JP2009070605A - Lithium polymer battery - Google Patents

Lithium polymer battery Download PDF

Info

Publication number
JP2009070605A
JP2009070605A JP2007235349A JP2007235349A JP2009070605A JP 2009070605 A JP2009070605 A JP 2009070605A JP 2007235349 A JP2007235349 A JP 2007235349A JP 2007235349 A JP2007235349 A JP 2007235349A JP 2009070605 A JP2009070605 A JP 2009070605A
Authority
JP
Japan
Prior art keywords
electrolyte
solution
monomer
lithium
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007235349A
Other languages
Japanese (ja)
Inventor
Mari Kashima
まり 鹿島
Eriko Ishiko
恵理子 石古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2007235349A priority Critical patent/JP2009070605A/en
Publication of JP2009070605A publication Critical patent/JP2009070605A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium polymer battery having superior battery performance and higher safety. <P>SOLUTION: In the lithium polymer battery, an electrolyte for a solid electrolyte including a crosslinkable material, a solvent, and lithium electrolyte salt is poured into a container capable of sealing up together with a battery material including a separator and an electrode material, the electrolyte for a solid electrolyte made into a solid electrolyte by making the electrolyte for a solid electrolyte gel on the basis of crosslinking of the crosslinkable material. The separator is made of a non-conductive porous material and electrically-insulated particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムポリマー電池に関する。   The present invention relates to a lithium polymer battery.

リチウムイオン2次電池は、小型軽量の充電可能な電池で、単位容積あるいは単位重量あたり蓄電容量が大きく、携帯電話、ノートパソコン、携帯情報端末(PDA)、ビデオカメラ、デジタルカメラなどに広く利用され、小型軽量で比較的電力消費の大きな各携帯型機器には必要不可欠なものとなっている。また、近年では電動自転車や電動自動車に搭載する中型・もしくは大型のリチウムイオン2次電池の開発が進められており、環境負荷を低減させる手段としてもその開発に期待が寄せられている。   Lithium-ion secondary batteries are small, lightweight, rechargeable batteries with a large storage capacity per unit volume or unit weight, and are widely used in mobile phones, notebook computers, personal digital assistants (PDAs), video cameras, digital cameras, etc. It is indispensable for each portable device that is small, light and relatively large in power consumption. In recent years, the development of medium- or large-sized lithium ion secondary batteries to be mounted on electric bicycles and electric vehicles has been promoted, and the development is expected as a means for reducing environmental load.

現在、このリチウムイオン2次電池の電解液には、炭酸プロピレン、炭酸エチレンなどを主とした電解液溶媒にリチウム電解質塩を溶解した液状の電解液を使用しているものが殆どである。しかし液状の電解液を使用した電池では、電解液の漏洩の危険性に加えて、使用環境や誤使用・事故による温度上昇や内圧上昇、破裂、発火といった安全性が問題となる。 特に、自転車や車といった高容量・高出力用の用途で使用する場合には、非常に大きなエネルギー量を必要とするため、電池の安全性は重要な課題となる。この課題の解決に向けて電解質をゲル状または固体状の電解質で形成することが提案されている(特許文献1、2など)。   At present, most of the electrolyte solution of the lithium ion secondary battery uses a liquid electrolyte solution in which a lithium electrolyte salt is dissolved in an electrolyte solvent mainly composed of propylene carbonate, ethylene carbonate, or the like. However, in the case of a battery using a liquid electrolyte, in addition to the risk of leakage of the electrolyte, there are problems of safety such as temperature increase, internal pressure increase, rupture and ignition due to use environment, misuse and accident. In particular, when used in high capacity / high output applications such as bicycles and cars, a very large amount of energy is required, so battery safety is an important issue. In order to solve this problem, it has been proposed to form an electrolyte with a gel or solid electrolyte (Patent Documents 1 and 2, etc.).

一方、電解液系電解質のリチウムイオン2次電池のセパレータとして、電気絶縁性の無機皮膜を有する多孔性の基盤を用いることにより、電池にシャットダウンメカニズムを設け、電池の安全性を飛躍的に向上させることが可能なセパレータの製造法が報告されている(特許文献3、4など)。
特開2001−176555号公報 特開2002−110245号公報 特表2005−536857号公報 特表2005−536860号公報
On the other hand, by using a porous substrate having an electrically insulating inorganic film as a separator for an electrolyte electrolyte lithium ion secondary battery, a shutdown mechanism is provided in the battery, and the safety of the battery is dramatically improved. The manufacturing method of the separator which can be performed is reported (patent document 3, 4 etc.).
JP 2001-176555 A JP 2002-110245 A JP 2005-536857 A JP 2005-536860 Publication

電解液系のリチウムイオン2次電池での問題とされる、電解液の漏液、短絡などによるセルの膨張、発熱、発火などの危険性を回避するために、ゲル状又は固体状の電解質化が行われてきたが、活物質や電解液など電池の構成材料に可燃性材料を用いる限り、より一層の安全対策が求められる。   In order to avoid dangers such as cell expansion, heat generation, and ignition due to electrolyte leakage, short circuit, etc., which is a problem with electrolyte-based lithium ion secondary batteries, it is made into a gel or solid electrolyte. However, as long as a combustible material is used as a constituent material of the battery such as an active material or an electrolytic solution, further safety measures are required.

また、電池製造の観点から見れば、生産性の向上、製品の安定性なども重要である。粘度の高いポリマー溶液を如何に早く、均一に注液するかがポイントとなり、モノマー組成の検討、セパレータへの含浸、電極微細構造を含めた解決すべき課題が多くある。これらの課題を解決するためには、含浸時間の延長や新設備の導入が必要となり、電池の製造効率を下げる原因にもなる。   From the viewpoint of battery production, improvement in productivity, product stability, and the like are also important. The point is how quickly and uniformly a high viscosity polymer solution is poured, and there are many problems to be solved including the examination of the monomer composition, the impregnation into the separator, and the electrode microstructure. In order to solve these problems, it is necessary to extend the impregnation time and introduce new equipment, which causes a decrease in battery production efficiency.

本発明は、上記問題に鑑み、リチウムイオン2次電池に強く要求されている安全性の向上に向けて、電池構成材料の選択と吟味を行い、従来のポリマー電池よりも優れた電池性能と高い安全性を持ち合わせたリチウムポリマー電池を提供することを課題とする。   In view of the above problems, the present invention performs selection and examination of battery constituent materials to improve safety which is strongly required for lithium ion secondary batteries, and has battery performance superior to conventional polymer batteries and higher. It is an object to provide a lithium polymer battery having safety.

本発明者らは、架橋性材料を用いたゲル電解質と、非導電性多孔質材料と電気絶縁性の粒子からなるセパレータを組み合わせることにより、ポリマー電池の性能及び電池の安全性が飛躍的に向上することを見出した。また、電解液のセパレータへの含浸性が向上することにより、従来の電池性能を保ったまま、電解液の漏洩や発煙、発火といった事故を防ぐことが可能になり、本発明を完成させるに至った。   By combining a gel electrolyte using a crosslinkable material with a separator made of a non-conductive porous material and electrically insulating particles, the performance of the polymer battery and the safety of the battery are dramatically improved. I found out. In addition, by improving the impregnation of the electrolyte into the separator, it is possible to prevent accidents such as leakage, smoke, and ignition of the electrolyte while maintaining the conventional battery performance, and the present invention is completed. It was.

すなわち、本発明は、架橋性材料、溶媒、及びリチウム電解質塩を含む固体電解質用電解液を、セパレータ、電極材料を含む電池材料と共に密封可能な容器に注入し、前記架橋性材料の架橋によって前記固体電解質用電解液をゲル化させることで固体電解質化したものであって、前記セパレータが非導電性多孔質材料と電気絶縁性の粒子からなることを特徴とするリチウムポリマー電池である。   That is, the present invention injects a solid electrolyte electrolyte containing a crosslinkable material, a solvent, and a lithium electrolyte salt into a sealable container together with a battery material including a separator and an electrode material, and the crosslinkable material crosslinks the above. The lithium polymer battery is characterized in that a solid electrolyte is formed by gelling an electrolyte solution for a solid electrolyte, and the separator is made of a non-conductive porous material and electrically insulating particles.

本発明においては、前記架橋性材料が、開環重合性官能基を有するモノマーと開環重合性官能基を有しないモノマーの共重合体であることが好ましい。   In the present invention, the crosslinkable material is preferably a copolymer of a monomer having a ring-opening polymerizable functional group and a monomer having no ring-opening polymerizable functional group.

前記開環重合性官能基を有するモノマーが下記一般式(1)又は(2)で表されるモノマーであることが好ましい。

Figure 2009070605
(式中、RはHまたはCHを表し、Rは下記化学式(3)で表される置換基を表し、化学式(3)におけるRは炭素数1〜6のアルキル基を表す。)
Figure 2009070605
The monomer having a ring-opening polymerizable functional group is preferably a monomer represented by the following general formula (1) or (2).
Figure 2009070605
(In the formula, R 1 represents H or CH 3 , R 2 represents a substituent represented by the following chemical formula (3), and R 3 in the chemical formula (3) represents an alkyl group having 1 to 6 carbon atoms. )
Figure 2009070605

また、前記開環重合性官能基を有しないモノマーが下記一般式(4)で表されるモノマーであることが好ましい。

Figure 2009070605
(式中、RはHまたはCHを表し、およびRは−COOCH、−COOC、−COOC、−COOC、−COOCHCH(CH、−COO(CHCHO)CH、−COO(CHCHO)、−COO(CHCHO)、−COO(CHCH(CH)O)CH、−COO(CHCH(CH)O)、−OCOCH、−OCOC、又は−CHOCを表す。) The monomer having no ring-opening polymerizable functional group is preferably a monomer represented by the following general formula (4).
Figure 2009070605
(Wherein R 4 represents H or CH 3 , and R 5 represents —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COOCH 2 CH (CH 3 ) 2 , -COO (CH 2 CH 2 O) 1 ~ 3 CH 3, -COO (CH 2 CH 2 O) 1 ~ 3 C 2 H 5, -COO (CH 2 CH 2 O) 1 ~ 3 C 4 H 9, - COO (CH 2 CH (CH 3 ) O) 1 ~ 3 CH 3, -COO (CH 2 CH (CH 3) O) 1 ~ 3 C 2 H 5, -OCOCH 3, -OCOC 2 H 5, or -CH 2 represents OC 2 H 5 )

さらに、本発明においては、前記セパレータの非導電性多孔質材料は非導電性ポリマー繊維からなる不織布であり、電気絶縁性の無機粒子で被覆されていることが好ましい。   Furthermore, in the present invention, the nonconductive porous material of the separator is a non-woven fabric made of nonconductive polymer fibers, and is preferably coated with electrically insulating inorganic particles.

本発明によれば、従来のポリマー電池よりも優れた性能を持ち、かつ安全性の高いリチウム電池の製造が可能になる。すなわち、電池のトラブルは内部温度の上昇から、内圧の上昇、さらには破裂、発火を引き起こし大事故になりかねないが、本願では内部温度の上昇に対して、ポリマー電解質に加えて、ポリマーや基材が万一溶融や収縮した場合にも、耐熱性があり、溶融しない材料粒子をもちいることにより、大面積の内部短絡を引き起こさず、ポリマー電解質とセパレータの二重の効果により従来の電解液系リチウム電池よりも高い安全性を付与することができる。     According to the present invention, it is possible to manufacture a lithium battery having performance superior to that of a conventional polymer battery and high safety. In other words, battery trouble may cause a major accident due to internal temperature increase, internal pressure increase, and further explosion and ignition, but in this application, in addition to polymer electrolyte, in addition to polymer electrolyte, In the unlikely event that the material melts or shrinks, it uses heat-resistant material particles that do not melt, so it does not cause a large area internal short circuit, and the conventional electrolyte solution due to the double effect of the polymer electrolyte and separator Safety higher than that of a lithium-based battery can be provided.

また、このリチウム2次電池は、従来と同様の製造設備で製造することが可能で、新しい設備を必要としない。   Moreover, this lithium secondary battery can be manufactured with the same manufacturing equipment as before, and does not require new equipment.

