JP2014127316A - Lithium-based electricity storage device - Google Patents

Lithium-based electricity storage device Download PDF

Info

Publication number
JP2014127316A
JP2014127316A JP2012282402A JP2012282402A JP2014127316A JP 2014127316 A JP2014127316 A JP 2014127316A JP 2012282402 A JP2012282402 A JP 2012282402A JP 2012282402 A JP2012282402 A JP 2012282402A JP 2014127316 A JP2014127316 A JP 2014127316A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012282402A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP2012282402A priority Critical patent/JP2014127316A/en
Publication of JP2014127316A publication Critical patent/JP2014127316A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large capacity lithium-based electricity storage device, achieving high energy density as well as long life and excellent reliability by solving problems of capacity deterioration or the like due to rapid charge/discharge of lithium cobaltate and lithium iron phosphate.SOLUTION: A lithium-based electricity storage device includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material and an electrolyte interposed between the positive electrode and the negative electrode. In the lithium-based electricity storage device, the positive electrode active material of the positive electrode contains lithium cobaltate (LiCoO) and/or lithium iron phosphate (LiFePO), active carbon and a lithium metal salt.

Description

本発明は、リチウム系蓄電デバイスに関し、さらに詳しく言えば、正極活物質にコバルト酸リチウム、リチウムリン酸鉄、活性炭、リチウム金属塩等を含ませてエネルギー密度、容量特性および寿命特性を向上させたリチウム系蓄電デバイスに関するものである。   The present invention relates to a lithium-based electricity storage device. More specifically, the positive electrode active material contains lithium cobalt oxide, lithium iron phosphate, activated carbon, lithium metal salt, and the like, thereby improving energy density, capacity characteristics, and life characteristics. The present invention relates to a lithium power storage device.

情報通信機器等の各種電子製品にとって、安定的なエネルギーの供給はきわめて重要であり、通常、エネルギーの供給機能はキャパシタによって行われている。すなわち、キャパシタは、各種電子製品の回路において、電気を蓄えかつ放出する機能を担当し、回路内の電気の流れを安定化する役割を果たしている。   For various electronic products such as information communication devices, stable energy supply is extremely important, and usually the energy supply function is performed by a capacitor. That is, the capacitor takes charge of the function of storing and discharging electricity in circuits of various electronic products, and plays a role of stabilizing the flow of electricity in the circuit.

しかしながら、一般的なキャパシタは、充放電が短時間で行われ、寿命が長く、出力密度が高いが、他方においてエネルギー密度が小さいことから、蓄電デバイスとしての使用や用途等に制限がある。   However, a general capacitor is charged / discharged in a short time, has a long life, and has a high output density. On the other hand, since the energy density is small, there are limitations on the use and application as an electricity storage device.

一方、スーパーキャパシタ(またはウルトラキャパシタ)と呼ばれる蓄電デバイスは、速い充放電速度、高い安定性および幅広い使用温度特性を有しているため、次世代エネルギー保存装置として脚光を浴びている。   On the other hand, an electricity storage device called a supercapacitor (or ultracapacitor) has been spotlighted as a next-generation energy storage device because it has a fast charge / discharge rate, high stability, and wide use temperature characteristics.

一般的なキャパシタは、電極構造体、分離膜、電解液等で構成されるが、スーパーキャパシタは、その電極構造体に電力を加えて、電解液内のキャリアイオンを選択的に電極に吸着させる電気化学的反応メカニズムを原理として駆動される。現在、代表的なスーパーキャパシタとしては、電気二重層キャパシタ、疑似キャパシタ、ハイブリッドキャパシタ等が知られている。   A general capacitor is composed of an electrode structure, a separation membrane, an electrolytic solution, and the like. A supercapacitor applies electric power to the electrode structure and selectively adsorbs carrier ions in the electrolytic solution to the electrode. It is driven on the principle of electrochemical reaction mechanism. Currently, electric double layer capacitors, pseudo capacitors, hybrid capacitors and the like are known as typical super capacitors.

電気二重層キャパシタは、活性炭からなる電極を用いて、電気二重層電荷吸着を反応メカニズムとするスーパーキャパシタである。疑似キャパシタは、遷移金属酸化物もしくは伝導性高分子を電極として用いて、疑似容量を反応メカニズムとするスーパーキャパシタである。ハイブリッドキャパシタは、電気二重層キャパシタと疑似キャパシタとの中間的な特性を有するスーパーキャパシタである。   The electric double layer capacitor is a supercapacitor having an electric double layer charge adsorption as a reaction mechanism using an electrode made of activated carbon. The pseudocapacitor is a supercapacitor using a transition metal oxide or a conductive polymer as an electrode and using a pseudocapacitance as a reaction mechanism. The hybrid capacitor is a supercapacitor having intermediate characteristics between an electric double layer capacitor and a pseudo capacitor.

