WO2013151096A1 - Lithium secondary cell - Google Patents

Lithium secondary cell Download PDF

Info

Publication number
WO2013151096A1
WO2013151096A1 PCT/JP2013/060218 JP2013060218W WO2013151096A1 WO 2013151096 A1 WO2013151096 A1 WO 2013151096A1 JP 2013060218 W JP2013060218 W JP 2013060218W WO 2013151096 A1 WO2013151096 A1 WO 2013151096A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
electrode plate
positive electrode
aqueous electrolyte
Prior art date
Application number
PCT/JP2013/060218
Other languages
French (fr)
Japanese (ja)
Inventor
学 落田
安部 武志
貴之 土井
小久見 善八
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Publication of WO2013151096A1 publication Critical patent/WO2013151096A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is interposed between a positive electrode plate using a lithium-containing transition metal complex oxide as a positive electrode active material, a negative electrode plate using a material capable of insertion / extraction or oxidation / reduction of lithium as a negative electrode active material, and the positive electrode plate and the negative electrode plate.
  • the present invention relates to a lithium secondary battery including a separator and a non-aqueous electrolyte in which a lithium salt is dissolved.
  • Lithium secondary batteries using an electrolytic solution have a higher energy density and superior charge / discharge cycle characteristics as compared to aqueous secondary batteries.
  • metal lithium is not used as the negative electrode, which is excellent in safety and is widely used as a lithium ion battery.
  • lithium secondary batteries are being actively developed and improved for application to electric vehicles and power storage applications, and these applications require higher energy density than required for portable devices. Therefore, there are demands for charge / discharge cycle characteristics and storage characteristics under more severe use conditions.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-26018
  • Patent Document 2 Japanese Patent No. 4366724
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-86954 that improves the charge / discharge cycle characteristics of a secondary battery by adding a compound to an electrolytic solution to form a protective film on the negative electrode.
  • lithium-containing transition metal composite oxide such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or lithium iron phosphate (LiFePO 4 )
  • LiCoO 2 lithium cobaltate
  • LiNiO 2 lithium nickelate
  • LiFePO 4 lithium iron phosphate
  • transition metal elements (Co, Fe, Ni)
  • lithium manganate was used as the positive electrode active material. Similar to the problem of elution Mn that occurs in some cases, it is assumed that a problem occurs in which the transition metal elements (Co, Fe, Ni) are reduced and deposited on the negative electrode carbon material. Assuming severe operating temperature conditions in electric vehicles and power storage applications, etc., electrolyte additives that prevent reduction deposition on the negative electrode due to elution of various transition metal elements are desired, not only Mn, It has not been put into practical use.
  • azacrown ethers are bonded to other organic groups, and this compound exists as a protective film on the negative electrode surface.
  • the protective film on the surface is composed of not only compounds in which azacrown ethers are bonded to other organic groups, but also a wide variety of components such as decomposition products of carbonates which are appropriately selected solvent components.
  • the azacrown ethers that exist as a part of the compound in the protective film in such a state are fixed in the egg film in which lithium ions are embedded as a complex, and the transition metal ions eluted from the positive electrode are electrolyzed.
  • an exchange reaction between lithium ions and transition metal ions cannot occur. Therefore, this technique cannot prevent the reduction precipitation reaction on the negative electrode surface of transition metal ions.
  • the purpose of the present invention is to prevent transition metals eluted from the positive electrode component from diffusing and migrating in the non-aqueous electrolyte and reducing and precipitating on the carbon material of the negative electrode, thereby suppressing deterioration in charge / discharge cycle characteristics and storage characteristics.
  • An object of the present invention is to provide a rechargeable lithium battery.
  • a lithium secondary battery to be improved by the present invention includes a positive electrode plate containing a lithium-containing transition metal composite oxide as a positive electrode active material, and a negative electrode containing a material capable of insertion / extraction of lithium or redox as a negative electrode active material A plate, a separator interposed between the positive electrode plate and the negative electrode plate, and a non-aqueous electrolyte solution in which a lithium salt is dissolved.