さらに、本発明で挙げたセパレータの使用により電池の安全性が向上するだけでなく、セパレータ表面の濡れ性が改善することで、電解液含浸時間の短縮が可能になり、ポリマー電解質を用いた場合にも電池の界面抵抗を低下させ、優れた電池性能が得られる。   Furthermore, not only the safety of the battery is improved by the use of the separator mentioned in the present invention, but the wettability of the separator surface is improved, so that the time for impregnation with the electrolyte can be shortened, and the polymer electrolyte is used. In addition, the interface resistance of the battery is reduced, and excellent battery performance can be obtained.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

上記の架橋性材料はゲル化し固体電解質を形成可能な材料であれば特に限定されないが、開環重合性官能基を有する化合物の開環重合によってゲル化することが好ましい。   The crosslinkable material is not particularly limited as long as it is a material that can be gelled to form a solid electrolyte, but is preferably gelled by ring-opening polymerization of a compound having a ring-opening polymerizable functional group.

開環重合性官能基の例としては、ヘテロ原子(O、N、S、Si、Pなど)を含むエーテル、アミン、エステル、アミドなどの原子団を有する基であり、脂環式エポキシ基、オキセタン基、テトラヒドロフルフリル基、環状エーテル基などが挙げられるが、脂環式エポキシ基、オキセタン基、テトラヒドロフルフリル基が好ましく、脂環式エポキシ基、オキセタン基が最も好ましい。これらの基は1分子中に複数個及びまたは2種類以上含まれていてもよい。   Examples of the ring-opening polymerizable functional group are groups having an atomic group such as ether, amine, ester, amide and the like containing a hetero atom (O, N, S, Si, P, etc.), an alicyclic epoxy group, An oxetane group, a tetrahydrofurfuryl group, a cyclic ether group and the like can be mentioned, and an alicyclic epoxy group, an oxetane group and a tetrahydrofurfuryl group are preferable, and an alicyclic epoxy group and an oxetane group are most preferable. A plurality of these groups and / or two or more kinds thereof may be contained in one molecule.

開環重合性官能基を有する化合物がラジカル重合性官能基を有するモノマーであれば特に限定されないが、(メタ)アクリル基、ビニル基、アリル基のうち1種類以上の官能基を有するモノマーのラジカル重合体であることが好ましく、(メタ)アクリル基、アリル基が最も好ましい。   Although it will not specifically limit if the compound which has a ring-opening polymerizable functional group is a monomer which has a radically polymerizable functional group, The radical of the monomer which has one or more types of functional groups among a (meth) acryl group, a vinyl group, and an allyl group A polymer is preferable, and a (meth) acryl group and an allyl group are most preferable.

開環重合性官能基を有するモノマーの例は、(メタ)アクリル基を有するモノマーの具体例としては、グリシジルメタクリレートなどのグリシジルエーテルモノマーや3,4−エポキシシクロヘキシルメチル(メタ)アクリレートなどの脂環式エポキシモノマー、(3−オキセタニル)メチル(メタ)アクリレート、(3−メチル−3−オキセタニル)メチル(メタ)アクリレート、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、(3−ブチル−3−オキセタニル)メチル(メタ)アクリレート、(3−ヘキシル−3−オキセタニル)メチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートなどのオキセタンモノマー、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、テトラヒドロフルフリルモノマーが挙げられる。   Examples of monomers having a ring-opening polymerizable functional group include glycidyl ether monomers such as glycidyl methacrylate and alicyclic rings such as 3,4-epoxycyclohexylmethyl (meth) acrylate as specific examples of monomers having a (meth) acryl group. Formula epoxy monomer, (3-oxetanyl) methyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, (3-butyl- Oxetane monomers such as 3-oxetanyl) methyl (meth) acrylate, (3-hexyl-3-oxetanyl) methyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl (meth) acrylate, tetrahydride Furfuryl monomer, and the like.

アリル基を有するモノマーとしてはアリルグリシジルエーテルが挙げられる。   Examples of the monomer having an allyl group include allyl glycidyl ether.

ビニル基を有するモノマーとしては4−ビニル1−シクロヘキセン1,2−エポキシド、2−ビニルオキシテトラヒドロピランなどが挙げられる。   Examples of the monomer having a vinyl group include 4-vinyl 1-cyclohexene 1,2-epoxide and 2-vinyloxytetrahydropyran.

これらモノマーを複数使用してもよい。   A plurality of these monomers may be used.

前記開環重合性官能基を有するモノマーである、(メタ)アクリル基、アリル基、ビニル基を有するモノマーの使用量は特に制限されることはないが、モノマー全量中に5〜50%、好ましくは10〜30%の範囲であることが好ましい。5%未満では、ゲル化に要するポリマー量の増大を招き、また50%を越えると、ゲルから電解液が分離(ブリード)する傾向にある。   The amount of the monomer having a ring-opening polymerizable functional group, (meth) acryl group, allyl group, vinyl group is not particularly limited, but is preferably 5 to 50% in the total amount of the monomer. Is preferably in the range of 10 to 30%. If it is less than 5%, the amount of polymer required for gelation increases, and if it exceeds 50%, the electrolyte tends to separate (bleed) from the gel.

なお、本発明において、「(メタ)アクリル」とは、アクリルとメタクリルを意味し、「(メタ)アクリレート」とは、アクリレートとメタクリレートを意味する。   In the present invention, “(meth) acryl” means acryl and methacryl, and “(meth) acrylate” means acrylate and methacrylate.

また、前記の開環重合性官能基を有しないモノマーの例は、(メタ)アクリル基を有するモノマーの具体的としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n−ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、n−ステアリルメタクリレートなどの脂肪族(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレートなどのエチレンオキサイド変性(メタ)アクリレート、シクロヘキシル(メタ)アクリレートなどの脂環族(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香族(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、エトキシプロピレングリコール(メタ)アクリレート、エトキシジプロピレングリコール(メタ)アクリレート、エトキシトリプロピレングリコール(メタ)アクリレートなどのプロピレンオキサイド変性(メタ)アクリレートなどが挙げられる。   Examples of the monomer having no ring-opening polymerizable functional group include, as specific examples of the monomer having a (meth) acryl group, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, Aliphatics such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-lauryl (meth) acrylate, tridecyl (meth) acrylate and n-stearyl methacrylate Aliphatic (meth) acrylates such as ethylene oxide modified (meth) acrylates such as (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, and cyclohexyl (meth) acrylate , Aromatic (meth) acrylates such as benzyl (meth) acrylate, methoxypropylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, ethoxypropylene glycol (meth) acrylate And propylene oxide-modified (meth) acrylates such as ethoxydipropylene glycol (meth) acrylate and ethoxytripropylene glycol (meth) acrylate.

アリル基を有するモノマーとしてはアリルエチルエーテルなどの脂肪族アリルエーテルなどが挙げられる。   Examples of the monomer having an allyl group include aliphatic allyl ethers such as allyl ethyl ether.

ビニル基を有するモノマーとしてはビニルアセテート、ビニルプロピオネート、ビニルピバレート、ビニルブチレート、ビニルシンナメート、ビニルクロトネート、ビニルデカネート、ビニルエチルエーテルなどが挙げられる。   Examples of the monomer having a vinyl group include vinyl acetate, vinyl propionate, vinyl pivalate, vinyl butyrate, vinyl cinnamate, vinyl crotonate, vinyl decanate, and vinyl ethyl ether.

また、1分子中に2個以上のラジカル重合官能基を有するモノマーの例としては、アリルメタクリレートや1,3−ブチレングリコールジメタクリレートなどが挙げられる。   Examples of the monomer having two or more radical polymerization functional groups in one molecule include allyl methacrylate and 1,3-butylene glycol dimethacrylate.

本発明において、架橋性材料は、開環重合性官能基を有するモノマーと開環重合性官能基を有しないモノマーの共重合体で容易に得ることができる。架橋性材料の分子量は、8000〜100万が好ましく、さらに10万〜70万が好ましく、20万〜50万が最も好ましい。   In the present invention, the crosslinkable material can be easily obtained by a copolymer of a monomer having a ring-opening polymerizable functional group and a monomer having no ring-opening polymerizable functional group. The molecular weight of the crosslinkable material is preferably 8,000 to 1,000,000, more preferably 100,000 to 700,000, and most preferably 200,000 to 500,000.

上記ラジカル共重合は、通常、ラジカル重合開始剤が用いられる。ラジカル重合開始剤としては、例えば、N,N’−アゾビスイソブチロニトリル、ジメチルN,N’−アゾビス(2−メチルプロピオネート)などのアゾ系開始剤、ベンゾイルパーオキシド、ラウロイルパーオキシド等の有機過酸化物系開始剤が挙げられる。また、必要に応じてメルカプタン類などの分子量調整剤を用いてもよい。その際、溶媒中60〜80℃程度の温度で行なう溶液重合が好適である。溶媒としては、環状炭酸エステル類、鎖状炭酸エステル類、低分子カルボン酸エステル類が好ましい。   In the radical copolymerization, a radical polymerization initiator is usually used. Examples of the radical polymerization initiator include azo initiators such as N, N′-azobisisobutyronitrile and dimethyl N, N′-azobis (2-methylpropionate), benzoyl peroxide, lauroyl peroxide. And organic peroxide initiators such as Moreover, you may use molecular weight modifiers, such as mercaptans, as needed. In that case, solution polymerization performed at a temperature of about 60 to 80 ° C. in a solvent is suitable. As the solvent, cyclic carbonates, chain carbonates, and low-molecular carboxylic acid esters are preferable.

本発明において、前記のポリマーを含む架橋性材料の溶液とリチウム電解質塩と溶媒とを溶解した溶液中、カチオン重合開始剤の存在下で架橋させることにより、ポリマー含有量が少量でも、良好なゲルを形成し前記の固体電解質用電解液を固体電解質化することができる。   In the present invention, a good gel can be obtained even in a small amount of polymer by crosslinking in the presence of a cationic polymerization initiator in a solution of the crosslinkable material containing the polymer, a lithium electrolyte salt, and a solvent. And the above electrolyte for solid electrolyte can be made into a solid electrolyte.

カチオン重合開始剤としては、各種のオニウム塩(例えば、アンモニウム、ホスホニウム、アルソニウム、スチボニウム、スルホニウム、ヨードニウムなどのカチオンの、−BF、−PF、−SbF、−CFSO、−ClOなどのアニオン塩等)、LiBF、LiPFなどのリチウム塩が使用できる。 As the cationic polymerization initiator, various onium salts (for example, -BF 4 , -PF 6 , -SbF 6 , -CF 3 SO 3 , -ClO of cations such as ammonium, phosphonium, arsonium, stibonium, sulfonium, iodonium, etc.) 4 ) and lithium salts such as LiBF 4 and LiPF 6 can be used.

また、電解質塩が可溶な溶媒としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、メチルプロピルカーボネート(PMC)、ブチレンカーボネート(BC)、ジエチルカーボネート(DEC)などのカーボネート類、γ−ブチラクトン(GBL)、γ−バレロラクトンなどの環状カルボン酸エステル類、テトラヒドロフラン、メチルテトラヒドロフランなどの環状エーテル類、スルホランなどを使用することができる。このような電解液は、通常では、電解質塩として0.1〜5mol/L、特に有利に0.5〜2mol/Lとすることが好ましい。   Examples of the solvent in which the electrolyte salt is soluble include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methylpropyl carbonate (PMC), butylene carbonate (BC), and diethyl carbonate (DEC). Carbonates, cyclic carboxylic acid esters such as γ-butyrolactone (GBL) and γ-valerolactone, cyclic ethers such as tetrahydrofuran and methyltetrahydrofuran, sulfolane and the like can be used. Such an electrolytic solution is usually preferably 0.1 to 5 mol / L, particularly preferably 0.5 to 2 mol / L as an electrolyte salt.

上記電解液は、添加剤を含むものでもよい。添加剤としては、アザインドール、ベンゾイミダゾール、ベンゾヂチオール、ベンゾフラン、ベンゾチアゾール、1−ベンゾチオフェン、1H−ベンゾトリアゾール、ベンジルカプトン、1−ブロモ−3−フルオロベンゼンなどの含窒素・含硫黄系化合物、ビニレンカーボネート、ビニルアクリレート、ビニルブチレートなどのビニル系化合物の他にショ糖脂肪酸エステル類が挙げられ、その添加量は10%以下、好ましくは3%以下である。また、添加剤はこれらを2種類以上組み合わせたものでも構わない。   The electrolytic solution may contain an additive. Additives include nitrogen- and sulfur-containing compounds such as azaindole, benzimidazole, benzodithiol, benzofuran, benzothiazole, 1-benzothiophene, 1H-benzotriazole, benzylcapton, 1-bromo-3-fluorobenzene In addition to vinyl compounds such as vinylene carbonate, vinyl acrylate and vinyl butyrate, sucrose fatty acid esters may be mentioned, and the amount added is 10% or less, preferably 3% or less. Further, the additive may be a combination of two or more of these.