このようなハイブリッドキャパシタとして、活性炭からなる正極と、グラファイトからなる負極とを用い、リチウムイオンをキャリアイオンとして用いることにより、二次電池の高いエネルギー密度と、電気二重層キャパシタの高い出力特性とを併せ持つリチウムイオンキャパシタが注目されている。   By using a positive electrode made of activated carbon and a negative electrode made of graphite as such a hybrid capacitor and using lithium ions as carrier ions, the high energy density of the secondary battery and the high output characteristics of the electric double layer capacitor are achieved. The lithium-ion capacitor that has it has attracted attention.

この種のリチウムイオンキャパシタは、リチウムイオンを吸蔵および離脱し得る負極材料をリチウム金属と接触させ、リチウムイオンを化学的方法もしくは電気化学的方法で負極にあらかじめ吸蔵またはドーピングすることによって、負極電位を下げ、耐電圧を大きくして、エネルギー密度を大幅に向上させるようにしている。   In this type of lithium ion capacitor, a negative electrode material capable of inserting and extracting lithium ions is brought into contact with lithium metal, and the negative electrode potential is reduced by preliminarily inserting or doping lithium ions into the negative electrode by a chemical method or an electrochemical method. The withstand voltage is increased and the energy density is greatly improved.

一方、コバルト酸リチウム(LiCoO)は、レアメタルの一つであるコバルトを含むものの、その理論容量が274mAh/gと高いことから、リチウムイオン二次電池の代表的な正極活物質として採用されている。 On the other hand, although lithium cobaltate (LiCoO 2 ) contains cobalt, which is one of rare metals, its theoretical capacity is as high as 274 mAh / g, so it has been adopted as a typical positive electrode active material for lithium ion secondary batteries. Yes.

また、リチウムリン酸鉄(LiFePO)は、その理論容量が170mAh/gとコバルト酸リチウムよりは低いものの、400℃の高温状態でも酸素を放出しないため安定性が高く、結晶構造が強固で寿命が長いという特性を有している。 Although lithium iron phosphate (LiFePO 4 ) has a theoretical capacity of 170 mAh / g, which is lower than that of lithium cobaltate, it does not release oxygen even at a high temperature of 400 ° C., so it has high stability and has a strong crystal structure and a long lifetime. Has a characteristic of being long.

このような特性に注目して、リチウムリン酸鉄を発電所の電力貯蔵等に用いられる中大型蓄電素子の正極材料やリチウムイオン二次電池、電気二重層キャパシタまたはリチウムイオンキャパシタの正極材料として活用するための研究開発が行われ、一部で実用化されている。   Paying attention to these characteristics, lithium iron phosphate is used as a positive electrode material for medium- and large-sized electricity storage elements used for power storage in power plants, lithium ion secondary batteries, electric double layer capacitors, or positive electrode materials for lithium ion capacitors. Research and development is underway, and some have been put to practical use.

特開2002−117837号公報JP 2002-117837 A 特開2012−89825号公報JP 2012-89825 A

しかしながら、コバルト酸リチウム(LiCoO)は、上記したようにエネルギー密度は高いものの、リチウムリン酸鉄(LiFePO)に比べて結晶構造が強固でないため、高温状態では酸素を放出しやすく、安全性の観点では問題がある。 However, although lithium cobaltate (LiCoO 2 ) has a high energy density as described above, the crystal structure is not as strong as that of lithium iron phosphate (LiFePO 4 ). From the point of view, there is a problem.

これに対して、リチウムリン酸鉄は、導電率が低く抵抗が大きいため、リチウムリン酸鉄を含む従来の蓄電デバイスは、急速な充放電と言った高入出力的な使用によって、温度が上昇するとともに劣化が発生して寿命が短くなる、と言う問題がある。   In contrast, lithium iron phosphate has low electrical conductivity and high resistance, so conventional power storage devices that contain lithium iron phosphate increase in temperature due to high input / output usage such as rapid charge / discharge. In addition, there is a problem that the deterioration occurs and the life is shortened.

特に、リチウムリン酸鉄を含むリチウム二次電池の場合、負極表面のコーティングが破壊され、安定な駆動が損なわれる、と言う問題がある。   In particular, in the case of a lithium secondary battery containing lithium iron phosphate, there is a problem that the coating on the surface of the negative electrode is broken and stable driving is impaired.

そこで、本発明の課題は、コバルト酸リチウムとリチウムリン酸鉄の急速な充放電による容量劣化等の問題を解決して、高エネルギー密度を実現するとともに、寿命が長く信頼性に優れた大容量のリチウム系蓄電デバイスを提供することにある。   Therefore, the problem of the present invention is to solve the problems such as capacity deterioration due to rapid charge and discharge of lithium cobalt oxide and lithium iron phosphate, to realize a high energy density and to have a long life and excellent reliability. To provide a lithium-based electricity storage device.