  • a carbon material capable of inserting and extracting lithium can be used as the negative electrode active material.
  • the non-aqueous electrolyte contains cyclic ethers that can complex with transition metal ions dissolved in the electrolyte.
  • the cyclic ether that can be used in the present invention is at least one cyclic ether selected from azacrown ethers in which hydrogen bonded to a nitrogen atom is not substituted with other groups, and thiacrown ethers. is there. That is, these cyclic ethers can be used alone or in combination.
  • azacrown ethers the hydrogen bonded to the nitrogen atom in the azacrown ether is not substituted with another group, so the oxygen and nitrogen atoms in the constituent elements are negatively charged unpaired electrons in the ring.
  • Lithium ion is the only cation present in the non-aqueous electrolyte at the beginning of use of the lithium secondary battery.
  • a part of this lithium ion is cyclic ether. It exists as a complex incorporated into a class.
  • the transition metal element in the lithium-containing transition metal composite oxide used as the positive electrode active material is eluted into the non-aqueous electrolyte due to the use condition history such as high temperature, the transition metal element is converted into a divalent cation as the electrolyte. Elute in.
  • the divalent transition metal cation has a larger electrical interaction between the cyclic ethers and the cation in the non-aqueous electrolyte than the monovalent lithium-on. For this reason, the transition metal cation eluted from the positive electrode drives out lithium ions from the cyclic ethers complexed with the lithium ions, and newly forms a complex with the cyclic ethers. The transition metal ions once complexed with the cyclic ethers in this way are not released again into the electrolyte because their electrical interaction is larger than that of monovalent lithium ions.
  • a chain-like complex that forms a complex with lithium ions such as ethylenediaminetetraacetic acid, can be applied, but when these are used as additives to non-aqueous electrolytes, transition metals are deposited on the negative electrode. The effect which suppresses was not acquired.
  • the transition metal ions captured by the chain complex can approach the inside of the electric double layer on the carbon material of the negative electrode, and are considered to have received electrons and reduced and precipitated.
  • the content of cyclic ethers in the non-aqueous electrolyte is preferably 0.001 to 1% by mass with respect to the non-aqueous electrolyte.
  • the content of the cyclic ether relative to the non-aqueous electrolyte is less than 0.001% by mass, the transition metal is likely to be deposited on the negative electrode plate, and when the content of the cyclic ether exceeds 1% by mass, the conductivity of the electrolyte This is because the rate and initial discharge capacity are likely to decrease.
  • nonaqueous electrolyte solution used with the above-mentioned lithium secondary battery may be used independently as a nonaqueous electrolyte solution for lithium secondary batteries.
  • azacrown ethers added to the non-aqueous electrolyte include 1 aza-12-crown-4, 1,7 diaza-12-crown-4, 1 aza-15-crown-5, 1,7 diaza-15. Crown-5, 1,4,7 triaza-15-crown-5, 1aza-18-crown-6, 1,7 diaza-18-crown-6, 1,10 diaza-18-crown-6, 1 4,7 triaza-18-crown-6, and the like.
  • the thiacrown ethers added to the non-aqueous electrolyte include 1 thia-12-crown-4, 1,7 dithia-12-crown-4, 1 thia-15-crown-5, 1,7 dithia. -15-crown-5, 1,4,7 trithia-15-crown-5, 1 thia-18-crown-6, 1,7 dithia-18-crown-6, 1,10 dithia-18-crown-6 1,4,7 Trithia-18-crown-6, etc. are used.
  • the amount of cyclic ether added to the non-aqueous electrolyte is the amount of transition metal element eluted from the lithium-containing transition metal composite oxide as the positive electrode active material, as can be imagined from the capture form of the transition metal cation.
  • the above addition amount is necessary. In general, it is difficult to accurately predict the amount of transition metal eluted from various positive electrode active materials under various usage conditions, but as a result of considering the assumed usage conditions, It was found that the effect can be obtained by adding 0.001 mass% to 10 mass% of crown ethers.