リチウム電解質塩としては、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiClO、リチウムビスオキサラトボラート(LiBOB)及び/またはリチウム−ビス(トリフルオロメチルスルホニル)イミド(LiN(SOCF)、ビス(フルオロスルフォニル)イミドリチウム(LiFSI)等が挙げられ、特にLiPFが好ましい。電解質塩は1種類で用いても2種類以上を用いてもよい。 Lithium electrolyte salts include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 4 , LiClO 4 , lithium bisoxalatoborate (LiBOB) and / or lithium-bis (trifluoromethylsulfonyl) imide (LiN ( SO 2 CF 3 ) 2 ), bis (fluorosulfonyl) imidolithium (LiFSI), and the like, and LiPF 6 is particularly preferable. The electrolyte salt may be used alone or in combination of two or more.

また、電解液のイオン導電率を高めるため、またカチオン重合開始剤としてLi以外の電解質塩を用いることが可能である。   Further, in order to increase the ionic conductivity of the electrolytic solution, it is possible to use an electrolyte salt other than Li as a cationic polymerization initiator.

例えば、ビス(フルオロスルホニル)イミド(FSI)、BF 、PF 、SbF 、NO 、CFSO 、(CFSO、TFSI、(CSO、(CFSO、CFCO 、CCO 、CHCO 、(CN) 等のアニオンとカチオンの組合せから成る塩を用いてもよい。 For example, bis (fluorosulfonyl) imide (FSI) , BF 4 , PF 6 , SbF 6 , NO 3 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , TFSI , (C Anions such as 2 F 5 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , CF 3 CO 2 , C 3 F 7 CO 2 , CH 3 CO 2 , and (CN) 2 N A salt composed of a combination of cations may be used.

前記カチオンとしては、N、P、S、O、C、Siのいずれかもしくは2種類以上の元素を構造中に含み、鎖状または5員環、6員環などの環状構造を骨格に有する化合物が挙げられ、鎖状化合物の例としてはアルキルアンモニウムなどが挙げられる。環状化合物の例としては、フラン、チオフェン、ピロール、ピリジン、オキサゾ−ル、イソオキサゾ−ル、チアゾ−ル、イソチアゾ−ル、フラザン、イミダゾール、ピラゾール、ピラジン、ピリミジン、ピリダジン、ピロリジン、ピペリジンなどの複素単環化合物、ベンゾフラン、イソベンゾフラン、インドール、イソインドール、イソドリジン、カルバゾールなどの縮合複素環化合物が挙げられる。   As the cation, a compound containing any of N, P, S, O, C, Si or two or more elements in the structure and having a chain structure or a cyclic structure such as a 5-membered ring or a 6-membered ring in the skeleton Examples of chain compounds include alkyl ammonium. Examples of cyclic compounds include furan, thiophene, pyrrole, pyridine, oxazole, isoxazole, thiazol, isothiazol, furazane, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine, pyrrolidine, piperidine and the like. Examples thereof include condensed heterocyclic compounds such as a ring compound, benzofuran, isobenzofuran, indole, isoindole, isodolidine, and carbazole.

リチウム塩としてLiPFまたはLiBFを用いた場合には開環重合性官能基を架橋するカチオン重合開始剤として作用することができるため、他のカチオン重合開始剤を用いなくても良い。 When LiPF 6 or LiBF 4 is used as the lithium salt, it can act as a cationic polymerization initiator that crosslinks the ring-opening polymerizable functional group, and therefore other cationic polymerization initiators need not be used.

電極材料としてはリチウムイオンの挿入、脱離が可能であるものであれば、特に制限されるものではない。   The electrode material is not particularly limited as long as it can insert and desorb lithium ions.

例えば、正極活物質としては、CuO、CuO、MnO、V、CrO、MoO、Fe、Ni、CuO等の金属酸化物、LiCO、LiNiO、LiMn、LiFePO等のリチウムと遷移金属との複合酸化物や、TiS、MoS、NbSe等の金属カルコゲン化物、ポリアセン、ポリパラフェニレン、ポリピロール、ポリアニリン等の導電性化合物等が挙げられる。 For example, as the positive electrode active material, metal oxides such as CuO, Cu 2 O, MnO 2 , V 2 O 5 , CrO 3 , MoO 3 , Fe 2 O 3 , Ni 2 O 3 , CuO 3 , Li x CO 2 , Li x NiO 2 , Li x Mn 2 O 4 , LiFePO 4 and other complex oxides of lithium and transition metals, TiS 2 , MoS 2 , NbSe 3 and other metal chalcogenides, polyacene, polyparaphenylene, polypyrrole, Examples thereof include conductive compounds such as polyaniline.

特に本発明では、コバルト、ニッケル、マンガン、鉄等の遷移金属から選ばれる1種類以上とリチウムとの複合酸化物が好ましく、リチウムとの複合酸化物の具体例としては、LiCoO、LiMnO、LiMn、LiNiCo(1−x)O、LiMnNiCo(a+b+c=1)、LiFePOなどが挙げられる。 In particular, in the present invention, a composite oxide of lithium and at least one selected from transition metals such as cobalt, nickel, manganese, and iron is preferable. Specific examples of the composite oxide of lithium include LiCoO 2 , LiMnO 2 , Examples include LiMn 2 O 4 , LiNi x Co (1-x) O 2 , LiMn a Ni b Co c (a + b + c = 1), LiFePO 4, and the like.

また、これらのリチウム複合酸化物に、少量のフッ素、ホウ素、アルミニウム、クロム、ジルコニウム、モリブデン、鉄などの元素をドープしたものでもよい。   These lithium composite oxides may be doped with a small amount of elements such as fluorine, boron, aluminum, chromium, zirconium, molybdenum, and iron.

また、これらの活物質を混合したものを正極活物質として用いてもよい。   A mixture of these active materials may be used as the positive electrode active material.

負極活物質としては、リチウムを挿入、脱離可能な活物質やリチウムを可逆的に吸蔵、放出可能な活物質で、アルカリ金属、アルカリ金属合金、遷移金属カルコゲナイド、炭素材料などが挙げられる。   Examples of the negative electrode active material include an active material capable of inserting and extracting lithium and an active material capable of reversibly occluding and releasing lithium, and examples thereof include alkali metals, alkali metal alloys, transition metal chalcogenides, and carbon materials.

具体的には、金属リチウム、Al、Mg、Pt、Sn、Si,Zn、Biなどのリチウム吸蔵金属、Al−Ni、Al−Ag、Al−MnなどのAl系リチウム合金、SbSn、InSb、CoSb、MiMnSbなどのアンチモン系リチウム合金、SnM(M=Fe、Co、Mn、V、Ti)、SnCu、Sn、Sn12Ag13、SnSbなどのSn系リチウム合金、SnO、Sn、SNPBO、SnPOClなどのSn酸化物、Si−C複合系、Si−Ti複合系、Si−M薄膜などのSi系リチウム合金、Sn、Siなどのナノ複合材料、Sn、Co、炭素などのアモルファス合金材料、Sn−Ag、Sn−CuなどSn系メッキ合金、Si系アモルファス薄膜などが挙げられ、炭素材料としてはアモルファスカーボン、メソカーボンマイクロビーズ、グラファイト、天然黒鉛、難黒鉛化性炭素(ハードカーボン、以下HC)などがあり、これらの炭素材料の表面修飾物などが好適材料として挙げられる。 Specifically, lithium storage metals such as metallic lithium, Al, Mg, Pt, Sn, Si, Zn, and Bi, Al-based lithium alloys such as Al—Ni, Al—Ag, and Al—Mn, SbSn, InSb, and CoSb 3 , antimony series lithium alloys such as Mi 2 MnSb, Sn 2 M (M = Fe, Co, Mn, V, Ti), Sn 5 Cu 6 , Sn 3 V 2 , Sn 12 Ag 13 , SnSb 0 . Sn-based lithium alloys such as 4 , Sn oxides such as SnO 2 , Sn 2 P 2 O 7 , SNPBO 6 , SnPO 4 Cl, Si-based such as Si—C composite, Si—Ti composite, and Si—M thin film Examples include lithium alloy, nanocomposite materials such as Sn and Si, amorphous alloy materials such as Sn, Co, and carbon, Sn-based plating alloys such as Sn-Ag and Sn-Cu, and Si-based amorphous thin films. There are carbon, mesocarbon microbeads, graphite, natural graphite, non-graphitizable carbon (hard carbon, hereinafter referred to as HC), and surface modified products of these carbon materials are preferable materials.

上記正極及び負極には導電剤が用いられる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導材料であれば使用することができる。通常、アセチレンブラックやケッチンブラック等のカーボンブラックが使用されるが、天然黒鉛、人造黒鉛、カーボンウイスカー、気相成長炭素などの炭素繊維、カーボンナノチューブ、フラーレン、導電性セラミック材料等を使用してもよく、これらは2種類以上の混合物として含ませることができる。   A conductive agent is used for the positive electrode and the negative electrode. Any conductive material that does not adversely affect battery performance can be used as the conductive agent. Usually, carbon black such as acetylene black and kettin black is used, but carbon fiber such as natural graphite, artificial graphite, carbon whisker, vapor grown carbon, carbon nanotube, fullerene, conductive ceramic material, etc. may be used. Often, these can be included as a mixture of two or more.

電極活物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス銅、ニッケル、焼成炭素、導電性高分子、導電性硝子等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。   The current collector for the electrode active material may be any electronic conductor as long as it does not adversely affect the constructed battery. For example, as a current collector for a positive electrode, in addition to aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, conductive glass, etc., aluminum is used for the purpose of improving adhesiveness, conductivity, and oxidation resistance. Or a surface treated with carbon, nickel, titanium, silver or the like can be used.

負極集電体としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性硝子、Al−Cd合金等の他に接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。   As a negative electrode current collector, in addition to copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., the purpose of improving adhesion, conductivity, and oxidation resistance And what processed the surface, such as copper, with carbon, nickel, titanium, silver, etc. can be used.

これらの集電体材料は表面を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、硝子体、多孔質体、発砲体等の成型体も用いられる。   The surface of these current collector materials can be oxidized. As for these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a vitreous body, a porous body, a foamed body and the like are also used.

上記活物質を集電体に結着させるバインダーとしては、ポリフッ化ビニリデン(PVDF)とヘキサフルオロプロピレン(HFP)やパーフルオロメチルビニルエーテル(PFMV)及び、テトラフルオロエチレン(TFE)との共重合体などのPVDF共重合体樹脂、ポリテトラフルオロエチレン(PTFE)、フッ素ゴムなどのフッ素系樹脂やスチレン−ブタジエンゴム(SBR)、エチレン−プロピレンゴム(EPDM)、スチレン−アクリロニトリル共重合体などのポリマーが挙げられ、カルボキシメチルセルロース(CMC)等の多糖類、ポリイミド樹脂等の熱可塑性樹脂などを併用することができるができるが、これに限定されるものではない。また、これらは2種類以上を混合して用いてもよい。その添加量としては、活物質量に対して0.2〜30%が好ましく、更に0.5〜10%がより好ましい。   As a binder for binding the active material to the current collector, a copolymer of polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), perfluoromethyl vinyl ether (PFMV), and tetrafluoroethylene (TFE), etc. Fluorine resins such as PVDF copolymer resin, polytetrafluoroethylene (PTFE), fluorine rubber, and polymers such as styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPDM), and styrene-acrylonitrile copolymer. In addition, a polysaccharide such as carboxymethyl cellulose (CMC) and a thermoplastic resin such as a polyimide resin can be used in combination, but the present invention is not limited thereto. Moreover, you may use these in mixture of 2 or more types. The amount added is preferably 0.2 to 30%, more preferably 0.5 to 10%, based on the amount of active material.

LiFePOのように表面を炭素被覆した正極活物質については、カルボン酸変性したPVDFまたはSBRの水系バインダーも好ましい材料として挙げることができる。 As for the positive electrode active material whose surface is coated with carbon such as LiFePO 4 , a carboxylic acid-modified PVDF or SBR aqueous binder can also be mentioned as a preferable material.