上記課題を解決するため、本発明は、正極活物質を有する正極と、負極活物質を有する負極と、上記正極と上記負極との間に介在する電解質とを含むリチウム系蓄電デバイスにおいて、上記正極活物質に、コバルト酸リチウム(LiCoO)および/またはリチウムリン酸鉄(LiFePO)と、活性炭と、リチウム金属塩とが含まれていることを特徴としている。 In order to solve the above problems, the present invention provides a lithium-based electricity storage device including a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and an electrolyte interposed between the positive electrode and the negative electrode. The active material is characterized by containing lithium cobaltate (LiCoO 2 ) and / or lithium iron phosphate (LiFePO 4 ), activated carbon, and a lithium metal salt.

本発明において、上記正極活物質に対する上記活性炭の配合比が、5〜30質量%であることが好ましい。   In this invention, it is preferable that the compounding ratio of the said activated carbon with respect to the said positive electrode active material is 5-30 mass%.

また、上記リチウム金属塩が、燐弗化リチウム(LiPF)または硼弗化リチウム(LiBF)もしくはそれらの混合物であることが好ましい。 The lithium metal salt is preferably lithium phosphofluoride (LiPF 6 ), lithium borofluoride (LiBF 4 ), or a mixture thereof.

また、上記正極活物質に対する上記リチウム金属塩の配合比が、1〜5質量%であることが好ましい。   Moreover, it is preferable that the compounding ratio of the said lithium metal salt with respect to the said positive electrode active material is 1-5 mass%.

本発明において、上記混合物における上記活性炭の配合比は10〜90質量%の範囲内であることが好ましい。   In this invention, it is preferable that the compounding ratio of the said activated carbon in the said mixture exists in the range of 10-90 mass%.

また、本発明には、コバルト酸リチウム(LiCoO)および/またはリチウムリン酸鉄(LiFePO)と、活性炭と、リチウム金属塩とを含むリチウム系蓄電デバイス用正極活物質も含まれる。 The present invention also includes a positive electrode active material for a lithium-based electricity storage device that includes lithium cobalt oxide (LiCoO 2 ) and / or lithium iron phosphate (LiFePO 4 ), activated carbon, and a lithium metal salt.

本発明によれば、従来の活性炭のみを正極材料として用いたリチウムイオンキャパシタに比べて、より大きな容量が得られ、また、従来のコバルト酸リチウムやリチウムリン酸鉄のみを正極材料として用いたリチウムイオン二次電池に比べて、高入出力、保存特性および安全性が向上することによって、長期間にわたって安定して用いることが可能なリチウム系蓄電デバイスを実現することができる。   According to the present invention, a larger capacity can be obtained as compared with a conventional lithium ion capacitor using only activated carbon as a positive electrode material, and lithium using only lithium cobalt oxide or lithium iron phosphate as a positive electrode material. Compared to an ion secondary battery, high input / output, storage characteristics, and safety are improved, so that a lithium-based power storage device that can be used stably over a long period of time can be realized.

次に、本発明の実施形態について説明するが、本発明はこの実施形態に限定されるものではない。   Next, an embodiment of the present invention will be described, but the present invention is not limited to this embodiment.

本発明では、リチウム系蓄電デバイスのエネルギー密度を向上させるため、高容量のリチウム酸化物として、コバルト酸リチウム(LiCoO)とリチウムリン酸鉄(LiFePO)のいずれか一方、もしくはその両方を正極活物質として含む。 In the present invention, in order to improve the energy density of the lithium-based electricity storage device, either one or both of lithium cobalt oxide (LiCoO 2 ) and lithium iron phosphate (LiFePO 4 ) is used as the positive electrode as the high-capacity lithium oxide. Contains as an active material.

リチウム酸化物は、高容量であるが抵抗も高いため、様々な問題が誘発される。そこで、本発明では、正極活物質として、コバルト酸リチウムやリチウムリン酸鉄のようなリチウム酸化物を単独では用いず、これに活性炭を所定量混合したものを用いることによって、正極活物質の抵抗を下げて、相対的に寿命特性を向上させている。   Lithium oxide has a high capacity but a high resistance, so various problems are induced. Therefore, in the present invention, as the positive electrode active material, a lithium oxide such as lithium cobalt oxide or lithium iron phosphate is not used alone, but a mixture of a predetermined amount of activated carbon is used to thereby improve the resistance of the positive electrode active material. The life characteristics are relatively improved.

本発明において、正極活物質に対する活性炭の配合比は、5〜30質量%であることが好ましい。   In this invention, it is preferable that the compounding ratio of the activated carbon with respect to a positive electrode active material is 5-30 mass%.

すなわち、正極活物質に対する活性炭の配合比が5質量%未満であると、急速な充放電によるコバルト酸リチウムやリチウムリン酸鉄の構造破壊が問題となる。また、コバルト酸リチウムやリチウムリン酸鉄は高抵抗であるため、リチウム系蓄電デバイスの充放電サイクルが持続的に繰り返されると、リチウム系蓄電デバイスの劣化が深刻化して、寿命が短縮されるおそれがある。   That is, when the mixing ratio of the activated carbon with respect to the positive electrode active material is less than 5% by mass, structural breakdown of lithium cobalt oxide or lithium iron phosphate due to rapid charge / discharge becomes a problem. In addition, since lithium cobaltate and lithium iron phosphate have high resistance, if the charge / discharge cycle of the lithium-based electricity storage device is repeated continuously, the deterioration of the lithium-based energy storage device may become serious and the life may be shortened. There is.

