JP6685640B2 - Non-aqueous electrolyte Positive electrode active material for secondary battery - Google Patents

Non-aqueous electrolyte Positive electrode active material for secondary battery Download PDF

Info

Publication number
JP6685640B2
JP6685640B2 JP2014155623A JP2014155623A JP6685640B2 JP 6685640 B2 JP6685640 B2 JP 6685640B2 JP 2014155623 A JP2014155623 A JP 2014155623A JP 2014155623 A JP2014155623 A JP 2014155623A JP 6685640 B2 JP6685640 B2 JP 6685640B2
Authority
JP
Japan
Prior art keywords
positive electrode
boron
coating layer
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014155623A
Other languages
Japanese (ja)
Other versions
JP2016033854A (en
Inventor
祐 西田
祐 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014155623A priority Critical patent/JP6685640B2/en
Publication of JP2016033854A publication Critical patent/JP2016033854A/en
Application granted granted Critical
Publication of JP6685640B2 publication Critical patent/JP6685640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池等の非水電解液二次電池用正極活物質に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

近年小型電子機器の高機能化が進み、これら電子機器に用いられる二次電池には、より高いエネルギー密度が要求されている。リチウムイオン二次電池は、このような要求に応え得る二次電池として期待され、携帯電話、ラップトップコンピューター等の駆動電源として実用化されている。リチウムイオン二次電池の正極活物質としては、コバルト酸リチウムが代表的に実用化されている。   In recent years, small electronic devices have become more sophisticated, and secondary batteries used in these electronic devices are required to have higher energy density. A lithium-ion secondary battery is expected as a secondary battery that can meet such requirements, and has been put to practical use as a drive power source for mobile phones, laptop computers, and the like. As a positive electrode active material for a lithium ion secondary battery, lithium cobalt oxide is typically put into practical use.

コバルト酸リチウム以外にもリチウム遷移金属複合酸化物が正極活物質として提案されている。さらに、主要な金属元素以外に微量のホウ素を添加させる技術も存在する。   In addition to lithium cobalt oxide, a lithium transition metal composite oxide has been proposed as a positive electrode active material. Furthermore, there is also a technique of adding a trace amount of boron in addition to the main metal element.

例えば特許文献1では、Ni及びMnを少なくとも含有するリチウム遷移金属複合酸化物を正極活物質として用いた二次電池において、高い充電電位で且つ電解液が共存する状態での熱安定性向上を目的として、正極活物質にさらにホウ素を含有させる技術が提案されている。具体的に開示されているホウ素を含有させる方法は、リチウム化合物、ホウ素化合物並びにニッケル、マンガン及びコバルトの複合水酸化物を混合した後、焼成する、という方法である。   For example, in Patent Document 1, in a secondary battery using a lithium-transition metal composite oxide containing at least Ni and Mn as a positive electrode active material, an object is to improve thermal stability at a high charging potential and in a state where an electrolytic solution coexists. As such, a technique has been proposed in which the positive electrode active material further contains boron. The method of containing boron specifically disclosed is a method of mixing a lithium compound, a boron compound, and a composite hydroxide of nickel, manganese, and cobalt and then firing the mixture.

一方、リチウム遷移金属複合酸化物粒子の表面にホウ素を存在させる技術も存在する。   On the other hand, there is also a technique in which boron is present on the surface of the lithium-transition metal composite oxide particles.

例えば特許文献2では、二次電池の高容量化と二次電池の充放電効率向上を図る目的で、ニッケルまたはコバルトを必須としたリチウム遷移金属複合酸化物粒子の表面に、ホウ酸アンモニウム、ホウ酸リチウム等のホウ酸化合物等を被着させ、酸化性雰囲気下で加熱処理する技術が提案されている。具体的に開示されているリチウム遷移金属複合酸化物は、ニッケルの一部をコバルト及びアルミニウムで置換したニッケル酸リチウムである。   For example, in Patent Document 2, for the purpose of increasing the capacity of the secondary battery and improving the charging / discharging efficiency of the secondary battery, ammonium borate, boron or boron is formed on the surface of the lithium-transition metal composite oxide particles in which nickel or cobalt is essential. A technique has been proposed in which a boric acid compound such as lithium oxide is adhered and heat treatment is performed in an oxidizing atmosphere. The lithium-transition metal composite oxide specifically disclosed is lithium nickelate in which a part of nickel is replaced with cobalt and aluminum.

特開2004−281158号公報JP 2004-281158 A 特開2009−146739号公報JP, 2009-146739, A

リチウムイオン二次電池の各種特性向上に伴い、非水電解液二次電池を電気自動車等のより大型の機器の駆動電源としても適用する動きが出始めている。このような大型機器の駆動電源に求められる重要な特性に、二次電池が蓄えるエネルギー密度がある。エネルギー密度は、より高い充電容量とより高い充電電圧によって高めることが可能である。   Along with the improvement in various characteristics of lithium-ion secondary batteries, there is a movement to apply non-aqueous electrolyte secondary batteries as driving power sources for larger devices such as electric vehicles. An important characteristic required for a driving power source for such a large device is the energy density stored in the secondary battery. Energy density can be increased by higher charging capacity and higher charging voltage.

大型機器の駆動電源に求められる別の重要な特性に、出力特性がある。正極活物質における出力特性向上の方法の一つに、正極活物質の比表面積を高め、非水電解液と接触する正極活物質の面積を増やす、というものがある。   Another important characteristic required for a driving power source for large equipment is output characteristic. One of the methods for improving the output characteristics of the positive electrode active material is to increase the specific surface area of the positive electrode active material and increase the area of the positive electrode active material in contact with the non-aqueous electrolyte.