セパレータとしては、多孔性の膜が使用され、通常多孔性ポリマーフィルムや不織布が好適に使用される。   As the separator, a porous film is used, and usually a porous polymer film or a nonwoven fabric is preferably used.

本発明においては特に、非導電性多孔質材料と電気絶縁性の粒子からなるものが好適である。非導電性多孔質材料はポリアクリロニトリル、ポリエステル(PET)、ポリイミド、ポリアミド、ポリテトラフルオロエチレン、ポリオレフィン、ガラス、セラミック等から選択される。特に、平面状の柔軟な基材に、電気絶縁性の無機皮膜を有する不織布が好適であり、ポリエステル(PET)、ポリアミドが特に好ましい。   In the present invention, those composed of a non-conductive porous material and electrically insulating particles are particularly suitable. The non-conductive porous material is selected from polyacrylonitrile, polyester (PET), polyimide, polyamide, polytetrafluoroethylene, polyolefin, glass, ceramic and the like. In particular, a nonwoven fabric having an electrically insulating inorganic film on a flat flexible substrate is suitable, and polyester (PET) and polyamide are particularly preferred.

セパレータに使用される絶縁性の粒子としては、無機材料としては少なくとも一種類のアルミナ、チタニア、珪素及び/又はジルコニアなどの無機酸化物、有機物材料としてはフッ素樹脂、ポリスチレン樹脂、アクリル樹脂などのポリマー粒子などが用いられる。   The insulating particles used in the separator include inorganic materials such as at least one kind of alumina, titania, silicon and / or zirconia, and organic materials such as fluororesin, polystyrene resin and acrylic resin. Particles are used.

上記セパレータは、さらにセパレータ又はセパレータ中に、所望の遮断温度で溶融する極めて薄いワックス粒子層、又はポリマー粒子層の遮断粒子が存在することでシャットダウンメカニズムを有することができる。この遮断粒子を形成するのに有利な材料としては、天然または人口のワックス、ポリオレフィンなどの低融点ポリマーがあり、この粒子が所望の遮断温度で溶融し、かつセパレータの細孔を閉鎖することで、電池の異常作動時の更なる電流を抑制することができる。
本発明のリチウムポリマー電池は、円筒形、コイン型、角型、その他任意の形状に形成することができ、電池の基本構成は形状によらず同じであり、目的に応じて設計変更し実施することができる。
The separator may further have a shutdown mechanism by the presence of a very thin wax particle layer that melts at a desired blocking temperature or a blocking particle of a polymer particle layer in the separator. Advantageous materials for forming the blocking particles include natural or artificial waxes, low melting polymers such as polyolefins, which melt at the desired blocking temperature and close the pores of the separator. Further current during the abnormal operation of the battery can be suppressed.
The lithium polymer battery of the present invention can be formed into a cylindrical shape, a coin shape, a rectangular shape, or any other shape, and the basic configuration of the battery is the same regardless of the shape, and the design is changed and implemented according to the purpose. be able to.

本発明のリチウムポリマー電池は、例えば、円筒形では、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、セパレーターを介して捲回した捲回体を電池缶に収納し、硬化前のポリマー電解質を注入し上下に絶縁板を載置した状態で密封し、加熱することによりポリマーを硬化させることにより得られる。   In the lithium polymer battery of the present invention, for example, in a cylindrical shape, a negative electrode formed by applying a negative electrode active material to a negative electrode current collector and a positive electrode formed by applying a positive electrode active material to a positive electrode current collector are interposed via a separator. It is obtained by storing the wound body in a battery can, injecting a polymer electrolyte before curing, sealing it with the insulating plates placed on the top and bottom, and curing the polymer by heating.

本発明のリチウムポリマー電池を作製する場合、選択した電極活物質により、初回の充電時に多量のガスが発生し、セル性能に影響があるような場合には、硬化前のポリマー電解液混合溶液をプレ電池に注入後、前処理として充電、または充放電の処理を行った後、ポリマーの熱処理を行ってもよい。   When producing the lithium polymer battery of the present invention, the selected electrode active material generates a large amount of gas during the first charge, which may affect the cell performance. After injecting into the pre-battery, the polymer may be subjected to heat treatment after being charged or charged / discharged as a pretreatment.

次に、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定させるものではない。   EXAMPLES Next, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

〈実施例1〉
[正極の作成]
正極活物質であるLiNiCoMn100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)6g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)50g(固形分として6g)、分散媒としてN−メチル−2−ピロリドン16.3gで希釈し固形分65wt%になるように正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm 、 正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 1>
[Creation of positive electrode]
As a cathode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 100g, acetylene black as a conductive agent (Denki Kagaku Kogyo Co., Ltd. Denka Black) 6 g, PVDF as a binder (Co. Kureha KF Binder # 1120 NMP 12 wt% solution) 50 g (6 g as a solid content) and 16.3 g N-methyl-2-pyrrolidone as a dispersion medium were diluted to prepare a positive electrode coating solution to a solid content of 65 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm by a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質であるメソカーボンマイクロビーズ(MCMB)(大阪ガスケミカル(株)製 MCMB25−28)95g、ハードカーボン((株)クレハ化学製 カーボトロンP S(F))5g 導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)41.7g(固形分として5g) 、分散媒としてNMP36.7gを遊星型ミキサーで混合し、固形分60wt%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度1.45g/cm、負極活物質8mg/cm(片面あたり)の両面塗工負極を得た。
[Creation of negative electrode]
95 g of mesocarbon microbeads (MCMB) (MCMB25-28 manufactured by Osaka Gas Chemical Co., Ltd.), 5 g of hard carbon (Carbotron PS (F) manufactured by Kureha Chemical Co., Ltd.), which is a negative electrode active material, acetylene black (electric Chemical Industry Co., Ltd. Denka Black) 5g, PVDF (Kureha Co., Ltd. KF Binder # 1120 NMP 12wt% solution) 41.7g (5g as solids), NMP 36.7g as a dispersion medium with a planetary mixer A negative electrode coating solution having a solid content of 60 wt% was prepared by mixing. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C., and then subjected to a roll press treatment, with an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2 (per one side). A double-sided coated negative electrode was obtained.

[ポリマーの製造方法]
十分に乾燥した容器に、開環重合性官能基を有しないモノマーとしてエチルアクリレート74wt%、開環重合性官能基を有するモノマーとして(3−エチル−3オキセタニル)メチルメタクリレート26wt%の割合で仕込み、反応溶剤としてエチレンカーボネート(EC):ジエチルカーボネート(DEC)=3:7(体積比)、重合開始剤としてN,N’−アゾビスイソブチロニトリルをモノマー重量に対して2500ppm加え、乾燥窒素ガスを導入しながら65〜70℃で加熱反応後、室温まで冷却する。その後、希釈溶剤としてEC:DEC=3:7(体積比)を加え、全体が均一になるまで攪拌溶解して、分子量20万の4wt%、EC:DEC=3:7(体積比)ポリマー溶液が得られた。
[Method for producing polymer]
In a fully dried container, 74 wt% ethyl acrylate as a monomer having no ring-opening polymerizable functional group and (3-ethyl-3oxetanyl) methyl methacrylate 26 wt% as a monomer having a ring-opening polymerizable functional group are charged. Ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 (volume ratio) as a reaction solvent, N, N′-azobisisobutyronitrile as a polymerization initiator is added at 2500 ppm based on the monomer weight, and dry nitrogen gas is added. The reaction is carried out at 65 to 70 ° C. while cooling, and then cooled to room temperature. Thereafter, EC: DEC = 3: 7 (volume ratio) is added as a diluent solvent, and the mixture is stirred and dissolved until the whole becomes uniform. was gotten.

[ポリマー溶液の調製]
上記分子量20万の4wt%、EC:DEC=3:7(体積比)ポリマー溶液と、リチウム電解質塩としてLiPF を2mol/L含むEC:DEC=3:7(体積比)の電解液とを、重量比1:1で混合してポリマー2%の電解液混合溶液を調製した。
[Preparation of polymer solution]
4 wt% of a molecular weight of 200,000, EC: DEC = 3: 7 (volume ratio) polymer solution and EC: DEC = 3: 7 (volume ratio) electrolyte solution containing 2 mol / L of LiPF 6 as a lithium electrolyte salt Then, a 2% polymer electrolyte solution was prepared by mixing at a weight ratio of 1: 1.

[リチウム電池の作製]
得られた正極と負極の間にセパレータとしてPET素材の不織布にSiOとAlを被覆した厚み30μmのセパリオンS240P30(デグサジャパン(株))を挟んだ構造の積層体を作成し、単子を取り出すためのタブリードを溶接したのち、アルミラミネート包材に入れ、3方向を熱融着し、1方向に開口部を作った袋状のプレ電池を作製した。プレ電池にあらかじめ調整したポリマー/電解液混合溶液3gを注入した後、開放部のアルミラミネートを真空ヒートシーラーで封止し、60℃、20時間かけてポリマーを硬化し、試験用のセルを作製した。
[Production of lithium battery]
A laminate having a structure in which a 30 μm-thick Separion S240P30 (Degussa Japan Co., Ltd.) in which a non-woven fabric of PET material is coated with SiO 2 and Al 2 O 3 as a separator is sandwiched between the obtained positive electrode and negative electrode is prepared. After welding the tab lead for taking out the child, it was put in an aluminum laminate packaging material, and heat-sealed in three directions to produce a bag-shaped pre-battery having an opening in one direction. After injecting 3 g of the polymer / electrolyte mixed solution prepared in advance into the pre-battery, the aluminum laminate in the open part was sealed with a vacuum heat sealer, and the polymer was cured at 60 ° C. for 20 hours to produce a test cell. did.

〈実施例2〉
[正極の作成]
正極活物質であるLiMn100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)58.3g(固形分として7g)、分散媒としてN−メチル−2−ピロリドン1.4gで希釈し固形分68wt%になるように正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm 、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 2>
[Creation of positive electrode]
LigMn 2 O 4 100 g as a positive electrode active material, acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) 5 g as a conductive agent, PVDF as a binder (KF Binder # 1120 NMP 12 wt% solution manufactured by Kureha Co., Ltd.) A positive electrode coating solution was prepared by diluting with 3 g (7 g as a solid content) and 1.4 g of N-methyl-2-pyrrolidone as a dispersion medium to a solid content of 68 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質であるMCMB(大阪ガスケミカル(株) MCMB10−28)95g、難黒鉛化炭素((株)クレハ カーボトロン P(S))5g、導電剤としてアセチレンブラック5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)41.7g(固形分として5g) 、分散媒としてNMP36.7gを遊星型ミキサーで混合し固形分53.6%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度1.45g/cm、負極活物質8mg/cm(片面あたり)の両面塗工負極を得た。
[Creation of negative electrode]
95 g of MCMB (Osaka Gas Chemical Co., Ltd. MCMB10-28), 5 g of non-graphitizable carbon (Kureha Carbotron P (S)), 5 g of acetylene black as a conductive agent, and PVDF as a binder Kreha KF Binder # 1120 NMP 12 wt% solution) 41.7 g (5 g as solid content) and 36.7 g NMP as a dispersion medium were mixed with a planetary mixer to prepare a negative electrode coating solution having a solid content of 53.6%. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C., and then subjected to a roll press treatment, with an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2 (per one side). A double-sided coated negative electrode was obtained.

[ポリマーの製造方法]
十分に乾燥した容器に、開環重合性官能基を有しないモノマーとしてメチルメタクリレート74wt%、開環重合性官能基を有するモノマーとして(3−エチル−3オキセタニル)メチルメタクリレート26wt%の割合で仕込み、反応溶剤としてエチレンカーボネート(EC):ジメチルカーボネート(DMC)=3:7(体積比)、重合開始剤としてN,N’−アゾビスイソブチロニトリルをモノマー重量に対して2500ppm加え、乾燥窒素ガスを導入しながら65〜70度で加熱反応後、室温まで冷却する。その後、希釈溶剤としてEC:DMC=3:7(体積比)を加え、全体が均一になるまで攪拌溶解して、分子量25万の4wt%、EC:DMC=3:7(体積比)ポリマー溶液が得られた。
[Method for producing polymer]
In a sufficiently dry container, 74 wt% methyl methacrylate as a monomer having no ring-opening polymerizable functional group and (3-ethyl-3oxetanyl) methyl methacrylate 26 wt% as a monomer having a ring-opening polymerizable functional group are charged. Ethylene carbonate (EC): dimethyl carbonate (DMC) = 3: 7 (volume ratio) as a reaction solvent, N, N′-azobisisobutyronitrile as a polymerization initiator is added at 2500 ppm based on the monomer weight, and dry nitrogen gas is added. The mixture is cooled to room temperature after a heating reaction at 65 to 70 ° C. Thereafter, EC: DMC = 3: 7 (volume ratio) is added as a diluent solvent, and dissolved by stirring until the whole becomes uniform. 4 wt% of molecular weight 250,000, EC: DMC = 3: 7 (volume ratio) polymer solution was gotten.

