide particles which are dry powders, used in Examples 1 to 7 and Comparative Examples 1 to 4 had the Li / M1 atomic ratios shown in Table 1 below, respectively.
  • the fired product was pulverized using a pulverizer (Super Mascolloid MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.), and then sieved with a 325 mesh sieve, and the next step was performed.
  • the filling amount of the mixed powder or the mixed powder after the calcining step in the main firing step into the sheath having an inner size of 130 ⁇ 130 ⁇ 88 mm is such that the S / V shown in Table 1 below is obtained. did.
  • Example 3 ZrO 2 was added at 0.3 mol% to the nickel, cobalt, and manganese composite hydroxide particles before the main firing step, and the main firing was performed. Further, before the tempering step, Al 2 O 3 was added. Was added to nickel, cobalt, and manganese composite hydroxide particles in an amount of 1.0 mol% to perform tempering. In Example 4, before the tempering step, Al 2 O 3 was added to nickel, cobalt, and manganese composite hydroxide particles in an amount of 1.0 mol% to perform tempering. Further, in Example 7, the main firing was performed before the main firing step by adding 0.3 mol% of ZrO 2 to the nickel, cobalt, and manganese composite hydroxide particles.
  • the positive electrode active materials for secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4 were produced.
  • Table 2 below shows D50 values of the positive electrode active materials for secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4.
  • the value of D50 in Table 2 below was measured using a laser diffraction particle size distribution analyzer (LA-950, manufactured by Horiba, Ltd.) in the same manner as in the above composite hydroxide.
  • the evaluation items of the positive electrode active materials for secondary batteries of the examples and comparative examples are as follows.
  • Composition Analysis of Secondary Battery Positive Electrode Active Materials The secondary battery positive electrode active materials obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were analyzed for composition. After dissolving the substance powder in hydrochloric acid, the measurement was performed using an inductively coupled plasma emission spectrometer (Perkin Elmer Japan Co., Ltd., Optima 7300DV).
  • An X-ray powder diffraction pattern was obtained by performing the measurement under the conditions of a width of 0.03 ° and a scan speed of 20 ° / min.
  • the integrated powder X-ray analysis software PDXL of the two peaks appearing in the range of 64.5 ⁇ 1 ° from the powder X-ray diffraction pattern, the full width at half maximum of the peak on the low angle side is ⁇ , and the peak on the high angle side is ⁇ .
  • the full width at half maximum was defined as ⁇ , and the half width ratio ⁇ / ⁇ was calculated.
  • An X-ray diffraction pattern was obtained by performing the measurement at a scan speed of 2.6 ° / min. Then, using the XRD analysis software TOPAS, lattice constants of the a-axis and the c-axis were obtained from the X-ray diffraction pattern, and (a-axis before the cycle test / a-axis after the cycle test) ⁇ 100, (c before the cycle test) Axis / c axis after cycle test) ⁇ 100, the rate of change of the lattice constant before and after the cycle test at 25 ° C. and 60 ° C. was calculated.
  • the positive electrode active material for a secondary battery positive electrode active material
  • a conductive material acetylene black
  • a binder PVdF
  • N-methyl-2-pyrrolidone was used as an organic solvent.
  • the obtained positive electrode mixture was applied to a 15 ⁇ m-thick Al foil serving as a current collector so as to have a basis weight of 10 mg / cm 2 , followed by vacuum drying at 120 ° C. for 8 hours to obtain a positive electrode.
  • the electrode area of this positive electrode was 9 cm 2 .
  • Negative Electrode Graphite positive electrode active material
  • a thickener CMC
  • SBR400 binder
  • a paste-like negative electrode mixture was prepared by adding and kneading so as to obtain a composition.
  • water was used as a solvent.
  • the obtained negative electrode mixture was applied to a 10- ⁇ m-thick Cu foil serving as a current collector, and vacuum-dried at 120 ° C. for 8 hours to obtain a negative electrode.
  • the electrode area of this negative electrode was 12 cm 2 .
  • the positive electrode prepared in “Preparation of positive electrode” is placed on a laminate with the aluminum foil surface facing down, and a laminated film separator (a heat-resistant porous layer is laminated on a polyethylene porous film (thickness: 16 ⁇ m)) ), And among the negative electrodes prepared in “Preparation of negative electrode”, a negative electrode having an NP ratio of 1.1 is placed with the aluminum foil surface facing upward, and a laminate is further laminated. The side was fastened and vacuum dried at 60 ° C. for 10 hours. 1.4 g of an electrolytic solution was injected therein, and the other side was sealed with vacuum. The electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a 3: 5: 2 (volume ratio) mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate.
  • Capacity maintenance rate (cycle characteristics)
  • two cycles of charging and discharging at 0.2 C were performed before charging and discharging. Thereafter, a charge / discharge test was performed under the following conditions.
  • Test temperature 25 ° C Charging conditions: maximum charging voltage 4.2V, charging time 0.5 hour, charging current 2C, CC Discharge conditions: minimum discharge voltage 3.0V, discharge time 0.5 hour, discharge current 2C, CC Number of times of charge and discharge: 1000 times
  • Test temperature 60 ° C Charging conditions: maximum charging voltage 4.2V, charging time 0.5 hour, charging current 2C, CC Discharge conditions: minimum discharge voltage 3.0V, discharge time 0.5 hour, discharge current 2C, CC Number of charge / discharge cycles: 500
  • Example 1 in which the average particle strength is 200 MPa or more and ⁇ / ⁇ is 0.97 ⁇ ⁇ / ⁇ ⁇ 1.25 from the peak of the powder X-ray diffraction pattern using CuK ⁇ radiation.
  • the capacity retention rate at 25 ° C. 1000 cycles is 80% or more, and the capacity retention rate at 60 ° C. 500 cycles is 75% or more.
  • a positive electrode active material for a secondary battery capable of exhibiting characteristics was obtained.
  • the average particle strength is 200 MPa or more, and the rate of change of the lattice constant before and after the cycle test is 25.degree. C. and 60.degree.
  • the positive electrode active materials for secondary batteries of Examples 1 to 7 have a capacity retention rate of 80% or more at 25 ° C. and 1000 cycles and a capacity retention rate of 75% or more at 60 ° C. and 500 cycles.
  • a positive electrode active material for a secondary battery capable of exhibiting excellent cycle characteristics under both normal temperature and high temperature environments.
  • good D50 and BET specific surface area could be obtained.
  • Example 6 in which (D90-D10) / D50 of the nickel, cobalt, and manganese composite hydroxide particles was 0.78 was (D90-D10) / D50 of 0.96.
  • the cycle characteristics at room temperature were further improved by controlling (D90-D10) / D50 of the composite hydroxide particles to 0.80 or less.
  • Examples 1 to 7 which can exhibit excellent cycle characteristics under both normal temperature and high temperature environments, a good BET specific surface area of 0.35 m 2 to 6.1 m 2 / g can be obtained.
  • the surface area (S) / volume (V) of the mixed powder at the time of filling was in the range of 0.08 to 0.24 mm 2 / mm 3 .
  • the positive electrode active material for a secondary battery of the present invention can exhibit excellent cycle characteristics under both normal temperature and high temperature environments, it can be used in a wide range of fields, for example, in an environment where the use environment such as ambient temperature fluctuates. High value of use in the field of mounting on equipment used for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to provide: a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under both ambient temperature and high temperature environments; and a method for producing the positive electrode active material. The positive electrode active material for a secondary battery has a layered structure containing at least nickel, cobalt, and manganese, which are single-crystal particles and/or secondary particles that are aggregates of a plurality of primary particles, wherein the average particle strength of particles having a particle size of (D50)±1.0 μm is at least 200 MPa, and 0.97≤β/α≤1.25, where (D50) is a particle size at a cumulative volume percentage of 50 vol%, α is the full width at half maximum of the lower angle peak among two diffraction peaks appearing in the range of 2θ=64.5±1о in the X-ray diffraction pattern, and β is the full width at half maximum of the higher angle peak among the two diffraction peaks.