本発明者の研究によると、特許文献1のようなホウ素を含有したリチウム遷移金属複合酸化物を正極活物質として用いた正極スラリーは、その粘度が経時的に増加しやすいことが分かった。この傾向は、正極活物質の比表面積が大きい程、リチウム遷移金属複合酸化物におけるリチウムの遷移金属元素に対する比が大きい程、又は遷移金属におけるニッケルの比率が高い程強いことが分かった。正極スラリーが経時的に変化するということは、得られる正極の特性がばらつくことを意味する。また、サイクル特性も、電気自動車等の用途に於いてはより向上させる必要があった。   According to the research by the present inventor, it has been found that the viscosity of a positive electrode slurry using a lithium-transition metal composite oxide containing boron as a positive electrode active material as in Patent Document 1 is likely to increase with time. It has been found that this tendency is stronger as the specific surface area of the positive electrode active material is larger, the ratio of lithium to the transition metal element in the lithium transition metal composite oxide is larger, or the ratio of nickel in the transition metal is higher. The fact that the positive electrode slurry changes with time means that the characteristics of the obtained positive electrode vary. Further, the cycle characteristics also need to be improved in applications such as electric vehicles.

本発明はこれらの事情に鑑みなされたものである。本発明の目的は、高い充電電圧(4.3V程度かそれ以上)による使用条件下において、高いサイクル特性(高電圧サイクル特性)及び出力特性を有し、且つ効率良く正極を製造可能な正極活物質を提供することである。   The present invention has been made in view of these circumstances. An object of the present invention is to provide a positive electrode active material that has high cycle characteristics (high voltage cycle characteristics) and output characteristics under a use condition at a high charging voltage (about 4.3 V or higher) and that can efficiently manufacture a positive electrode. It is to provide the substance.

上記目的を達成するために本発明者は鋭意検討を重ね、本発明を完成するに至った。本発明者は、リチウム遷移金属複合酸化物からなるコア粒子にホウ素と酸素を含有する被覆層を設けることで、コア粒子にホウ素が含有され且つコア粒子の比表面積が大きくとも正極スラリーの粘度増加が抑制されること、及び高電圧サイクル特性が向上することを見出した。   In order to achieve the above-mentioned object, the present inventor has conducted extensive studies and completed the present invention. The present inventor has provided a coating layer containing boron and oxygen on a core particle composed of a lithium-transition metal composite oxide to increase the viscosity of the positive electrode slurry even if the core particle contains boron and the specific surface area of the core particle is large. It was found that the above was suppressed and the high voltage cycle characteristics were improved.

本発明の非水電解液二次電池用正極活物質は、一般式LiNi1−x−yCo (1.00≦a≦1.50、0.00≦x≦0.50、0≦y≦0.50、0.000≦z≦0.020、0.002≦w≦0.020、0.00≦x+y≦0.70、MはMn及びAlからなる群より選択される少なくとも一種、MはZr、Ti、Mg、W及びVからなる群より選択される少なくとも一種)で表され、その比表面積が1.2m/g以上であるリチウム遷移金属複合酸化物粒子からなるコア粒子と、前記コア粒子の表面に存在し、ホウ素及び酸素を含む被覆層とを含むことを特徴とする。 The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a general formula of Li a Ni 1-x-y Co x M 1 y M 2 z B w O 2 (1.00 ≦ a ≦ 1.50,0. 0.00 <x <0.50, 0 <y <0.50, 0.000 <z <0.020, 0.002 <w <0.020, 0.00 <x + y <0.70, M 1 is At least one selected from the group consisting of Mn and Al, M 2 is at least one selected from the group consisting of Zr, Ti, Mg, W and V), and its specific surface area is 1.2 m 2 / g or more. And a coating layer that is present on the surface of the core particle and that contains boron and oxygen.

本発明の非水電解液二次電池用正極活物質の製造方法は、前記コア粒子と、ホウ素及び酸素を含む被覆層原料化合物とを混合し、原料混合物を得る混合工程と、前記混合工程で得られる前記原料混合物を熱処理する熱処理工程とを含むことを特徴とする。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention comprises a mixing step of mixing the core particles and a coating layer raw material compound containing boron and oxygen to obtain a raw material mixture, and the mixing step. A heat treatment step of heat treating the obtained raw material mixture.

本発明の非水電解液二次電池用正極活物質は上記の特徴を備えているため、コア粒子にホウ素が含有され且つその比表面積が大きくとも、得られる正極スラリーの粘度増加を抑制することができる。その結果、高い出力特性及び高電圧サイクル特性を有する非水電解液二次電池を、効率良く製造することが可能になる。   Since the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has the above characteristics, it is possible to suppress an increase in viscosity of the obtained positive electrode slurry even if the core particle contains boron and has a large specific surface area. You can As a result, it becomes possible to efficiently manufacture a non-aqueous electrolyte secondary battery having high output characteristics and high voltage cycle characteristics.

図1は本実施形態に係る組成のコア粒子について、その比表面積と出力特性との関係を示したものである。FIG. 1 shows the relationship between the specific surface area and output characteristics of core particles having the composition according to the present embodiment. 図2は複数種のコア粒子について、その比表面積と正極スラリーの粘度変化との関係を示したものである。FIG. 2 shows the relationship between the specific surface area of a plurality of types of core particles and the viscosity change of the positive electrode slurry.

以下、本発明非水電解液二次電池用正極活物質及びその製造方法について、その実施形態を説明する。但し、本発明は以下の説明によって制限されるものではない。   Embodiments of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention and the method for producing the same will be described below. However, the present invention is not limited to the following description.

まず本発明の非水電解液二次電池用正極活物質の実施形態について説明する。   First, an embodiment of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention will be described.

本実施形態の非水電解液二次電池用正極活物質は、特定のリチウム遷移金属複合酸化物からなるコア粒子と、コア粒子表面に形成される被覆層とを含む。以下、これらを中心に説明する。   The positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment includes core particles made of a specific lithium transition metal composite oxide, and a coating layer formed on the surface of the core particles. Hereinafter, these will be mainly described.

[コア粒子]
<組成>
コア粒子は、リチウム及びニッケルを主成分とし、さらにホウ素を必須としたリチウム遷移金属複合酸化物からなる。
[Core particles]
<Composition>
The core particle is composed of a lithium-transition metal composite oxide containing lithium and nickel as main components, and further boron as an essential component.

ニッケルサイトの一部をコバルトで置換する場合、ニッケルの50mol%まで置換可能である。ニッケルサイトを置換するコバルトの量が多すぎれば製造コストの増加につながるので少ない方が好ましい。各種特性とのバランスを考慮すると、ニッケルサイトを置換するコバルトの量は5mol%以上35mol%以下が好ましい。   When part of the nickel site is replaced with cobalt, up to 50 mol% of nickel can be replaced. If the amount of cobalt substituting the nickel site is too large, it will lead to an increase in manufacturing cost, and therefore the smaller amount is preferable. Considering the balance with various characteristics, the amount of cobalt substituting the nickel sites is preferably 5 mol% or more and 35 mol% or less.