これに対して、正極活物質に対する活性炭の配合比が30質量%を超えると、相対的に質量エネルギー密度の高いコバルト酸リチウムやリチウムリン酸鉄の配合比率が下がるため、リチウムイオン二次電池に近い容量を確保することが困難になる。   On the other hand, when the blending ratio of the activated carbon with respect to the positive electrode active material exceeds 30% by mass, the blending ratio of lithium cobaltate or lithium iron phosphate having a relatively high mass energy density is lowered. It becomes difficult to secure a close capacity.

また、本発明では、リチウム系蓄電デバイスの保存特性を向上させるために、正極活物質にリチウム金属塩を配合する。   Moreover, in this invention, in order to improve the storage characteristic of a lithium-type electrical storage device, a lithium metal salt is mix | blended with a positive electrode active material.

リチウムイオンキャパシタやリチウムイオン二次電池の電解液中のリチウム金属塩は、使用期間中に電極や電解液に含まれる僅かな水分や外部からケース内に浸入してくる水分と反応することで分解し減少してしまう。その分、リチウムイオンの輸送能力が低下するため、充放電特性も低下することになる。正極活物質にリチウム金属塩を配合することにより、この問題が解決される。   Lithium metal salts in electrolytes of lithium ion capacitors and lithium ion secondary batteries decompose by reacting with slight moisture contained in electrodes and electrolytes and moisture entering the case from the outside during the period of use. And then decrease. Accordingly, the lithium ion transport capability is reduced, and the charge / discharge characteristics are also reduced. This problem can be solved by adding a lithium metal salt to the positive electrode active material.

本発明において、正極活物質に対するリチウム金属塩の配合比は、1〜5質量%であることが好ましい。   In this invention, it is preferable that the compounding ratio of the lithium metal salt with respect to a positive electrode active material is 1-5 mass%.

正極活物質に対するリチウム金属塩の配合比が1質量%未満であると、電解液中のリチウム金属塩が電極や電解液に含まれる僅かな水分や外部からケース内に浸入してくる水分と反応することで分解し減少し、充放電特性も低下するおそれがあるので好ましくない。   When the compounding ratio of the lithium metal salt to the positive electrode active material is less than 1% by mass, the lithium metal salt in the electrolytic solution reacts with slight moisture contained in the electrode or the electrolytic solution or moisture entering the case from the outside. This is not preferable because it may be decomposed and reduced, and the charge / discharge characteristics may be deteriorated.

これに対して、正極活物質に対するリチウム金属塩の配合比が5質量%を超えると、電解液中のリチウム金属塩が電極や電解液に含まれる僅かな水分や外部からケース内に浸入してくる水分と反応することで分解し減少する量は、正極活物質の5%以下にも拘わらず、配合比を高くした分、相対的に質量エネルギー密度の高いコバルト酸リチウムやリチウムリン酸鉄の配合比率が下がるため、容量が少なくなってしまうので好ましくない。   On the other hand, when the compounding ratio of the lithium metal salt to the positive electrode active material exceeds 5% by mass, the lithium metal salt in the electrolytic solution enters the case from a slight amount of moisture contained in the electrode or the electrolytic solution or from the outside. The amount that decomposes and decreases by reacting with the moisture that comes is the amount of lithium cobaltate and lithium iron phosphate, which have a relatively high mass energy density, in proportion to the increase in the blending ratio, despite being 5% or less of the positive electrode active material. Since the blending ratio is lowered, the capacity is decreased, which is not preferable.

本発明においては、正極活物質として、コバルト酸リチウム(LiCoO)、リチウムリン酸鉄(LiFePO)、活性炭、リチウム金属塩の中から少なくとも3種以上を用い、負極活物質には、リチウムイオンがプレドーピングされた炭素材料を用いる。 In the present invention, at least three or more of lithium cobalt oxide (LiCoO 2 ), lithium iron phosphate (LiFePO 4 ), activated carbon, and lithium metal salt are used as the positive electrode active material, and lithium ion is used as the negative electrode active material. Is a pre-doped carbon material.

次に、本発明による実施例1〜6と比較例1〜6とを作製し、これらの特性を対比したので、これについて説明する。   Next, Examples 1 to 6 and Comparative Examples 1 to 6 according to the present invention were produced and their characteristics were compared, which will be described.

〔実施例1〕
〈正極電極の製造〉
正極活物質として、コバルト酸リチウム(LiCoO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で65:30:5の割合で混合した(第1混合物)。そして、第1混合物と、ケッチェンブラックと、ポリビニリデンフルオライドとを質量比で91.5:6.0:2.5の割合で混合した(第2混合物)。
[Example 1]
<Manufacture of positive electrode>
As a positive electrode active material, lithium cobaltate (LiCoO 2 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 65: 30: 5 (first mixture). Then, the first mixture, ketjen black, and polyvinylidene fluoride were mixed at a mass ratio of 91.5: 6.0: 2.5 (second mixture).