[ポリマー溶液の調製]
上記分子量25万の4wt%、EC:DMC=3:7(体積比)ポリマー溶液と、リチウム電解質塩としてLiPF を2mol/L含むEC:DMC=3:7(体積比)の電解液とを、重量比1:1で混合してポリマー/電解液混合溶液を調製した。
[Preparation of polymer solution]
4 wt% of the molecular weight 250,000, EC: DMC = 3: 7 (volume ratio) polymer solution and EC: DMC = 3: 7 (volume ratio) electrolyte solution containing 2 mol / L of LiPF 6 as a lithium electrolyte salt. The polymer / electrolyte mixed solution was prepared by mixing at a weight ratio of 1: 1.

[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み30μmのセパリオンS240P30(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S240P30 (Degussa Japan Co., Ltd.) having a thickness of 30 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例3〉
[正極の作成]
正極活物質であるLiNiCo15Al05100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)50g(固形分として6g)、分散媒としてN−メチル−2−ピロリドン3.6gで希釈し固形分70wt%になるように正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 3>
[Creation of positive electrode]
The positive electrode active material LiNi 0 . 8 Co 0 . 15 Al 0 . 05 O 2 100 g, 5 g of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, 50 g of PVDF (KF Binder # 1120 NMP 12 wt% solution manufactured by Kureha Co., Ltd.) as a binder (6 g as a solid content), A positive electrode coating solution was prepared by diluting with 3.6 g of N-methyl-2-pyrrolidone as a dispersion medium so as to have a solid content of 70 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質である平均粒径12μm、比表面積4.3m/g の天然黒鉛100g、導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)41.7g(固形分として5g) 、分散媒としてNMP36.7gを遊星型ミキサーで混合し、固形分60wt%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度1.45g/cm 、負極活物質8mg/cm(片面あたり)の両面塗工負極を得た。
[Creation of negative electrode]
100 g of natural graphite having an average particle diameter of 12 μm and a specific surface area of 4.3 m 2 / g as a negative electrode active material, 5 g of acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and PVDF (manufactured by Kureha Corporation) as a binder KF binder # 1120 NMP 12 wt% solution) 41.7 g (5 g as a solid content) and 36.7 g NMP as a dispersion medium were mixed with a planetary mixer to prepare a negative electrode coating solution having a solid content of 60 wt%. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C., and then subjected to a roll press treatment, with an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2 (per one side). A double-sided coated negative electrode was obtained.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてプロピルメタクリレート20wt%とメチルメタクリレート54wt%、開環重合性官能基を有するモノマーとして3−エチル−3オキセタニル)メチルメタクリレート26wt% 、反応溶媒としてEC:PC:DEC=6:1:13(体積比)を用いた以外は、実施例1と同様にして、分子量30万の4wt%、EC:PC:DEC=6:1:13(体積比)ポリマー溶液を得た。
[Method for producing polymer]
Propyl methacrylate 20 wt% and methyl methacrylate 54 wt% as monomers having no ring-opening polymerizable functional group, 3-ethyl-3oxetanyl) methyl methacrylate 26 wt% as a monomer having ring-opening polymerizable functional group, EC: PC: Except that DEC = 6: 1: 13 (volume ratio) was used, 4 wt% of a molecular weight of 300,000, EC: PC: DEC = 6: 1: 13 (volume ratio) polymer solution was obtained in the same manner as in Example 1. Obtained.

[ポリマー溶液の調製]
上記分子量30万の4wt%のエチレンカーボ゛ネート(EC):プロピレンカーボネート(PC):ジエチルカーボネート(DEC)=6:1:13(体積比)ポリマー溶液と、リチウム電解質塩としてLiPF を2mol/L含むEC:PC:DEC=6:1:13(体積比)の電解液とを、重量比1:1で混合してポリマー2wt%の電解液混合溶液を調製した。
[Preparation of polymer solution]
4 wt% ethylene carbonate (EC): propylene carbonate (PC): diethyl carbonate (DEC) = 6: 1: 13 (volume ratio) polymer solution having a molecular weight of 300,000 and 2 mol / liter of LiPF 6 as a lithium electrolyte salt An electrolyte solution containing 2 wt% of the polymer was prepared by mixing the electrolyte solution containing L: EC: PC: DEC = 6: 1: 13 (volume ratio) at a weight ratio of 1: 1.

[リチウム電池の作製]
セパレータとしてポリアミドにSiOとAlをコーティングした厚み25μmのセパレータを使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that a separator having a thickness of 25 μm in which polyamide 2 was coated with SiO 2 and Al 2 O 3 was used.

〈実施例4〉
[正極の作成]
正極活物質であるLiCoO 100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)50g(固形分として6g)、分散媒としてN−メチル−2−ピロリドン 21.8gで希釈し固形分63wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 4>
[Creation of positive electrode]
LiCoO 2 100 g which is a positive electrode active material, acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) 5 g as a conductive agent, PVDF (Kureha KF Binder # 1120 NMP 12 wt% solution) 50 g (solid content) as a binder As a dispersion medium, a positive electrode coating solution was prepared so as to be diluted with 21.8 g of N-methyl-2-pyrrolidone as a dispersion medium to a solid content of 63 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質である平均粒径20μm、比表面積1.7m/gの天然黒鉛100g、導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)41.7g(固形分として5g)、分散媒としてNMP36.7gを遊星型ミキサーで混合し、固形分60wt%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度1.45g/cm、負極活物質8mg/cm(片面あたり)の両面塗工負極を得た。
[Creation of negative electrode]
100 g of natural graphite having an average particle diameter of 20 μm and a specific surface area of 1.7 m 2 / g, which is a negative electrode active material, 5 g of acetylene black (DENKA BLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and PVDF (manufactured by Kureha Corporation) KF Binder # 1120 NMP 12 wt% solution) 41.7 g (5 g as solid content) and NMP 36.7 g as a dispersion medium were mixed with a planetary mixer to prepare a negative electrode coating solution having a solid content of 60 wt%. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C., and then subjected to a roll press treatment, with an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2 (per one side). A double-sided coated negative electrode was obtained.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてn−ブチルアクリレート15wt%とメチルメタクリレート55wt%、開環重合性官能基を有するモノマーとしてアリルグリシジルエーテル30wt%、反応溶媒としてEC:GBL:DEC=5:1:12(体積比)を用いた以外は、実施例1と同様にして、分子量44万の4wt%、EC:GBL:DEC=5:1:12 (体積比)ポリマー溶液を得た。
[Method for producing polymer]
15% by weight of n-butyl acrylate and 55% by weight of methyl methacrylate as a monomer having no ring-opening polymerizable functional group, 30% by weight of allyl glycidyl ether as a monomer having a ring-opening polymerizable functional group, EC: GBL: DEC = 5: A polymer solution was obtained in the same manner as in Example 1 except that 1:12 (volume ratio) was used, and 4 wt% of a molecular weight of 440,000, EC: GBL: DEC = 5: 1: 12 (volume ratio).

[ポリマー溶液の調製]
上記分子量44万の4wt%EC:GBL:DEC=5:1:12 (体積比)ポリマー溶液)と、リチウム電解質塩としてLiPF を2mol/L含むEC:GBL:DEC=5:1:12(体積比)の電解液とを、重量比1:1で混合してポリマー2wt%の電解液混合溶液を調製した。
[Preparation of polymer solution]
EC: GBL: DEC = 5: 1: 12 (4 wt% EC: GBL: DEC = 5: 1: 12 (volume ratio) polymer solution) having a molecular weight of 440,000 and 2 mol / L of LiPF 6 as a lithium electrolyte salt. The electrolyte solution of volume ratio) was mixed at a weight ratio of 1: 1 to prepare a 2 wt% polymer electrolyte solution.

[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み35μmのセパリオンS450P35(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S450P35 (Degussa Japan Co., Ltd.) having a thickness of 35 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例5〉
[正極の作成]
正極活物質である被覆炭素量2wt%のLiFePO100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてカルボン酸変性タイプのPVDF((株)クレハ製 KFバインダー#9130 NMP 13wt%溶液)61.5g(固形分として8g)、分散媒としてN−メチル−2−ピロリドン 84.6gで希釈し固形分45wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度1.8g/cm 、 正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 5>
[Creation of positive electrode]
100 g LiFePO 4 with a coated carbon amount of 2 wt%, which is a positive electrode active material, 5 g acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and a carboxylic acid-modified PVDF (Kureha Co., Ltd. KF binder) # 9130 NMP 13 wt% solution) 61.5 g (8 g as a solid content) and N-methyl-2-pyrrolidone 84.6 g as a dispersion medium were diluted to prepare a positive electrode coating solution so that the solid content was 45 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 1.8 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (single side Per) was obtained.

[負極の作成]
負極活物質として平均粒径28μm、比表面積2.1m/g の人造黒鉛100gを用いた以外は実施例4と同様に作成した。
[Creation of negative electrode]
It was prepared in the same manner as in Example 4 except that 100 g of artificial graphite having an average particle size of 28 μm and a specific surface area of 2.1 m 2 / g was used as the negative electrode active material.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてメトキシジエチレングリコールアクリレート20wt%とメチルメタクリレート50wt%、開環重合性官能基を有するモノマーとしてグリシジルメタクリレート20wt%と (3−エチル−3オキセタニル)メチルメタクリレート10wt%、反応溶媒としてEC:PC:DEC=5:2:13 (体積比)を用いた以外は、実施例1と同様にして、分子量40万の4wt%EC:PC:DEC=5:2:13 (体積比)ポリマー溶液を得た。
[Method for producing polymer]
20 wt% of methoxydiethylene glycol acrylate and 50 wt% of methyl methacrylate as a monomer having no ring-opening polymerizable functional group, 20 wt% of glycidyl methacrylate as a monomer having a ring-opening polymerizable functional group, and 10 wt% of (3-ethyl-3oxetanyl) methyl methacrylate, Except that EC: PC: DEC = 5: 2: 13 (volume ratio) was used as a reaction solvent, 4 wt% EC: PC: DEC = 5: 2: 13 having a molecular weight of 400,000 was obtained in the same manner as in Example 1. Volume ratio) A polymer solution was obtained.

[ポリマー溶液の調製]
上記分子量40万の4wt%EC:PC:DEC=5:2:13(体積比)ポリマー溶液とリチウム電解質塩としてLiPF を2mol/L含む%EC:PC:DEC=5:2:13(体積比)の電解液とを、重量比1:1で混合してポリマー2wt%の電解液混合溶液を調製した。
[Preparation of polymer solution]
4 wt% EC: PC: DEC = 5: 2: 13 (volume ratio) with a molecular weight of 400,000% EC: PC: DEC = 5: 2: 13 (volume) containing 2 mol / L of LiPF 6 as a polymer solution and a lithium electrolyte salt Ratio) electrolyte solution was mixed at a weight ratio of 1: 1 to prepare a 2 wt% polymer electrolyte solution.