ニッケルサイトの一部をマンガン及びアルミニウムからなる群より選択される少なくとも一種で置換する場合、ニッケルの50mol%まで置換可能である。多すぎれば出力特性、充放電容量に悪影響を与える虞があるので注意する。なお、ニッケルサイトのニッケルが少なすぎると充放電容量が減少する傾向にあるので、ニッケルサイトの総置換量は70mol%以下にする。各種特性とのバランスを考慮すると、ニッケルサイトの総置換量は20mol%以上60mol%以下が好ましい。   When part of the nickel site is replaced with at least one selected from the group consisting of manganese and aluminum, up to 50 mol% of nickel can be replaced. Be aware that if it is too large, it may adversely affect the output characteristics and charge / discharge capacity. If the nickel content of the nickel sites is too small, the charge / discharge capacity tends to decrease, so the total substitution amount of the nickel sites is 70 mol% or less. Considering the balance with various characteristics, the total substitution amount of nickel sites is preferably 20 mol% or more and 60 mol% or less.

コア粒子組成中のリチウム量は、多ければ出力特性が向上する傾向にあるが、多すぎるものは合成しにくい。また、合成出来たとしても焼結が進み、その後の取り扱いが困難になる傾向にある。これらを踏まえ、リチウム量はニッケルサイトの元素に対し100mol%以上150mol%以下とする。特性のバランス、合成のし易さ等を考慮すると、105mol%125mol%以下が好ましい。   If the amount of lithium in the core particle composition is large, the output characteristics tend to be improved, but if it is too large, it is difficult to synthesize. Further, even if it can be synthesized, it tends to be sintered and it becomes difficult to handle it thereafter. Based on these, the amount of lithium is 100 mol% or more and 150 mol% or less with respect to the nickel site element. Considering balance of characteristics, easiness of synthesis, etc., it is preferably 105 mol% or less and 125 mol% or less.

コア粒子の組成には上記遷移金属以外に更にホウ素を含有させる。ホウ素の含有量は、多すぎると正極活物質全体の充放電容量低下につながる。また、正極スラリーの粘度上昇を招き、後述の被覆層でも抑制しきれなくなる。一方、少なすぎると高い充電電圧における使用条件下でのサイクル特性が不十分になる。これらを踏まえ、ホウ素の含有量はコア粒子に対して0.2mol%以上2.0mol%以下とする。好ましいホウ素の含有量はコア粒子に対して0.3mol%以上0.75mol%以下である。   The composition of the core particles further contains boron in addition to the above transition metal. When the content of boron is too large, the charge / discharge capacity of the whole positive electrode active material is reduced. Moreover, the viscosity of the positive electrode slurry is increased, and the coating layer described later cannot be suppressed. On the other hand, if the amount is too small, the cycle characteristics under the usage conditions at high charging voltage become insufficient. Based on these, the content of boron is 0.2 mol% or more and 2.0 mol% or less with respect to the core particles. The preferable content of boron is 0.3 mol% or more and 0.75 mol% or less with respect to the core particles.

コア粒子の組成に更に含有させる元素として、ジルコニウム、チタン、マグネシウム、タンタル、タングステン、バナジウム等が選択し得る。これら元素の含有量が2mol%までなら、他の元素による特性改善を妨げることなく各種目的を達成可能である。例えばジルコニウムは保存特性の改善、チタンやマグネシウムはサイクル特性のさらなる改善、タングステンは出力特性のさらなる改善、バナジウムは安全性の改善に好適である。   Zirconium, titanium, magnesium, tantalum, tungsten, vanadium or the like can be selected as an element to be further contained in the composition of the core particles. When the content of these elements is up to 2 mol%, various purposes can be achieved without hindering the characteristic improvement by other elements. For example, zirconium is suitable for improving storage characteristics, titanium and magnesium are suitable for further improving cycle characteristics, tungsten is suitable for further improving output characteristics, and vanadium is suitable for improving safety.

これらを踏まえ、コア粒子は一般式LiNi1−x−yCo (1.00≦a≦1.50、0.00≦x≦0.50、0≦y≦0.50、0.000≦z≦0.020、0.002≦w≦0.020、0.00≦x+y≦0.70、MはMn及びAlからなる群より選択される少なくとも一種、MはZr、Ti、Mg、W及びVからなる群より選択される少なくとも一種)で表されるリチウム遷移金属複合酸化物を用いる。 Based on these, the core particle has a general formula of Li a Ni 1-x-y Co x M 1 y M 2 z B w O 2 (1.00 ≦ a ≦ 1.50, 0.00 ≦ x ≦ 0.50, 0 ≦ y ≦ 0.50, 0.000 ≦ z ≦ 0.020, 0.002 ≦ w ≦ 0.020, 0.00 ≦ x + y ≦ 0.70, M 1 is selected from the group consisting of Mn and Al A lithium transition metal composite oxide represented by the following formula (1), M 2 is at least one selected from the group consisting of Zr, Ti, Mg, W and V).

<比表面積>
非水電解液と正極活物質との接触面積を増やし、出力特性を高めるため、コア粒子の比表面積はある程度以上必要である。図1は本実施形態に係ると組成のコア粒子において、その比表面積Ssと出力特性(詳細は後述)との関係を示したものである。コア粒子の組成によって詳細は異なるが、曲線の変曲点は、Ss=1.0m/g〜1.2m/g辺りに存在する。電気自動車の様な高出力を求められる用途に好適に利用できるよう、正極活物質の比表面積は1.2m/g以上とする。比表面積は窒素ガスを用いたガス吸着法によって測定される値(所謂BET比表面積)を用いる。
<Specific surface area>
In order to increase the contact area between the non-aqueous electrolyte solution and the positive electrode active material and enhance the output characteristics, the specific surface area of the core particles needs to be above a certain level. FIG. 1 shows the relationship between the specific surface area Ss 1 of the core particles having the composition according to the present embodiment and the output characteristics (details will be described later). Details on the composition of the core particles differ, the inflection point of the curve is present in Ss 1 = 1.0m 2 /g~1.2m 2 / g Atari. The specific surface area of the positive electrode active material is 1.2 m 2 / g or more so that the positive electrode active material can be suitably used for applications requiring high output such as electric vehicles. As the specific surface area, a value (so-called BET specific surface area) measured by a gas adsorption method using nitrogen gas is used.