続いて、第2混合物を溶媒であるN−メチルピロリドンに投入し撹拌してスラリーとし、このスラリーを15μm厚のアルミニウムホイル上にドクターブレード技法で塗布したのち、真空雰囲気中において150℃で約5時間かけて乾燥させた。乾燥後の電極の厚さは約30μmであった。   Subsequently, the second mixture was put into N-methylpyrrolidone as a solvent and stirred to form a slurry. This slurry was applied onto a 15 μm thick aluminum foil by a doctor blade technique, and then at about 150 ° C. in a vacuum atmosphere at about 5 ° C. Dry over time. The thickness of the electrode after drying was about 30 μm.

〈負極電極の製造〉
負極活物質として、グラファイトと、ケッチェンブラックと、ポリビニリデンフルオライドとを質量比で91.5:6.0:2.5の割合で混合し、溶媒であるN−メチルピロリドンに投入し撹拌してスラリーとし、このスラリーを10μm厚の銅箔上にドクターブレード技法で塗布したのち、真空雰囲気中において150℃で約5時間かけて乾燥させた。乾燥後の電極の厚さは約20μmであった。
<Manufacture of negative electrode>
As a negative electrode active material, graphite, ketjen black, and polyvinylidene fluoride are mixed at a mass ratio of 91.5: 6.0: 2.5, and the mixture is added to N-methylpyrrolidone as a solvent and stirred. The slurry was applied to a copper foil having a thickness of 10 μm by a doctor blade technique and then dried at 150 ° C. for about 5 hours in a vacuum atmosphere. The thickness of the electrode after drying was about 20 μm.

〈電解液の製造〉
溶媒としてのエチレンカルボネートと、エチルメチルカルボネートと、リチウム塩としてのLiPFとを20:63:17の質量比で混合して電解液を製造した。
<Manufacture of electrolyte>
Ethylene carbonate as a solvent, ethyl methyl carbonate, and LiPF 6 as a lithium salt were mixed at a mass ratio of 20:63:17 to produce an electrolyte solution.

〈負極電極のプレドーピング〉
リチウム金属箔と上記負極電極とを、それらの間にポリエチレン樹脂製の微多孔フィルムからなるセパレータを挟んで対向して接触させることにより、リチウムイオンをドーピングさせた。このドーピングは約1時間行い、リチウムイオンのドーピング量が、負極活物質の理論容量の約30%になるようにした。
<Pre-doping of negative electrode>
The lithium metal foil and the negative electrode were brought into contact with each other with a separator made of a polyethylene resin microporous film interposed therebetween, thereby doping lithium ions. This doping was performed for about 1 hour so that the doping amount of lithium ions was about 30% of the theoretical capacity of the negative electrode active material.

〈リチウム系蓄電デバイスの組立〉
上記のようにして製造した正極電極と負極電極とをセパレータを介して渦巻き状に巻回し、外径18.3mm,軸長65mmの円筒ケース内に挿入したのち、ケース内を電解液で満たし封口体で密閉して、リチウム系蓄電デバイスを作製した。
<Assembly of lithium storage device>
The positive electrode and the negative electrode manufactured as described above are spirally wound through a separator and inserted into a cylindrical case having an outer diameter of 18.3 mm and an axial length of 65 mm, and then the case is filled with an electrolyte and sealed Sealed with a body to produce a lithium-based electricity storage device.

〔実施例2〕
正極活物質として、コバルト酸リチウム(LiCoO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で90:5:5の割合で混合した以外は実施例1と同様とした。
[Example 2]
The same procedure as in Example 1 was performed except that lithium cobaltate (LiCoO 2 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed in a mass ratio of 90: 5: 5 as the positive electrode active material.

〔実施例3〕
正極活物質として、リチウムリン酸鉄(LiFePO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で65:30:5の割合で混合した以外は実施例1と同様とした。
Example 3
The same procedure as in Example 1 was performed except that lithium iron phosphate (LiFePO 4 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 65: 30: 5 as the positive electrode active material.

〔実施例4〕
正極活物質として、リチウムリン酸鉄(LiFePO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で90:5:5の割合で混合したこと以外は実施例1と同様とした。
Example 4
The same as Example 1 except that lithium iron phosphate (LiFePO 4 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 90: 5: 5 as the positive electrode active material. .

〔実施例5〕
正極活物質として、コバルト酸リチウム(LiCoO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で94:5:1の割合で混合したこと以外は実施例1と同様とした。
Example 5
The same as Example 1 except that lithium cobaltate (LiCoO 2 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed in a mass ratio of 94: 5: 1 as a positive electrode active material.