[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み30μmのセパリオンS240P30(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S240P30 (Degussa Japan Co., Ltd.) having a thickness of 30 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例6〉
[正極の作成]
正極活物質であるLiNiCo100g、導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)7g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)41.7g(固形分として5g)、分散媒としてN−メチル−2−ピロリドン23.6gで希釈し固形分65wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm 、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 6>
[Creation of positive electrode]
The positive electrode active material LiNi 0 . 8 Co 0 . 2 O 2 100 g, 7 g of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive agent, 41.7 g of PVDF (KF Binder # 1120 NMP 12 wt% solution, manufactured by Kureha Co., Ltd.) 41.7 g (5 g as solid content) A positive electrode coating solution was prepared so as to be diluted with 23.6 g of N-methyl-2-pyrrolidone as a dispersion medium to a solid content of 65 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質として平均粒径28μm、比表面積1.5m/g の人造黒鉛を用いた以外は実施例4と同様に作成した。
[Creation of negative electrode]
It was produced in the same manner as in Example 4 except that artificial graphite having an average particle size of 28 μm and a specific surface area of 1.5 m 2 / g was used as the negative electrode active material.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてメトキシトリエチレングリコールアクリレート20wt%とメチルメタクリレート48wt%、ビニルプロピオネート2wt%、開環重合性官能基を有するモノマーとしてテトラヒドロフルフリルメタクリレート30wt%、反応溶媒としてEC:PC:EMC=6:1:13(体積比)を用いた以外は、実施例1と同様にして、分子量50万の4wt%、EC:PC:EMC=5:2:13(体積比)ポリマー溶液を得た。
[Method for producing polymer]
20 wt% of methoxytriethylene glycol acrylate and 48 wt% of methyl methacrylate, 2 wt% of vinyl propionate as a monomer having no ring-opening polymerizable functional group, 30 wt% of tetrahydrofurfuryl methacrylate as a monomer having a ring-opening polymerizable functional group, reaction solvent As in Example 1, except that EC: PC: EMC = 6: 1: 13 (volume ratio) was used, 4 wt% of molecular weight 500,000, EC: PC: EMC = 5: 2: 13 (volume) Ratio) A polymer solution was obtained.

[ポリマー溶液の調製]
上記分子量50万の4wt%、EC:PC:EMC=5:2:13(体積比)ポリマー溶液と、リチウム電解質塩としてLiPF を2mol/L含む%EC:PC:EMC=5:2:13(体積比)の電解液とを、重量比1:1で混合してポリマー2wt%の電解液混合溶液を調製した。
[Preparation of polymer solution]
EC: PC: EMC = 5: 2: 13 containing 4 mol% of the above-mentioned molecular weight of 500,000: EC: PC: EMC = 5: 2: 13 (volume ratio) polymer solution and 2 mol / L of LiPF 6 as a lithium electrolyte salt The electrolyte solution of (volume ratio) was mixed at a weight ratio of 1: 1 to prepare a 2 wt% polymer electrolyte solution.

[リチウム電池の作製]
上記得られた正極と負極の間にセパレータとしてPETにSiOとAlをコーティングした厚み25μmのセパリオンS240P25(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
It was prepared in the same manner as in Example 1 except that Separion S240P25 (Degussa Japan Co., Ltd.) having a thickness of 25 μm obtained by coating PET with SiO 2 and Al 2 O 3 was used as a separator between the obtained positive electrode and negative electrode.

〈実施例7〉
[正極の作成]
正極活物質であるLiNiCoMn30g/LiMn70g、導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)50g(固形分として6g)、分散媒としてN−メチル−2−ピロリドン3.6gで希釈し固形分70wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm 、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 7>
[Creation of positive electrode]
As a cathode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 30g / LiMn 2 O 4 70g, acetylene black as a conductive agent (Denki Kagaku Kogyo Co., Ltd. Denka Black) 5 g, PVDF as a binder (( Kfha KF Binder # 1120 NMP 12 wt% solution) 50 g (6 g as a solid content), positive electrode coating solution so as to be diluted with 3.6 g of N-methyl-2-pyrrolidone as a dispersion medium to a solid content of 70 wt% Was prepared. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質である、MCMB(大阪ガスケミカル(株)MCMB25−28)100g、気相成長炭素(昭和電工(株)製 VGCF)2g 導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)3g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)41.7g(固形分として5g)、分散媒としてNMP36.7gを遊星型ミキサーで混合し、固形分60wt%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度1.45g/cm 、負極活物質8mg/cm(片面あたり)の両面塗工負極を得た。
[Creation of negative electrode]
MCMB (Osaka Gas Chemical Co., Ltd. MCMB25-28) 100g, vapor grown carbon (VGCF manufactured by Showa Denko KK) 2g as a negative electrode active material Acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent 3 g, 41.7 g PVDF (Kureha Co., Ltd. KF Binder # 1120 NMP 12 wt% solution) 41.7 g (5 g as solid content), NMP 36.7 g as a dispersion medium mixed with a planetary mixer, and negative electrode with solid content 60 wt% A coating solution was prepared. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C., and then subjected to a roll press treatment, with an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2 (per one side). A double-sided coated negative electrode was obtained.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてメトキシジプロピレングリコールアクリレート20wt%とメチルメタクリレート45wt%、アリルエチルエーテル5wt%、開環重合性官能基を有するモノマーとして(3−エチル−3オキセタニル)メチルメタクリレート30wt%、反応溶媒としてEC:GBL=3:7(体積比)を用いた以外は、実施例1と同様にして、分子量55万の4wt%、EC:GBL=3:7(体積比)ポリマー溶液を得た。
[Method for producing polymer]
20% by weight of methoxydipropylene glycol acrylate and 45% by weight of methyl methacrylate, 5% by weight of allyl ethyl ether as a monomer having no ring-opening polymerizable functional group, and (3-ethyl-3oxetanyl) methyl methacrylate as a monomer having a ring-opening polymerizable functional group 4 wt%, EC: GBL = 3: 7 (volume ratio) polymer having a molecular weight of 550,000, except that 30 wt% and EC: GBL = 3: 7 (volume ratio) were used as the reaction solvent. A solution was obtained.

[ポリマー溶液の調製]
上記分子量55万の4wt%、EC:GBL=3:7(体積比)ポリマー溶液と、電解液の溶媒をエチレンカーボネート(EC):γ−ブチロラクトン(GBL)=3:7とした以外は実施例1と同様に2wt%電解液混合溶液を得た。
[Preparation of polymer solution]
Example except that 4 wt% of the above molecular weight 550,000, EC: GBL = 3: 7 (volume ratio) polymer solution, and the solvent of the electrolyte was ethylene carbonate (EC): γ-butyrolactone (GBL) = 3: 7 As in Example 1, a 2 wt% electrolyte solution mixture was obtained.

[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み30μmのセパリオンS240P30(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S240P30 (Degussa Japan Co., Ltd.) having a thickness of 30 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例8〉
[正極の作成]
正極活物質であるLiNiCo30g/LiMn70g、導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12%溶液)50g(固形分として6g)、分散媒としてN−メチル−2−ピロリドン3.6gで希釈し固形分70wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm 、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 8>
[Creation of positive electrode]
The positive electrode active material LiNi 0 . 8 Co 0 . 2 O 2 30g / LiMn 2 O 4 70g, acetylene black as a conductive agent (Denki Kagaku Kogyo Co., Ltd. Denka Black) 5 g, a binder as PVDF (Co. Kureha KF Binder # 1120 NMP 12% solution) 50 g (solid The positive electrode coating solution was prepared such that the solid content was 70 wt% after dilution with 3.6 g of N-methyl-2-pyrrolidone as a dispersion medium. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質として平均粒径14μm 比表面積1.3g/cmの人造黒鉛100gを用いた以外は実施例4と同様に作成した。
[Creation of negative electrode]
It was prepared in the same manner as in Example 4 except that 100 g of artificial graphite having an average particle size of 14 μm and a specific surface area of 1.3 g / cm 2 was used as the negative electrode active material.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてビニルアセテート7wt%、メチルメタクリレート65wt%、アリルメタクリレート2wt%、開環重合性官能基を有するモノマーとして(3−エチル−3オキセタニル)メチルメタクリレート26wt%、反応溶媒としてEC:PC:DEC=33:4(体積比)を用いた以外は、実施例1と同様にして、分子量55万の4wt%、EC:PC:DEC=3:3:4 (体積比)ポリマー溶液を得た。
[Method for producing polymer]
7 wt% vinyl acetate as a monomer having no ring-opening polymerizable functional group, 65 wt% methyl methacrylate, 2 wt% allyl methacrylate, 26 wt% (3-ethyl-3oxetanyl) methyl methacrylate as a monomer having a ring-opening polymerizable functional group, reaction 4 wt% of molecular weight 550,000, EC: PC: DEC = 3: 3: 4 (volume ratio), except that EC: PC: DEC = 33: 4 (volume ratio) was used as the solvent. ) A polymer solution was obtained.

[ポリマー溶液の調製]
上記分子量55万の4wt%、EC:PC:DEC=3:3:4(体積比)ポリマー溶液と電解液の溶媒をEC:PC:DEC=3:3:4した以外は実施例1と同様にポリマー溶液を調整し2wt%電解液混合溶液を得た。
[Preparation of polymer solution]
4 wt% of the above molecular weight 550,000, EC: PC: DEC = 3: 3: 4 (volume ratio) The same as Example 1 except that the solvent of the polymer solution and the electrolytic solution was EC: PC: DEC = 3: 3: 4 A polymer solution was prepared to obtain a 2 wt% electrolyte solution mixture.

[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み30μmのセパリオンS240P30(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S240P30 (Degussa Japan Co., Ltd.) having a thickness of 30 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例9〉
[正極の作成]
正極活物質であるLiNiCoMn100g、導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)6g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)50g(固形分として6g)、分散媒としてN−メチル−2−ピロリドン4.0gで希釈し固形分70wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm 、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 9>
[Creation of positive electrode]
As a cathode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 100g, acetylene black (Denki Kagaku Kogyo Co., Ltd. Denka Black) as a conductive agent 6 g, the binder as PVDF (Co. Kureha KF Binder A positive electrode coating solution was prepared so as to be diluted with 50 g of # 1120 NMP 12 wt% solution (6 g as a solid content) and 4.0 g of N-methyl-2-pyrrolidone as a dispersion medium to a solid content of 70 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質に平均粒径25μm、比表面積3.1g/cmの人造黒鉛100gを用い導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダー成分としてカルボキシメチルセルロース WS−C(第一工業製薬(株))2wt%溶液100g(固形分として2g)、スチレンブタジエンゴム(SBR) BM−400B(日本ゼオン(株))40wt%溶液5g(固形分として2g)、分散媒として蒸留水8gを遊星型ミキサーで混合し、固形分50wt%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度1.45g/cm 、負極活物質8mg/cmの両面塗工負極を得た。
[Creation of negative electrode]
Artificial graphite 100 g having an average particle diameter of 25 μm and a specific surface area of 3.1 g / cm 2 was used as the negative electrode active material, 5 g of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), and carboxymethyl cellulose WS-C (binder component) Daiichi Kogyo Seiyaku Co., Ltd.) 2 wt% solution 100 g (2 g as solid content), styrene butadiene rubber (SBR) BM-400B (Nippon Zeon Corporation) 40 wt% solution 5 g (2 g as solid content), distilled as dispersion medium 8 g of water was mixed with a planetary mixer to prepare a negative electrode coating solution having a solid content of 50 wt%. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C. and then subjected to a roll press treatment, and a double-side coated negative electrode having an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2. Got.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてメチルメタクリレート74wt%、開環重合性官能基を有するモノマーとして(3−エチル−3オキセタニル)メチルメタクリレート20wt%、3,4−エポキシシクロヘキシルメチルメタアクリレート6wt%、反応溶媒としてEC:DEC=3:7(体積比)を用いた以外は、実施例1と同様にして、分子量60万の4wt%EC:DEC=3:7(体積比)ポリマー溶液を得た。
[Method for producing polymer]
Methyl methacrylate 74 wt% as a monomer having no ring-opening polymerizable functional group, (3-ethyl-3oxetanyl) methyl methacrylate 20 wt%, 3,4-epoxycyclohexylmethyl methacrylate 6 wt% as a monomer having a ring-opening polymerizable functional group A 4 wt% EC: DEC = 3: 7 (volume ratio) polymer solution having a molecular weight of 600,000 was obtained in the same manner as in Example 1 except that EC: DEC = 3: 7 (volume ratio) was used as the reaction solvent. It was.