図2は複数種のコア粒子について、その比表面積と正極スラリーの粘度変化との関係を示したものである。図2から分かるように、コア粒子の組成にホウ素が含有し、且つその比表面積が大きいと、正極スラリーの粘度が経時的に増加しやすい。その原因は定かではないが、コア粒子中にリチウムとホウ素が共存していると、コア粒子からリチウムが液相へ溶出し易くなるためと推測される。液相が正極スラリーに用いられる有機溶液である場合、有機溶液中の有機溶媒、結着剤等が変化し、正極スラリーの粘度が増加するものと考えられる。コア粒子の比表面積が大きければ液相との接触面積が大きいので、その傾向はより強くなると考えられる。このため、コア粒子の表面に後述の被覆層を設ける。   FIG. 2 shows the relationship between the specific surface area of a plurality of types of core particles and the viscosity change of the positive electrode slurry. As can be seen from FIG. 2, when the core particle composition contains boron and its specific surface area is large, the viscosity of the positive electrode slurry is likely to increase with time. The cause is not clear, but it is presumed that if lithium and boron coexist in the core particle, lithium easily elutes from the core particle into the liquid phase. When the liquid phase is the organic solution used for the positive electrode slurry, it is considered that the organic solvent, the binder, etc. in the organic solution change, and the viscosity of the positive electrode slurry increases. If the specific surface area of the core particles is large, the contact area with the liquid phase is large, and this tendency is considered to be stronger. Therefore, a coating layer described below is provided on the surface of the core particles.

[被覆層]
被覆層は、コア粒子の表面に存在し、ホウ素及び酸素を含んでいる。被覆層は、後述の実施形態で例示される、本発明の非水電解液二次電池用正極活物質の製造方法によって形成する。被覆層の形態はその形成プロセスによって微妙に異なる。この違いは、オージェ電子分光法(AES)、X線光電子分光法(XPS)等によって区別可能である。
[Coating layer]
The coating layer is present on the surface of the core particle and contains boron and oxygen. The coating layer is formed by the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, which is exemplified in the embodiments described below. The morphology of the coating layer is slightly different depending on the forming process. This difference can be distinguished by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and the like.

被覆層に含有されるホウ素は、少なすぎればその効果が十分発現せず、多すぎれば正極活物質において電気化学的に不活性な領域が多くなることを意味するので、適宜調節する。好ましいホウ素含有量の範囲はコア粒子に対して2.0mol%以下である。より好ましい範囲は0.2mol%以上1.5mol%以下である。   When the amount of boron contained in the coating layer is too small, the effect is not sufficiently exhibited, and when the amount is too large, it means that there are many electrochemically inactive regions in the positive electrode active material. The preferable range of the boron content is 2.0 mol% or less based on the core particles. A more preferable range is 0.2 mol% or more and 1.5 mol% or less.

次に本発明の非水電解液二次電池用正極活物質の製造方法の実施形態について説明する。   Next, an embodiment of the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention will be described.

本実施形態の非水電解液二次電池用正極活物質の製造方法は、混合工程と熱処理工程を主要工程として含む。以下、これらの工程を中心に説明する。   The manufacturing method of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment includes a mixing step and a heat treatment step as main steps. Hereinafter, these steps will be mainly described.

[混合工程]
コア粒子と、ホウ素及び酸素を含む被覆層原料化合物とを混合し、原料混合物を得る。コア粒子は公知の手法を適宜用いて得れば良い。被覆層原料化合物は、ホウ素及び酸素を含む単一の化合物からなっても良いし、複数の化合物からなっても良い。また、ホウ素を含むが酸素を含まない単一の又は複数の化合物と、酸素を含むがホウ素を含まない単一の又は複数の化合物とを組み合わせても良い。あるいは、ホウ素及び酸素を含む化合物、ホウ素を含むが酸素を含まない化合物及び酸素を含むがホウ素を含まない化合物からなる群から選択される少なくとも二種について、それぞれ単一の又は複数の化合物を選択し、組み合わせても良い。被覆層原料化合物は、ホウ素及び酸素を含む単一の又は複数の化合物からなると、より好適な被覆層を形成し易い。
[Mixing process]
The core particles and the coating layer raw material compound containing boron and oxygen are mixed to obtain a raw material mixture. The core particles may be obtained by appropriately using a known method. The coating layer raw material compound may be composed of a single compound containing boron and oxygen, or may be composed of a plurality of compounds. Further, a single or a plurality of compounds containing boron but not oxygen may be combined with a single or a plurality of compounds containing oxygen but not containing boron. Alternatively, for at least two kinds selected from the group consisting of a compound containing boron and oxygen, a compound containing boron but not oxygen and a compound containing oxygen but not boron, a single compound or a plurality of compounds are selected respectively. However, they may be combined. When the coating layer raw material compound is composed of a single compound or a plurality of compounds containing boron and oxygen, it is easy to form a more preferable coating layer.

ホウ素及び酸素を含む化合物の例としては、酸化ホウ素等の酸化物、オルトホウ酸(所謂普通のホウ酸)、メタホウ酸等のホウ酸類、ホウ酸リチウム、ホウ酸アンモニウム等のホウ酸塩類等が挙げられる。特にホウ酸は入手、取り扱いが容易な上、被覆層の形態が最適になるため好ましい。   Examples of compounds containing boron and oxygen include oxides such as boron oxide, orthoboric acid (so-called ordinary boric acid), boric acids such as metaboric acid, lithium borate, and borate salts such as ammonium borate. To be Boric acid is particularly preferable because it is easy to obtain and handle, and the form of the coating layer is optimized.