  • the upper limit of the addition amount is desirably 1% by mass or less in consideration of the solubility of various crown ethers in the non-aqueous electrolyte and the conductivity of the electrolyte after dissolution.
  • These cyclic ethers may be used alone or in combination of two or more.
  • the non-aqueous electrolyte used in the present invention was prepared by mixing LiPF 6 as an electrolyte in a mixed solvent in which ethylene carbonate (EC) as a cyclic carbonate and diethyl carbonate (DEC) as a chain carbonate were mixed at a volume ratio of 1: 1. 1 mol ⁇ dm ⁇ 3 dissolved.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • LiClO 4 , LiBF 4 , LiOSO 2 CF 3 , LiN (SO 2 CF) 2 , LiNC (SO 2 CF) 3 , lithium bisoxalate borate, etc. can be used other than those described here. .
  • cyclic carbonates As the solvent, cyclic carbonates, cyclic esters, ethers and the like are generally used.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethyl carbonate, fluoroethylene carbonate, and trifluoropropylene carbonate
  • chain carbonates include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propyl.
  • the lithium secondary battery according to the present invention can be constituted by adding the above-described crown ethers in a mass ratio, preferably 0.001% by mass to 1% by mass, with respect to the non-aqueous electrolyte.
  • Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 assuming Ni, Co, Mn as eluting transition metal elements
  • LiFePO 4 assuming Fe. did.
  • Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 is Li 2 CO 3
  • Ni (OH) 2 , Co (OH) 3 , Mn (OH) 4 are weighed and mixed at a predetermined mixing ratio And heated in air at 900 ° C. to obtain a predetermined active material.
  • LiFePO 4 , FeC 2 O 4 , NH 4 H 2 PO 4 , and Li 2 CO 3 are weighed at a predetermined blending ratio, mixed in acetone, vacuum dried at 60 ° C., and then heated at 700 ° C. in a nitrogen stream. Thus, a predetermined active material was obtained.
  • the present invention relates to an electrolytic solution additive, and the positive electrode active material only needs to contain a transition element, and is not limited to the active materials listed here. LiMn 2 O 4 , LiCoO 2 , LiNiO 2 Etc., and those obtained by substituting a part of the transition metal element in the positive electrode active material described herein can also be used.
  • a slurry is prepared by dispersing and mixing these active materials, acetylene black as a conductive aid, and polyvinylidene fluoride as a binder in a dispersion solvent of N-methyl-2-pyrrolidone in a weight ratio of 88: 6: 6, respectively. To do.
  • This slurry is applied on a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector, dried to evaporate and vaporize N-methyl-2-pyrrolidone as a dispersion solvent, and then a predetermined active material density by a roll press. To obtain a positive electrode mixture.
  • this was cut into a width of 50 mm and a length of 80 mm to form a positive electrode plate 1, and a positive electrode current collecting tab 2 was attached to the positive electrode.
  • natural graphite having an average particle diameter of 10 ⁇ m and polyvinylidene fluoride as a binder are dispersed in a dispersion solvent of N-methyl-2-pyrrolidone in a weight ratio of 92: 8.
  • a dispersion solvent of N-methyl-2-pyrrolidone in a weight ratio of 92: 8.
  • This slurry is applied onto a 10 ⁇ m thick copper foil serving as a negative electrode current collector, dried to evaporate and dry N-methyl-2-pyrrolidone as a dispersion solvent, and then a predetermined active material density by a roll press. To obtain a negative electrode mixture.
  • this was cut into a width of 55 mm and a length of 85 mm to form a negative electrode plate 3, and a negative electrode current collecting tab 4 was attached to the negative electrode.
  • natural graphite is used as the carbon material.
  • the present invention is not limited to this, and amorphous carbon, artificial graphite, hard carbon, and the like can be used as appropriate.
  • a material capable of oxidation and reduction of lithium Sn, SnO, Si, SiO, metallic lithium, and the like can also be used.
  • the fluoropolymer polyvinylidene fluoride is used as the binder, a styrene butadiene rubber that is a diene polymer, an acrylate ester that is an acrylate polymer, or the like can be used as appropriate.