Description

二次電池用正極活物質及びその製造方法Positive electrode active material for secondary battery and method for producing the same
 本発明は、二次電池用正極活物質及びその製造方法であり、特に、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質及びその製造方法に関するものである。 The present invention relates to a positive electrode active material for a secondary battery and a method for producing the same, and more particularly, to a positive electrode active material for a secondary battery capable of exhibiting excellent cycle characteristics under any environment of ordinary temperature and high temperature, and a method for producing the same. .
 近年、携帯機器や動力源として電気を使用または併用する車両等、広汎な分野で二次電池が使用されている。二次電池の正極活物質としては、例えば、ニッケル、コバルト及びマンガンを含むリチウム金属複合酸化物粉末等が使用されている。 In recent years, secondary batteries have been used in a wide variety of fields, such as mobile devices and vehicles that use or use electricity as a power source. As the positive electrode active material of the secondary battery, for example, a lithium metal composite oxide powder containing nickel, cobalt, and manganese is used.
 また、近年、二次電池には、雰囲気温度等の環境の変化に対して安定的に高出力を発揮できることが要求されている。従って、二次電池用正極活物質には、雰囲気温度等の環境が変動しても、安定的に優れたサイクル特性が得られることが求められている。 近年 In recent years, secondary batteries are required to be able to exhibit a high output stably in response to environmental changes such as ambient temperature. Therefore, the positive electrode active material for a secondary battery is required to have a stable and excellent cycle characteristic even when the environment such as the ambient temperature fluctuates.
 そこで、例えば、高温条件下で良好的なサイクル特性を安定して得るために、一般式LiNiCoMnMbOであり、1.0≦a≦1.2、0.30≦x≦0.90、0.05≦y≦0.40、0.05≦z≦0.50、x+y+z=1である球形又は類球形層状構造のリチウムニッケルコバルトマンガン複合酸化物正極材料が提案されている(特許文献1)。また、特許文献1のリチウムニッケルコバルトマンガン複合酸化物正極材料では、一次単結晶粒子及び少量の二次凝集粒子を含み、一次単結晶粒子の粒径は0.5~10μm、粒径が5μm以下の粒子の累積%は60%を超えるように粒径が制御されている。 Therefore, for example, in order to stably obtain a satisfactory manner cycle characteristics under high temperature conditions, a formula Li a Ni x Co y Mn z MbO 2, 1.0 ≦ a ≦ 1.2,0.30 ≦ A lithium-nickel-cobalt-manganese composite oxide positive electrode material having a spherical or spheroidal layer structure in which x ≦ 0.90, 0.05 ≦ y ≦ 0.40, 0.05 ≦ z ≦ 0.50, and x + y + z = 1 has been proposed. (Patent Document 1). Further, the lithium nickel cobalt manganese composite oxide cathode material of Patent Document 1 contains primary single crystal particles and a small amount of secondary aggregated particles, and the primary single crystal particles have a particle size of 0.5 to 10 μm and a particle size of 5 μm or less. The particle size is controlled so that the cumulative% of the particles exceeds 60%.
 しかし、特許文献1では、若干の高温条件下では優れたサイクル特性が得られるものの、常温から高温の温度範囲にわたって優れたサイクル特性を得る点では改善の余地があった。このように、従来の二次電池用正極活物質では、所定の温度条件下でのサイクル特性の向上を開示している。 However, in Patent Document 1, although excellent cycle characteristics can be obtained under a slightly high temperature condition, there is room for improvement in obtaining excellent cycle characteristics over a temperature range from room temperature to high temperature. As described above, the conventional positive electrode active material for a secondary battery discloses improvement in cycle characteristics under a predetermined temperature condition.
 一方で、二次電池の使用環境は、搭載する機器の使用条件や設置環境等によっては、雰囲気温度等の使用環境が変動することがある。従って、雰囲気温度等の使用環境が変動しても、安定的に優れたサイクル特性を発揮できる二次電池用正極活物質が求められている。 On the other hand, the usage environment of the secondary battery may fluctuate depending on the usage conditions and installation environment of the equipment to be mounted, such as the ambient temperature. Therefore, there is a need for a positive electrode active material for a secondary battery that can stably exhibit excellent cycle characteristics even when the use environment such as the ambient temperature fluctuates.
特開2018-045998号公報JP 2018-045998 A
 上記事情に鑑み、本発明は、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質及びその製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under both normal temperature and high temperature environments, and a method for producing the same.
 本発明の態様は、単結晶粒子及び/又は複数の一次粒子の凝集体である二次粒子である、少なくともニッケル、コバルト及びマンガンのうち1種類以上を含む層状構造を有する二次電池用正極活物質であって、
累積体積百分率が50体積%の粒子径(D50)±1.0μmである粒子の平均粒子強度が、200MPa以上であり、
CuKα線を使用した粉末X線回折測定において、2θ=64.5±1°の範囲に現れる2つの回折ピークの低角度側のピークの半値全幅をα、高角度側のピークの半値全幅をβとしたとき、β/αが、0.97≦β/α≦1.25である二次電池用正極活物質である。
An embodiment of the present invention provides a positive electrode active material for a secondary battery having a layered structure including at least one of nickel, cobalt, and manganese, which is a secondary particle that is an aggregate of single crystal particles and / or a plurality of primary particles. Substance
The average particle strength of the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ± 1.0 μm is 200 MPa or more;
In a powder X-ray diffraction measurement using CuKα ray, the full width at half maximum of the peak on the low angle side of two diffraction peaks appearing in the range of 2θ = 64.5 ± 1 ° is α, and the full width at half maximum of the peak on the high angle side is β. Is a positive electrode active material for a secondary battery in which β / α satisfies 0.97 ≦ β / α ≦ 1.25.
 本明細書では、二次電池用正極活物質の平均粒子強度とは、累積体積百分率が50体積%の粒子径(D50)±1.0μmのうち任意に選んだ二次電池用正極活物質粒子1個に対して、島津微小圧縮試験機MCT-510にて測定した圧壊時の加重(N)の値に基づき、粒子強度(MPa)=2.8×圧壊時の加重(N)/(π×粒子直径(mm)×粒子直径(mm))から粒子強度を算出し、この操作を10粒子行い、10粒子の各粒子強度から平均粒子強度を算出した値を意味する。 In the present specification, the average particle strength of the positive electrode active material for a secondary battery refers to the positive electrode active material particles for a secondary battery arbitrarily selected from a particle diameter (D50) ± 1.0 μm having a cumulative volume percentage of 50% by volume. For one piece, the particle strength (MPa) = 2.8 × the weight at the time of crushing (N) / (π, based on the value of the weight at the time of crushing (N) measured by Shimadzu Micro Compression Testing Machine MCT-510. X particle diameter (mm) x particle diameter (mm)), this operation is performed for 10 particles, and the average particle intensity is calculated from each particle intensity of 10 particles.
 本発明の態様は、単結晶粒子及び/又は複数の一次粒子の凝集体である二次粒子である、少なくともニッケル、コバルト及びマンガンのうち1種類以上を含む層状構造を有する二次電池用正極活物質であって、
累積体積百分率が50体積%の粒子径(D50)±1.0μmである粒子の平均粒子強度が、200MPa以上であり、
CuKα線を使用したサイクル試験前後の正極のX線回折測定において、サイクル試験前後の格子定数の変化率を、(サイクル試験前のa軸/サイクル試験後のa軸)×100=A、(サイクル試験前のc軸/サイクル試験後のc軸)×100=Cとした場合、
25℃及び60℃のサイクル試験で、AとCのうちの少なくとも一方が99.30%以上100.90%以下である二次電池用正極活物質である。
An embodiment of the present invention provides a positive electrode active material for a secondary battery having a layered structure including at least one of nickel, cobalt, and manganese, which is a secondary particle that is an aggregate of single crystal particles and / or a plurality of primary particles. Substance
The average particle strength of the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ± 1.0 μm is 200 MPa or more;
In the X-ray diffraction measurement of the positive electrode before and after the cycle test using CuKα rays, the rate of change of the lattice constant before and after the cycle test was calculated as (a axis before the cycle test / a axis after the cycle test) × 100 = A, (cycle When c axis before test / c axis after cycle test) × 100 = C,
A positive electrode active material for a secondary battery in which at least one of A and C in a cycle test at 25 ° C. and 60 ° C. is 99.30% or more and 100.90% or less.
 上記「サイクル試験」とは、二次電池用正極活物質を用いてラミネートセルを調製し、充電4.2V/CC、2C、放電3.0V/CC、2Cにて、25℃1000サイクル、60℃500サイクルにおける充放電試験を意味する。 The “cycle test” means that a laminate cell is prepared using a positive electrode active material for a secondary battery, charged at 4.2 V / CC, 2 C, discharged at 3.0 V / CC, 2 C at 25 ° C., 1000 cycles, 60 cycles. A charge / discharge test at 500 ° C. cycles.
 本発明の態様は、下記一般式(1)
Li[Li(M1M21-a]O2+b      (1)
(式中、0≦a≦0.30、-0.30≦b≦0.30、0.9≦x≦1.0、0≦y≦0.1、x+y=1、M1は、少なくともNi、Co及びMnのうち1種類以上からなる金属元素、M2は、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、V、B、Mo、As、Ge、P、Pb、Si、Sb、Nb、Ta、Re及びBiからなる群から選択された少なくとも1種の金属元素を意味する。)で表される二次電池用正極活物質である。
An embodiment of the present invention provides the following general formula (1)
Li [Li a (M1 x M2 y ) 1-a ] O 2 + b (1)
(Where 0 ≦ a ≦ 0.30, −0.30 ≦ b ≦ 0.30, 0.9 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.1, x + y = 1, M1 is At least one metal element of Ni, Co and Mn, M2 is Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge, P , Pb, Si, Sb, Nb, Ta, Re, and Bi, which means at least one metal element selected from the group consisting of).
 本発明の態様は、累積体積百分率が50体積%の粒子径D50が、2.0μm以上20.0μm以下である二次電池用活物質である。 態 様 An embodiment of the present invention is an active material for a secondary battery in which the cumulative volume percentage is 50% by volume and the particle diameter D50 is 2.0 μm or more and 20.0 μm or less.
 本発明の態様は、BET比表面積が、0.1m/g以上5.0m/g以下である二次電池用活物質である。 An embodiment of the present invention is an active material for a secondary battery having a BET specific surface area of 0.1 m 2 / g or more and 5.0 m 2 / g or less.
 本発明の態様は、上記二次電池用正極活物質を有する二次電池である。  態 様 An embodiment of the present invention is a secondary battery including the above-described positive electrode active material for a secondary battery.
 本発明の態様は、少なくともニッケル(Ni)、コバルト(Co)及びマンガン(Mn)のうち1種類以上を含む複合水酸化物粒子にリチウム(Li)化合物を、少なくともNi、Co及びMnのうち1種類以上からなる金属元素(M1)に対して、1.00≦Li/M1≦1.30の原子比にて添加して、リチウム化合物と複合水酸化物粒子の混合物を得る工程と、
前記混合物を、下記式
p≧-600q+1603(式中、qは、少なくともNi、Co及びMnのうち1種類以上からなる金属元素(M1)の合計に対するLiの原子比(Li/M1)であり、1.00≦q≦1.30、pは、本焼成温度であり、940℃<p≦1100℃を意味する。)で表される焼成温度で焼成する本焼成工程と、を含み、
前記本焼成工程に加え、さらに下記(1)~(3)の工程
(1)焼成温度が300℃以上800℃以下である、前記本焼成工程前に行う仮焼工程、
(2)焼成温度が600℃以上900℃以下である、前記本焼成工程後に行う焼戻し工程、
(3)前記本焼成工程及び/又は前記焼戻し工程前に、M2(M2は、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、V、B、Mo、As、Ge、P、Pb、Si、Sb、Nb、Ta、Re及びBiからなる群から選択された少なくとも1種の金属元素を意味する。)で表される金属を添加する工程、
のうち少なくとも1工程を含む二次電池用正極活物質の製造方法である。
An aspect of the present invention is to provide a composite hydroxide particle containing at least one of nickel (Ni), cobalt (Co) and manganese (Mn) with a lithium (Li) compound and at least one of Ni, Co and Mn. A step of adding a mixture of lithium compound and composite hydroxide particles by adding at least an atomic ratio of 1.00 ≦ Li / M1 ≦ 1.30 to a metal element (M1) composed of at least one kind of metal element (M1);
The mixture is represented by the following formula p ≧ −600q + 1603 (where q is an atomic ratio of Li to the total of at least one metal element (M1) of Ni, Co and Mn (Li / M1); 1.00 ≦ q ≦ 1.30, p is a main firing temperature, and means a firing temperature represented by 940 ° C. <p ≦ 1100 ° C.).
In addition to the main sintering step, the following (1) to (3) steps (1) a calcination step performed before the main sintering step, wherein the sintering temperature is 300 ° C. or more and 800 ° C. or less;
(2) a tempering step performed after the main firing step, wherein the firing temperature is 600 ° C. or more and 900 ° C. or less;
(3) Before the main firing step and / or the tempering step, M2 (M2 is Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge , P, Pb, Si, Sb, Nb, Ta, Re, and Bi, which means at least one metal element selected from the group consisting of:
A method for producing a positive electrode active material for a secondary battery, the method including at least one step of the above.
 本発明の態様は、前記リチウム化合物と前記複合水酸化物粒子の混合工程前に、前記複合水酸化物粒子の粒度分布幅を0.40≦(D90-D10)/D50≦1.00とする工程を含む二次電池用正極活物質の製造方法である。 In an embodiment of the present invention, before the mixing step of the lithium compound and the composite hydroxide particles, the particle size distribution width of the composite hydroxide particles is set to 0.40 ≦ (D90−D10) /D50≦1.00. This is a method for producing a positive electrode active material for a secondary battery including a step.
 本発明の形態は、前記本焼成工程において、鞘へ前記混合物を充填した際の前記混合物の体積(V)に対する、前記鞘との接触面を含めた前記混合物の表面積(S)の割合が、0.08≦S/V≦2.00である二次電池用正極活物質の製造方法である。 According to an embodiment of the present invention, in the main firing step, a ratio of a surface area (S) of the mixture including a contact surface with the sheath to a volume (V) of the mixture when the mixture is filled in a sheath is as follows: This is a method for producing a positive electrode active material for a secondary battery in which 0.08 ≦ S / V ≦ 2.00.
 本発明の態様によれば、累積体積百分率が50体積%の粒子径(D50)±1.0μmである粒子の平均粒子強度が、200MPa以上であり、CuKα線を使用した粉末X線回折パターンにおいて、2θ=64.5±1°の範囲に現れる2つの回折ピークの低角度側の回折ピークの半値全幅をα、高角度側の回折ピークの半値全幅をβとしたとき、β/αが、0.97≦β/α≦1.25であることにより、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を得ることができる。 According to the aspect of the present invention, the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ± 1.0 μm have an average particle strength of 200 MPa or more, and the powder X-ray diffraction pattern using CuKα rays When the full width at half maximum of the diffraction peak on the low angle side of two diffraction peaks appearing in the range of 2θ = 64.5 ± 1 ° is α, and the full width at half maximum of the diffraction peak on the high angle side is β, β / α is By satisfying 0.97 ≦ β / α ≦ 1.25, it is possible to obtain a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under both normal temperature and high temperature environments.
 本発明の態様によれば、累積体積百分率が50体積%の粒子径(D50)±1.0μmである粒子の平均粒子強度が、200MPa以上であり、CuKα線を使用した正極のサイクル試験のX線回折パターンにおいて、サイクル試験前後の格子定数の変化率を、(サイクル試験前のa軸/サイクル試験後のa軸)×100=A、(サイクル試験前のc軸/サイクル試験後のc軸)×100=Cとした場合、25℃及び60℃のサイクル試験で、AとCのうちの少なくとも一方が99.30%以上100.90%以下であることにより、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を得ることができる。 According to the aspect of the present invention, the average particle strength of particles having a particle diameter (D50) of ± 1.0 μm having a cumulative volume percentage of 50% by volume is 200 MPa or more, and X in a cycle test of a positive electrode using CuKα radiation. In the line diffraction pattern, the change rate of the lattice constant before and after the cycle test is represented by (a axis before the cycle test / a axis after the cycle test) × 100 = A, (c axis before the cycle test / c axis after the cycle test) ) × 100 = C, at least one of A and C is 99.30% or more and 100.90% or less in a cycle test at 25 ° C. and 60 ° C., so that it can be used in both normal temperature and high temperature environments. However, a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics can be obtained.
 本発明の態様によれば、1.00≦Li/M1≦1.30の原子比であるリチウム化合物と複合水酸化物粒子の混合物を、本焼成にてp≧-600q+1603(式中、qは、少なくともNi、Co及びMnのうち1種類以上からなる金属元素(M1)の合計に対するLiの原子比(Li/M1)であり、1.00≦q≦1.30、pは、本焼成温度であり、940℃<p≦1100℃を意味する。)の焼成温度で焼成することにより、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を製造することができる。 According to an embodiment of the present invention, a mixture of a lithium compound and composite hydroxide particles having an atomic ratio of 1.00 ≦ Li / M1 ≦ 1.30 is subjected to main firing to obtain p ≧ −600q + 1603 (where q is , At least the atomic ratio (Li / M1) of Li to the total of the metal elements (M1) composed of at least one of Ni, Co and Mn, where 1.00 ≦ q ≦ 1.30, and p is the firing temperature. 940 ° C. <p ≦ 1100 ° C.) to produce a positive electrode active material for a secondary battery capable of exhibiting excellent cycle characteristics under both normal temperature and high temperature environments by firing at a firing temperature of 940 ° C. <p ≦ 1100 ° C. Can be.
本発明の二次電池用正極活物質の走査型電子顕微鏡(SEM)の画像である。3 is an image of a positive electrode active material for a secondary battery of the present invention, taken by a scanning electron microscope (SEM). (a)、(b)図は、リチウム二次電池の一例を概略的に説明する模式図である。FIGS. 1A and 1B are schematic diagrams schematically illustrating an example of a lithium secondary battery.
 以下に、本発明の二次電池用正極活物質について、詳細を説明する。本発明の二次電池用正極活物質は、単結晶粒子及び/又は複数の一次粒子が凝集して形成された二次粒子であり、少なくともニッケル、コバルト及びマンガンのうち1種類以上を含む層状構造を有する。本発明の二次電池用正極活物質の形状は、特に限定されず、多種多様な形状となっているが、例えば、略球形状、略立方体形状、略直方体形状等を挙げることができる。 (4) Hereinafter, the positive electrode active material for a secondary battery of the present invention will be described in detail. The positive electrode active material for a secondary battery of the present invention is a secondary particle formed by agglomeration of single crystal particles and / or a plurality of primary particles, and has a layered structure containing at least one of nickel, cobalt, and manganese. Having. The shape of the positive electrode active material for a secondary battery of the present invention is not particularly limited, and has various shapes. Examples thereof include a substantially spherical shape, a substantially cubic shape, and a substantially rectangular parallelepiped shape.
 本発明の二次電池用正極活物質は、単結晶粒子または複数の一次粒子が凝集して形成された二次粒子のいずれか一方、または単結晶粒子と二次粒子の両方が含まれる。本発明の二次電池用正極活物質の走査型電子顕微鏡(SEM)の画像である図1では、単結晶粒子と二次粒子の両方が含まれている。図1に示すように、単結晶粒子は、一次粒子の形態であり、二次粒子は、複数の一次粒子が凝集して形成された粒子である。 The positive electrode active material for a secondary battery of the present invention includes one of single crystal particles and secondary particles formed by aggregating a plurality of primary particles, or both single crystal particles and secondary particles. FIG. 1, which is a scanning electron microscope (SEM) image of the positive electrode active material for a secondary battery of the present invention, contains both single crystal particles and secondary particles. As shown in FIG. 1, single crystal particles are in the form of primary particles, and secondary particles are particles formed by aggregating a plurality of primary particles.
 本発明の二次電池用正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。 結晶 The crystal structure of the positive electrode active material for a secondary battery of the present invention is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
 六方晶型の結晶構造は、P3、P31、P32、R3、P-3、R-3、P312、P321、P3112、P3121、P3212、P3221、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P61、P65、P62、P64、P63、P-6、P6/m、P63/m、P622、P6122、P6522、P6222、P6422、P6322、P6mm、P6cc、P63cm、P63mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P63/mcm、P63/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The hexagonal crystal structure is P3, P31, P32, R3, P-3, R-3, P312, P321, P3112, P3121, P3212, P3221, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P61, P65, P62, P64, P63, P-6, P6 / m, P63 / m, P622, From P6122, P6522, P6222, P6422, P6322, P6mm, P6cc, P63cm, P63mc, P-6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P63 / mcm, P63 / mmc It belongs to any one space group selected from the group consisting of:
 また、単斜晶型の結晶構造は、P2、P21、C2、Pm、Pc、Cm、Cc、P2/m、P21/m、C2/m、P2/c、P21/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 The monoclinic crystal structure is composed of P2, P21, C2, Pm, Pc, Cm, Cc, P2 / m, P21 / m, C2 / m, P2 / c, P21 / c, and C2 / c. It belongs to any one space group selected from the group.
 これらのうち、放電容量が高い二次電池を得る意味で、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, in order to obtain a secondary battery having a high discharge capacity, the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal structure belonging to C2 / m. Particularly preferred is a structure.
 本発明の二次電池用正極活物質の累積体積百分率が50体積%の粒子径(D50)(以下、単に「D50」ということがある。)±1.0μmの範囲、すなわち、(D50)-1.0μm~(D50)+1.0μmの範囲である粒子の平均粒子強度は、200MPa以上である。この優れた平均粒子強度は、本発明の二次電池用正極活物質が、単結晶粒子を含んでいることに起因していると考えられる。(D50)±1.0μmの平均粒子強度は、200MPa以上であれば、特に限定されないが、その下限値は、常温、高温いずれの環境下でもより優れたサイクル特性を発揮する点から、230MPaが好ましく、250MPaがより好ましく、310MPaが特に好ましい。一方で、(D50)±1.0μmの平均粒子強度の上限値は、特に限定されないが、例えば、効率的に製造可能である点で、3000MPaが好ましく、2200MPaがより好ましく、1000MPaがさらに好ましく、700MPaが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。 The cumulative volume percentage of the positive electrode active material for a secondary battery of the present invention is in the range of a particle diameter (D50) of 50% by volume (hereinafter sometimes simply referred to as “D50”) ± 1.0 μm, that is, (D50) − The average particle strength of the particles in the range of 1.0 μm to (D50) +1.0 μm is 200 MPa or more. This excellent average particle strength is considered to be due to the fact that the positive electrode active material for a secondary battery of the present invention contains single crystal particles. (D50) The average particle strength of ± 1.0 µm is not particularly limited as long as it is 200 MPa or more, but the lower limit is 230 MPa from the viewpoint of exhibiting more excellent cycle characteristics under both normal temperature and high temperature environments. Preferably, 250 MPa is more preferable, and 310 MPa is particularly preferable. On the other hand, the upper limit of the average particle strength of (D50) ± 1.0 μm is not particularly limited, but, for example, is preferably 3000 MPa, more preferably 2200 MPa, and still more preferably 1000 MPa from the viewpoint of efficient production. 700 MPa is particularly preferred. The above lower limit and upper limit can be arbitrarily combined.
 本発明の二次電池用正極活物質のD50の下限値は、特に限定されないが、ハンドリング性を高める点から2.0μmが好ましく、2.5μmがより好ましく、3.0μmが特に好ましい。一方で、二次電池用正極活物質のD50の上限値は、密度の向上と電解液との接触面を確保することのバランスの点から、20.0μmが好ましく、15.0μmが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。 下限 The lower limit of D50 of the positive electrode active material for a secondary battery of the present invention is not particularly limited, but is preferably 2.0 µm, more preferably 2.5 µm, and particularly preferably 3.0 µm from the viewpoint of improving the handling properties. On the other hand, the upper limit of D50 of the positive electrode active material for a secondary battery is preferably 20.0 μm, particularly preferably 15.0 μm, from the viewpoint of improving the density and ensuring a contact surface with the electrolytic solution. The above lower limit and upper limit can be arbitrarily combined.
 本発明の二次電池用正極活物質では、CuKα線を使用した粉末X線回折測定において、2θ=64.5±1°の範囲に現れる2つの回折ピークの低角度側の回折ピークの半値全幅をα、高角度側の回折ピークの半値全幅をβとしたとき、β/αが、0.97≦β/α≦1.25である回折ピークの半値全幅の構成か、CuKα線を使用した正極のX線回折パターンにおいて、サイクル試験前後の格子定数の変化率を、(サイクル試験前のa軸/サイクル試験後のa軸)×100=A、(サイクル試験前のc軸/サイクル試験後のc軸)×100=Cとした場合、25℃及び60℃のサイクル試験で、AとCのうちの少なくとも一方が99.30%以上100.90%以下である格子定数の変化率の構成か、少なくともいずれか一方の構成を有する。 In the positive electrode active material for a secondary battery of the present invention, in a powder X-ray diffraction measurement using CuKα radiation, the full width at half maximum of the diffraction peak on the low angle side of two diffraction peaks appearing in the range of 2θ = 64.5 ± 1 °. Is α and β is the full width at half maximum of the diffraction peak on the high angle side, β / α is the configuration of the full width at half maximum of the diffraction peak in which 0.97 ≦ β / α ≦ 1.25, or CuKα ray was used. In the X-ray diffraction pattern of the positive electrode, the rate of change of the lattice constant before and after the cycle test is (a axis before the cycle test / a axis after the cycle test) × 100 = A, (c axis before the cycle test / after the cycle test) (C-axis) × 100 = C, the rate of change of the lattice constant where at least one of A and C is 99.30% or more and 100.90% or less in the cycle test at 25 ° C. and 60 ° C. Or have at least one configuration
 CuKα線を使用した粉末回折ピークの半値全幅について