〔実施例6〕
正極活物質として、リチウムリン酸鉄(LiFePO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で94:5:1の割合で混合したこと以外は実施例1と同様とした。
Example 6
The same as Example 1 except that lithium iron phosphate (LiFePO 4 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 94: 5: 1 as the positive electrode active material. .

〔比較例1〕
正極活物質として、コバルト酸リチウム(LiCoO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で55:40:5の割合で混合したこと以外は実施例1と同様とした。
[Comparative Example 1]
The same as Example 1 except that lithium cobaltate (LiCoO 2 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed in a mass ratio of 55: 40: 5 as the positive electrode active material.

〔比較例2〕
正極活物質として、コバルト酸リチウム(LiCoO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で94:1:5の割合で混合したこと以外は実施例1と同様とした。
[Comparative Example 2]
Except that lithium cobalt oxide (LiCoO 2 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed as a positive electrode active material in a mass ratio of 94: 1: 5, the same as Example 1.

〔比較例3〕
正極活物質として、リチウムリン酸鉄(LiFePO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で55:40:5の割合で混合したこと以外は実施例1と同様とした。
[Comparative Example 3]
The same as Example 1 except that lithium iron phosphate (LiFePO 4 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 55: 40: 5 as the positive electrode active material. .

〔比較例4〕
正極活物質として、リチウムリン酸鉄(LiFePO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で94:1:5の割合で混合したこと以外は実施例1と同様とした。
[Comparative Example 4]
The same as Example 1 except that lithium iron phosphate (LiFePO 4 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 94: 1: 5 as the positive electrode active material. .

〔比較例5〕
正極活物質として、コバルト酸リチウム(LiCoO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で69.5:30:0.5の割合で混合したこと以外は実施例1と同様とした。
[Comparative Example 5]
Example 1 except that lithium cobaltate (LiCoO 2 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 69.5: 30: 0.5 as the positive electrode active material. Same as above.

〔比較例6〕
正極活物質として、リチウムリン酸鉄(LiFePO)と、活性炭と、燐弗化リチウム(LiPF)を質量比で69.5:30:0.5の割合で混合したこと以外は実施例1と同様とした。
[Comparative Example 6]
Example 1 except that lithium iron phosphate (LiFePO 4 ), activated carbon, and lithium phosphofluoride (LiPF 6 ) were mixed at a mass ratio of 69.5: 30: 0.5 as the positive electrode active material. And the same.

上記実施例1〜6と上記比較例1〜6をそれぞれ15個作製し、これらを5個ずつ3群に分け、第1群については、作製直後における初期容量、第2群については、60℃,90R.H.(相対湿度)の恒温槽で40日間保存後の容量、第3群については、急速充放電後の容量をそれぞれ測定した。その結果を表1に示す。各容量(mAh)は、n=5の平均値である。   Fifteen each of the above Examples 1-6 and Comparative Examples 1-6 were prepared, and these were divided into three groups of five each. The first group had an initial capacity immediately after the production, and the second group had 60 ° C. , 90R. H. Regarding the capacity after storage for 40 days in a (relative humidity) thermostat and the third group, the capacity after rapid charge / discharge was measured. The results are shown in Table 1. Each capacity (mAh) is an average value of n = 5.

なお、急速充放電後の容量は、作製後特に保存期間は置かずに、5Aの定電流充電で30秒充電、短絡で30秒間放電(電動アシスト自転車のブレーキ等の回生エネルギー回収等を想定)という条件で10回急速充放電したものを、30分で4.0Vまで充電した後、30分で3.0Vまで放電して測定した容量である。   In addition, the capacity after rapid charge / discharge is charged for 30 seconds with a constant current charge of 5A and discharged for 30 seconds with a short-circuit without assuming a storage period (assuming regenerative energy recovery such as a brake of an electric assist bicycle). It is the capacity measured by discharging to 3.0 V in 30 minutes after charging up to 4.0 V in 30 minutes.

Figure 2014127316
Figure 2014127316

実施例1,2と、比較例1の初期容量を対比すると、比較例1の容量が低いことが分かる。これは、比較例1の方が、理論容量が274mAhと高いコバルト酸リチウムの比率が低いことによる。このことから、活性炭の配合比は30%以下が好ましい。   Comparing the initial capacities of Examples 1 and 2 and Comparative Example 1, it can be seen that the capacity of Comparative Example 1 is low. This is because Comparative Example 1 has a lower ratio of lithium cobaltate having a theoretical capacity of 274 mAh. Therefore, the blending ratio of activated carbon is preferably 30% or less.

次に、実施例3,4と、比較例3の初期容量を対比すると、比較例3の方が低い。これも、比較例3の方が、理論容量が170mAhと比較的高いリチウムリン酸鉄の比率が低いことによる。このことからも、活性炭の配合比は30%以下が好ましい。   Next, when the initial capacity of Examples 3 and 4 and Comparative Example 3 are compared, Comparative Example 3 is lower. This is also because Comparative Example 3 has a lower ratio of lithium iron phosphate having a theoretical capacity of 170 mAh. Also from this, the blending ratio of activated carbon is preferably 30% or less.