ホウ素を含むが酸素を含まない化合物の例としては、ホウ化アルミニウム等の金属ホウ化物、窒化ホウ素等が挙げられる。酸素を含むがホウ素を含まない化合物の例としては、各種酸化物、オキソ酸、オキソ酸塩等、常温で固体の多種多様の化合物が挙げられる。   Examples of the compound containing boron but not oxygen include metal borides such as aluminum boride and boron nitride. Examples of the compound containing oxygen but not boron include various compounds that are solid at room temperature, such as various oxides, oxo acids, and oxo acid salts.

コア粒子と被覆層原料化合物を目的に応じて選択し、その物質量比を調節したら、羽根式撹拌機、V型混合機等公知の撹拌手段で適宜混合する。こうして原料混合物を得、熱処理工程に用いる。   The core particles and the coating layer raw material compound are selected according to the purpose, and after adjusting the substance amount ratio, they are appropriately mixed with a known stirring means such as a blade-type stirrer or a V-type mixer. Thus, the raw material mixture is obtained and used in the heat treatment step.

[熱処理工程]
得られた原料混合物を熱処理し、コア粒子表面に被覆層を形成する。被覆層は、被覆層原料化合物を構成する元素の少なくとも一部と、コア粒子を構成する元素の少なくとも一部とが化学的あるいは物理的に結合することで形成されると推測される。
[Heat treatment process]
The obtained raw material mixture is heat-treated to form a coating layer on the surface of core particles. It is speculated that the coating layer is formed by chemically or physically binding at least a part of the elements constituting the coating layer raw material compound and at least a part of the elements constituting the core particles.

熱処理温度は、低すぎれば目的の被覆層が形成されない。一方、高過ぎるとコア粒子を構成する元素の被覆層形成に供される割合が高くなり、コア粒子本来の特性が損なわれる虞がある。そのため、目的に応じて適宜調節する。好ましい熱処理温度の範囲は450℃以下、より好ましい範囲は200℃以上400℃以下である。   If the heat treatment temperature is too low, the intended coating layer will not be formed. On the other hand, if the content is too high, the proportion of the elements constituting the core particles to be used for forming the coating layer becomes high, and the original characteristics of the core particles may be impaired. Therefore, it is appropriately adjusted according to the purpose. A preferable heat treatment temperature range is 450 ° C. or lower, and a more preferable range is 200 ° C. or higher and 400 ° C. or lower.

以下、実施例を用いてより具体的に説明する。なお、元素の比は特に断りが無い限り物質量比で表している。   Hereinafter, a more specific description will be given using examples. In addition, the ratio of elements is expressed as a mass ratio unless otherwise specified.

共沈法によってNi:Co:Mn=1:1:1の複合水酸化物を得た。得られた複合水酸化物と、炭酸リチウム、ホウ酸及び酸化ジルコニウム(IV)とを、Li:(Ni+Co+Mn):B:Zr=1.15:1:0.005:0.005となるように混合し、原料混合物を得た。得られた原料混合物を大気雰囲気下910℃で10時間焼成し、焼結体を得た。得られた焼結体を粉砕し、乾式篩にかけ、一般式Li1.15Ni0.33Co0.33Mn0.330.005Zr0.005で表されるリチウム遷移金属複合酸化物からなるコア粒子を得た。 A composite hydroxide of Ni: Co: Mn = 1: 1: 1 was obtained by the coprecipitation method. The obtained composite hydroxide was mixed with lithium carbonate, boric acid and zirconium (IV) oxide so that Li: (Ni + Co + Mn): B: Zr = 1.15: 1: 0.005: 0.005. The materials were mixed to obtain a raw material mixture. The obtained raw material mixture was fired at 910 ° C. for 10 hours in an air atmosphere to obtain a sintered body. The obtained sintered body was pulverized and passed through a dry sieve to obtain a lithium transition metal composite represented by the general formula: Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 B 0.005 Zr 0.005 O 2. Core particles made of oxide were obtained.

得られたコア粒子と、コア粒子に対して0.5mol%のホウ素に相当するホウ酸とを高速せん断型撹拌機で混合し、混合粒子を得た。得られた混合粒子を大気雰囲気下250℃で10時間熱処理し、目的の正極活物質を得た。   The obtained core particles and boric acid corresponding to 0.5 mol% of boron with respect to the core particles were mixed with a high-speed shear stirrer to obtain mixed particles. The obtained mixed particles were heat-treated at 250 ° C. for 10 hours in the air atmosphere to obtain the intended positive electrode active material.

[比較例1]
実施例におけるコア粒子を比較用の正極活物質とした。
[Comparative Example 1]
The core particles in the examples were used as a positive electrode active material for comparison.

[比較例2]
原料混合物においてホウ酸を加えない以外実施例と同様にし、一般式Li1.15Ni0.33Co0.33Mn0.33Zr0.005で表されるリチウム遷移金属複合酸化物からなるコア粒子を得た。以降実施例1と同様にし、目的の正極活物質を得た。
[Comparative Example 2]
A lithium transition metal composite oxide represented by the general formula Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 Zr 0.005 O 2 was prepared in the same manner as in Example except that boric acid was not added to the raw material mixture. Core particles were obtained. Thereafter, in the same manner as in Example 1, a desired positive electrode active material was obtained.

[比較例3]
比較例2におけるコア粒子を比較用の正極活物質とした。
[Comparative Example 3]
The core particle in Comparative Example 2 was used as a positive electrode active material for comparison.

[粒径評価]
正極活物質について、レーザー回折法を用い、体積頻度の累積値が50%となる値を中心粒径D50とした。
[Particle size evaluation]
With respect to the positive electrode active material, a laser diffraction method was used, and the value at which the cumulative value of the volume frequency was 50% was defined as the median particle diameter D 50 .

[比表面積評価]
コア粒子のBET比表面積Ss及び正極活物質のBET比表面積Ssを測定した。
[Evaluation of specific surface area]
The BET specific surface area Ss 1 of the core particles and the BET specific surface area Ss 2 of the positive electrode active material were measured.

[被覆層の評価]
誘導結合プラズマ(ICP)分析等の化学分析を用い、被覆層中のホウ素含有量cを求めた。コア粒子の組成中にホウ素がある場合、正極活物質全体のホウ素含有量とコア粒子中のホウ素含有量との差分からcを求めた。
[Evaluation of coating layer]
The boron content c B in the coating layer was determined using a chemical analysis such as inductively coupled plasma (ICP) analysis. When boron was present in the composition of the core particles, c B was calculated from the difference between the total boron content of the positive electrode active material and the boron content of the core particles.