 上記したD50±1.0μmの平均粒子強度の範囲と、0.97≦β/α≦1.25の回折ピークの半値全幅を有することにより、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を得ることができる。すなわち、回折ピークの半値全幅が0.97≦β/α≦1.25の関係を満たすことで、常温、高温いずれの環境下でも優れたサイクル特性の付与に寄与することを本発明の発明者らは見出した。
Regarding the full width at half maximum of the powder diffraction peak using CuKα ray By having the above range of the average particle intensity of D50 ± 1.0 μm and the full width at half maximum of the diffraction peak of 0.97 ≦ β / α ≦ 1.25 at room temperature Thus, a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under any environment at high temperatures can be obtained. That is, the inventor of the present invention has found that, when the full width at half maximum of the diffraction peak satisfies the relationship of 0.97 ≦ β / α ≦ 1.25, it contributes to imparting excellent cycle characteristics under both normal temperature and high temperature environments. Found them.
 β/αの値は、0.97以上1.25以下であれば特に限定されないが、常温、高温いずれの環境下でも安定的により優れたサイクル特性を得る点から、1.00以上1.20以下がより好ましく、1.03以上1.13以下が特に好ましい。 The value of β / α is not particularly limited as long as it is 0.97 or more and 1.25 or less, but from the viewpoint of obtaining more excellent cycle characteristics stably at both normal temperature and high temperature, from 1.00 to 1.25. The following is more preferable, and the range of 1.03 to 1.13 is particularly preferable.
 格子定数の変化率について
 上記した(D50)±1.0μmの範囲における平均粒子強度の範囲と、25℃及び60℃のサイクル試験では上記Aと上記Cのうちの少なくとも一方が99.30%以上100.90%以下である格子定数の変化率と、を有することにより、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を得ることができる。すなわち、25℃のサイクル試験(常温のサイクル試験)と60℃のサイクル試験(高温のサイクル試験)において、a軸とc軸の少なくとも一方の格子定数の変化率が、99.30%以上100.90%以下に制御されていることで、常温、高温いずれの環境下でも優れたサイクル特性の付与に寄与することを本発明の発明者らは見出した。これは、常温及び高温のサイクル試験において、サイクル試験の前後にて二次電池用正極活物質の結晶構造の変化が低減されていることに起因するものと考えられる。
Regarding the rate of change of the lattice constant In the range of the average particle strength in the range of (D50) ± 1.0 μm and the cycle test at 25 ° C. and 60 ° C., at least one of A and C is 99.30% or more. By having a lattice constant change rate of 100.90% or less, it is possible to obtain a positive electrode active material for a secondary battery that can exhibit excellent cycle characteristics under both normal temperature and high temperature environments. That is, in the 25 ° C. cycle test (normal temperature cycle test) and the 60 ° C. cycle test (high temperature cycle test), the rate of change of at least one of the a-axis and c-axis lattice constants is 99.30% or more and 100. The inventors of the present invention have found that the control at 90% or less contributes to imparting excellent cycle characteristics under both normal temperature and high temperature environments. This is considered to be due to the fact that the change in the crystal structure of the positive electrode active material for the secondary battery before and after the cycle test was reduced in the normal temperature and high temperature cycle tests.
 25℃及び60℃のサイクル試験では、AとCのうちの少なくとも一方が99.30%以上100.90%以下であれば、特に限定されないが、常温、高温いずれの環境下でも安定的により優れたサイクル特性を得る点から、AとCのいずれも99.30%以上100.90%以下が好ましく、AとCのいずれも99.32%以上100.90%以下が特に好ましい。 In the cycle test at 25 ° C. and 60 ° C., there is no particular limitation so long as at least one of A and C is 99.30% or more and 100.90% or less. From the viewpoint of obtaining excellent cycle characteristics, both A and C are preferably from 99.30% to 100.90%, and both A and C are particularly preferably from 99.32% to 100.90%.
 本発明の二次電池用正極活物質の組成としては、少なくともニッケル、コバルト及びマンガンのうち1種類以上からなる金属元素を含む組成であれば、特に限定されないが、例えば、下記一般式(1)
Li[Li(M1M21-a]O2+b      (1)
(式中、aは、0≦a≦0.30が好ましく、0≦a≦0.20がより好ましく、0≦a≦0.10が特に好ましい。bは、特に限定されないが、-0.30≦b≦0.30が好ましく、-0.20≦b≦0.20がより好ましく、0≦b≦0.20が特に好ましい。xは0.9≦x≦1.0、yは0≦y≦0.10が好ましく、0≦y≦0.05がより好ましく、0≦y≦0.02が特に好ましい。x+y=1である。M1は、Ni、Co及びMnのうち1種以上からなる金属元素であり、Ni、Co及びMnの組成は、特に限定されないが、Ni組成範囲として、10mol%以上90mol%以下が好ましく、30mol%以上80mol%以下がより好ましく、50mol%以上60mol%以下が特に好ましい。Co組成範囲としては、10mol%以上50mol%以下が好ましく、10mol%以上30mol%以下がより好ましい。Mn組成範囲としては、0mol%以上50mol%以下が好ましく、0mol%以上40mol%以下がより好ましい。M2は、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、V、B、Mo、As、Ge、P、Pb、Si、Sb、Nb、Ta、Re及びBiからなる群から選択された少なくとも1種の金属元素を意味する。)で表される二次電池用正極活物質が挙げられる。このうち、任意の金属元素であるM2が含まれることで、常温、高温いずれの環境下でも安定的により優れたサイクル特性を得ることができる。これらの任意の金属元素のうち、ZrとAlが好ましい。
The composition of the positive electrode active material for a secondary battery of the present invention is not particularly limited as long as the composition contains at least one metal element of nickel, cobalt, and manganese. For example, the following general formula (1)
Li [Li a (M1 x M2 y ) 1-a ] O 2 + b (1)
(In the formula, a is preferably 0 ≦ a ≦ 0.30, more preferably 0 ≦ a ≦ 0.20, and particularly preferably 0 ≦ a ≦ 0.10. B is not particularly limited. 30 ≦ b ≦ 0.30 is preferable, −0.20 ≦ b ≦ 0.20 is more preferable, 0 ≦ b ≦ 0.20 is particularly preferable, x is 0.9 ≦ x ≦ 1.0, and y is 0 ≤ y ≤ 0.10, more preferably 0 ≤ y ≤ 0.05, particularly preferably 0 ≤ y ≤ 0.02, x + y = 1. M1 is 1 of Ni, Co and Mn. The composition of Ni, Co and Mn is not particularly limited, but the Ni composition range is preferably from 10 mol% to 90 mol%, more preferably from 30 mol% to 80 mol%, and more preferably 50 mol% or more. The content of Co is particularly preferably 60 mol% or less. Is preferably from 10 mol% to 50 mol%, more preferably from 10 mol% to 30 mol%, and the Mn composition range is preferably from 0 mol% to 50 mol%, more preferably from 0 mol% to 40 mol%, and M2 is Fe. , Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge, P, Pb, Si, Sb, Nb, Ta, Re and Bi. And at least one type of metal element). Among them, by including M2 which is an arbitrary metal element, more excellent cycle characteristics can be obtained stably at both normal temperature and high temperature environments. Among these arbitrary metal elements, Zr and Al are preferable.
 本発明の二次電池用正極活物は、例えば、リチウムイオン二次電池の正極活物質として使用することができる。 正極 The positive electrode active material for a secondary battery of the present invention can be used, for example, as a positive electrode active material for a lithium ion secondary battery.
 本発明の二次電池用正極活物のBET比表面積は、特に限定されないが、例えば、密度の向上と電解液との接触面を確保することのバランスの点から、下限値は0.10m/gが好ましく、0.30m/gが特に好ましい。一方で、その上限値は5.0m/gが好ましく、4.0m/gがより好ましく、2.0m/gが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。  Although the BET specific surface area of the positive electrode active material for a secondary battery of the present invention is not particularly limited, for example, the lower limit is 0.10 m 2 from the viewpoint of improving density and ensuring a contact surface with an electrolyte. / G is preferred, and 0.30 m 2 / g is particularly preferred. On the other hand, the upper limit is preferably 5.0 m 2 / g, more preferably 4.0 m 2 / g, particularly preferably 2.0 m 2 / g. The above lower limit and upper limit can be arbitrarily combined.
 次に、本発明の二次電池用正極活物の製造方法例について説明する。 Next, an example of a method for producing the positive electrode active material for a secondary battery of the present invention will be described.
 上記製造方法としては、例えば、まず、少なくともニッケル、コバルト及びマンガンのうち1種類以上を有する複合水酸化物粒子(以下、単に、「複合水酸化物粒子」ということがある。)を調製する。複合水酸化物粒子は、二次電池用正極活物質の前駆体である。本発明に用いる前駆体は、少なくともニッケル、コバルト及びマンガンのうち1種類以上を有する複合酸化物でもよい。複合水酸化物粒子の調製方法は、まず、共沈法により、ニッケルの塩溶液(例えば、硫酸塩溶液)、コバルトの塩溶液(例えば、硫酸塩溶液)及びマンガンの塩溶液(例えば、硫酸塩溶液)のうちの1種類以上の金属塩溶液と錯化剤とpH調整剤を適宜添加することで、反応槽内にて反応させて、複合水酸化物粒子を調製して、複合水酸化物粒子を含むスラリー状の懸濁物を得る。懸濁物の溶媒としては、例えば、水が使用される。 As the above-mentioned production method, for example, first, composite hydroxide particles having at least one of nickel, cobalt, and manganese (hereinafter, sometimes simply referred to as “composite hydroxide particles”) are prepared. The composite hydroxide particles are a precursor of a positive electrode active material for a secondary battery. The precursor used in the present invention may be a composite oxide having at least one of nickel, cobalt and manganese. The method for preparing the composite hydroxide particles is as follows. First, a nickel salt solution (for example, a sulfate solution), a cobalt salt solution (for example, a sulfate solution) and a manganese salt solution (for example, a sulfate solution) are formed by a coprecipitation method. Solution), a complexing agent, a complexing agent and a pH adjusting agent are appropriately added to react in a reaction vessel to prepare composite hydroxide particles, A slurry suspension containing the particles is obtained. As a solvent for the suspension, for example, water is used.
 上記金属塩溶液に添加する錯化剤としては、水溶液中で、ニッケル、コバルト、マンガンのイオンと錯体を形成可能なものであれば、特に限定されず、例えば、アンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。なお、沈殿に際しては、水溶液のpH値を調整するため、必要に応じて、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)を添加してもよい。 The complexing agent to be added to the metal salt solution is not particularly limited as long as it can form a complex with nickel, cobalt, and manganese ions in an aqueous solution. For example, an ammonium ion donor (ammonium sulfate, chloride, etc.) Ammonium, ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetate, and glycine. At the time of precipitation, an alkali metal hydroxide (for example, sodium hydroxide or potassium hydroxide) may be added as needed to adjust the pH value of the aqueous solution.
 上記金属塩溶液に加えて、pH調整剤と錯化剤を反応槽に適宜連続して供給すると、金属塩溶液の金属(ニッケル、コバルト、マンガンのうちの1種類以上)が共沈反応し、複合水酸化物粒子が調製される。共沈反応に際しては、反応槽の温度を、例えば、10℃~80℃、好ましくは20~70℃の範囲内で制御し、反応槽内のpH値を液温40℃基準で、例えば、pH9~pH13、好ましくはpH11~13の範囲内で制御しつつ、反応槽内の物質を、適宜、撹拌する。反応槽としては、例えば、形成された複合水酸化物粒子を分離するためにオーバーフローさせる連続式や、反応終了まで系外に排出しないバッチ式を挙げることができる。 When the pH adjusting agent and the complexing agent are appropriately and continuously supplied to the reaction tank in addition to the metal salt solution, the metals (one or more of nickel, cobalt, and manganese) of the metal salt solution undergo a coprecipitation reaction, Composite hydroxide particles are prepared. At the time of the coprecipitation reaction, the temperature of the reaction vessel is controlled, for example, in the range of 10 ° C. to 80 ° C., preferably 20 to 70 ° C., and the pH value in the reaction vessel is adjusted to a pH of 9 ° C. The substance in the reaction vessel is appropriately stirred while controlling the pH within a range of from pH 13 to preferably pH 11 to 13. Examples of the reaction tank include a continuous type in which the formed composite hydroxide particles overflow to separate them, and a batch type in which the composite hydroxide particles are not discharged out of the system until the end of the reaction.
 上記のようにして得られた複合酸化物粒子を懸濁物からろ過後、水洗し、加熱処理することで、粉体状の複合水酸化物粒子を得る。得られた複合水酸化物粒子は、必要に応じて、例えば、乾式分級機により、粒度分布幅の(D90-D10)/D50を狭める工程を追加してもよい。 ろ 過 The composite oxide particles obtained as described above are filtered from the suspension, washed with water, and heat-treated to obtain powdery composite hydroxide particles. If necessary, a step of narrowing (D90-D10) / D50 of the particle size distribution width of the obtained composite hydroxide particles may be added by, for example, a dry classifier.
 本発明の二次電池用正極活物質の前駆体である複合水酸化物粒子のD50の下限値は、特に限定されないが、ハンドリング性を高める点から2.0μmが好ましく、2.5μmがより好ましく、3.0μmが特に好ましい。一方で、複合水酸化物粒子のD50の上限値は、焼成時のリチウム化合物との反応を高める点から、25.0μmが好ましく、20.0μmが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。 The lower limit of D50 of the composite hydroxide particles that are the precursor of the positive electrode active material for a secondary battery of the present invention is not particularly limited, but is preferably 2.0 μm, more preferably 2.5 μm, from the viewpoint of improving handling properties. And 3.0 μm are particularly preferred. On the other hand, the upper limit of D50 of the composite hydroxide particles is preferably 25.0 μm, particularly preferably 20.0 μm, from the viewpoint of enhancing the reaction with the lithium compound during firing. The above lower limit and upper limit can be arbitrarily combined.
 また、複合水酸化物粒子の粒度分布は、特に限定されないが、(D90-D10)/D50の値の下限値は、効率的な製造可能範囲の点から、0.40が好ましく、0.50がより好ましく、0.70が特に好ましい。一方で、複合水酸化物粒子の(D90-D10)/D50の値の上限値は、常温環境下で優れたサイクル特性を得つつ、高温環境下でもより優れたサイクル特性を得る点から、1.00が好ましく、0.96がより好ましく、常温環境下でさらに優れたサイクル特性を得る点から0.80が特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。 The particle size distribution of the composite hydroxide particles is not particularly limited, but the lower limit of the value of (D90−D10) / D50 is preferably 0.40, and more preferably 0.50, from the viewpoint of an efficient production range. Is more preferable, and 0.70 is particularly preferable. On the other hand, the upper limit of the value of (D90−D10) / D50 of the composite hydroxide particles is set at 1 because the superior cycle characteristics can be obtained under a normal temperature environment and the superior cycle characteristics can be obtained under a high temperature environment. 0.000 is more preferable, 0.96 is more preferable, and 0.80 is particularly preferable from the viewpoint of obtaining further excellent cycle characteristics under a normal temperature environment. The above lower limit and upper limit can be arbitrarily combined.
 次に、得られた粉体状の複合水酸化物粒子にリチウム化合物を添加して複合水酸化物粒子とリチウム化合物の混合物を調製する。このとき、1.00≦Li/M1≦1.30の原子比となるように、リチウム化合物を添加する。リチウム化合物としては、リチウムを有する化合物あれば特に限定されず、例えば、炭酸リチウム、水酸化リチウム等を挙げることができる。 Next, a lithium compound is added to the obtained powdery composite hydroxide particles to prepare a mixture of the composite hydroxide particles and the lithium compound. At this time, the lithium compound is added so that the atomic ratio satisfies 1.00 ≦ Li / M1 ≦ 1.30. The lithium compound is not particularly limited as long as it is a compound having lithium, and examples thereof include lithium carbonate and lithium hydroxide.
 次に、得られた混合物を、次の式で表される焼成温度により焼成(以下、本焼成ということがある。)を行う。本焼成は式p≧-600q+1603(式中、qは、少なくともNi、Co及びMnのうち1種類以上からなる金属元素(M1)の合計に対するLiの原子比(Li/M1)であり、1.00≦q≦1.30、pは、本焼成温度であり、940℃<p≦1100℃を意味する。)で表される焼成温度で焼成する。上記焼成温度での焼成工程における焼成時間は、特に限定されないが、例えば、5~20時間が好ましく、8~15時間が特に好ましい。上記本焼成での昇温速度は、材料温度と焼成炉の温度を同等に保つ点から、50~550℃/hが好ましく、100~400℃/hがより好ましく、140℃~380℃/hが特に好ましい。本焼成の雰囲気については特に限定されないが、例えば大気、酸素などが挙げられる。本焼成に用いる焼成炉としては特に限定されないが、例えば静置式のボックス炉やローラーハース式連続炉などが挙げられる。また、本発明の二次電池用正極活物の製造方法では、本焼成工程に加えて、さらに、本焼成工程の前に仮焼工程、本焼成工程の後に焼戻し工程、本焼成工程及び/または焼戻し工程の前に、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、V、B、Mo、As、Ge、P、Pb、Si、Sb、Nb、Ta、Re及びBiからなる群から選択される少なくとも1種の金属成分を添加する工程のうち、少なくとも1つの工程を実施する。 Next, the obtained mixture is fired (hereinafter, sometimes referred to as main firing) at a firing temperature represented by the following formula. In the main firing, the formula p ≧ −600q + 1603 (where q is the atomic ratio of Li to the total of at least one metal element (M1) of Ni, Co and Mn) (Li / M1). 00 ≦ q ≦ 1.30, p is a main firing temperature, and means firing at a firing temperature represented by 940 ° C. <p ≦ 1100 ° C.). The firing time in the firing step at the above firing temperature is not particularly limited, but is, for example, preferably 5 to 20 hours, and particularly preferably 8 to 15 hours. The rate of temperature rise in the main firing is preferably 50 to 550 ° C./h, more preferably 100 to 400 ° C./h, and 140 ° C. to 380 ° C./h from the viewpoint of keeping the material temperature and the temperature of the firing furnace equal. Is particularly preferred. The atmosphere for the main firing is not particularly limited, and examples thereof include air and oxygen. The firing furnace used for the main firing is not particularly limited, and examples thereof include a stationary box furnace and a roller hearth continuous furnace. In the method for producing a positive electrode active material for a secondary battery according to the present invention, in addition to the main firing step, a calcining step before the main firing step, a tempering step after the main firing step, a main firing step, and / or Before the tempering step, Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge, P, Pb, Si, Sb, Nb, Ta, Re and At least one of the steps of adding at least one metal component selected from the group consisting of Bi is performed.
 上記本焼成において、焼成用の鞘へ充填物である上記複合水酸化物粒子とリチウム化合物との混合物を充填する際、充填物の鞘との接触面を含めた表面積(S)と充填物の体積(V)の比S/Vの下限値については、特に限定されないが、充填物の温度を均一化する点から0.08mm/mmが好ましい。また、上限値については、特に限定されないが、生産性の点から2.00mm/mmが好ましく、0.68mm/mmがより好ましく、0.36mm/mmが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。鞘については特に限定されないが、例えば内寸130mm×130mm×88mmや280mm×280mm×88mmの鞘が挙げられる。 In the main firing, when the mixture of the composite hydroxide particles and the lithium compound as the filler is filled in the sheath for firing, the surface area (S) including the contact surface of the filler with the sheath and the filler The lower limit of the volume (V) ratio S / V is not particularly limited, but is preferably 0.08 mm 2 / mm 3 from the viewpoint of making the temperature of the filling uniform. In addition, the upper limit is not particularly limited, but is preferably 2.00 mm 2 / mm 3 from the viewpoint of productivity, more preferably 0.68 mm 2 / mm 3, and particularly preferably 0.36mm 2 / mm 3. The above lower limit and upper limit can be arbitrarily combined. Although there is no particular limitation on the sheath, for example, a sheath having an inner size of 130 mm × 130 mm × 88 mm or 280 mm × 280 mm × 88 mm is exemplified.
 仮焼工程は、原料に含まれるガスを放出させ、酸化させることで二次電池用正極活物質の結晶性をより好ましい形態とするための工程である。仮焼成は、例えば、300℃以上800℃以下が好ましく、650℃以上760℃以下が特に好ましい。また、仮焼成の焼成時間は、特に限定されないが、例えば、1~20時間が好ましく、3~10時間が特に好ましい。上記仮焼成での昇温速度は、材料温度と焼成炉の温度を同等に保つ点から、50~550℃/hが好ましく、100~400℃/hがより好ましく、140℃~380℃/hが特に好ましい。仮焼成の雰囲気については特に限定されないが、例えば大気、酸素などが挙げられる。仮焼成に用いる焼成炉としては特に限定されないが、例えば静置式のボックス炉やローラーハース式連続炉などが挙げられる。 The calcining step is a step for releasing the gas contained in the raw material and oxidizing the same to make the crystallinity of the positive electrode active material for a secondary battery more preferable. The calcination is, for example, preferably at least 300 ° C and at most 800 ° C, particularly preferably at least 650 ° C and at most 760 ° C. Further, the calcination time of the calcination is not particularly limited, but is, for example, preferably 1 to 20 hours, and particularly preferably 3 to 10 hours. The rate of temperature rise in the preliminary firing is preferably 50 to 550 ° C / h, more preferably 100 to 400 ° C / h, and 140 ° C to 380 ° C / h from the viewpoint of keeping the material temperature and the temperature of the firing furnace equal. Is particularly preferred. The atmosphere for the preliminary firing is not particularly limited, and examples thereof include air and oxygen. The firing furnace used for the preliminary firing is not particularly limited, and examples thereof include a stationary box furnace and a roller hearth continuous furnace.
 また、焼戻し工程は、二次電池用正極活物質の結晶性をより好ましい形態とするための工程である。焼戻し工程は、例えば、600℃以上900℃以下が好ましく、650℃以上860℃以下が特に好ましい。また、焼戻しの焼成時間は、特に限定されないが、例えば、1~20時間が好ましく、3~10時間が特に好ましい。上記焼戻しでの昇温速度は、材料温度と焼成炉の温度を同等に保つ点から、50~550℃/hが好ましく、100~400℃/hがより好ましく、140℃~380℃/hが特に好ましい。焼戻しの雰囲気については特に限定されないが、例えば大気、酸素などが挙げられる。焼戻しに用いる焼成炉としては特に限定されないが、例えば静置式のボックス炉やローラーハース式連続炉などが挙げられる。 焼 The tempering step is a step for making the crystallinity of the positive electrode active material for a secondary battery more preferable. The tempering step is, for example, preferably at least 600 ° C and no more than 900 ° C, particularly preferably at least 650 ° C and no more than 860 ° C. The firing time for tempering is not particularly limited, but is, for example, preferably 1 to 20 hours, and particularly preferably 3 to 10 hours. The temperature rising rate in the tempering is preferably 50 to 550 ° C./h, more preferably 100 to 400 ° C./h, and 140 to 380 ° C./h from the viewpoint of keeping the material temperature and the temperature of the firing furnace equal. Particularly preferred. The tempering atmosphere is not particularly limited, but includes, for example, air and oxygen. The firing furnace used for tempering is not particularly limited, and examples thereof include a stationary box furnace and a roller hearth continuous furnace.
 また、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、V、B、Mo、As、Ge、P、Pb、Si、Sb、Nb、Ta、Re及びBiからなる群から選択される少なくとも1種の金属成分を添加する工程は、二次電池用正極活物質の結晶性をより好ましい形態とするための工程である。 Also, a group consisting of Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge, P, Pb, Si, Sb, Nb, Ta, Re, and Bi. The step of adding at least one metal component selected from the above is a step for making the crystallinity of the positive electrode active material for a secondary battery more preferable.
[二次電池]
 次いで、二次電池の構成を説明しながら、本発明の二次電池用正極活物質を二次電池の正極活物質として用いた正極、およびこの正極を有する二次電池について説明する。ここでは、二次電池としてリチウム二次電池を例にして説明する。
[Secondary battery]
Next, a positive electrode using the positive electrode active material for a secondary battery of the present invention as a positive electrode active material of a secondary battery and a secondary battery having the positive electrode will be described while describing the configuration of the secondary battery. Here, a lithium secondary battery will be described as an example of the secondary battery.
 本発明の二次電池用正極活物質を正極活物質として用いたリチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 One example of a lithium secondary battery using the positive electrode active material for a secondary battery of the present invention as a positive electrode active material is a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and disposed between the positive electrode and the negative electrode. Electrolyte solution.
 図2は、リチウム二次電池の一例を示す模式図である。図2に示す円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 2 is a schematic diagram showing an example of a lithium secondary battery. The cylindrical lithium secondary battery 10 shown in FIG. 2 is manufactured as follows.
 まず、図2(a)に示すように、帯状の形状を有する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 2A, a pair of separators 1 having a band shape, a band-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a band-shaped negative electrode 3 having a negative electrode lead 31 at one end are separated from each other by a separator 1. The positive electrode 2, the separator 1, and the negative electrode 3 are laminated in this order and wound to form an electrode group 4.
 次いで、図2(b)に示すように、電池缶5内部に電極群4および不図示のインシュレーターを収容した後、電池缶5の缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, as shown in FIG. 2B, after housing the electrode group 4 and an insulator (not shown) inside the battery can 5, the bottom of the battery can 5 is sealed, and the electrode group 4 is impregnated with the electrolytic solution 6. Then, an electrolyte is disposed between the positive electrode 2 and the negative electrode 3. Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing body 8, the lithium secondary battery 10 can be manufactured.
 電極群4の形状としては、特に限定されず、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角丸長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is not particularly limited. For example, the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the axis of winding is a circle, an ellipse, a rectangle, and a rounded rectangle. Columnar shapes can be mentioned.