次に、実施例2と比較例2、および、実施例4と比較例4の初期容量に対する急速充放電後の容量を比較すると、実施例2,4に対して、比較例2,4の急速充放電による劣化率が高いことが分かる。   Next, comparing the capacities after rapid charge / discharge with respect to the initial capacities of Example 2 and Comparative Example 2 and of Example 4 and Comparative Example 4, the speeds of Comparative Examples 2 and 4 were compared with those of Examples 2 and 4. It turns out that the deterioration rate by charging / discharging is high.

その理由として、比較例2,4は、活性炭の比率が1%と低いため、急速な充放電により活性炭のリチウムイオンの吸脱着量だけでは対応しきれず、急速なリチウムイオンの出入りによりコバルト酸リチウムやリチウムリン酸鉄の結晶構造が一部破壊され、劣化率が高くなったものと推測される。このことから、活性炭の配合比は5%以上が好ましい。   The reason is that in Comparative Examples 2 and 4, since the ratio of activated carbon is as low as 1%, it cannot be handled only by the amount of lithium ions adsorbed and desorbed by rapid charging and discharging, and lithium cobalt oxide is rapidly introduced and exited by lithium ions. It is speculated that the crystal structure of lithium iron phosphate was partially destroyed and the deterioration rate increased. Therefore, the blending ratio of activated carbon is preferably 5% or more.

次に、実施例5と比較例5、および、実施例6と比較例6の初期容量に対する保存後の容量(60℃,90R.H.(相対湿度)の恒温槽で40日間保存後の容量)を対比すると、実施例5,6に対して、比較例5,6の方が保存後の劣化率が高いことが分かる。   Next, the capacity after storage for 40 days in a constant temperature bath of 60 ° C. and 90 RH (relative humidity) with respect to the initial capacity of Example 5 and Comparative Example 5, and Example 6 and Comparative Example 6 ) Is compared with Examples 5 and 6, Comparative Examples 5 and 6 have a higher deterioration rate after storage.

その理由として、高温多湿保存により、外部からケース内に浸入した水分がリチウム金属塩と反応することにより、リチウム金属塩が分解して減少した分、リチウムイオンの輸送能力が低下したためと推測される。このことから、リチウム金属塩の配合比は1%以上であることが好ましい。   The reason for this is presumed that the lithium ion transport ability decreased due to the decomposition and reduction of the lithium metal salt due to the reaction of the water that entered the case from the outside with the lithium metal salt due to high-temperature and high-humidity storage. . For this reason, the blending ratio of the lithium metal salt is preferably 1% or more.

なお、本発明において、リチウム金属塩の配合比の上限を5%としているのは、電極や電解液に含まれている水分および外部からケース内に浸入してくる水分は僅かであるため、その分を補う量としては5%で十分であり、また、リチウム金属塩の配合比を高めれば高めるほど、コバルト酸リチウム等の容量に大きく影響を及ぼす活物質の配合比を下げなければならなくなるためである。これらのことから、リチウム金属塩の配合比は、1%以上、5%以下が好ましい、と言える。   In the present invention, the upper limit of the mixing ratio of the lithium metal salt is set to 5% because the moisture contained in the electrode and the electrolyte and the moisture entering the case from the outside are very small. 5% is sufficient to supplement the amount, and the higher the compounding ratio of the lithium metal salt, the lower the compounding ratio of the active material that greatly affects the capacity of lithium cobaltate and the like. It is. From these, it can be said that the blending ratio of the lithium metal salt is preferably 1% or more and 5% or less.

以上、本発明の実施形態について説明したが、これはあくまで例示であって、制限的に解釈されるものではない。本発明の範囲は、特許請求の範囲によって示され、その均等的な技術も当然に含まれるものである。   As mentioned above, although embodiment of this invention was described, this is an illustration to the last, Comprising: It is not interpreted restrictively. The scope of the present invention is defined by the scope of claims for patent, and naturally equivalent techniques thereof are also included.

Claims (5)