[ポリマー溶液の調製]
上記分子量60万の4wt%EC:DEC=3:7(体積比)ポリマー溶液と電解液の溶媒をEC:DEC:=3:7とした以外は実施例1と同様に2wt%電解液混合溶液を得た。
[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み30μmのセパリオンS240P30(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Preparation of polymer solution]
4 wt% EC: DEC = 3: 7 (volume ratio) with a molecular weight of 600,000 The 2 wt% electrolyte solution mixture as in Example 1 except that the solvent of the polymer solution and the electrolyte solution was EC: DEC: = 3: 7 Got.
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S240P30 (Degussa Japan Co., Ltd.) having a thickness of 30 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例10〉
[正極の作成]
正極活物質であるLiNiCo30g/LiMn70gと、導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)6g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)50g(固形分として6g)、分散媒としてN−メチル−2−ピロリドン4.0gで希釈し固形分70wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度2.6g/cm、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 10>
[Creation of positive electrode]
The positive electrode active material LiNi 0 . 8 Co 0 . 2 O 2 30g / LiMn 2 O 4 70g and, acetylene black (Denki Kagaku Kogyo Co., Ltd. Denka Black) as a conductive agent 6 g, the binder as PVDF (Co. Kureha KF Binder # 1120 NMP 12 wt% solution) 50 g ( A positive electrode coating solution was prepared so that the solid content was 6 g) and the dispersion medium was diluted with 4.0 g of N-methyl-2-pyrrolidone to a solid content of 70 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 2.6 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (one side Per) was obtained.

[負極の作成]
負極活物質に平均粒径25μm 比表面積3.1g/cmの人造黒鉛100gを用い導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、インダー成分としてカルボキシメチルセルロース WS−C(第一工業製薬(株))2%溶液10g、スチレンブタジエンゴム(SBR)エマルジョン (日本ゼオン(株) BM−400B)40wt%溶液5g、分散媒として蒸留水8gを遊星型ミキサーで混合し、固形分50wt%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度1.45g/cm、負極活物質8mg/cmの両面塗工負極を得た。
[Creation of negative electrode]
Artificial graphite 100 g having an average particle size of 25 μm and a specific surface area of 3.1 g / cm 2 is used as the negative electrode active material, 5 g of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), and carboxymethyl cellulose WS-C (the first component) Ichi Kogyo Seiyaku Co., Ltd.) 2% solution 10g, styrene butadiene rubber (SBR) emulsion (Nippon ZEON Co., Ltd. BM-400B) 40wt% solution 5g, distilled water 8g as a dispersion medium is mixed with a planetary mixer, solid content A 50 wt% negative electrode coating solution was prepared. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C. and then subjected to a roll press treatment, and a double-side coated negative electrode having an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2. Got.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてメチルメタクリレート74wt%、開環重合性官能基を有するモノマーとして(3−エチル−3オキセタニル)メチルメタクリレート26wt%、反応溶媒としてEC:DEC=3:7(体積比)を用いた以外は、実施例1と同様にして、分子量1万の10wt%EC:DEC=3:7(体積比)ポリマー溶液を得た。
[Method for producing polymer]
74 wt% of methyl methacrylate as a monomer having no ring-opening polymerizable functional group, 26 wt% of (3-ethyl-3oxetanyl) methyl methacrylate as a monomer having a ring-opening polymerizable functional group, EC: DEC = 3: 7 ( A 10 wt% EC: DEC = 3: 7 (volume ratio) polymer solution having a molecular weight of 10,000 was obtained in the same manner as in Example 1 except that the volume ratio) was used.

[ポリマー溶液の調製]
上記10wt%のエチレンカーボ゛ネート(EC):ジエチルカーボネート(DEC)=3:7(体積比)ポリマー溶液と、リチウム電解質塩としてLiPF を2mol/L含むEC:DEC=3:7(体積比)の電解液とを、重量比1:1で混合してポリマー5wt%の電解液混合溶液を調製した。
[Preparation of polymer solution]
EC: DEC = 3: 7 (volume ratio) containing 10 mol% of ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 (volume ratio) polymer solution and 2 mol / L of LiPF 6 as a lithium electrolyte salt. ) Was mixed at a weight ratio of 1: 1 to prepare a 5 wt% polymer electrolyte solution.

[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み30μmのセパリオンS240P30(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S240P30 (Degussa Japan Co., Ltd.) having a thickness of 30 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例11〉
[正極の作成]
正極活物質である被覆炭素量2wt%のLiFePO100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)8g、バインダーとしてカルボキシメチルセルロース WS−C(第一工業製薬(株))2wt%溶液100g(固形分として2g)、スチレンブタジエンゴム(SBR)エマルジョン BM−400B (日本ゼオン(株))40wt%水溶液5g(固形分として2g)、分散媒として蒸留水60gを遊星型ミキサーで混合し、固形分41wt%の正極塗工液を調製した。
<Example 11>
[Creation of positive electrode]
100 g of LiFePO 4 having a coating carbon amount of 2 wt% as a positive electrode active material, 8 g of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, carboxymethyl cellulose WS-C (Daiichi Kogyo Seiyaku Co., Ltd.) as a binder A planetary mixer containing 100 g of a 2 wt% solution (2 g as a solid content), 5 g of a styrene butadiene rubber (SBR) emulsion BM-400B (Nihon Zeon Co., Ltd.) 40 wt% aqueous solution (2 g as a solid content), and 60 g of distilled water as a dispersion medium. A positive electrode coating solution having a solid content of 41 wt% was prepared by mixing.

[負極の作成]
負極活物質に平均粒径25μm、比表面積3.1g/cmの人造黒鉛100gを用い導電剤としてアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダー成分としてカルボキシメチルセルロース WS−C(第一工業製薬(株))2%溶液10g、スチレンブタジエンゴム(SBR)エマルジョン(日本ゼオン(株) BM−400B)40wt%溶液5g、分散媒として蒸留水8gを遊星型ミキサーで混合し、固形分50wt%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングを行い、130℃で乾燥後ロールプレス処理を行い、活物質密度 1.45g/cm 、負極活物質8mg/cmの両面塗工負極を得た。
[Creation of negative electrode]
Artificial graphite 100 g having an average particle size of 25 μm and a specific surface area of 3.1 g / cm 2 is used as the negative electrode active material, 5 g of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), and carboxymethyl cellulose WS-C (binder component) Daiichi Kogyo Seiyaku Co., Ltd.) 2% solution 10g, styrene butadiene rubber (SBR) emulsion (Nippon ZEON Co., Ltd. BM-400B) 40 wt% solution 5g, distilled water 8g as a dispersion medium are mixed with a planetary mixer and solid A negative electrode coating solution of 50 wt% was prepared. This coating solution is coated on an electrolytic copper foil having a thickness of 10 μm, dried at 130 ° C. and then subjected to a roll press treatment, and a double-side coated negative electrode having an active material density of 1.45 g / cm 3 and a negative electrode active material of 8 mg / cm 2. Got.

[ポリマーの製造方法]
開環重合性官能基を有しないモノマーとしてメチルメタクリレート70wt%、開環重合性官能基を有するモノマーとしてグリシジルメタクリレート30wt%、反応溶媒としてEC:DEC=3:7(体積比)を用いた以外は、実施例1と同様にして、分子量30万の4wt%EC:DEC=3:7(体積比)ポリマー溶液を得た。
[Method for producing polymer]
Except for using 70% by weight of methyl methacrylate as a monomer having no ring-opening polymerizable functional group, 30% by weight of glycidyl methacrylate as a monomer having a ring-opening polymerizable functional group, and EC: DEC = 3: 7 (volume ratio) as a reaction solvent. In the same manner as in Example 1, a 4 wt% EC: DEC = 3: 7 (volume ratio) polymer solution having a molecular weight of 300,000 was obtained.

[ポリマー溶液の調製]
上記分子量30万の4wt%のエチレンカーボ゛ネート(EC):ジエチルカーボネート(DEC)=3:7(体積比)を溶媒とするポリマー溶液を調整し、リチウム電解質塩としてLiPF を2mol/L含むEC:DEC=3:7(体積比)の電解液とを、重量比1:1で混合してポリマー2wt%の電解液混合溶液を調製した。
[Preparation of polymer solution]
A polymer solution containing 4 wt% ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 (volume ratio) having a molecular weight of 300,000 is prepared, and 2 mol / L of LiPF 6 is contained as a lithium electrolyte salt. The electrolyte solution of EC: DEC = 3: 7 (volume ratio) was mixed at a weight ratio of 1: 1 to prepare an electrolyte solution mixture of 2 wt% polymer.

[リチウム電池の作製]
セパレータとしてPETにSiOとAlをコーティングした厚み30μmのセパリオンS240P30(デグサジャパン(株))を使用した以外は実施例1と同様に作成した。
[Production of lithium battery]
The separator was prepared in the same manner as in Example 1 except that Separion S240P30 (Degussa Japan Co., Ltd.) having a thickness of 30 μm obtained by coating PET with SiO 2 and Al 2 O 3 as a separator was used.

〈実施例12〉
[正極の作成]
正極活物質である被覆炭素量6wt%のLiFePO100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてカルボン酸変性タイプのPVDF((株)クレハ製 KFバインダー#9130 NMP 13wt%溶液)61.5g(固形分として8g)、分散媒としてN−メチル−2−ピロリドン 84.6gで希釈し固形分45wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度1.8g/cm 、 正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 12>
[Creation of positive electrode]
100 g LiFePO 4 with a coated carbon amount of 6 wt%, which is a positive electrode active material, 5 g acetylene black (DENKA BLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and a carboxylic acid-modified PVDF (Kureha KF binder) as a binder # 9130 NMP 13 wt% solution) 61.5 g (8 g as a solid content) and N-methyl-2-pyrrolidone 84.6 g as a dispersion medium were diluted to prepare a positive electrode coating solution so that the solid content was 45 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed, an active material density of 1.8 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (single side Per) was obtained.

正極以外は実施例11と同様に実施した。   The same procedure as in Example 11 was performed except for the positive electrode.

〈実施例13〉
[正極の作成]
正極活物質である被覆炭素量6%のLiFePO100g、導電剤としてのアセチレンブラック(電気化学工業(株)製 デンカブラック)5g、バインダーとしてPVDF((株)クレハ製 KFバインダー#1120 NMP 12wt%溶液)66.7g(固形分として8g)、分散媒としてN−メチル−2−ピロリドン79.4gで希釈し固形分45wt%になるように、正極塗工液を調製した。この塗工液を塗工機で厚み15μmのアルミニウム箔上にコーティングを行い、130℃で乾燥しロールプレス処理を行い、活物質密度1.8g/cm 、正極活物質13mg/cm(片面あたり)の両面塗工正極を得た。
<Example 13>
[Creation of positive electrode]
LiFePO 4 100 g with a coated carbon amount of 6% as a positive electrode active material, acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) 5 g as a conductive agent, PVDF (Kureha Co., Ltd. KF binder # 1120 NMP 12 wt% as a binder Solution) A positive electrode coating solution was prepared so that it was diluted with 66.7 g (8 g as a solid content) and 79.4 g of N-methyl-2-pyrrolidone as a dispersion medium to a solid content of 45 wt%. This coating solution is coated on an aluminum foil having a thickness of 15 μm with a coating machine, dried at 130 ° C. and roll-pressed to obtain an active material density of 1.8 g / cm 3 , a positive electrode active material of 13 mg / cm 2 (single side Per) was obtained.

正極以外は実施例11と同様に実施した。   The same procedure as in Example 11 was performed except for the positive electrode.

〈比較例1〉
リチウム電池の作製において、実施例1のセパレータに代えて、ポリオレフィン微多孔膜(空孔率36%、厚さ25μm)を使用した以外は、実施例1と同様に試験用のセルを作製した。
<Comparative example 1>
In the production of the lithium battery, a test cell was produced in the same manner as in Example 1 except that a polyolefin microporous membrane (porosity 36%, thickness 25 μm) was used instead of the separator of Example 1.

〈比較例2〉
低分子量の脂環式エポキシである分子量252の3,4−エポキシシクロヘキシルメチル10wt%をエチレンカーボ゛ネート(EC):ジエチルカーボネート(DEC)=3:7(体積比)を溶媒とするポリマー溶液を調整し、リチウム電解質塩としてLiPF を2ML含むEC:DEC=3:7(体積比)の電解液とを、重量比1:1で混合してポリマー5%の電解液混合溶液を調製したが、60℃、20時間で固体化しなかった。
<Comparative example 2>
A polymer solution in which 10 wt% of 3,4-epoxycyclohexylmethyl having a molecular weight of 252, which is a low molecular weight alicyclic epoxy, is used as a solvent in ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 (volume ratio). An electrolyte mixed solution of 5% polymer was prepared by adjusting and mixing EC: DEC = 3: 7 (volume ratio) electrolytic solution containing 2 ML of LiPF 6 as a lithium electrolyte salt at a weight ratio of 1: 1. It did not solidify at 60 ° C. for 20 hours.