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、またはJIS C 8500で定められる形状を採用することができる。前記規格で定められる形状としては、例えば、円筒型、角型などを挙げることができる。 Further, as the shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or a shape defined by JIS C # 8500 can be adopted. . Examples of the shape defined by the standard include a cylindrical shape and a square shape.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(またはシート型)電池を挙げることができる。 Further, the lithium secondary battery is not limited to the above-described wound configuration, and may be a stacked configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of the stacked lithium secondary battery include a so-called coin battery, a button battery, and a paper (or sheet) battery.
 以下、リチウム二次電池の各構成について順に説明する。
(正極)
 リチウム二次電池の正極は、まず正極活物質(本発明の二次電池用正極活物質)、導電材およびバインダーを含む正極合剤を調製し、この正極合剤を正極集電体に担持させることで製造することができる。
Hereinafter, each configuration of the lithium secondary battery will be described in order.
(Positive electrode)
For the positive electrode of a lithium secondary battery, first, a positive electrode mixture containing a positive electrode active material (a positive electrode active material for a secondary battery of the present invention), a conductive material and a binder is prepared, and the positive electrode mixture is supported on a positive electrode current collector. It can be manufactured by
(導電材)
 リチウム二次電池の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として、例えば、黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
(Conductive material)
As the conductive material of the positive electrode of the lithium secondary battery, a carbon material can be used. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Carbon black is a fine particle and has a large surface area.By adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be increased, and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.
 正極合剤中の導電材の割合は、使用条件等に応じて適宜選択可能であるが、正極活物質100質量部に対して5質量部以上20質量部以下が好ましい。なお、導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。 割 合 The proportion of the conductive material in the positive electrode mixture can be appropriately selected depending on the use conditions and the like, but is preferably 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the positive electrode active material. When a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, the ratio can be reduced.
(バインダー)
 リチウム二次電池の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併用してもよい。
(binder)
As a binder included in the positive electrode of the lithium secondary battery, a thermoplastic resin can be used. Examples of the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), and ethylene tetrafluoride / propylene hexafluoride / vinylidene fluoride. Fluororesins such as polymers, propylene hexafluoride / vinylidene fluoride copolymers, and tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene; These thermoplastic resins may be used alone or in combination of two or more.
 これらの熱可塑性樹脂のうち、バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。 Among these thermoplastic resins, a fluororesin and a polyolefin resin are used as a binder, and the ratio of the fluororesin to the whole positive electrode mixture is 1% by mass to 10% by mass, and the ratio of the polyolefin resin is 0.1% by mass to 2% by mass. % Or less, it is possible to obtain a positive electrode mixture in which both the adhesion to the positive electrode current collector and the bonding force inside the positive electrode mixture are high.
(正極集電体)
 リチウム二次電池の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。このうち、加工しやすく、安価であるという点で、Alを形成材料とし、薄膜状に加工したものが好ましい。
(Positive electrode current collector)
As the positive electrode current collector included in the positive electrode of the lithium secondary battery, a belt-shaped member formed using a metal material such as Al, Ni, or stainless steel can be used. Among them, a material formed into a thin film using Al as a forming material is preferable because it is easy to process and inexpensive.
 正極集電体に正極合剤を担持させる方法としては、特に限定されず、例えば、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。 The method for supporting the positive electrode mixture on the positive electrode current collector is not particularly limited. For example, a method in which the positive electrode mixture is pressure-formed on the positive electrode current collector may be mentioned. In addition, the positive electrode mixture is paste-formed using an organic solvent, the obtained positive electrode mixture paste is applied to at least one surface of the positive electrode current collector, dried, pressed and fixed, so that the positive electrode A mixture may be carried.
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、例えば、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。これらは、単独で使用してもよく、2種以上を併用してもよい。 When the positive electrode mixture is made into a paste, examples of the organic solvent that can be used include, for example, amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; Ester solvents such as methyl acetate; amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP). These may be used alone or in combination of two or more.
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法等が挙げられる。以上に挙げられた方法により、正極を製造することができる。 方法 Examples of the method of applying the paste of the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method. The positive electrode can be manufactured by the method described above.
(負極)
 リチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープ且つ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、負極活物質単独からなる電極を挙げることができる。
(Negative electrode)
The negative electrode of the lithium secondary battery may be capable of doping and undoping lithium ions at a potential lower than that of the positive electrode, and an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector, a negative electrode An electrode made of the active material alone can be used.
(負極活物質)
 リチウム二次電池の負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属または合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
(Negative electrode active material)
The negative electrode active material of the negative electrode of the lithium secondary battery is a carbon material, a chalcogen compound (oxide, sulfide, etc.), a nitride, a metal, or an alloy. Doping and undoping of lithium ions at a lower potential than the positive electrode is performed. Possible materials are listed.
 リチウム二次電池の負極活物質として使用可能な炭素材料としては、例えば、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。 Examples of the carbon material that can be used as the negative electrode active material of the lithium secondary battery include natural graphite, graphite such as artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds. be able to.
 リチウム二次電池の負極活物質として使用可能な酸化物としては、例えば、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタンまたはバナジウムとを含有する複合金属酸化物;を挙げることができる。 Examples of oxides that can be used as the negative electrode active material of the lithium secondary battery include, for example, silicon oxide represented by the formula SiO x (where x is a positive real number) such as SiO 2 and SiO; TiO 2 , TiO Oxide of titanium represented by the formula TiO x (where x is a positive real number); vanadium represented by the formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 Oxide; iron oxide represented by the formula FeO x (where x is a positive real number) such as Fe 3 O 4 , Fe 2 O 3 , and FeO; SnO x such as SnO 2 and SnO (where x Is a positive real number); a tungsten oxide represented by a general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; Li 4 Ti 5 O 12 ; containing lithium and titanium or vanadium such as LiVO 2 Complex metal oxides; and the like.
 リチウム二次電池の負極活物質として使用可能な硫化物としては、例えば、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。 Examples of the sulfide that can be used as the negative electrode active material of the lithium secondary battery include titanium sulfide represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS. A sulfide of vanadium represented by the formula VS x (where x is a positive real number) such as V 3 S 4 , VS 2 , and VS; a formula FeS x (here, such as Fe 3 S 4 , FeS 2 , and FeS) a sulfide of iron represented by x is a positive real number; a sulfide of molybdenum represented by a formula MoS x (where x is a positive real number) such as Mo 2 S 3 or MoS 2 ; SnS 2 , SnS, etc. (wherein, x represents a positive real number) the formula SnS x sulfides of tin represented by; WS 2 wherein WS x (wherein, x represents a positive real number) such as sulfides of tungsten represented by; Sb 2 S 3 and the like represented by the expression SbS x (where x is a positive real number) Simon sulfide; selenium sulfide represented by the formula SeS x (where x is a positive real number) such as Se 5 S 3 , SeS 2 , and SeS;
 リチウム二次電池の負極活物質として使用可能な窒化物としては、例えば、LiN、Li3-xN(ここで、AはNiおよびCoのいずれか一方または両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。 As a nitride usable as a negative electrode active material of a lithium secondary battery, for example, Li 3 N, Li 3-x A x N (where A is one or both of Ni and Co, and 0 < x <3).
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用してもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質または非晶質のいずれでもよい。 は These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. In addition, these carbon materials, oxides, sulfides, and nitrides may be either crystalline or amorphous.
 また、リチウム二次電池の負極活物質として使用可能な金属としては、例えば、リチウム金属、シリコン金属、スズ金属などを挙げることができる。 金属 Further, examples of the metal that can be used as the negative electrode active material of the lithium secondary battery include lithium metal, silicon metal, tin metal, and the like.
 リチウム二次電池の負極活物質として使用可能な合金としては、例えば、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。 Examples of alloys usable as the negative electrode active material of the lithium secondary battery include lithium alloys such as Li-Al, Li-Ni, Li-Si, Li-Sn, and Li-Sn-Ni; silicon such as Si-Zn alloy; it may also be mentioned; Sn-Mn, Sn-Co , Sn-Ni, Sn-Cu, tin alloys such as Sn-La; Cu 2 Sb, alloys such as La 3 Ni 2 Sn 7.
 これらの金属や合金は、例えば箔状に加工された後、主に単独で負極として用いられる。 These metals and alloys are mainly used alone as a negative electrode after being processed into a foil shape, for example.
 上記負極活物質のうち、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい。)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい。)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましい。炭素材料の形状としては、特に限定されず、例えば、天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。 Among the negative electrode active materials, the potential of the negative electrode hardly changes from an uncharged state to a fully charged state during charging (good potential flatness), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is low. A carbon material containing graphite as a main component, such as natural graphite or artificial graphite, is preferred because of its high property (good cycle characteristics). The shape of the carbon material is not particularly limited, and may be, for example, any of a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, and an aggregate of fine powder. May be.
 リチウム二次電池の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、例えば、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレンおよびポリプロピレン等のポリオレフィン樹脂等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。 負極 The negative electrode mixture of the lithium secondary battery may contain a binder, if necessary. Examples of the binder include thermoplastic resins, and examples thereof include PVdF, thermoplastic polyimide, carboxymethyl cellulose, and polyolefin resins such as polyethylene and polypropylene. These may be used alone or in combination of two or more.
(負極集電体)
 リチウム二次電池の負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。このうち、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
(Negative electrode current collector)
Examples of the negative electrode current collector included in the negative electrode of the lithium secondary battery include a band-shaped member formed of a metal material such as Cu, Ni, and stainless steel. Among them, it is preferable to use Cu as a forming material and process it into a thin film, since it is difficult to form an alloy with lithium and easy to process.
 負極集電体に負極合剤を担持させる方法としては、特に限定されず、正極の場合と同様に、例えば、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。 The method for supporting the negative electrode mixture on the negative electrode current collector is not particularly limited. As in the case of the positive electrode, for example, a method by pressure molding, paste using a solvent or the like, and apply on the negative electrode current collector, After drying, a method of pressing and pressing is given.
(セパレータ)
 リチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を1種または2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
(Separator)
As a separator included in the lithium secondary battery, for example, polyethylene, a polyolefin resin such as polypropylene, a fluorine resin, a material such as a nitrogen-containing aromatic polymer, a porous film, a nonwoven fabric, a material having a form such as a woven fabric. Can be used. Further, one or more of these materials may be used to form a separator, or these materials may be laminated to form a separator.
 リチウム二次電池のセパレータとしては、例えば、特開2000-30686号公報、特開平10-324758号公報などに記載のセパレータを挙げることができる。セパレータの厚みは、使用条件等に応じて適宜選択可能であるが、リチウム二次電池の体積エネルギー密度が上がり、内部抵抗が小さくなる点で、機械的強度が保たれる限り薄くした方が好ましく、より好ましくは5~200μm程度、特に好ましくは5~40μm程度である。 Examples of the separator of the lithium secondary battery include separators described in JP-A-2000-30686 and JP-A-10-324758. The thickness of the separator can be appropriately selected depending on the use conditions and the like, but it is preferable that the thickness be reduced as long as the mechanical strength is maintained, in that the volume energy density of the lithium secondary battery increases and the internal resistance decreases. And more preferably about 5 to 200 μm, particularly preferably about 5 to 40 μm.
 リチウム二次電池のセパレータは、好ましくは、熱可塑性樹脂を含有する多孔質フィルムを有する。リチウム二次電池においては、正極-負極間の短絡などが原因で電池内に異常電流が流れた際に、短絡箇所の電流を遮断して、過大電流が流れることを阻止(シャットダウン)する機能を有することが好ましい。ここで、シャットダウンは、短絡により短絡箇所のセパレータが過熱され、予め想定された使用温度を越えた場合に、セパレータにおける多孔質フィルムが軟化または融解して微細孔を閉塞することによりなされる。そして、セパレータがシャットダウンした後、ある程度の高温までリチウム二次電池内の温度が上昇しても、その温度により破膜することなく、シャットダウンした状態を維持することが好ましい。 セ パ レ ー タ The separator of the lithium secondary battery preferably has a porous film containing a thermoplastic resin. In lithium secondary batteries, when an abnormal current flows in the battery due to a short circuit between the positive electrode and the negative electrode, the function of shutting off the current at the short-circuit point and preventing the excessive current from flowing (shut down) It is preferred to have. Here, the shutdown is performed by overheating of the separator at the short-circuited portion due to the short-circuit, and when the operating temperature exceeds a previously assumed use temperature, the porous film in the separator softens or melts to close the micropores. Then, even if the temperature in the lithium secondary battery rises to a certain high temperature after the separator is shut down, it is preferable that the shut down state be maintained without causing film breakage due to the temperature.
 セパレータのシャットダウン後、ある程度の高温までリチウム二次電池内の温度が上昇しても、その温度により破膜することなく、シャットダウン状態を維持できるセパレータとしては、耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムが挙げられる。このような積層フィルムをセパレータとして用いることにより、二次電池の耐熱性をより高めることが可能となる。積層フィルムにおいては、耐熱多孔層は、多孔質フィルムの両面に積層されていてもよい。 After the separator shuts down, even if the temperature inside the lithium secondary battery rises to a certain high temperature, the temperature-resistant separator does not break down, and as a separator, the heat-resistant porous layer and the porous film are laminated. And the resulting laminated film. By using such a laminated film as a separator, the heat resistance of the secondary battery can be further increased. In the laminated film, the heat-resistant porous layer may be laminated on both sides of the porous film.
(積層フィルム)
 以下、前記の耐熱多孔層と多孔質フィルムとが互いに積層された積層フィルムについて説明する。
(Laminated film)
Hereinafter, a laminated film in which the heat-resistant porous layer and the porous film are laminated on each other will be described.
 リチウム二次電池のセパレータとして用いられる積層フィルムにおいて、耐熱多孔層は、多孔質フィルムよりも耐熱性の高い層である。耐熱多孔層は、無機粉末から形成されていてもよいし(第1の耐熱多孔層)、耐熱樹脂から形成されていてもよいし(第2の耐熱多孔層)、耐熱樹脂とフィラーとを含んで形成されていてもよい(第3の耐熱多孔層)。耐熱多孔層が、耐熱樹脂を含有することにより、塗工などの容易な手法で、耐熱多孔層を形成することができる。 に お い て In the laminated film used as the separator of the lithium secondary battery, the heat-resistant porous layer is a layer having higher heat resistance than the porous film. The heat-resistant porous layer may be formed from an inorganic powder (first heat-resistant porous layer), may be formed from a heat-resistant resin (second heat-resistant porous layer), and includes a heat-resistant resin and a filler. (Third heat-resistant porous layer). When the heat-resistant porous layer contains a heat-resistant resin, the heat-resistant porous layer can be formed by an easy method such as coating.
(第1の耐熱多孔層)
 耐熱多孔層が無機粉末から形成されている場合、耐熱多孔層に用いられる無機粉末としては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩などの無機物からなる粉末が挙げられ、これらの中でも、導電性の低い(絶縁性の高い)無機物からなる粉末が好ましく用いられる。具体的に例示すると、アルミナ粉末、シリカ粉末、二酸化チタン粉末、炭酸カルシウム粉末等が挙げられる。このような無機粉末は、単独で用いてもよいし、2種以上を併用してもよい。
(First heat resistant porous layer)
When the heat-resistant porous layer is formed from an inorganic powder, examples of the inorganic powder used for the heat-resistant porous layer include inorganic substances such as metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates, and sulfates. Of these, and among these, a powder made of an inorganic material having low conductivity (high insulation) is preferably used. Specific examples include alumina powder, silica powder, titanium dioxide powder, calcium carbonate powder and the like. Such inorganic powders may be used alone or in combination of two or more.
 これらの無機物からなる粉末の中でも、化学的安定性が高いことから、アルミナ粉末が好ましい。また、無機物からなる粉末を構成する粒子のすべてがアルミナ粒子であることがより好ましく、無機物からなる粉末を構成する粒子のすべてがアルミナ粒子であり、且つその一部または全部が略球状のアルミナ粒子であることがさらに好ましい。 ア ル ミ ナ Among these inorganic powders, alumina powder is preferred because of its high chemical stability. Further, it is more preferable that all of the particles constituting the inorganic powder are alumina particles, all of the particles constituting the inorganic powder are alumina particles, and some or all of the particles are substantially spherical alumina particles. Is more preferable.
(第2の耐熱多孔層)
 耐熱多孔層が耐熱樹脂から形成されている場合、耐熱多孔層に用いられる耐熱樹脂としては、例えば、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホンおよびポリエーテルイミド等を挙げることができる。積層フィルムの耐熱性をより高めるためには、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホン、ポリエーテルイミドが好ましく、より好ましくは、ポリアミド、ポリイミド、ポリアミドイミドである。
(Second heat resistant porous layer)
When the heat-resistant porous layer is formed from a heat-resistant resin, as the heat-resistant resin used for the heat-resistant porous layer, for example, polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyether ketone, aromatic polyester, Examples thereof include polyethersulfone and polyetherimide. In order to further increase the heat resistance of the laminated film, polyamide, polyimide, polyamideimide, polyethersulfone, and polyetherimide are preferred, and polyamide, polyimide, and polyamideimide are more preferred.
 耐熱多孔層に用いられる耐熱樹脂として、さらに好ましくは、芳香族ポリアミド(パラ配向芳香族ポリアミド、メタ配向芳香族ポリアミド)、芳香族ポリイミド、芳香族ポリアミドイミドなどの含窒素芳香族重合体であり、特に好ましくは芳香族ポリアミド、生産性の点から特に好ましいのは、パラ配向芳香族ポリアミド(以下、パラアラミドということがある。)である。 The heat-resistant resin used for the heat-resistant porous layer is more preferably a nitrogen-containing aromatic polymer such as an aromatic polyamide (para-oriented aromatic polyamide or meta-oriented aromatic polyamide), aromatic polyimide, or aromatic polyamide-imide, Particularly preferred is an aromatic polyamide, and particularly preferred from the viewpoint of productivity is a para-oriented aromatic polyamide (hereinafter sometimes referred to as para-aramid).
 また、耐熱樹脂として、ポリ-4-メチルペンテン-1、環状オレフィン系重合体を挙げることもできる。 耐熱 Further, examples of the heat-resistant resin include poly-4-methylpentene-1 and a cyclic olefin polymer.
 これらの耐熱樹脂を用いることにより、リチウム二次電池のセパレータとして用いられる積層フィルムの耐熱性、すなわち、積層フィルムの熱破膜温度をより高めることができる。これらの耐熱樹脂のうち、含窒素芳香族重合体を用いる場合には、その分子内の極性によるためか、電解液との相性、すなわち、耐熱多孔層における保液性も向上する場合があり、リチウム二次電池製造時における電解液の含浸の速度も高く、リチウム二次電池の充放電容量もより高まる。 耐熱 By using these heat-resistant resins, the heat resistance of the laminated film used as the separator of the lithium secondary battery, that is, the thermal rupture temperature of the laminated film can be further increased. Among these heat-resistant resins, when using a nitrogen-containing aromatic polymer, it may be due to the polarity in the molecule, compatibility with the electrolytic solution, that is, the liquid retention in the heat-resistant porous layer may be improved, The rate of impregnation of the electrolyte during the production of the lithium secondary battery is also high, and the charge / discharge capacity of the lithium secondary battery is further increased.
 積層フィルムの熱破膜温度は、耐熱樹脂の種類に依存し、使用場面、使用目的に応じ、選択使用される。具体的には、耐熱樹脂として、上記含窒素芳香族重合体を用いる場合は400℃程度に、また、ポリ-4-メチルペンテン-1を用いる場合は250℃程度に、環状オレフィン系重合体を用いる場合は300℃程度に、夫々、熱破膜温度をコントロールすることができる。また、耐熱多孔層が、無機物からなる粉末の場合には、熱破膜温度を、例えば、500℃以上にコントロールすることも可能である。 熱 The thermal rupture temperature of the laminated film depends on the type of heat-resistant resin, and is selected and used according to the use scene and purpose. Specifically, when the above nitrogen-containing aromatic polymer is used as the heat-resistant resin, the cyclic olefin-based polymer is heated to about 400 ° C., and when poly-4-methylpentene-1 is used, to about 250 ° C. When used, the thermal rupture temperature can be controlled to about 300 ° C., respectively. When the heat-resistant porous layer is made of an inorganic powder, the thermal rupture temperature can be controlled to, for example, 500 ° C. or more.
 上記パラアラミドは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドとの縮合重合により得られるものであり、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、4,4’-ビフェニレン、1,5-ナフタレン、2,6-ナフタレンなどのような反対方向に同軸または平行に延びる配向位)で結合される繰り返し単位から実質的になるものである。具体的には、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロ-パラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体などのパラ配向型またはパラ配向型に準じた構造を有するパラアラミドが例示される。 The para-aramid is obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond has a para-position of an aromatic ring or an alignment position corresponding thereto (for example, 4,4 ′). -Essentially consisting of repeating units linked in opposite directions, coaxial or parallel, such as biphenylene, 1,5-naphthalene, 2,6-naphthalene and the like. Specifically, poly (paraphenylene terephthalamide), poly (parabenzamide), poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly ( Para-oriented or para-oriented such as paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-paraphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer Para-aramid having a structure according to the mold is exemplified.