  • the produced positive electrode plate 1 and the negative electrode plate 3 are opposed to each other through a separator 5 made of a polyethylene microporous film having a thickness of 30 ⁇ m, a width of 58 mm, and a length of 90 mm to produce a laminated electrode group.
  • the separator is not limited to the polyethylene described here, but a polypropylene microporous film, a porous polyethylene / polypropylene multilayer film, polyester fiber, polyamide fiber, non-woven fabric made of glass fiber, etc., and their surfaces And ceramic fine particles such as silica, alumina, and titania attached thereto.
  • the electrode group is housed in a battery container composed of an aluminum laminate film 6, and 1 ml of an electrolyte is injected into the battery container.
  • a battery for testing was obtained by sealing the opening of the battery container so that the current collecting tab was taken out.
  • the aluminum laminate film 6 is, for example, a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like).
  • PET polyethylene terephthalate
  • the electrode size, electrode group shape, and battery shape to be produced can be arbitrarily selected and are not limited to the above-described configuration.
  • the electrolyte is a solution in which lithium hexafluorophosphate (LiPF 6 ), which is an electrolyte, is dissolved at a concentration of 1 mol ⁇ dm ⁇ 3 in a solvent in which ethylene carbonate (EC) and dimethyl carbonate are mixed at a volume ratio of 1: 1.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • dimethyl carbonate dimethyl carbonate
  • Example 2 1 aza 12-crown-4 ether having a weight ratio of 1 wt% was added to this standard electrolyte.
  • the batteries of Experimental Examples 1 to 19, and Experimental Examples 25 to 33, Experimental Examples 20 to 24, and Experimental Example 34 were respectively charged at 25 ° C. with a charge end voltage of 4.3 V, 5 A constant current charge at a time rate (current value of 10 mA), a discharge end voltage of 2.8 V, and a constant current discharge at a time rate of 5 hours were performed, and the initial discharge capacity was confirmed.
  • the values are shown in Tables 1 and 2, respectively.
  • transition metal element When the transition metal element is reduced and deposited on the negative electrode, it can be confirmed by elemental analysis of the transition metal remaining on the negative electrode after the test. Quantification of the transition metal element deposited on the negative electrode was carried out by the method shown below.
  • the collected mixture was immersed in a nitric acid solution in a sealed pressurized acid decomposition vessel and then heated and held at 121 ° C. for 48 hours, and the solution prepared therefrom was quantified using ICP-MS (7500CX manufactured by Agilent Technologies). The quantitative result was calculated as the abundance ratio by weight ratio of the detection element to the negative electrode active material. The results are shown in Tables 1 and 2.
  • the non-aqueous electrolyte contains at least one cyclic ether selected from azacrown ethers in which hydrogen bonded to a nitrogen atom is not substituted with other groups, and thiacrown ethers. Therefore, it is possible to prevent the transition metal eluted from the positive electrode active material into the non-aqueous electrolyte from being deposited on the negative electrode plate. As a result, deterioration of charge / discharge cycle characteristics and storage characteristics can be prevented even under severe use conditions.

Abstract

Provided is a lithium secondary cell in which the charge/discharge cycle characteristics and storage characteristics do not readily deteriorate, even under extreme usage conditions. There is configured a lithium secondary cell provided with: a positive electrode plate containing, as the positive electrode active material, a lithium-containing transition metal complex oxide; a negative electrode plate containing, as the negative electrode active material, a material in which oxidation and reduction or insertion and separation of lithium is possible; a separator positioned between the positive electrode plate and the negative electrode plate; and a non-aqueous electrolyte solution in which a lithium salt is dissolved. The non-aqueous electrolyte solution contains at least one type of cyclic ether selected from a thiacrown ether and an azacrown ether in which hydrogen bonded to a nitrogen atom is not substituted with another group.