[粘度評価]
実施例及び比較例1〜6について、以下のように正極スラリーの粘度変化を測定した。
[Viscosity evaluation]
For Examples and Comparative Examples 1 to 6, the change in viscosity of the positive electrode slurry was measured as follows.

正極活物質30g、PVDF(ポリフッ化ビニリデン)1.57g及びNMP(ノルマルメチル−2−ピロリドン)12.48gをポリエチレン容器に入れ、常温(約25℃)下で5分間混練し、正極スラリーを得た。得られた正極スラリーの初期粘度νを速やかにE型粘度計で測定した。E型粘度計のブレードはコーンブレードを用い、ローターの回転速度は5rpmで測定した。 30 g of the positive electrode active material, 1.57 g of PVDF (polyvinylidene fluoride) and 12.48 g of NMP (normal methyl-2-pyrrolidone) were placed in a polyethylene container and kneaded at room temperature (about 25 ° C.) for 5 minutes to obtain a positive electrode slurry. It was The initial viscosity ν 0 of the obtained positive electrode slurry was immediately measured with an E-type viscometer. The blade of the E-type viscometer was a cone blade, and the rotation speed of the rotor was 5 rpm.

測定後、正極スラリーをポリエチレン容器に戻し、60℃の恒温槽内で24時間静置した。静置後常温下で正極スラリーを2分間混練し、正極スラリーの粘度νを速やかにE型粘度計で測定した。こうして正極スラリーの粘度変化Δν(≡ν−ν)を求めた。いずれの測定においてもE型粘度計のブレードはコーンブレードを用い、ローターの回転速度は5rpmで測定した。 After the measurement, the positive electrode slurry was returned to the polyethylene container and allowed to stand in a constant temperature bath at 60 ° C. for 24 hours. After standing, the positive electrode slurry was kneaded for 2 minutes at room temperature, and the viscosity ν 1 of the positive electrode slurry was quickly measured with an E-type viscometer. In this way, the viscosity change Δν (≡ν 1 −ν 0 ) of the positive electrode slurry was obtained. In each measurement, a cone blade was used as the blade of the E-type viscometer, and the rotation speed of the rotor was 5 rpm.

[サイクル特性評価]
実施例及び比較例1〜3について、以下のようにサイクル特性を評価した。
[Cycle characteristic evaluation]
The cycle characteristics of Examples and Comparative Examples 1 to 3 were evaluated as follows.

[1.正極の作製]
正極活物質85重量部、アセチレンブラック10重量部、及びPVDF(ポリフッカビニリデン)5.0重量部を、NMP(ノルマルメチル−2−ピロリドン)に分散、溶解させて正極スラリーを得た。得られた正極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極を得た。
[1. Production of positive electrode]
85 parts by weight of the positive electrode active material, 10 parts by weight of acetylene black, and 5.0 parts by weight of PVDF (polyfuccavinylidene) were dispersed and dissolved in NMP (normal methyl-2-pyrrolidone) to obtain a positive electrode slurry. The obtained positive electrode slurry was applied to an aluminum foil, dried, compression-molded by a roll press machine, and cut into a predetermined size to obtain a positive electrode.

[2.負極の作製]
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部、及びSBR(スチレンブタジエンゴム)1.0重量部を水に分散させて負極スラリーを得た。得られた負極スラリーを銅箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極を得た。
[2. Preparation of negative electrode]
97.5 parts by weight of artificial graphite, 1.5 parts by weight of CMC (carboxymethyl cellulose), and 1.0 part by weight of SBR (styrene butadiene rubber) were dispersed in water to obtain a negative electrode slurry. The obtained negative electrode slurry was applied to a copper foil, dried, compression-molded by a roll press machine, and cut into a predetermined size to obtain a negative electrode.

[3.非水電解液の作製]
EC(エチレンカーボネイト)とMEC(メチルエチルカーボネイト)を体積比率3:7で混合し溶媒を得た。得られた溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が、1mol/Lになるように溶解させて、非水電解液を得た。
[3. Preparation of non-aqueous electrolyte]
EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 3: 7 to obtain a solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the obtained solvent to a concentration of 1 mol / L to obtain a non-aqueous electrolytic solution.

[4.評価用電池の組み立て]
上記正極と負極の集電体にそれぞれリード電極を取り付け、120℃で真空乾燥を行った。次いで、正極と負極との間に多孔性ポリエチレンからなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃でラミネートパック全体を真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入、封止し、評価用のラミネートタイプの非水電解液二次電池を得た。
[4. Assembly of evaluation battery]
A lead electrode was attached to each of the positive electrode and negative electrode current collectors, and vacuum drying was performed at 120 ° C. Next, a separator made of porous polyethylene was placed between the positive electrode and the negative electrode, and they were stored in a bag-shaped laminate pack. After the storage, the entire laminate pack was vacuum dried at 60 ° C. to remove the water adsorbed on each member. After vacuum drying, the above-mentioned non-aqueous electrolyte was injected into the laminate pack and sealed to obtain a laminate-type non-aqueous electrolyte secondary battery for evaluation.

[5.測定]
得られた電池に微弱電流でエージングを行い、正極及び負極に電解質を十分なじませた。エージング後、電池を45℃に設定した恒温槽内に入れ、充電電位4.4V、充電電流2.0C(1Cは1時間で放電が終了する電流)での定電流定電圧充電と、放電電位2.75V、放電電流2.0Cでの定電流放電を1サイクルとして充放電を繰り返し、nサイクル目の放電容量Qd(n)を測定した。Qd(n)/Qd(1)をnサイクル目の放電容量維持率Rs(n)とした。
[5. Measurement]
The obtained battery was aged with a weak current, and the electrolyte was sufficiently soaked in the positive electrode and the negative electrode. After aging, the battery was placed in a constant temperature bath set at 45 ° C., and a constant-current constant-voltage charge with a charge potential of 4.4 V and a charge current of 2.0 C (1 C is the current at which discharge ends in 1 hour) and the discharge potential Charging and discharging were repeated with a constant current discharge at 2.75 V and a discharge current of 2.0 C as one cycle, and the discharge capacity Qd (n) at the nth cycle was measured. Qd (n) / Qd (1) was defined as the discharge capacity retention rate Rs (n) at the nth cycle.