[評価方法]
[含浸性確認試験]
ポリマー溶液をプレ電池に注液後、真空シールし、1分後に60℃で硬化開始したセルと20℃で20分放置後、60℃で硬化開始したセルを作成した。各セルについて0.2C放電容量を確認後、1C充放電時の500サイクル後のサイクル保持率を確認することによって含浸時間の影響を確認した。セルの容量は約1Ahになるように作成した。
[Evaluation methods]
[Impregnation test]
After pouring the polymer solution into the pre-battery, vacuum sealing was performed, and after 1 minute, a cell that started curing at 60 ° C. and a cell that was allowed to stand at 20 ° C. for 20 minutes and then started curing at 60 ° C. were prepared. After confirming the 0.2C discharge capacity for each cell, the influence of the impregnation time was confirmed by confirming the cycle retention after 500 cycles during 1C charge / discharge. The cell capacity was about 1 Ah.

[過充電試験]
試験周囲温度20℃±5℃において過充電試験を行った。充電条件3C CC−CV 12Vでの電池表面温度の最高温度を確認した。
[Overcharge test]
An overcharge test was conducted at a test ambient temperature of 20 ° C. ± 5 ° C. The maximum temperature of the battery surface temperature under charging condition 3C CC-CV 12V was confirmed.

Figure 2009070605
Figure 2009070605

本発明のリチウムポリマー電池は、携帯電話、ノートパソコン、携帯情報端末(PDA)、ビデオカメラ、デジタルカメラなどの各種の携帯型機器に使用することができる。さらに、電動自転車や電動自動車に搭載する中型・もしくは大型のリチウム電池にも有用である。   The lithium polymer battery of the present invention can be used for various portable devices such as a mobile phone, a notebook computer, a personal digital assistant (PDA), a video camera, and a digital camera. Furthermore, it is also useful for medium-sized or large-sized lithium batteries mounted on electric bicycles and electric vehicles.

Claims (5)

架橋性材料、溶媒、及びリチウム電解質塩を含む固体電解質用電解液を、セパレータ、電極材料を含む電池材料と共に密封可能な容器に注入し、前記架橋性材料の架橋によって前記固体電解質用電解液をゲル化させることで固体電解質化したものであって、前記セパレータが非導電性多孔質材料と電気絶縁性の粒子からなることを特徴とするリチウムポリマー電池。   An electrolyte solution for a solid electrolyte containing a crosslinkable material, a solvent, and a lithium electrolyte salt is injected into a sealable container together with a battery material including a separator and an electrode material, and the electrolyte solution for a solid electrolyte is obtained by crosslinking the crosslinkable material. A lithium polymer battery characterized in that it is made into a solid electrolyte by gelation, wherein the separator comprises a non-conductive porous material and electrically insulating particles. 前記架橋性材料が、開環重合性官能基を有するモノマーと開環重合性官能基を有しないモノマーの共重合体であることを特徴とする請求項1に記載のリチウムポリマー電池。   2. The lithium polymer battery according to claim 1, wherein the crosslinkable material is a copolymer of a monomer having a ring-opening polymerizable functional group and a monomer having no ring-opening polymerizable functional group. 前記開環重合性官能基を有するモノマーが下記一般式(1)又は(2)で表されるモノマーであることを特徴とする請求項2に記載のリチウムポリマー電池。
Figure 2009070605
(式中、RはHまたはCHを表し、Rは下記化学式(3)で表される置換基を表し、化学式(3)におけるRは炭素数1〜6のアルキル基を表す。)
Figure 2009070605
The lithium polymer battery according to claim 2, wherein the monomer having the ring-opening polymerizable functional group is a monomer represented by the following general formula (1) or (2).
Figure 2009070605
(In the formula, R 1 represents H or CH 3 , R 2 represents a substituent represented by the following chemical formula (3), and R 3 in the chemical formula (3) represents an alkyl group having 1 to 6 carbon atoms. )
Figure 2009070605
前記開環重合性官能基を有しないモノマーが下記一般式(4)で表されるモノマーであることを特徴とする請求項2に記載のリチウムポリマー電池。
Figure 2009070605
(式中、RはHまたはCHを表し、およびRは−COOCH、−COOC、−COOC、−COOC、−COOCHCH(CH、−COO(CHCHO)CH、−COO(CHCHO)、−COO(CHCHO)、−COO(CHCH(CH)O)CH、−COO(CHCH(CH)O)、−OCOCH、−OCOC、又は−CHOCを表す。)
The lithium polymer battery according to claim 2, wherein the monomer having no ring-opening polymerizable functional group is a monomer represented by the following general formula (4).
Figure 2009070605
(Wherein R 4 represents H or CH 3 , and R 5 represents —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COOCH 2 CH (CH 3 ) 2 , -COO (CH 2 CH 2 O) 1 ~ 3 CH 3, -COO (CH 2 CH 2 O) 1 ~ 3 C 2 H 5, -COO (CH 2 CH 2 O) 1 ~ 3 C 4 H 9, - COO (CH 2 CH (CH 3 ) O) 1 ~ 3 CH 3, -COO (CH 2 CH (CH 3) O) 1 ~ 3 C 2 H 5, -OCOCH 3, -OCOC 2 H 5, or -CH 2 represents OC 2 H 5 )
前記セパレータの非導電性多孔質材料は非導電性ポリマー繊維からなる不織布であり、電気絶縁性の無機粒子で被覆されていることを特徴とする請求項1〜4のいずれかに記載のリチウムポリマー電池。   The lithium polymer according to any one of claims 1 to 4, wherein the non-conductive porous material of the separator is a non-woven fabric made of non-conductive polymer fibers and is coated with electrically insulating inorganic particles. battery.
JP2007235349A 2007-09-11 2007-09-11 Lithium polymer battery Pending JP2009070605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235349A JP2009070605A (en) 2007-09-11 2007-09-11 Lithium polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235349A JP2009070605A (en) 2007-09-11 2007-09-11 Lithium polymer battery

Publications (1)

Publication Number Publication Date
JP2009070605A true JP2009070605A (en) 2009-04-02

Family

ID=40606659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235349A Pending JP2009070605A (en) 2007-09-11 2007-09-11 Lithium polymer battery

Country Status (1)

Country Link
JP (1) JP2009070605A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004483A1 (en) 2009-07-09 2011-01-13 Necエナジーデバイス株式会社 Polymer gel electrolyte and polymer secondary battery using same
WO2011102453A1 (en) * 2010-02-18 2011-08-25 Necエナジーデバイス株式会社 Polymer secondary battery and method for producing same
CN102820483A (en) * 2011-06-07 2012-12-12 索尼公司 Nonaqueous electrolyte battery, battery pack, electronic device, and electric vehicle
WO2013077211A1 (en) * 2011-11-25 2013-05-30 Jsr株式会社 Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device
JP2013194112A (en) * 2012-03-19 2013-09-30 Jsr Corp Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte and power-accumulating device
JP2015043300A (en) * 2013-08-26 2015-03-05 国立大学法人山口大学 Sulfur complex with coating layer formed on surface of sulfur base
US9793575B2 (en) 2012-09-10 2017-10-17 Nec Energy Devices, Ltd. Polymer gel electrolyte, lithium ion battery and method for producing same
KR20200118470A (en) * 2018-02-05 2020-10-15 하이드로-퀘벡 Copolymers of ester and ether units, methods for their production and uses thereof
JP2021504922A (en) * 2018-04-10 2021-02-15 エルジー・ケム・リミテッド Lithium secondary battery and its manufacturing method
US11050048B2 (en) 2017-09-19 2021-06-29 Kabushiki Kaisha Toshiba Electrode structure, secondary battery, battery pack, and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2000133308A (en) * 1998-10-22 2000-05-12 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2002110245A (en) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk Polymer solid electrolyte lithium ion secondary battery
JP2005536857A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Separator for use in a high energy battery and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2000133308A (en) * 1998-10-22 2000-05-12 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2002110245A (en) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk Polymer solid electrolyte lithium ion secondary battery
JP2005536857A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Separator for use in a high energy battery and method for producing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004483A1 (en) 2009-07-09 2011-01-13 Necエナジーデバイス株式会社 Polymer gel electrolyte and polymer secondary battery using same
WO2011102453A1 (en) * 2010-02-18 2011-08-25 Necエナジーデバイス株式会社 Polymer secondary battery and method for producing same
CN102771002A (en) * 2010-02-18 2012-11-07 Nec能源元器件株式会社 Polymer secondary battery and method for producing same
US20120321962A1 (en) * 2010-02-18 2012-12-20 Nec Energy Devices, Ltd. Polymer secondary battery and method for manufacturing the same
JPWO2011102453A1 (en) * 2010-02-18 2013-06-17 Necエナジーデバイス株式会社 Polymer secondary battery and manufacturing method thereof
CN102820483A (en) * 2011-06-07 2012-12-12 索尼公司 Nonaqueous electrolyte battery, battery pack, electronic device, and electric vehicle
JP2013016456A (en) * 2011-06-07 2013-01-24 Sony Corp Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
CN107394253A (en) * 2011-06-07 2017-11-24 索尼公司 Nonaqueous electrolyte battery, battery pack, electronic installation and electric vehicle
JPWO2013077211A1 (en) * 2011-11-25 2015-04-27 Jsr株式会社 Gel electrolyte forming agent, composition for forming gel electrolyte, gel electrolyte, and electricity storage device
WO2013077211A1 (en) * 2011-11-25 2013-05-30 Jsr株式会社 Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device
JP2013194112A (en) * 2012-03-19 2013-09-30 Jsr Corp Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte and power-accumulating device
US9793575B2 (en) 2012-09-10 2017-10-17 Nec Energy Devices, Ltd. Polymer gel electrolyte, lithium ion battery and method for producing same
US10622674B2 (en) 2012-09-10 2020-04-14 Envision Aesc Energy Devices Ltd. Polymer gel electrolyte, lithium ion battery and method for producing same
JP2015043300A (en) * 2013-08-26 2015-03-05 国立大学法人山口大学 Sulfur complex with coating layer formed on surface of sulfur base
US11050048B2 (en) 2017-09-19 2021-06-29 Kabushiki Kaisha Toshiba Electrode structure, secondary battery, battery pack, and vehicle
KR20200118470A (en) * 2018-02-05 2020-10-15 하이드로-퀘벡 Copolymers of ester and ether units, methods for their production and uses thereof
KR102640042B1 (en) 2018-02-05 2024-02-27 하이드로-퀘벡 Copolymers of ester and ether units, methods for their production and uses thereof
JP2021504922A (en) * 2018-04-10 2021-02-15 エルジー・ケム・リミテッド Lithium secondary battery and its manufacturing method
JP7076879B2 (en) 2018-04-10 2022-05-30 エルジー エナジー ソリューション リミテッド Lithium secondary battery and its manufacturing method
US11658301B2 (en) 2018-04-10 2023-05-23 Lg Energy Solution, Ltd. Lithium secondary battery and method of preparing the same

Similar Documents

Publication Publication Date Title
JP5329310B2 (en) Lithium secondary battery using ionic liquid
JP6851398B2 (en) Non-aqueous electrolyte secondary battery and materials used for it
JP5032773B2 (en) Lithium secondary battery using ionic liquid
JP5215307B2 (en) Lithium secondary battery
JP2009070605A (en) Lithium polymer battery
JP5702362B2 (en) Lithium secondary battery using ionic liquid
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
JP2009302058A (en) Lithium battery
TW200926479A (en) Electrolytic solution and lithium battery employing the same
JP2008097879A (en) Lithium ion secondary battery
JP5191931B2 (en) Lithium secondary battery using ionic liquid
JP2009123499A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
JP2005142141A (en) Organic electrolyte and lithium battery using the same
JP2002313425A (en) Lithium polymer secondary battery
JP2009026542A (en) Lithium secondary battery
JP2006252917A (en) Lithium-ion secondary battery
JP2009277413A (en) Lithium polymer battery
JP2007005293A (en) Electrolyte and battery
JP2006286496A (en) Polymer cell
CN103400993B (en) Battery anode and lithium ion battery
JP5066804B2 (en) Lithium ion secondary battery
JP2010199035A (en) Nonaqueous electrolyte secondary battery
TWI387144B (en) Polymer electrolyte secondary battery
JP2009070606A (en) Lithium polymer battery
CN106207049B (en) Ceramic diaphragm and application thereof in lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925