Description

リチウム二次電池Lithium secondary battery
 本発明はリチウム含有遷移金属複合酸化物を正極活物質とする正極板と、リチウムの挿入脱離又は酸化還元が可能な材料を負極活物質とする負極板と、正極板と負極板の間に介在されるセパレータと、リチウム塩を溶解させた非水電解液とを備えるリチウム二次電池に関するものである。 The present invention is interposed between a positive electrode plate using a lithium-containing transition metal complex oxide as a positive electrode active material, a negative electrode plate using a material capable of insertion / extraction or oxidation / reduction of lithium as a negative electrode active material, and the positive electrode plate and the negative electrode plate. The present invention relates to a lithium secondary battery including a separator and a non-aqueous electrolyte in which a lithium salt is dissolved.
 正極板にリチウム含有遷移金属複合酸化物を用い、負極板にリチウムの挿入脱離又は酸化還元が可能な材料を用い、正極板と負極板の間にセパレータを配置し、リチウム塩を溶解させた非水電解液を用いたリチウム二次電池は、水溶液系二次電池に比べエネルギー密度が高く、その充放電サイクル特性が優れている。特に、負極にリチウムの挿入脱離が可能な炭素材料を用いた場合には、金属リチウムを負極として用いないことから安全性に優れ、リチウムイオン電池と称され広く実用化されている。現在このリチウム二次電池は、電気自動車や電力貯蔵用途への適用を目指した開発・改良が盛んに進められており、これら用途ではポータブル機器等に求められる以上の高エネルギー密度化が必要とされており、より過酷な使用条件下での充放電サイクル特性、保存特性が求められている。 A non-aqueous solution in which a lithium-containing transition metal composite oxide is used for the positive electrode plate, a material capable of lithium insertion / desorption or oxidation / reduction is used for the negative electrode plate, a separator is disposed between the positive electrode plate and the negative electrode plate, and a lithium salt is dissolved. Lithium secondary batteries using an electrolytic solution have a higher energy density and superior charge / discharge cycle characteristics as compared to aqueous secondary batteries. In particular, when a carbon material capable of inserting and removing lithium is used for the negative electrode, metal lithium is not used as the negative electrode, which is excellent in safety and is widely used as a lithium ion battery. Currently, lithium secondary batteries are being actively developed and improved for application to electric vehicles and power storage applications, and these applications require higher energy density than required for portable devices. Therefore, there are demands for charge / discharge cycle characteristics and storage characteristics under more severe use conditions.
 正極の活物質としてマンガン酸リチウム(LiMn24)を用いたリチウムイオン電池の場合、高温で遷移金属元素のMnが非水電解液中に溶出することが顕著で、これが非水電解液中を拡散・泳動した後、負極炭素材料上で還元析出し、この際、電解液・電解液の分解生成物と反応し充放電に関与できなくなるLiを含んだ皮膜を負極の炭素材料上で形成することから、高温でのサイクル特性、保存特性の劣化が顕著である。 In the case of a lithium ion battery using lithium manganate (LiMn 2 O 4 ) as the positive electrode active material, it is remarkable that Mn of the transition metal element elutes in the non-aqueous electrolyte at a high temperature. After being diffused and migrated, it is reduced and deposited on the negative electrode carbon material, and at this time, a film containing Li that reacts with the electrolytic solution and decomposition products of the electrolytic solution and cannot participate in charge / discharge is formed on the negative electrode carbon material. Therefore, the deterioration of cycle characteristics and storage characteristics at high temperatures is remarkable.