 前記の芳香族ポリイミドとしては、芳香族の二酸無水物とジアミンとの縮重合で製造される全芳香族ポリイミドが好ましい。 全 As the aromatic polyimide, a wholly aromatic polyimide produced by condensation polymerization of an aromatic diacid anhydride and a diamine is preferable.
 縮重合に用いられる芳香族の二酸無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’-ビス(3,4―ジカルボキシフェニル)ヘキサフルオロプロパン、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。 Specific examples of the aromatic dianhydride used for the condensation polymerization include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4 , 4'-benzophenonetetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and the like No.
 縮重合に用いられるジアミンの具体例としては、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3’-メチレンジアニリン、3,3’-ジアミノベンソフェノン、3,3’-ジアミノジフェニルスルフォン、1,5-ナフタレンジアミン等が挙げられる。 Specific examples of the diamine used for the condensation polymerization include oxydianiline, paraphenylenediamine, benzophenonediamine, 3,3′-methylenedianiline, 3,3′-diaminobensophenone, and 3,3′-diaminodiphenylsulfone. , 1,5-naphthalenediamine and the like.
 また、芳香族ポリイミドとしては、溶媒に可溶なポリイミドが好適に使用できる。このようなポリイミドとしては、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物と芳香族ジアミンとの重縮合物のポリイミドが挙げられる。 ポ リ イ ミ ド As the aromatic polyimide, a polyimide soluble in a solvent can be suitably used. Examples of such a polyimide include a polyimide which is a polycondensate of 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride and an aromatic diamine.
 前記の芳香族ポリアミドイミドとしては、例えば、芳香族ジカルボン酸および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるもの、芳香族二酸無水物および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるものが挙げられる。芳香族ジカルボン酸の具体例としては、イソフタル酸、テレフタル酸等が挙げられる。また芳香族二酸無水物の具体例としては無水トリメリット酸が挙げられる。芳香族ジイソシアネートの具体例としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、オルソトリレンジイソシアネート、m-キシレンジイソシアネート等が挙げられる。 As the aromatic polyamide-imide, for example, those obtained from the condensation polymerization thereof using an aromatic dicarboxylic acid and an aromatic diisocyanate, those obtained from the condensation polymerization thereof using an aromatic dianhydride and an aromatic diisocyanate Are included. Specific examples of the aromatic dicarboxylic acid include isophthalic acid and terephthalic acid. Specific examples of the aromatic dianhydride include trimellitic anhydride. Specific examples of the aromatic diisocyanate include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, ortho tolylene diisocyanate, and m-xylene diisocyanate.
 また、イオン透過性をより高めるためには、積層フィルムが有する耐熱多孔層の厚みは、薄い耐熱多孔層であることが好ましく、1μm以上10μm以下がより好ましく、1μm以上5μm以下がさらに好ましく、1μm以上4μm以下が特に好ましい。また、耐熱多孔層は、微細孔を有し、その孔のサイズ(直径)は、好ましくは3μm以下、より好ましくは1μm以下である。 Further, in order to further increase the ion permeability, the thickness of the heat-resistant porous layer of the laminated film is preferably a thin heat-resistant porous layer, more preferably 1 μm or more and 10 μm or less, further preferably 1 μm or more and 5 μm or less. More preferably, it is 4 μm or less. Further, the heat-resistant porous layer has fine pores, and the size (diameter) of the pores is preferably 3 μm or less, more preferably 1 μm or less.
(第3の耐熱多孔層)
 また、耐熱多孔層が耐熱樹脂とフィラーとを含んで形成されている場合、耐熱樹脂は、上記第2の耐熱多孔層に用いられる耐熱樹脂と同じものを使用することができる。フィラーは、有機粉末、無機粉末またはこれらの混合物からなる群から選ばれる1種以上を用いることができる。フィラーを構成する粒子は、その平均粒子径が、0.01μm以上1μm以下であることが好ましい。
(Third heat resistant porous layer)
When the heat-resistant porous layer is formed to include a heat-resistant resin and a filler, the same heat-resistant resin as that used for the second heat-resistant porous layer can be used. As the filler, at least one selected from the group consisting of organic powders, inorganic powders, and mixtures thereof can be used. The particles constituting the filler preferably have an average particle diameter of 0.01 μm or more and 1 μm or less.
 フィラーとして用いることができる有機粉末としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチルなどの単独重合体または2種類以上の共重合体;PTFE、4フッ化エチレン-6フッ化プロピレン共重合体、4フッ化エチレン-エチレン共重合体、ポリビニリデンフルオライドなどのフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィン樹脂;ポリメタクリレート;などの有機物からなる粉末が挙げられる。このような有機粉末は、単独で用いてもよいし、2種以上を併用してもよい。これらの有機粉末の中でも、化学的安定性が高いことから、PTFEの粉末が好ましい。   Examples of the organic powder that can be used as the filler include, for example, a homopolymer or a copolymer of two or more of styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, and methyl acrylate; PTFE, tetrafluoroethylene-6-fluoropropylene copolymer, fluorocarbon resin such as tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride; melamine resin; urea resin; polyolefin resin; polymethacrylate; A powder consisting of Such organic powders may be used alone or in combination of two or more. Among these organic powders, PTFE powder is preferred because of its high chemical stability.
 また、フィラーとして用いることができる無機粉末としては、上記耐熱多孔層に用いられる無機物の粉末と同じものを例示することができる。 無機 As the inorganic powder that can be used as the filler, the same powder as the inorganic powder used for the heat-resistant porous layer can be exemplified.
 耐熱多孔層が耐熱樹脂とフィラーとを含んで形成されている場合、フィラーの含有量としては、フィラーの材質の比重にもよるが、例えば、フィラーを構成する粒子のすべてがアルミナ粒子である場合には、耐熱多孔層の総質量を100質量部としたとき、フィラーの質量は、好ましくは5質量部以上95質量部以下であり、より好ましくは20質量部以上95質量部以下であり、さらに好ましくは30質量部以上90質量部以下である。これらの範囲は、フィラーの材質の比重により、適宜設定できる。 When the heat-resistant porous layer is formed containing a heat-resistant resin and a filler, the content of the filler depends on the specific gravity of the material of the filler, for example, when all of the particles constituting the filler are alumina particles When the total mass of the heat-resistant porous layer is 100 parts by mass, the mass of the filler is preferably 5 parts by mass or more and 95 parts by mass or less, more preferably 20 parts by mass or more and 95 parts by mass or less, Preferably it is 30 parts by mass or more and 90 parts by mass or less. These ranges can be appropriately set depending on the specific gravity of the material of the filler.
 フィラーの形状については、特に限定されず、略球状、板状、柱状、針状、繊維状などの形状が挙げられ、いずれの粒子も用いることができるが、均一な孔を形成しやすいことから、略球状粒子であることが好ましい。略球状粒子としては、粒子のアスペクト比(粒子の長径/粒子の短径)が1.0以上1.5以下である粒子が挙げられる。粒子のアスペクト比は、電子顕微鏡写真により測定することができる。 The shape of the filler is not particularly limited, and examples thereof include shapes such as a substantially spherical shape, a plate shape, a column shape, a needle shape, and a fibrous shape, and any particles can be used, but since it is easy to form uniform pores, Preferably, the particles are substantially spherical particles. Examples of the substantially spherical particles include particles having an aspect ratio of particles (major axis of particles / minor axis of particles) of 1.0 or more and 1.5 or less. The aspect ratio of the particles can be measured by an electron micrograph.
 リチウム二次電池のセパレータとして用いられる積層フィルムにおいて多孔質フィルムは、微細孔を有し、シャットダウン機能を有することが好ましい。この場合、多孔質フィルムは、熱可塑性樹脂を含有する。 に お い て In a laminated film used as a separator of a lithium secondary battery, the porous film preferably has fine pores and has a shutdown function. In this case, the porous film contains a thermoplastic resin.
 多孔質フィルムにおける微細孔のサイズは、小さいほど好ましく、より好ましくは3μm以下、特に好ましくは1μm以下である。多孔質フィルムの空孔率は、使用条件等に応じて適宜選択可能であるが、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。リチウム二次電池において、予め想定された使用温度を越えた場合には、熱可塑性樹脂を含有する多孔質フィルムは、多孔質フィルムを構成する熱可塑性樹脂の軟化または融解により、微細孔を閉塞することができる。 サ イ ズ The size of the micropores in the porous film is preferably as small as possible, more preferably 3 μm or less, and particularly preferably 1 μm or less. The porosity of the porous film can be appropriately selected depending on the use conditions and the like, but is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less. In a lithium secondary battery, when the use temperature exceeds a previously assumed use temperature, the porous film containing a thermoplastic resin closes the micropores by softening or melting of the thermoplastic resin constituting the porous film. be able to.
 多孔質フィルムに用いられる熱可塑性樹脂は、リチウム二次電池における電解液に溶解しないものであれば、特に限定されずに使用することができる。具体例としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、熱可塑性ポリウレタン樹脂等を挙げることができ、これらの2種以上の混合物を用いてもよい。 熱 The thermoplastic resin used for the porous film can be used without any particular limitation as long as it does not dissolve in the electrolytic solution of the lithium secondary battery. Specific examples include polyolefin resins such as polyethylene and polypropylene, and thermoplastic polyurethane resins. A mixture of two or more of these may be used.
 セパレータがより低温で軟化してシャットダウンさせるためには、多孔質フィルムがポリエチレンを含有することが好ましい。ポリエチレンとして、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレンなどのポリエチレンを挙げることができ、分子量が100万以上の超高分子量ポリエチレンを挙げることもできる。 In order for the separator to soften at a lower temperature and shut down, the porous film preferably contains polyethylene. Examples of polyethylene include polyethylene such as low-density polyethylene, high-density polyethylene, and linear polyethylene, and ultrahigh-molecular-weight polyethylene having a molecular weight of 1,000,000 or more.
 多孔質フィルムの突刺し強度をより高めるためには、多孔質フィルムを構成する熱可塑性樹脂は、少なくとも超高分子量ポリエチレンを含有することが好ましい。また、多孔質フィルムの製造面において、熱可塑性樹脂は、低分子量(重量平均分子量1万以下)のポリオレフィンからなるワックスを含有することが好ましい場合もある。 In order to further increase the piercing strength of the porous film, the thermoplastic resin constituting the porous film preferably contains at least ultrahigh molecular weight polyethylene. From the viewpoint of the production of the porous film, the thermoplastic resin may preferably contain a wax composed of a polyolefin having a low molecular weight (weight average molecular weight of 10,000 or less).
 また、積層フィルムにおける多孔質フィルムの厚みは、使用条件等に応じて適宜選択可能であるが、好ましくは3μm以上30μm以下であり、より好ましくは3μm以上25μm以下である。また、積層フィルムの厚みは、使用条件等に応じて適宜選択可能であるが、好ましくは40μm以下、より好ましくは、30μm以下である。また、耐熱多孔層の厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0.1以上1.0以下であることが好ましい。 Although the thickness of the porous film in the laminated film can be appropriately selected according to the conditions of use and the like, it is preferably 3 μm or more and 30 μm or less, more preferably 3 μm or more and 25 μm or less. In addition, the thickness of the laminated film can be appropriately selected depending on the use conditions and the like, but is preferably 40 μm or less, more preferably 30 μm or less. When the thickness of the heat-resistant porous layer is A (μm) and the thickness of the porous film is B (μm), the value of A / B is preferably 0.1 or more and 1.0 or less.
 リチウム二次電池において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。 In the lithium secondary battery, the separator has a gas permeability resistance of 50 seconds / 100 cc or more and 300 seconds / hour according to the Gurley method defined in JIS P # 8117 in order to allow the electrolyte to pass well when the battery is used (during charge / discharge). It is preferably 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
 また、セパレータの空孔率は、使用条件等に応じて適宜選択可能であるが、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。使用するセパレータは、空孔率の異なるセパレータを積層したものであってもよい。 空 Also, the porosity of the separator can be appropriately selected depending on the use conditions and the like, but is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less. The separator used may be a laminate of separators having different porosity.
(電解液)
 リチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
(Electrolyte)
The electrolytic solution of the lithium secondary battery contains an electrolyte and an organic solvent.
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである。)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられる。これらは、単独で使用してもよく、2種以上を併用してもよい。このうち、電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。 As the electrolyte contained in the electrolyte, LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (here, BOB is bis (oxalato) borate ), LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salts of lower aliphatic carboxylic acids, and lithium salts such as LiAlCl 4 . These may be used alone or in combination of two or more. Among them, the electrolyte is selected from the group consisting of LiPF 6 containing fluorine, LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3. It is preferable to use one containing at least one kind.
 また、前記電解液に含まれる有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、またはこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。 Examples of the organic solvent contained in the electrolytic solution include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2. Carbonates such as -di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran, Ethers such as 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyl Amides such as acetamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propane sultone; or those obtained by further introducing a fluoro group into these organic solvents ( In which one or more of the hydrogen atoms of the organic solvent are substituted with a fluorine atom) can be used. These may be used alone or in combination of two or more.
 このうち、カーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒、環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、且つ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。 Among them, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate, and a mixed solvent of cyclic carbonate and ether are more preferable. As the mixed solvent of the cyclic carbonate and the non-cyclic carbonate, a mixed solvent containing ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate is preferable. The electrolytic solution using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of a negative electrode. It has many features that it is hardly decomposable even when a graphite material such as artificial graphite is used.
 また、電解液としては、リチウム二次電池の安全性を向上させるために、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。このうち、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。 Further, as the electrolyte, in order to improve the safety of the lithium secondary battery, it is preferable to use an electrolyte containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent. Among them, a mixed solvent containing dimethyl carbonate and ethers having a fluorine substituent such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether performs charge / discharge at a high current rate. However, since the capacity retention ratio is high, it is more preferable.
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖またはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられる。これらは、単独で使用してもよく、2種以上を併用してもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。 A solid electrolyte may be used instead of the above electrolyte. As the solid electrolyte, for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound or a polymer compound containing at least one polyorganosiloxane chain or polyoxyalkylene chain can be used. Further, a so-called gel type in which a non-aqueous electrolyte is held in a polymer compound can also be used. Also, Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS inorganic solid electrolytes containing sulfides such as 2 -P 2 S 5 and the like. These may be used alone or in combination of two or more. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
 また、リチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。 In addition, in the case of using a solid electrolyte in a lithium secondary battery, the solid electrolyte may serve as a separator, and in such a case, the separator may not be required.
 以上のような構成の正極活物質は、本発明の二次電池用正極活物質を用いているため、正極活物質を用いたリチウム二次電池を、常温、高温いずれの環境下でも優れたサイクル特性を示すものとすることができる。 Since the positive electrode active material having the above-described configuration uses the positive electrode active material for a secondary battery of the present invention, a lithium secondary battery using the positive electrode active material can be used in an excellent cycle at room temperature and high temperature. It can be characteristic.
 また、以上のような構成の正極は、本発明の二次電池用正極活物質を有するため、リチウム二次電池を、常温、高温いずれの環境下でも優れたサイクル特性を示すものとすることができる。 In addition, since the positive electrode having the above-described structure has the positive electrode active material for a secondary battery of the present invention, a lithium secondary battery may exhibit excellent cycle characteristics at normal temperature and high temperature. it can.
 さらに、以上のような構成のリチウム二次電池は、本発明の二次電池用正極活物質を有する正極を備えるため、従来よりも常温、高温いずれの環境下でも優れたサイクル特性を示すものとすることができる。 Further, since the lithium secondary battery having the above-described configuration includes the positive electrode having the positive electrode active material for a secondary battery of the present invention, it exhibits excellent cycle characteristics at ordinary temperatures and high temperatures in both environments. can do.
 次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples unless it exceeds the gist.
 実施例1~7及び比較例1~4の二次電池用正極活物質の製造方法
 実施例3、4と比較例2、3に用いるニッケル、コバルト、マンガン複合水酸化物粒子の調製
 攪拌機付きの反応槽に、硫酸ニッケルと硫酸コバルトと硫酸マンガンとを所定比(ニッケル:コバルト:マンガン=50:20:30の原子比)で溶解した水溶液と、硫酸アンモニウム水溶液を滴下して反応槽内で反応温度30.0℃、液温40℃基準で反応pH11.9になるように水酸化ナトリウムを適時滴下し、ニッケル、コバルト、マンガン複合水酸化物を生成した。生成した水酸化物は、反応槽のオーバーフロー管から連続的にオーバーフローさせて取り出し、濾過後、水洗し、100℃乾燥の各処理を施して、二次電池用正極活物質の前駆体であるニッケル、コバルト、マンガン複合水酸化物粒子を得た。このニッケル、コバルト、マンガン複合水酸化物粒子のD50は3.9μm、(D90-D10)/D50は0.96であった。
Method for Producing Positive Electrode Active Material for Secondary Battery of Examples 1 to 7 and Comparative Examples 1 to 4 Preparation of Nickel, Cobalt, and Manganese Composite Hydroxide Particles Used in Examples 3 and 4 and Comparative Examples 2 and 3 An aqueous solution in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved at a predetermined ratio (atomic ratio of nickel: cobalt: manganese = 50: 20: 30) and an aqueous solution of ammonium sulfate are added dropwise to the reaction tank, and the reaction temperature is reduced in the reaction tank. Sodium hydroxide was added dropwise at appropriate times so that the reaction pH became 11.9 based on a temperature of 30.0 ° C. and a liquid temperature of 40 ° C., thereby producing a composite hydroxide of nickel, cobalt and manganese. The generated hydroxide is continuously overflowed from the overflow tube of the reaction tank, taken out, filtered, washed with water, and dried at 100 ° C. to obtain nickel, which is a precursor of a positive electrode active material for a secondary battery. , Cobalt and manganese composite hydroxide particles were obtained. D50 of the nickel, cobalt and manganese composite hydroxide particles was 3.9 μm, and (D90−D10) / D50 was 0.96.
 実施例1、2、6、7に用いるニッケル、コバルト、マンガン複合水酸化物粒子の調製
 実施例3、4と比較例2、3に用いるニッケル、コバルト、マンガン複合水酸化物粒子を乾式分級機で分級することにより、D50が4.2~4.4μm、(D90-D10)/D50が0.78~0.88のニッケル、コバルト、マンガン複合水酸化物粒子を調製した。
Preparation of nickel, cobalt, and manganese composite hydroxide particles used in Examples 1, 2, 6, and 7 The nickel, cobalt, and manganese composite hydroxide particles used in Examples 3 and 4 and Comparative Examples 2 and 3 were dry-classified. Thus, nickel, cobalt, and manganese composite hydroxide particles having a D50 of 4.2 to 4.4 μm and a (D90-D10) / D50 of 0.78 to 0.88 were prepared.
 実施例5と比較例1、4に用いるニッケル、コバルト、マンガン複合水酸化物粒子の調製
 攪拌機付きの反応槽に、硫酸ニッケルと硫酸コバルトと硫酸マンガンとを所定比(ニッケル:コバルト:マンガン=50:20:30の原子比)で溶解した水溶液と、硫酸アンモニウム水溶液を滴下して反応槽内で反応温度50.0℃、液温40℃基準で反応pH11.4になるように水酸化ナトリウムを適時滴下し、ニッケル、コバルト、マンガン複合水酸化物を生成した。生成した水酸化物は、反応槽のオーバーフロー管からオーバーフローさせて連続的に取り出し、濾過後、水洗、脱水、100℃乾燥の各処理を施して、二次電池用正極活物質の前駆体であるニッケル、コバルト、マンガン複合水酸化物粒子を得た。このニッケル、コバルト、マンガン複合水酸化物粒子のD50は11.6μm、(D90-D10)/D50は0.90であった。
Preparation of Nickel, Cobalt, and Manganese Composite Hydroxide Particles Used in Example 5 and Comparative Examples 1 and 4 In a reaction vessel equipped with a stirrer, nickel sulfate, cobalt sulfate, and manganese sulfate in a predetermined ratio (nickel: cobalt: manganese = 50). : Atomic ratio of 20:30) and an aqueous solution of ammonium sulfate were added dropwise, and sodium hydroxide was added thereto in a reaction vessel at a reaction temperature of 50.0 ° C and a reaction temperature of 40 ° C to adjust the reaction pH to 11.4. By dropping, a composite hydroxide of nickel, cobalt and manganese was produced. The produced hydroxide overflows from the overflow tube of the reaction tank and is continuously taken out, filtered, washed, dehydrated, and dried at 100 ° C. to be a precursor of a positive electrode active material for a secondary battery. Nickel, cobalt and manganese composite hydroxide particles were obtained. D50 of the nickel, cobalt and manganese composite hydroxide particles was 11.6 μm, and (D90−D10) / D50 was 0.90.
 実施例1~7と比較例1~4にて用いるニッケル、コバルト、マンガン複合水酸化物粒子のD50と(D90-D10)/D50の値を、下記表1に示す。なお、下記表1のD50、D90、D10の値は、レーザー回折粒度分布計(株式会社堀場製作所製、LA-950)を用い、ニッケル、コバルト、マンガン複合水酸化物粒子0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、該粒子を分散させた分散液を得た。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得た。得られた累積粒度分布曲線において、10%累積時の微小粒子側から見た粒子径(D10)の値を、50%累積時の微小粒子側から見た粒子径(D50)の値を、90%累積時の微小粒子側から見た粒子径(D90)の値を、ニッケル、コバルト、マンガン複合水酸化物粒子の平均粒子径とした。 D The values of D50 and (D90-D10) / D50 of the nickel, cobalt and manganese composite hydroxide particles used in Examples 1 to 7 and Comparative Examples 1 to 4 are shown in Table 1 below. The values of D50, D90 and D10 in Table 1 below were measured using a laser diffraction particle size distribution analyzer (LA-950, manufactured by Horiba Seisakusho Co., Ltd.) using 0.1 g of nickel, cobalt and manganese composite hydroxide particles as 0%. The solution was added to 50 ml of a 0.2% by mass aqueous sodium hexametaphosphate solution to obtain a dispersion in which the particles were dispersed. The particle size distribution of the obtained dispersion was measured to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the value of the particle diameter (D10) viewed from the fine particle side at the time of 10% accumulation and the value of the particle diameter (D50) viewed from the fine particle side at the time of 50% accumulation are 90%. The value of the particle size (D90) viewed from the fine particle side at the time of% accumulation was defined as the average particle size of the nickel, cobalt, and manganese composite hydroxide particles.
 次に、実施例1~7と比較例1~4にて用いる、乾燥粉末であるニッケル、コバルト、マンガン複合水酸化物粒子に、それぞれ、下記表1に示すLi/M1の原子比となるように、炭酸リチウム粉末を添加して混合して、ニッケル、コバルト、マンガン複合水酸化物粒子と炭酸リチウムの混合粉を得た。得られた混合粉を鞘に充填後、下記表1に示す焼成温度条件にて、焼成を行った。焼成は、ボックス炉を用い、ドライエアー雰囲気下で、昇温速度200℃/minの条件で行った。各焼成工程後、粉砕機(増幸産業株式会社製、スーパーマスコロイダーMKCA6-2)を用いて焼成品の粉砕を行い、その後、325メッシュ篩にて篩がけを行い、次工程を行った。本焼成工程の、前記混合粉、又は仮焼工程後の前記混合粉の鞘への充填量は、内寸130×130×88mmの鞘に、下記表1に示すS/Vとなるように充填した。 Next, the nickel, cobalt, and manganese composite hydroxide particles, which are dry powders, used in Examples 1 to 7 and Comparative Examples 1 to 4 had the Li / M1 atomic ratios shown in Table 1 below, respectively. Was mixed with lithium carbonate powder to obtain a mixed powder of nickel, cobalt, manganese composite hydroxide particles and lithium carbonate. After the obtained mixed powder was filled in a sheath, firing was performed under firing temperature conditions shown in Table 1 below. The firing was performed using a box furnace in a dry air atmosphere at a temperature rising rate of 200 ° C./min. After each firing step, the fired product was pulverized using a pulverizer (Super Mascolloid MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.), and then sieved with a 325 mesh sieve, and the next step was performed. The filling amount of the mixed powder or the mixed powder after the calcining step in the main firing step into the sheath having an inner size of 130 × 130 × 88 mm is such that the S / V shown in Table 1 below is obtained. did.