正極活物質を有する正極と、負極活物質を有する負極と、上記正極と上記負極との間に介在する電解質とを含むリチウム系蓄電デバイスにおいて、
上記正極活物質に、コバルト酸リチウム(LiCoO)および/またはリチウムリン酸鉄(LiFePO)と、活性炭と、リチウム金属塩とが含まれていることを特徴とするリチウム系蓄電デバイス。
In a lithium-based electricity storage device comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and an electrolyte interposed between the positive electrode and the negative electrode,
A lithium-based electricity storage device, wherein the positive electrode active material contains lithium cobalt oxide (LiCoO 2 ) and / or lithium iron phosphate (LiFePO 4 ), activated carbon, and a lithium metal salt.
上記正極活物質に対する上記活性炭の配合比が、5〜30質量%であることを特徴とする請求項1に記載のリチウム系蓄電デバイス。   2. The lithium-based electricity storage device according to claim 1, wherein a ratio of the activated carbon to the positive electrode active material is 5 to 30% by mass. 上記リチウム金属塩が、燐弗化リチウム(LiPF)または硼弗化リチウム(LiBF)もしくはそれらの混合物であることを特徴とする請求項1に記載のリチウム系蓄電デバイス。 2. The lithium-based electricity storage device according to claim 1, wherein the lithium metal salt is lithium phosphofluoride (LiPF 6 ), lithium borofluoride (LiBF 4 ), or a mixture thereof. 上記正極活物質に対する上記リチウム金属塩の配合比が、1〜5質量%であることを特徴とする請求項1または3に記載のリチウム系蓄電デバイス。   4. The lithium-based electricity storage device according to claim 1, wherein a compounding ratio of the lithium metal salt to the positive electrode active material is 1 to 5 mass%. コバルト酸リチウム(LiCoO)および/またはリチウムリン酸鉄(LiFePO)と、活性炭と、リチウム金属塩とむリチウム系蓄電デバイス用正極活物質。 A positive electrode active material for a lithium-based electricity storage device including lithium cobaltate (LiCoO 2 ) and / or lithium iron phosphate (LiFePO 4 ), activated carbon, and a lithium metal salt.
JP2012282402A 2012-12-26 2012-12-26 Lithium-based electricity storage device Pending JP2014127316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282402A JP2014127316A (en) 2012-12-26 2012-12-26 Lithium-based electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282402A JP2014127316A (en) 2012-12-26 2012-12-26 Lithium-based electricity storage device

Publications (1)

Publication Number Publication Date
JP2014127316A true JP2014127316A (en) 2014-07-07

Family

ID=51406657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282402A Pending JP2014127316A (en) 2012-12-26 2012-12-26 Lithium-based electricity storage device

Country Status (1)

Country Link
JP (1) JP2014127316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098197A1 (en) * 2017-11-14 2019-05-23 旭化成株式会社 Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium electric storage element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098197A1 (en) * 2017-11-14 2019-05-23 旭化成株式会社 Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium electric storage element
KR20200035447A (en) * 2017-11-14 2020-04-03 아사히 가세이 가부시키가이샤 Positive electrode coating solution, positive electrode precursor, and non-aqueous lithium power storage element
CN111066108A (en) * 2017-11-14 2020-04-24 旭化成株式会社 Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium storage element
JPWO2019098197A1 (en) * 2017-11-14 2020-07-27 旭化成株式会社 Positive electrode coating liquid, positive electrode precursor, and non-aqueous lithium storage element
TWI704713B (en) * 2017-11-14 2020-09-11 日商旭化成股份有限公司 Positive electrode coating solution, positive electrode precursor and non-aqueous lithium storage element
EP3712916A4 (en) * 2017-11-14 2021-01-27 Asahi Kasei Kabushiki Kaisha Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium electric storage element
KR102320298B1 (en) * 2017-11-14 2021-11-01 아사히 가세이 가부시키가이샤 Positive electrode coating liquid, positive electrode precursor, and non-aqueous lithium power storage device
CN111066108B (en) * 2017-11-14 2022-04-26 旭化成株式会社 Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium storage element
US11942621B2 (en) 2017-11-14 2024-03-26 Asahi Kasei Kabushiki Kaisha Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium electric storage element

Similar Documents

Publication Publication Date Title
JP6156939B2 (en) Lithium ion secondary battery
KR101138584B1 (en) Lithum ion capacitor
JP6355163B2 (en) Lithium ion battery
KR101546251B1 (en) Electrolyte for electrochemical device and the electrochemical device thereof
EP2840639B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
WO2017006713A1 (en) Electricity storage device
JP5541502B2 (en) Lithium secondary battery and manufacturing method thereof
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
WO2023070268A1 (en) Electrochemical device and power consumption apparatus comprising same
CN101110477B (en) Electro-chemistry energy storing and converting device
JP2006040748A (en) Electrochemical device
JPWO2020049843A1 (en) Coated positive electrode active material, manufacturing method of lithium ion secondary battery and lithium ion secondary battery
KR20090074429A (en) Lithium secondaty battery comprising electrode composition for high voltage and high coulomb efficiency
CN112863898A (en) Lithium supplement additive for positive electrode of lithium ion capacitor and application of lithium supplement additive
JP2012089823A (en) Lithium ion capacitor and manufacturing method for the same
WO2013151096A1 (en) Lithium secondary cell
JP2005327489A (en) Positive electrode for power storage element
JP2013229320A (en) Lithium ion secondary battery
JP6197541B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2017168330A1 (en) Lithium-ion cell
KR20130140945A (en) Lithium-ion capacitor and manufacturing method of therof
JP2012252797A (en) Nonaqueous electrolyte secondary battery
JP2014127316A (en) Lithium-based electricity storage device
WO2013001919A1 (en) Non-aqueous electrolyte secondary battery
KR20140077227A (en) Active material for cathode of lithium ion capacitor and manufacturing method for the same