 この課題に対しては、1,3ジオキソラン又はコハク酸を電解液に添加することによって溶出マンガンの析出を防止する技術(特許文献1:特開平11-26018号)、リチウムホウ素酸酸化物を電解液に添加することによって溶出マンガンを不安定化させる技術(特許文献2:特許第4366724号)、及び、アザクラウンエーテル類の窒素原子の一部に重合性不飽和結合を有する有機基が結合した化合物を電解液に添加して、負極上に保護被膜を形成することによって、二次電池の充放電サイクル特性を向上させる技術(特許文献3:特開2010-86954号)が提案されている。 In order to solve this problem, a technique for preventing precipitation of eluted manganese by adding 1,3 dioxolane or succinic acid to the electrolytic solution (Patent Document 1: Japanese Patent Laid-Open No. 11-26018), and electrolysis of lithium borate oxide Technology for destabilizing eluting manganese by adding to liquid (Patent Document 2: Japanese Patent No. 4366724) and organic group having polymerizable unsaturated bond bonded to part of nitrogen atom of azacrown ethers There has been proposed a technique (Patent Document 3: Japanese Patent Application Laid-Open No. 2010-86954) that improves the charge / discharge cycle characteristics of a secondary battery by adding a compound to an electrolytic solution to form a protective film on the negative electrode.
特開平11-26018号公報Japanese Patent Laid-Open No. 11-26018 特許第4366724号公報Japanese Patent No. 4366724 特開2010-86954号公報JP 2010-86954 A
 しかしながら、特許文献1及び2の技術を用いても、正極活物質中から溶出した遷移金属元素が負極上で還元析出する現象は、負極の作動電位に大きく依存しており、主として金属リチウム電位基準に対し0から1Vの作動電位範囲を使用する負極を選択した場合には、遷移金属元素の負極上での還元析出を避けることができない。すなわち、リチウムの挿入脱離が可能な炭素材料、リチウムとの酸化還元反応が可能なSn、SnO、Si、SiO、金属リチウム等を負極に選択した場合は、いずれも遷移金属元素が負極上で還元析出する現象が発生することになる。 However, even if the techniques of Patent Documents 1 and 2 are used, the phenomenon in which the transition metal element eluted from the positive electrode active material is reduced and precipitated on the negative electrode largely depends on the operating potential of the negative electrode, and is mainly based on the metal lithium potential standard. On the other hand, when a negative electrode using an operating potential range of 0 to 1 V is selected, reduction precipitation of the transition metal element on the negative electrode cannot be avoided. That is, when a negative electrode is selected as a carbon material capable of insertion / extraction of lithium, Sn, SnO, Si, SiO, metallic lithium, etc. capable of an oxidation-reduction reaction with lithium, the transition metal element is present on the negative electrode. A phenomenon of reduction precipitation occurs.
 なお、正極活物質として、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、リン酸鉄リチウム(LiFePO4)等のリチウム含有遷移金属複合酸化物を用いた場合は、比較的遷移金属元素の溶出が少ないと考えられているが、55℃の高温で非水電解液中に遷移金属元素(Co,Fe,Ni)が溶出することが報告されている(Journal of The Electrochemical Society,153,9,A1760-A1764,2006)。この報告では、遷移金属元素(Co,Fe,Ni)の溶出量は、マンガン酸リチウムの溶出量と比較して6~25%と低レベルであるものの、マンガン酸リチウムを正極活物質として用いた場合に生じる溶出Mnの問題と同様に、遷移金属元素(Co,Fe,Ni)が負極炭素材料上で還元析出する問題が発生すると想定される。電気自動車や電力貯蔵用途等での過酷な使用温度条件を想定すると、Mnに限らず多様な遷移金属元素の溶出による負極上での還元析出を防止する電解液添加剤が望まれているが、実用化には至っていない。 When a lithium-containing transition metal composite oxide such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or lithium iron phosphate (LiFePO 4 ) is used as the positive electrode active material, a relatively transition metal Although it is thought that element elution is small, it has been reported that transition metal elements (Co, Fe, Ni) are eluted in a non-aqueous electrolyte at a high temperature of 55 ° C. (Journal of The Electrochemical Society, 153). , 9, A1760-A1764, 2006). In this report, although the elution amount of transition metal elements (Co, Fe, Ni) is 6 to 25% lower than the elution amount of lithium manganate, lithium manganate was used as the positive electrode active material. Similar to the problem of elution Mn that occurs in some cases, it is assumed that a problem occurs in which the transition metal elements (Co, Fe, Ni) are reduced and deposited on the negative electrode carbon material. Assuming severe operating temperature conditions in electric vehicles and power storage applications, etc., electrolyte additives that prevent reduction deposition on the negative electrode due to elution of various transition metal elements are desired, not only Mn, It has not been put into practical use.