[出力特性評価]
実施例及び比較例1〜3、6について、以下のように出力特性を評価した。
[Output characteristic evaluation]
The output characteristics of Examples and Comparative Examples 1 to 3 and 6 were evaluated as follows.

[1.評価用二次電池の作製]
サイクル特性評価用二次電池と同様に評価用のラミネートタイプの非水電解液二次電池を得た。
[1. Preparation of secondary battery for evaluation]
A laminate type non-aqueous electrolyte secondary battery for evaluation was obtained in the same manner as the secondary battery for evaluating cycle characteristics.

[2.測定]
得られた電池に微弱電流を流してエージングを行い、正極及び負極に電解質を十分なじませた。その後、高電流での放電と、微弱電流での充電を繰り返した。10回目の充電における充電容量を電池の全充電容量とし、10回目の放電後、全充電容量の4割まで充電した。充電後、電池を−25℃に設定した恒温槽内に入れ、6時間置いた後、0.02A、0.04A、0.06Aで放電し、電圧を測定した。横軸に電流、縦軸に電圧をとって交点をプロットし、交点を結んだ直線の傾きの絶対値を−25℃における直流内部抵抗R(−25)とした。
[2. Measurement]
A weak current was passed through the obtained battery to perform aging, so that the positive electrode and the negative electrode were sufficiently wetted with the electrolyte. After that, discharging at high current and charging at weak current were repeated. The charge capacity in the 10th charge was taken as the total charge capacity of the battery, and after the 10th discharge, the battery was charged to 40% of the total charge capacity. After charging, the battery was placed in a constant temperature bath set at -25 ° C, left for 6 hours, then discharged at 0.02A, 0.04A, 0.06A, and the voltage was measured. The current was plotted on the horizontal axis and the voltage was plotted on the vertical axis, and the intersections were plotted.

実施例及び比較例1〜6について、製造条件を表1に、正極活物質の特性及び電池特性を表2に示す。   Table 1 shows the production conditions and Table 2 shows the characteristics of the positive electrode active material and the battery characteristics of Examples and Comparative Examples 1 to 6.

Figure 0006685640
Figure 0006685640

Figure 0006685640
Figure 0006685640

表1及び表2より、以下のことが分かる。   The following can be seen from Tables 1 and 2.

コア粒子の組成中にホウ素が含有されていないと高電圧サイクル特性が不十分である(比較例2及び3)。一方、コア粒子の組成中にホウ素が含有されている場合、その比表面積が大きくなると正極スラリー粘度が経時的に増加する(比較例1、4〜6)。コア粒子の組成中にホウ素が含有され、且つ被覆層が形成されていると、正極活物質の比表面積が高くとも正極スラリーの粘度上昇が抑えられ、得られる非水電解液二次電池の良好な高電圧サイクル特性と高い出力特性が両立できる(実施例)。   If boron is not contained in the composition of the core particles, the high voltage cycle characteristics are insufficient (Comparative Examples 2 and 3). On the other hand, when boron is contained in the composition of the core particles, the viscosity of the positive electrode slurry increases with time as its specific surface area increases (Comparative Examples 1, 4 to 6). When boron is contained in the composition of the core particles and the coating layer is formed, even if the specific surface area of the positive electrode active material is high, the increase in viscosity of the positive electrode slurry is suppressed, and the obtained non-aqueous electrolyte secondary battery is excellent. High voltage cycle characteristics and high output characteristics can both be achieved (Example).

本願発明の非水電解液二次電池用正極活物質を用いると、高い充電電圧における使用条件下において、高いサイクル特性と高い出力特性を両立することができる。また、充電電圧を高められるので、エネルギー密度も向上させることが可能になる。さらに、そのような非水電解液二次電池を効率良く得ることができる。このようにして得られる非水電解液二次電池は、ハイブリッド自動車、電気自動車等の大型機器の駆動電源に好適に利用できる。   When the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is used, both high cycle characteristics and high output characteristics can be achieved under usage conditions at high charging voltage. Moreover, since the charging voltage can be increased, the energy density can be improved. Furthermore, such a non-aqueous electrolyte secondary battery can be efficiently obtained. The non-aqueous electrolyte secondary battery thus obtained can be suitably used as a drive power source for large equipment such as hybrid vehicles and electric vehicles.

Claims (6)