 実施例3及び6では、本焼成工程前にZrOを、ニッケル、コバルト、マンガン複合水酸化物粒子に対し0.3mol%添加して本焼成を行い、さらに、焼戻し工程前にAlをニッケル、コバルト、マンガン複合水酸化物粒子に対し1.0mol%添加して焼戻しを行った。また、実施例4では、焼戻し工程前にAlをニッケル、コバルト、マンガン複合水酸化物粒子に対し1.0mol%添加して焼戻しを行った。また、実施例7では、本焼成工程前にZrOを、ニッケル、コバルト、マンガン複合水酸化物粒子に対し0.3mol%添加して本焼成を行った。 In Examples 3 and 6, ZrO 2 was added at 0.3 mol% to the nickel, cobalt, and manganese composite hydroxide particles before the main firing step, and the main firing was performed. Further, before the tempering step, Al 2 O 3 was added. Was added to nickel, cobalt, and manganese composite hydroxide particles in an amount of 1.0 mol% to perform tempering. In Example 4, before the tempering step, Al 2 O 3 was added to nickel, cobalt, and manganese composite hydroxide particles in an amount of 1.0 mol% to perform tempering. Further, in Example 7, the main firing was performed before the main firing step by adding 0.3 mol% of ZrO 2 to the nickel, cobalt, and manganese composite hydroxide particles.
 上記のようにして、実施例1~7及び比較例1~4の二次電池用正極活物質を製造した。実施例1~7と比較例1~4の二次電池用正極活物質のD50の値を、下記表2に示す。なお、下記表2のD50の値は、レーザー回折粒度分布計(株式会社堀場製作所製、LA-950)を用い、上記複合水酸化物と同様の方法で測定した。 正極 As described above, the positive electrode active materials for secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4 were produced. Table 2 below shows D50 values of the positive electrode active materials for secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4. The value of D50 in Table 2 below was measured using a laser diffraction particle size distribution analyzer (LA-950, manufactured by Horiba, Ltd.) in the same manner as in the above composite hydroxide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例と比較例の二次電池用正極活物質の評価項目は、以下の通りである。
 (1)二次電池用正極活物質の組成分析
 実施例1~7及び比較例1~4で得られた二次電池用正極活物質について、組成分析は、得られた二次電池用正極活物質の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(株式会社パーキンエルマージャパン製、Optima7300DV)を用いて行った。
The evaluation items of the positive electrode active materials for secondary batteries of the examples and comparative examples are as follows.
(1) Composition Analysis of Secondary Battery Positive Electrode Active Materials The secondary battery positive electrode active materials obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were analyzed for composition. After dissolving the substance powder in hydrochloric acid, the measurement was performed using an inductively coupled plasma emission spectrometer (Perkin Elmer Japan Co., Ltd., Optima 7300DV).
 (2)2θ=64.5±1°の範囲の2つの回折ピークの半値全幅
 実施例1~7及び比較例1~4で得られた二次電池用正極活物質について、粉末X線回折測定は、X線回折装置(株式会社リガク製、UltimaIV)を用いて行った。上記のようにして得られた二次電池用正極活物質の粉末を専用の基板に充填し、Cu-Kα線源(40kV/40mA)を用いて、回折角2θ=10°~100°、サンプリング幅0.03°、スキャンスピード20°/minの条件にて測定を行うことで、粉末X線回折図形を得た。統合粉末X線解析ソフトウェアPDXLを用い、該粉末X線回折図形から64.5±1°の範囲に表れる2つのピークのうち、低角度側のピークの半値全幅をα、高角度側のピークの半値全幅をβとし、半値幅比β/αを算出した。
(2) Full width at half maximum of two diffraction peaks in the range of 2θ = 64.5 ± 1 ° X-ray powder diffraction measurement of the positive electrode active materials for secondary batteries obtained in Examples 1 to 7 and Comparative Examples 1 to 4 Was performed using an X-ray diffractometer (Ultima IV, manufactured by Rigaku Corporation). The powder of the positive electrode active material for a secondary battery obtained as described above is filled in a dedicated substrate, and is sampled at a diffraction angle 2θ = 10 ° to 100 ° using a Cu-Kα radiation source (40 kV / 40 mA). An X-ray powder diffraction pattern was obtained by performing the measurement under the conditions of a width of 0.03 ° and a scan speed of 20 ° / min. Using the integrated powder X-ray analysis software PDXL, of the two peaks appearing in the range of 64.5 ± 1 ° from the powder X-ray diffraction pattern, the full width at half maximum of the peak on the low angle side is α, and the peak on the high angle side is α. The full width at half maximum was defined as β, and the half width ratio β / α was calculated.
 (3)平均粒子強度
 島津微小圧縮試験機MCT-510にて測定した。
 実施例1~7及び比較例1~4で得られた二次電池用正極活物質について、株式会社島津製作所製「微小圧縮試験機MCT-510」を用いて行った。上記方法で測定した、体積平均粒子径(D50)±1.0μmの範囲の二次電池用正極活物質のうち、任意に選んだ二次電池用正極活物質1個に対して、上限試験力(負荷)200mN、負荷速度定数86.7(負荷速度0.4464mN/S)で試験圧力をかけ、二次電池用正極活物質の変位量を測定した。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、強度(St)を算出した。この操作を計10粒子について行い、10粒子の粒子強度の平均値から平均粒子強度を算出した。
St=2.8×P/(π×d×d) (d:粒子径) 
(3) Average particle strength Measured with a Shimadzu micro compression tester MCT-510.
The positive electrode active materials for secondary batteries obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were performed using “Micro Compression Testing Machine MCT-510” manufactured by Shimadzu Corporation. Among the positive electrode active materials for secondary batteries in the range of volume average particle diameter (D50) ± 1.0 μm measured by the above method, an upper limit test force is applied to one arbitrarily selected positive electrode active material for secondary battery. (Load) A test pressure was applied at a load rate of 200 mN and a load rate constant of 86.7 (load rate of 0.4464 mN / S), and the displacement of the positive electrode active material for a secondary battery was measured. When the test pressure is gradually increased, the pressure value at which the displacement becomes maximum while the test pressure is almost constant is defined as the test force (P), and the equation of Hiramatsu et al. Vol.81, (1965)), the strength (St) was calculated. This operation was performed for a total of 10 particles, and the average particle intensity was calculated from the average value of the particle intensity of the 10 particles.
St = 2.8 × P / (π × d × d) (d: particle diameter)
 (4)BET比表面積 
 実施例1~7及び比較例1~4で得られた二次電池用正極活物質について、比表面積測定装置(株式会社マウンテック製、Macsorb)を用い、1点BET法によって測定した。
(4) BET specific surface area
The positive electrode active materials for secondary batteries obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were measured by a one-point BET method using a specific surface area measuring device (Macsorb, manufactured by Mountech Co., Ltd.).
 (5)サイクル試験前後の格子定数の変化率
 後述する容量維持率(サイクル特性)に用いたサイクル試験前後のラミネートセルを分解し、サイクル試験前後の正極板について、X線回折装置(Bruker社製、D8 ADVANCE)を用いて格子定数の変化率の測定を行った。具体的には、まず、サイクル試験前後の正極板をガラスプレートに貼り付け、Cu-Kα線源(40kV、40mA)を用いて、回折角2θ=10°~100°、サンプリング幅0.0217°、スキャンスピード2.6°/minの条件にて測定を行うことで、X線回折図形を得た。その後、XRD解析ソフトウェアTOPASを用い、該X線回折図形からa軸、c軸の格子定数を求め、(サイクル試験前のa軸/サイクル試験後のa軸)×100、(サイクル試験前のc軸/サイクル試験後のc軸)×100から、25℃と60℃におけるサイクル試験前後の格子定数の変化率を算出した。
(5) Change rate of lattice constant before and after the cycle test The laminate cells before and after the cycle test used for the capacity retention ratio (cycle characteristics) described later were disassembled, and the positive electrode plate before and after the cycle test was subjected to an X-ray diffractometer (Bruker). , D8 ADVANCE) was used to measure the rate of change of the lattice constant. Specifically, first, a positive electrode plate before and after the cycle test was attached to a glass plate, and a diffraction angle 2θ = 10 ° to 100 ° and a sampling width of 0.0217 ° using a Cu-Kα radiation source (40 kV, 40 mA). An X-ray diffraction pattern was obtained by performing the measurement at a scan speed of 2.6 ° / min. Then, using the XRD analysis software TOPAS, lattice constants of the a-axis and the c-axis were obtained from the X-ray diffraction pattern, and (a-axis before the cycle test / a-axis after the cycle test) × 100, (c before the cycle test) Axis / c axis after cycle test) × 100, the rate of change of the lattice constant before and after the cycle test at 25 ° C. and 60 ° C. was calculated.
 正極の作製
 実施例1~7及び比較例1~4で得られた二次電池用正極活物質(正極活物質)と導電材(アセチレンブラック)とバインダー(PVdF)とを、正極活物質:導電材:バインダー=90:5:5(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
Preparation of Positive Electrode The positive electrode active material for a secondary battery (positive electrode active material), a conductive material (acetylene black), and a binder (PVdF) obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were used. A paste-like positive electrode mixture was prepared by adding and kneading the mixture so as to have a composition of material: binder = 90: 5: 5 (mass ratio). In preparing the positive electrode mixture, N-methyl-2-pyrrolidone was used as an organic solvent.
 得られた正極合剤を、集電体となる厚さ15μmのAl箔に、目付け量10mg/cmとなるように塗布して120℃で8時間真空乾燥を行い、正極を得た。この正極の電極面積は9cmとした。 The obtained positive electrode mixture was applied to a 15 μm-thick Al foil serving as a current collector so as to have a basis weight of 10 mg / cm 2 , followed by vacuum drying at 120 ° C. for 8 hours to obtain a positive electrode. The electrode area of this positive electrode was 9 cm 2 .
 負極の作製
 負極として黒鉛(正極活物質)と増粘剤(CMC)と結着剤(SBR400)とを、負極活物質:増粘剤:結着剤=100:1:1(質量比)の組成となるように加えて混練することにより、ペースト状の負極合剤を調製した。負極合剤の調整時には、水を溶媒として用いた。
Preparation of Negative Electrode Graphite (positive electrode active material), a thickener (CMC) and a binder (SBR400) were used as a negative electrode in a negative electrode active material: thickener: binder = 100: 1: 1 (mass ratio). A paste-like negative electrode mixture was prepared by adding and kneading so as to obtain a composition. When adjusting the negative electrode mixture, water was used as a solvent.
 得られた負極合剤を、集電体となる厚さ10μmのCu箔に塗布して120℃で8時間真空乾燥を行い負極を得た。この負極の電極面積は12cmとした。 The obtained negative electrode mixture was applied to a 10-μm-thick Cu foil serving as a current collector, and vacuum-dried at 120 ° C. for 8 hours to obtain a negative electrode. The electrode area of this negative electrode was 12 cm 2 .
 リチウム二次電池(ラミネートセル)の作製
 以下の操作を、露点-60℃のドライエアー雰囲気のグローブボックス内で行った。
Preparation of Lithium Secondary Battery (Laminated Cell) The following operation was performed in a glove box in a dry air atmosphere at a dew point of −60 ° C.
 「正極の作製」で作製した正極を、ラミネートの上にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置き、さらに、その上に「負極の作製」で作製した負極のうち、NP比1.1となる負極を、アルミ箔面を上に向けて置き、さらにラミネートを重ね、シーラーにて3辺を留め、60℃10時間真空乾燥させた。ここに電解液を1.4g注入し、真空で残りの1辺をシールした。上記電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの3:5:2(体積比)混合液に、LiPFを1mol/lとなるように溶解して調製した。 The positive electrode prepared in “Preparation of positive electrode” is placed on a laminate with the aluminum foil surface facing down, and a laminated film separator (a heat-resistant porous layer is laminated on a polyethylene porous film (thickness: 16 μm)) ), And among the negative electrodes prepared in “Preparation of negative electrode”, a negative electrode having an NP ratio of 1.1 is placed with the aluminum foil surface facing upward, and a laminate is further laminated. The side was fastened and vacuum dried at 60 ° C. for 10 hours. 1.4 g of an electrolytic solution was injected therein, and the other side was sealed with vacuum. The electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a 3: 5: 2 (volume ratio) mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate.
 「リチウム二次電池(ラミネートセル)の作製」で作製した電池を用いて、以下に示す条件で、SEI皮膜を形成させるために化成工程を行った。
 温度25℃、充電最大電圧4.2V、放電最小電圧2.7V(10、11サイクル目のみ3.0V)
 1サイクル目:充電時間20時間、充電電流0.05C、充電方式CCCV 0.01C Cut、放電時間10時間、放電電流0.1C、放電方式CC
 2~4サイクル目:充電時間10時間、充電電流0.1C、充電方式CCCV 0.01C Cut、放電時間5時間、放電電流0.2C、放電方式CC
 5~9サイクル目:充電時間5時間、充電電流0.2C、充電方式CCCV 0.05C Cut、放電時間5時間、放電電流0.2C、放電方式CC
 10~11サイクル目:充電時間5時間、充電電流0.2C、充電方式CCCV 0.05C Cut、放電時間5時間、放電電流0.2C、放電方式CC
Using the battery manufactured in "Production of lithium secondary battery (laminate cell)", a chemical conversion step was performed under the following conditions to form an SEI film.
Temperature 25 ° C, maximum charge voltage 4.2V, minimum discharge voltage 2.7V (3.0V only at 10th and 11th cycles)
First cycle: charge time 20 hours, charge current 0.05C, charge method CCCV 0.01C Cut, discharge time 10 hours, discharge current 0.1C, discharge method CC
Second to fourth cycles: charging time 10 hours, charging current 0.1C, charging method CCCV 0.01C Cut, discharging time 5 hours, discharging current 0.2C, discharging method CC
5th to 9th cycles: charging time 5 hours, charging current 0.2C, charging method CCCV 0.05C Cut, discharging time 5 hours, discharging current 0.2C, discharging method CC
10th to 11th cycles: charging time 5 hours, charging current 0.2C, charging method CCCV 0.05C Cut, discharging time 5 hours, discharging current 0.2C, discharging method CC
 (6)容量維持率(サイクル特性)
 化成工程を行った電池を用いて、正確な容量測定を行うため、充放電前に0.2Cで2サイクル充放電を行った。その後、以下に示す条件で充放電試験を実施した。充放電試験における、充電容量および放電容量をそれぞれ以下のようにして求め、1サイクル目の放電容量を基準とし、容量の維持率を算出した。各試験でN=3実施し、その平均値を各活物質の容量維持率とした。
試験温度:25℃
 充電時条件:充電最大電圧4.2V、充電時間0.5時間、充電電流2C、CC
 放電時条件:放電最小電圧3.0V、放電時間0.5時間、放電電流2C、CC
 充放電回数:1000回
試験温度:60℃
 充電時条件:充電最大電圧4.2V、充電時間0.5時間、充電電流2C、CC
 放電時条件:放電最小電圧3.0V、放電時間0.5時間、放電電流2C、CC
 充放電回数:500回
(6) Capacity maintenance rate (cycle characteristics)
In order to accurately measure the capacity using the battery that had undergone the chemical conversion step, two cycles of charging and discharging at 0.2 C were performed before charging and discharging. Thereafter, a charge / discharge test was performed under the following conditions. The charge capacity and the discharge capacity in the charge / discharge test were determined as follows, and the capacity retention rate was calculated based on the discharge capacity in the first cycle. N = 3 was carried out in each test, and the average value was used as the capacity retention rate of each active material.
Test temperature: 25 ° C
Charging conditions: maximum charging voltage 4.2V, charging time 0.5 hour, charging current 2C, CC
Discharge conditions: minimum discharge voltage 3.0V, discharge time 0.5 hour, discharge current 2C, CC
Number of times of charge and discharge: 1000 times Test temperature: 60 ° C
Charging conditions: maximum charging voltage 4.2V, charging time 0.5 hour, charging current 2C, CC
Discharge conditions: minimum discharge voltage 3.0V, discharge time 0.5 hour, discharge current 2C, CC
Number of charge / discharge cycles: 500
 上記評価項目の結果を下記表2~4に示す。 結果 The results of the above evaluation items are shown in Tables 2 to 4 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表2、4から、平均粒子強度が200MPa以上であり、CuKα線を使用した粉末X線回折パターンのピークより、β/αが0.97≦β/α≦1.25である実施例1~7の二次電池用正極活物質では、25℃1000サイクルにおける容量維持率が80%以上、60℃500サイクルにおける容量維持率が75%以上と、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を得ることができた。また、上記表2、3、4から、平均粒子強度が200MPa以上であり、サイクル試験前後の格子定数の変化率が、25℃及び60℃の試験において、a軸、c軸ともに、99.30%以上100.90%以下である実施例1~7の二次電池用正極活物質では、25℃1000サイクルにおける容量維持率が80%以上、60℃500サイクルにおける容量維持率が75%以上と、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を得ることができた。また、表2から、実施例1~7の二次電池用正極活物質では、良好なD50、BET比表面積を得ることができた。 From Tables 2 and 4 above, Example 1 in which the average particle strength is 200 MPa or more and β / α is 0.97 ≦ β / α ≦ 1.25 from the peak of the powder X-ray diffraction pattern using CuKα radiation. In the positive electrode active materials for secondary batteries of Nos. 7 to 7, the capacity retention rate at 25 ° C. 1000 cycles is 80% or more, and the capacity retention rate at 60 ° C. 500 cycles is 75% or more. A positive electrode active material for a secondary battery capable of exhibiting characteristics was obtained. Also, from the above Tables 2, 3, and 4, the average particle strength is 200 MPa or more, and the rate of change of the lattice constant before and after the cycle test is 25.degree. C. and 60.degree. % Or more and 100.90% or less, the positive electrode active materials for secondary batteries of Examples 1 to 7 have a capacity retention rate of 80% or more at 25 ° C. and 1000 cycles and a capacity retention rate of 75% or more at 60 ° C. and 500 cycles. Thus, it was possible to obtain a positive electrode active material for a secondary battery capable of exhibiting excellent cycle characteristics under both normal temperature and high temperature environments. Also, from Table 2, with the positive electrode active materials for secondary batteries of Examples 1 to 7, good D50 and BET specific surface area could be obtained.
 特に、1.06≦β/α≦1.13である実施例3、4、6では、25℃1000サイクルにおける容量維持率が88%以上、且つ60℃500サイクルにおける容量維持率が80%以上と、常温、高温いずれの環境下でもさらに優れたサイクル特性を発揮できる二次電池用正極活物質を得ることができた。また、上記表1、4から、ニッケル、コバルト、マンガン複合水酸化物粒子の(D90-D10)/D50が0.78である実施例6は、(D90-D10)/D50が0.96であり焼成条件が実施例6と同じである実施例3と比較して、25℃1000サイクルにおける容量維持率がさらに向上した。従って、複合水酸化物粒子の(D90-D10)/D50が0.80以下に制御されることで常温でのサイクル特性がさらに向上した。 In particular, in Examples 3, 4 and 6 in which 1.06 ≦ β / α ≦ 1.13, the capacity retention at 1000 cycles of 25 ° C. was 88% or more, and the capacity retention at 500 cycles of 60 ° C. was 80% or more. Thus, a positive electrode active material for a secondary battery, which can exhibit more excellent cycle characteristics under both normal temperature and high temperature environments, could be obtained. Also, from Tables 1 and 4 above, Example 6 in which (D90-D10) / D50 of the nickel, cobalt, and manganese composite hydroxide particles was 0.78 was (D90-D10) / D50 of 0.96. In comparison with Example 3 in which the firing conditions were the same as in Example 6, the capacity retention at 1000 cycles of 25 ° C. was further improved. Therefore, the cycle characteristics at room temperature were further improved by controlling (D90-D10) / D50 of the composite hydroxide particles to 0.80 or less.
 また、上記表1、4から、p≧-600q+1603(式中、qは、少なくともNi、Co及びMnのうち1種類以上からなる金属元素(M1)の合計に対するLiの原子比(Li/M1)であり、1.00≦q≦1.30、pは、本焼成温度であり、940℃<p≦1100℃を意味する)の焼成温度で表される本焼成工程に加えて、仮焼工程、焼戻し工程、添加物(M2の金属元素を含む、Al及び/またはZrO)の添加のうちの少なくとも1つの工程を実施した実施例1~7では、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる二次電池用正極活物質を製造することできた。 Further, from Tables 1 and 4, p ≧ −600q + 1603 (where q is the atomic ratio of Li to the total of at least one metal element (M1) of Ni, Co and Mn (Li / M1). 1.00 ≦ q ≦ 1.30, p is a main firing temperature, and means a firing temperature of 940 ° C. <p ≦ 1100 ° C.). In Examples 1 to 7 in which at least one of the steps of tempering, tempering, and addition of an additive (Al 2 O 3 and / or ZrO 2 containing the metal element of M2) was carried out, However, it was possible to produce a positive electrode active material for a secondary battery capable of exhibiting excellent cycle characteristics.
 また、常温、高温いずれの環境下でも優れたサイクル特性を発揮できる実施例1~7では、BET比表面積が0.35m~6.1m/gと良好なBET比表面積を得ることができた。また、上記実施例1~7では、充填時の混合粉の表面積(S)/体積(V)は、0.08~0.24mm/mmの範囲であった。 Further, in Examples 1 to 7, which can exhibit excellent cycle characteristics under both normal temperature and high temperature environments, a good BET specific surface area of 0.35 m 2 to 6.1 m 2 / g can be obtained. Was. In Examples 1 to 7, the surface area (S) / volume (V) of the mixed powder at the time of filling was in the range of 0.08 to 0.24 mm 2 / mm 3 .
 一方で、上記表2、4から、平均粒子強度が200MPa未満であり、β/αが0.96以下である比較例1、2の二次電池用正極活物質では、60℃500サイクルにおける容量維持率が60%以上73%以下であり、高温環境下にて優れたサイクル特性を発揮できなかった。また、上記表2、3、4から、平均粒子強度が200MPa未満であり、サイクル試験前後の格子定数の変化率が、60℃の試験において、a軸が99.25%~99.26%である比較例2、4では、60℃500サイクルにおける容量維持率が73%であり、高温環境下にて優れたサイクル特性を発揮できなかった。また、上記表2、3、4から、平均粒子強度が200MPa未満であり、60℃の試験において、a軸、c軸ともに、99.30%以上100.90%以下の範囲外である比較例3の二次電池用正極活物質では、25℃1000サイクルにおける容量維持率が79%、60℃500サイクルにおける容量維持率が69%と、常温、高温いずれの環境下でも優れたサイクル特性を得られなかった。 On the other hand, from Tables 2 and 4 above, in the positive electrode active materials for secondary batteries of Comparative Examples 1 and 2 in which the average particle strength is less than 200 MPa and β / α is 0.96 or less, the capacity at 60 ° C. and 500 cycles is shown. The maintenance ratio was 60% or more and 73% or less, and excellent cycle characteristics could not be exhibited in a high temperature environment. From the above Tables 2, 3, and 4, the average particle strength was less than 200 MPa, and the rate of change of the lattice constant before and after the cycle test was 60.degree. C. and the a-axis was 99.25% to 99.26%. In Comparative Examples 2 and 4, the capacity retention at 500 cycles of 60 ° C. was 73%, and excellent cycle characteristics could not be exhibited in a high temperature environment. Also, from Tables 2, 3, and 4 above, a comparative example in which the average particle strength is less than 200 MPa and both the a-axis and the c-axis are out of the range of 99.30% to 100.90% in the test at 60 ° C. In the positive electrode active material for secondary battery of No. 3, the capacity retention rate at 25 ° C. for 1000 cycles was 79%, and the capacity retention rate at 60 ° C. for 500 cycles was 69%, and excellent cycle characteristics were obtained in both normal temperature and high temperature environments. I couldn't.
 また、上記表1、4から、仮焼工程を実施したものの、p≧-600q+1603(式中、qは、少なくともNi、Co及びMnのうち1種類以上からなる金属元素(M1)の合計に対するLiの原子比(Li/M1)であり、1.00≦q≦1.30、pは、本焼成温度であり、940℃<p≦1100℃を意味する。)の焼成温度で表される本焼成を行わず、鞘に混合物を充填する際S/Vが0.06cm/cmであった比較例1では、上記の通り、常温、高温いずれの環境下でも優れたサイクル特性を発揮できなかった。また、焼成工程として本焼成工程のみ実施し、M2の金属元素も添加しなかった比較例2、3では、上記の通り、常温から高温の域にわたって安定的に優れたサイクル特性を得ることはできなかった。また、実施例と同様にして仮焼工程及び本焼成工程を実施したものの、鞘に混合物を充填する際S/Vが0.07cm/cmであった比較例4では、上記の通り、常温から高温の域にわたって安定的に優れたサイクル特性を得ることはできなかった。 From Tables 1 and 4 above, although the calcination step was performed, p ≧ −600q + 1603 (where q is Li with respect to the total of the metal elements (M1) composed of at least one of Ni, Co and Mn). 1.00 ≦ q ≦ 1.30, and p is the main firing temperature, which means 940 ° C. <p ≦ 1100 ° C.). In Comparative Example 1, in which the mixture was filled in the sheath without firing, and the S / V was 0.06 cm 2 / cm 3 , as described above, excellent cycle characteristics could be exerted under both normal temperature and high temperature environments. Did not. Moreover, in Comparative Examples 2 and 3 in which only the main firing step was performed as the firing step and the metal element of M2 was not added, as described above, excellent cycle characteristics could be obtained stably over a range from room temperature to high temperature. Did not. Moreover, although the calcination process and the main calcination process were performed in the same manner as in the example, when the sheath was filled with the mixture, the S / V was 0.07 cm 2 / cm 3 in Comparative Example 4, as described above. Excellent cycle characteristics could not be obtained stably over a range from room temperature to high temperature.
 本発明の二次電池用正極活物質は、常温、高温いずれの環境下でも優れたサイクル特性を発揮できるので、広汎な分野で利用可能であり、例えば、雰囲気温度等の使用環境が変動する環境に用いられる機器に搭載する分野で利用価値が高い。 Since the positive electrode active material for a secondary battery of the present invention can exhibit excellent cycle characteristics under both normal temperature and high temperature environments, it can be used in a wide range of fields, for example, in an environment where the use environment such as ambient temperature fluctuates. High value of use in the field of mounting on equipment used for
1      セパレータ
2      正極
3      負極
6      電解液
10     リチウム二次電池
DESCRIPTION OF SYMBOLS 1 Separator 2 Positive electrode 3 Negative electrode 6 Electrolyte 10 Lithium secondary battery