 また、特許文献3(特開2010-86954号)の技術では、アザクラウンエーテル類が他の有機基と結合しており、且つこの化合物が負極表面上に保護皮膜として存在しているため、負極表面上の保護皮膜は、アザクラウンエーテル類が他の有機基と結合した化合物のみならず、例えば適宜選択した溶媒成分であるカーボネート類の分解生成物等、多種多様の成分で構成されている。このような状態の保護皮膜中に化合物の一部として存在しているアザクラウンエーテル類は、リチウムイオンを錯体として包埋したたま皮膜中に固着されており、正極から溶出した遷移金属イオンが電解液中を泳動、拡散して負極表面上に到達した場合に、リチウムイオンと遷移金属イオンとの交換反応を生じることができない。そのため、この技術では、遷移金属イオンの負極表面上の還元析出反応を防止することができない。 Further, in the technique of Patent Document 3 (Japanese Patent Laid-Open No. 2010-86954), azacrown ethers are bonded to other organic groups, and this compound exists as a protective film on the negative electrode surface. The protective film on the surface is composed of not only compounds in which azacrown ethers are bonded to other organic groups, but also a wide variety of components such as decomposition products of carbonates which are appropriately selected solvent components. The azacrown ethers that exist as a part of the compound in the protective film in such a state are fixed in the egg film in which lithium ions are embedded as a complex, and the transition metal ions eluted from the positive electrode are electrolyzed. When migrating and diffusing in the liquid to reach the surface of the negative electrode, an exchange reaction between lithium ions and transition metal ions cannot occur. Therefore, this technique cannot prevent the reduction precipitation reaction on the negative electrode surface of transition metal ions.
 本発明の目的は、正極成分から溶出した遷移金属が非水電解液中を拡散・泳動し負極の炭素材料上で還元析出することを防止して、充放電サイクル特性および保存特性の低下を抑制することができるリチウム二次電池を提供することにある。 The purpose of the present invention is to prevent transition metals eluted from the positive electrode component from diffusing and migrating in the non-aqueous electrolyte and reducing and precipitating on the carbon material of the negative electrode, thereby suppressing deterioration in charge / discharge cycle characteristics and storage characteristics. An object of the present invention is to provide a rechargeable lithium battery.
 本発明が改良の対象とするリチウム二次電池は、正極活物質としてリチウム含有遷移金属複合酸化物を含む正極板と、負極活物質としてリチウムの挿入脱離又は酸化還元が可能な材料を含む負極板と、正極板と負極板の間に介在されるセパレータと、リチウム塩を溶解させた非水電解液とを備えている。負極活物質としては、リチウムの挿入脱離が可能な炭素材料を用いることができる。 A lithium secondary battery to be improved by the present invention includes a positive electrode plate containing a lithium-containing transition metal composite oxide as a positive electrode active material, and a negative electrode containing a material capable of insertion / extraction of lithium or redox as a negative electrode active material A plate, a separator interposed between the positive electrode plate and the negative electrode plate, and a non-aqueous electrolyte solution in which a lithium salt is dissolved. As the negative electrode active material, a carbon material capable of inserting and extracting lithium can be used.