一般式LiNi1−x−yCo (1.00≦a≦1.50、0.00≦x≦0.50、0≦y≦0.50、0.000≦z≦0.020、0.002≦w≦0.020、0.00≦x+y≦0.70、MはMn及びAlからなる群より選択される少なくとも一種、MはZr、Ti、Mg、W及びVからなる群より選択される少なくとも一種)で表され、その比表面積が1.2m/g以上であるリチウム遷移金属複合酸化物粒子からなるコア粒子と、
前記コア粒子の表面に存在し、ホウ素及び酸素を含む被覆層と、
を含み、
前記被覆層におけるホウ素の含有量が、コア粒子に対して2.0mol%以下である、非水電解液二次電池用正極活物質。
Formula Li a Ni 1-x-y Co x M 1 y M 2 z B w O 2 (1.00 ≦ a ≦ 1.50,0.00 ≦ x ≦ 0.50,0 ≦ y ≦ 0.50 , 0.000 ≦ z ≦ 0.020, 0.002 ≦ w ≦ 0.020, 0.00 ≦ x + y ≦ 0.70, M 1 is at least one selected from the group consisting of Mn and Al, and M 2 is Zr, Ti, Mg, at least one selected from the group consisting of Mg, W and V), a core particle composed of lithium transition metal composite oxide particles having a specific surface area of 1.2 m 2 / g or more,
A coating layer that is present on the surface of the core particle and contains boron and oxygen,
Including,
The positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the content of boron in the coating layer is 2.0 mol% or less based on the core particles.
前記被覆層を構成するホウ素及び酸素を含む元素の少なくとも一部と、前記コア粒子を構成する元素の少なくとも一部とが化学的あるいは物理的に結合している、請求項1に記載の正極活物質。 The positive electrode active material according to claim 1 , wherein at least a part of the element containing boron and oxygen forming the coating layer and at least a part of the element forming the core particle are chemically or physically bonded. material. 一般式LiNi1−x−yCo (1.00≦a≦1.50、0.00≦x≦0.50、0≦y≦0.50、0.000≦z≦0.020、0.002≦w≦0.020、0.00≦x+y≦0.70、MはMn及びAlからなる群より選択される少なくとも一種、MはZr、Ti、Mg、W及びVからなる群より選択される少なくとも一種)で表され、その比表面積が1.2m/g以上であるリチウム遷移金属複合酸化物粒子からなるコア粒子と、前記コア粒子の表面に存在し、ホウ素及び酸素を含む被覆層とを含む非水電解液二次電池用正極活物質の製造方法であって、
前記コア粒子と、ホウ素及び酸素を含む被覆層原料化合物とを混合し、原料混合物を得る混合工程と、
前記混合工程で得られる前記原料混合物を熱処理する熱処理工程と、
を含み、
前記混合工程において、前記コア粒子に対する、前記被覆層原料化合物中のホウ素元素の割合が2.0mol%以下になるような割合で、前記コア粒子と、前記被覆層原料化合物とを混合する、非水電解液二次電池用正極活物質の製造方法。
Formula Li a Ni 1-x-y Co x M 1 y M 2 z B w O 2 (1.00 ≦ a ≦ 1.50,0.00 ≦ x ≦ 0.50,0 ≦ y ≦ 0.50 , 0.000 ≦ z ≦ 0.020, 0.002 ≦ w ≦ 0.020, 0.00 ≦ x + y ≦ 0.70, M 1 is at least one selected from the group consisting of Mn and Al, and M 2 is Zr, Ti, Mg, W and at least one selected from the group consisting of V)), a core particle composed of lithium transition metal composite oxide particles having a specific surface area of 1.2 m 2 / g or more, A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is present on the surface of core particles and comprises a coating layer containing boron and oxygen,
A mixing step of mixing the core particles and a coating layer raw material compound containing boron and oxygen to obtain a raw material mixture;
A heat treatment step of heat treating the raw material mixture obtained in the mixing step,
Including,
In the mixing step, the core particles and the coating layer raw material compound are mixed in a proportion such that the ratio of the boron element in the coating layer raw material compound to the core particles is 2.0 mol% or less. A method for producing a positive electrode active material for a water electrolyte secondary battery.
前記混合工程における前記被覆層原料化合物が、酸化ホウ素、ホウ素のオキソ酸及びホウ素のオキソ酸塩からなる群より選択される少なくとも一種である、請求項3に記載の製造方法。   The manufacturing method according to claim 3, wherein the coating layer raw material compound in the mixing step is at least one selected from the group consisting of boron oxide, boron oxoacid, and boron oxoacid salt. 前記混合工程における前記被覆原料化合物がオルトホウ酸である、請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein the coating raw material compound in the mixing step is orthoboric acid. 前記熱処理工程における熱処理温度が450℃以下である、請求項3乃至5のいずれか一項に記載の製造方法。   The manufacturing method according to claim 3, wherein a heat treatment temperature in the heat treatment step is 450 ° C. or lower.
JP2014155623A 2014-07-31 2014-07-31 Non-aqueous electrolyte Positive electrode active material for secondary battery Active JP6685640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014155623A JP6685640B2 (en) 2014-07-31 2014-07-31 Non-aqueous electrolyte Positive electrode active material for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155623A JP6685640B2 (en) 2014-07-31 2014-07-31 Non-aqueous electrolyte Positive electrode active material for secondary battery

Publications (2)

Publication Number Publication Date
JP2016033854A JP2016033854A (en) 2016-03-10
JP6685640B2 true JP6685640B2 (en) 2020-04-22

Family

ID=55452683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155623A Active JP6685640B2 (en) 2014-07-31 2014-07-31 Non-aqueous electrolyte Positive electrode active material for secondary battery

Country Status (1)

Country Link
JP (1) JP6685640B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6412094B2 (en) 2016-12-26 2018-10-24 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN107681140A (en) * 2017-09-25 2018-02-09 江苏奔拓电气科技有限公司 A kind of composite anode material for lithium ion battery and preparation method thereof
JP6630863B1 (en) * 2019-04-12 2020-01-15 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries
JP6630865B1 (en) * 2019-04-12 2020-01-15 住友化学株式会社 Lithium composite metal oxide powder and positive electrode active material for lithium secondary batteries
JP6659895B1 (en) * 2019-04-12 2020-03-04 住友化学株式会社 Lithium metal composite oxide powder and positive electrode active material for lithium secondary batteries
WO2024065157A1 (en) * 2022-09-27 2024-04-04 宁德时代新能源科技股份有限公司 Positive electrode active material and preparation method therefor, positive electrode plate, secondary battery, battery module, battery pack, and electric device
CN117855400A (en) * 2022-09-30 2024-04-09 宁夏中化锂电池材料有限公司 Low-gas-yield long-cycle monocrystal ternary cathode material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329434B2 (en) * 2003-07-30 2009-09-09 三菱化学株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP6286855B2 (en) * 2012-04-18 2018-03-07 日亜化学工業株式会社 Positive electrode composition for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2016033854A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
JP6685640B2 (en) Non-aqueous electrolyte Positive electrode active material for secondary battery
JP6286855B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery
JP5401035B2 (en) Lithium ion secondary battery
US10205158B2 (en) LMFP cathode materials with improved electrochemical performance
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
TWI548138B (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP6724292B2 (en) Positive electrode active material for non-aqueous secondary battery
JP6595176B2 (en) Lithium ion secondary battery
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
Xu et al. Enhanced electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathodes by cerium doping and graphene coating
JP6232931B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2010282858A (en) Lithium ion battery
JP6852747B2 (en) A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery.
JP6156078B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6273707B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6213998B2 (en) Active material
JP6597167B2 (en) Positive electrode composition for non-aqueous secondary battery
JP2019091532A (en) Lithium ion secondary battery
JP6839380B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery
JP2008293788A (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the substance
WO2015019483A1 (en) Positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery
JP2014127316A (en) Lithium-based electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6685640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250