Claims (9)

  1.  単結晶粒子及び/又は複数の一次粒子の凝集体である二次粒子である、少なくともニッケル、コバルト及びマンガンのうち1種類以上を含む層状構造を有する二次電池用正極活物質であって、
    累積体積百分率が50体積%の粒子径(D50)±1.0μmである粒子の平均粒子強度が、200MPa以上であり、
    CuKα線を使用した粉末X線回折測定において、2θ=64.5±1°の範囲に現れる2つの回折ピークの低角度側のピークの半値全幅をα、高角度側のピークの半値全幅をβとしたとき、β/αが、0.97≦β/α≦1.25である二次電池用正極活物質。
    A secondary battery that is an aggregate of single crystal particles and / or a plurality of primary particles, a positive electrode active material for a secondary battery having a layered structure containing at least one of nickel, cobalt, and manganese,
    The average particle strength of the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ± 1.0 μm is 200 MPa or more;
    In a powder X-ray diffraction measurement using CuKα ray, the full width at half maximum of the peak on the low angle side of two diffraction peaks appearing in the range of 2θ = 64.5 ± 1 ° is α, and the full width at half maximum of the peak on the high angle side is β. Where β / α satisfies 0.97 ≦ β / α ≦ 1.25.
  2.  単結晶粒子及び/又は複数の一次粒子の凝集体である二次粒子である、少なくともニッケル、コバルト及びマンガンのうち1種類以上を含む層状構造を有する二次電池用正極活物質であって、
    累積体積百分率が50体積%の粒子径(D50)±1.0μmである粒子の平均粒子強度が、200MPa以上であり、
    CuKα線を使用したサイクル試験前後の正極のX線回折測定において、サイクル試験前後の格子定数の変化率を、(サイクル試験前のa軸/サイクル試験後のa軸)×100=A、(サイクル試験前のc軸/サイクル試験後のc軸)×100=Cとした場合、
    25℃及び60℃のサイクル試験では、AとCのうちの少なくとも一方が99.30%以上100.90%以下である二次電池用正極活物質。
    A secondary battery that is an aggregate of single crystal particles and / or a plurality of primary particles, a positive electrode active material for a secondary battery having a layered structure containing at least one of nickel, cobalt, and manganese,
    The average particle strength of the particles having a cumulative volume percentage of 50% by volume and having a particle diameter (D50) ± 1.0 μm is 200 MPa or more;
    In the X-ray diffraction measurement of the positive electrode before and after the cycle test using CuKα rays, the rate of change of the lattice constant before and after the cycle test was calculated as (a axis before the cycle test / a axis after the cycle test) × 100 = A, (cycle When c axis before test / c axis after cycle test) × 100 = C,
    A positive electrode active material for a secondary battery in which at least one of A and C is 99.30% to 100.90% in a cycle test at 25 ° C and 60 ° C.
  3.  下記一般式(1)
    Li[Li(M1M21-a]O2+b     (1)
    (式中、0≦a≦0.30、-0.30≦b≦0.30、0.9≦x≦1.0、0≦y≦0.1、x+y=1、M1は、少なくともNi、Co及びMnのうち1種類以上からなる金属元素、M2は、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、V、B、Mo、As、Ge、P、Pb、Si、Sb、Nb、Ta、Re及びBiからなる群から選択された少なくとも1種の金属元素を意味する。)で表される請求項1または2に記載の二次電池用正極活物質。
    The following general formula (1)
    Li [Li a (M1 x M2 y ) 1-a ] O 2 + b (1)
    (Where 0 ≦ a ≦ 0.30, −0.30 ≦ b ≦ 0.30, 0.9 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.1, x + y = 1, M1 is At least one metal element of Ni, Co and Mn, M2 is Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge, P , Pb, Si, Sb, Nb, Ta, Re, and Bi means at least one metal element selected from the group consisting of). material.
  4.  累積体積百分率が50体積%の粒子径D50が、2.0μm以上20.0μm以下である請求項1~3のいずれかに記載の二次電池用活物質。 (4) The active material for a secondary battery according to any one of (1) to (3), wherein the particle diameter D50 at a cumulative volume percentage of 50% by volume is from 2.0 μm to 20.0 μm.
  5.  BET比表面積が、0.1m/g以上5.0m/g以下である請求項1~4のいずれかに記載の二次電池用活物質。 The active material for a secondary battery according to any one of claims 1 to 4, wherein the BET specific surface area is 0.1 m 2 / g or more and 5.0 m 2 / g or less.
  6.  請求項1~5のいずれかに記載の二次電池用正極活物質を有する二次電池。 A secondary battery comprising the positive electrode active material for a secondary battery according to any one of claims 1 to 5.
  7.  少なくともニッケル、コバルト及びマンガンのうち1種類以上を含む複合水酸化物粒子にリチウム(Li)化合物を、少なくともNi、Co及びMnのうち1種類以上からなる金属元素(M1)に対して、1.00≦Li/M1≦1.30の原子比にて添加して、リチウム化合物と複合水酸化物粒子の混合物を得る工程と、
    前記混合物を、下記式
    p≧-600q+1603(式中、qは、少なくともニッケル、コバルト及びマンガンのうち1種類以上からなる金属元素(M1)の合計に対するLiの原子比(Li/M1)であり、1.00≦q≦1.30、pは、本焼成温度であり、940℃<p≦1100℃を意味する。)で表される焼成温度で焼成する本焼成工程と、
    を含み、
    前記本焼成工程に加え、さらに下記(1)~(3)の工程
    (1)焼成温度が300℃以上800℃以下である、前記本焼成工程前に行う仮焼工程、
    (2)焼成温度が600℃以上900℃以下である、前記本焼成工程後に行う焼戻し工程、
    (3)前記本焼成工程及び/又は前記焼戻し工程前に、M2(M2は、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、V、B、Mo、As、Ge、P、Pb、Si、Sb、Nb、Ta、Re及びBiからなる群から選択された少なくとも1種類の金属元素を意味する。)で表される金属を添加する工程、
    のうち少なくとも1工程を含む二次電池用正極活物質の製造方法。
    A lithium (Li) compound is added to a composite hydroxide particle containing at least one of nickel, cobalt and manganese, and at least a metal element (M1) made of at least one of Ni, Co and Mn. Adding at an atomic ratio of 00 ≦ Li / M1 ≦ 1.30 to obtain a mixture of a lithium compound and composite hydroxide particles;
    The mixture is represented by the following formula p ≧ −600q + 1603 (where q is an atomic ratio (Li / M1) of Li to a total of at least one metal element (M1) of nickel, cobalt and manganese; 1.00 ≦ q ≦ 1.30, p is a main firing temperature, and means a firing temperature represented by 940 ° C. <p ≦ 1100 ° C.)
    Including
    In addition to the main sintering step, the following (1) to (3) steps (1) a calcination step performed before the main sintering step, wherein the sintering temperature is 300 ° C. or more and 800 ° C. or less;
    (2) a tempering step performed after the main firing step, wherein the firing temperature is 600 ° C. or more and 900 ° C. or less;
    (3) Before the main firing step and / or the tempering step, M2 (M2 is Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, Ga, V, B, Mo, As, Ge , P, Pb, Si, Sb, Nb, Ta, Re, and Bi, which means at least one metal element selected from the group consisting of:
    A method for producing a positive electrode active material for a secondary battery, comprising at least one step of the above.
  8.  前記リチウム化合物と前記複合水酸化物粒子の混合工程前に、前記複合水酸化物粒子の粒度分布幅を0.40≦(D90-D10)/D50≦1.00とする工程を含む請求項7に記載の製造方法。 8. The method according to claim 7, further comprising, before the mixing step of the lithium compound and the composite hydroxide particles, setting a particle size distribution width of the composite hydroxide particles to 0.40 ≦ (D90−D10) /D50≦1.00. The production method described in 1.
  9.  前記本焼成工程において、鞘へ前記混合物を充填した際の前記混合物の体積(V)に対する、前記鞘との接触面を含めた前記混合物の表面積(S)の割合が、0.08≦S/V≦2.00である請求項7または8に記載の製造方法。 In the main firing step, the ratio of the surface area (S) of the mixture including the contact surface with the sheath to the volume (V) of the mixture when the sheath is filled with the mixture is 0.08 ≦ S / The method according to claim 7, wherein V ≦ 2.00.
PCT/JP2019/034407 2018-09-21 2019-09-02 Positive electrode active material for secondary battery, and method for producing same WO2020059471A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980061771.2A CN112740442A (en) 2018-09-21 2019-09-02 Positive electrode active material for secondary battery and method for producing same
KR1020217011795A KR102648286B1 (en) 2018-09-21 2019-09-02 Cathode active material for secondary batteries and manufacturing method thereof
EP19861675.7A EP3855541A4 (en) 2018-09-21 2019-09-02 Positive electrode active material for secondary battery, and method for producing same
US17/202,407 US20210210757A1 (en) 2018-09-21 2021-03-16 Positive electrode active material for secondary batteries and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-178052 2018-09-21
JP2018178052 2018-09-21
JP2019-097568 2019-05-24
JP2019097568A JP6669920B1 (en) 2018-09-21 2019-05-24 Positive electrode active material for secondary battery and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/202,407 Continuation US20210210757A1 (en) 2018-09-21 2021-03-16 Positive electrode active material for secondary batteries and method for producing the same

Publications (1)

Publication Number Publication Date
WO2020059471A1 true WO2020059471A1 (en) 2020-03-26

Family

ID=69888763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034407 WO2020059471A1 (en) 2018-09-21 2019-09-02 Positive electrode active material for secondary battery, and method for producing same

Country Status (1)

Country Link
WO (1) WO2020059471A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768685A (en) * 2021-04-09 2021-05-07 湖南长远锂科股份有限公司 Long-cycle and high-power lithium ion battery cathode material and preparation method thereof
CN115362133A (en) * 2020-04-03 2022-11-18 株式会社田中化学研究所 Method for producing composite hydroxide and composite hydroxide
CN116487525A (en) * 2023-06-05 2023-07-25 中创新航科技集团股份有限公司 Positive plate and battery containing same
CN116504922A (en) * 2023-06-19 2023-07-28 蔚来电池科技(安徽)有限公司 Positive electrode sheet, electrochemical device, and electricity consumption device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2003002661A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2004335152A (en) * 2003-04-30 2004-11-25 Sumitomo Metal Mining Co Ltd Cathode active substance for nonaqueous system electrolyte secondary battery and nonaqueous system electrolyte secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it
WO2007116971A1 (en) * 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
KR20110063376A (en) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 Cathode active material for lithium secondary battery, the method for manufacturing the same and lithium secondary battery using the same
WO2013038918A1 (en) * 2011-09-12 2013-03-21 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2013107791A (en) * 2011-11-21 2013-06-06 Sumitomo Chemical Co Ltd Method for producing complex metal oxide, complex metal oxide, positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
WO2013161619A1 (en) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 Lithium metal compound oxide having layered structure
WO2016129361A1 (en) * 2015-02-12 2016-08-18 Jx金属株式会社 Positive-electrode active material for lithium-ion cell, positive electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing positive-electrode active material for lithium-ion cell
WO2017169184A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Positive electrode active substance for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
JP2018045998A (en) 2016-09-18 2018-03-22 貴州振華新材料有限公司 Spherical or pseudo-spherical positive electrode material of lithium ion battery, and manufacturing method and application thereof
WO2018110256A1 (en) * 2016-12-14 2018-06-21 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2003002661A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2004335152A (en) * 2003-04-30 2004-11-25 Sumitomo Metal Mining Co Ltd Cathode active substance for nonaqueous system electrolyte secondary battery and nonaqueous system electrolyte secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it
WO2007116971A1 (en) * 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
KR20110063376A (en) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 Cathode active material for lithium secondary battery, the method for manufacturing the same and lithium secondary battery using the same
WO2013038918A1 (en) * 2011-09-12 2013-03-21 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2013107791A (en) * 2011-11-21 2013-06-06 Sumitomo Chemical Co Ltd Method for producing complex metal oxide, complex metal oxide, positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
WO2013161619A1 (en) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 Lithium metal compound oxide having layered structure
WO2016129361A1 (en) * 2015-02-12 2016-08-18 Jx金属株式会社 Positive-electrode active material for lithium-ion cell, positive electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing positive-electrode active material for lithium-ion cell
WO2017169184A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Positive electrode active substance for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
JP2018045998A (en) 2016-09-18 2018-03-22 貴州振華新材料有限公司 Spherical or pseudo-spherical positive electrode material of lithium ion battery, and manufacturing method and application thereof
WO2018110256A1 (en) * 2016-12-14 2018-06-21 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRAMATSU, JOURNAL OF THE MINING AND METALLURGICAL INSTITUTE OF JAPAN, vol. 81, 1965

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115362133A (en) * 2020-04-03 2022-11-18 株式会社田中化学研究所 Method for producing composite hydroxide and composite hydroxide
CN112768685A (en) * 2021-04-09 2021-05-07 湖南长远锂科股份有限公司 Long-cycle and high-power lithium ion battery cathode material and preparation method thereof
CN116487525A (en) * 2023-06-05 2023-07-25 中创新航科技集团股份有限公司 Positive plate and battery containing same
CN116487525B (en) * 2023-06-05 2024-02-02 中创新航科技集团股份有限公司 Positive plate and battery containing same
CN116504922A (en) * 2023-06-19 2023-07-28 蔚来电池科技(安徽)有限公司 Positive electrode sheet, electrochemical device, and electricity consumption device
CN116504922B (en) * 2023-06-19 2023-09-22 蔚来电池科技(安徽)有限公司 Positive electrode sheet, electrochemical device, and electricity consumption device

Similar Documents

Publication Publication Date Title
JP6669920B1 (en) Positive electrode active material for secondary battery and method for producing the same
KR102323929B1 (en) Cathode active material for lithium secondary battery, cathode, and secondary battery
JP5640311B2 (en) Lithium composite metal oxide and non-aqueous electrolyte secondary battery
JP5842478B2 (en) Lithium composite metal oxide and method for producing the same
WO2020059471A1 (en) Positive electrode active material for secondary battery, and method for producing same
WO2016195036A1 (en) Positive-electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
JP5504800B2 (en) Lithium composite metal oxide and positive electrode active material
JP2010021134A (en) Method for manufacturing lithium complex metal oxide
JP5682151B2 (en) Transition metal composite hydroxide and lithium composite metal oxide
JP5699436B2 (en) Method for producing layered structure lithium composite metal oxide
WO2011037201A1 (en) Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery
WO2014007360A1 (en) Lithium composite metal oxide, production method for lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
WO2018021453A1 (en) Method for producing lithium nickel composite oxide
KR20120038983A (en) Powder material and positive electrode mix
JP5487821B2 (en) Lithium composite metal oxide and positive electrode active material
US20120244411A1 (en) Lithium-containing metal oxide, and non-aqueous electrolyte secondary battery
WO2012005176A1 (en) Raw-material mixture and alkali-metal/transition-metal complex oxide
JP6068530B2 (en) Positive electrode active material for lithium secondary battery, positive electrode and secondary battery
WO2014007357A1 (en) Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
JP2013107791A (en) Method for producing complex metal oxide, complex metal oxide, positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2012109190A (en) Method for producing lithium composite metal oxide
JP5742193B2 (en) Lithium composite metal oxide and non-aqueous electrolyte secondary battery
JP2011153067A (en) Method for producing composite metal hydroxide and lithium composite metal oxide, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011795

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019861675

Country of ref document: EP

Effective date: 20210421