 本発明のリチウム二次電池では、電解液中に溶解した遷移金属イオンと錯形成することができる環状エーテル類が非水電解液に含まれている。本発明に用いることができる環状エーテル類は、窒素原子に結合している水素が他の基で置換されていないアザクラウンエーテル類、及びチアクラウンエーテル類から選ばれる少なくとも1種の環状エーテル類である。すなわちこれらの環状エーテル類を単独または混合して使用することができる。アザクラウンエーテル類では、アザクラウンエーテル類中の窒素原子に結合している水素が他の基で置換されていないため、構成元素中の酸素、窒素原子において負に帯電した不対電子が環の内側方向に配向しており、様々な陽イオンを環の内側に取り込んで捕獲することができる。また、チアクラウンエーテル類では、チアクラウンエーテル類中の硫黄原子に他の置換基がなく、アザクラウンエーテル類と同様の効果を期待できる。 In the lithium secondary battery of the present invention, the non-aqueous electrolyte contains cyclic ethers that can complex with transition metal ions dissolved in the electrolyte. The cyclic ether that can be used in the present invention is at least one cyclic ether selected from azacrown ethers in which hydrogen bonded to a nitrogen atom is not substituted with other groups, and thiacrown ethers. is there. That is, these cyclic ethers can be used alone or in combination. In azacrown ethers, the hydrogen bonded to the nitrogen atom in the azacrown ether is not substituted with another group, so the oxygen and nitrogen atoms in the constituent elements are negatively charged unpaired electrons in the ring. Oriented in the inner direction, various cations can be taken inside the ring and captured. Further, in the thiacrown ethers, the sulfur atom in the thiacrown ethers does not have other substituents, and the same effect as the azacrown ethers can be expected.
 リチウム二次電池の使用初期に非水電解液中に存在している陽イオンはリチウムイオンのみであり、環状エーテル類が添加された非水電解液中では、このリチウムイオンの一部が環状エーテル類に取り込まれた錯体として存在している。高温等の使用条件履歴により正極活物質として用いられるリチウム含有遷移金属複合酸化物中の遷移金属元素が非水電解液に溶出する場合には、この遷移金属元素は2価の陽イオンとして電解液中に溶出する。非水電解液中での環状エーテル類と陽イオンとの電気的相互作用は、1価のリチウムオンに比べて2価の遷移金属陽イオンの方が大きい。このため、正極から溶出した遷移金属陽イオンは、リチウムイオンと錯形成した環状エーテル類からリチウムイオンを追い出して、新たに環状エーテル類と錯形成することになる。このようにして一旦環状エーテル類と錯形成した遷移金属イオンは、その電気的相互作用が1価のリチウムイオンに対して大きいことから、再度電解液中に放出されることはない。この錯形成した錯体が還元雰囲気である負極材料へ電解液中を拡散・泳動したとしても、負極上での電子授受を伴う還元反応が生じる電気二重層内部まで近づくことができないため、負極材料上への析出が発生しない。ここで述べた様に、正極から溶出した遷移金属元素を捕捉する効果は、正極に接触している電解液中に環状エーテル類が存在していることが最も効果的である。 Lithium ion is the only cation present in the non-aqueous electrolyte at the beginning of use of the lithium secondary battery. In the non-aqueous electrolyte to which cyclic ethers are added, a part of this lithium ion is cyclic ether. It exists as a complex incorporated into a class. When the transition metal element in the lithium-containing transition metal composite oxide used as the positive electrode active material is eluted into the non-aqueous electrolyte due to the use condition history such as high temperature, the transition metal element is converted into a divalent cation as the electrolyte. Elute in. The divalent transition metal cation has a larger electrical interaction between the cyclic ethers and the cation in the non-aqueous electrolyte than the monovalent lithium-on. For this reason, the transition metal cation eluted from the positive electrode drives out lithium ions from the cyclic ethers complexed with the lithium ions, and newly forms a complex with the cyclic ethers. The transition metal ions once complexed with the cyclic ethers in this way are not released again into the electrolyte because their electrical interaction is larger than that of monovalent lithium ions. Even if this complexed complex diffuses and migrates in the electrolyte to the negative electrode material in a reducing atmosphere, it cannot approach the inside of the electric double layer where the reduction reaction accompanied by electron transfer on the negative electrode occurs. Precipitation does not occur. As described herein, the effect of capturing the transition metal element eluted from the positive electrode is most effective when cyclic ethers are present in the electrolyte solution in contact with the positive electrode.
 リチウムイオンと錯形成する錯体として鎖状のもの、例えば、エチレンジアミン四酢酸等を適用することができるが、これらを非水電解液への添加剤として使用した場合、負極上で遷移金属が析出するのを抑制する効果は得られなかった。鎖状錯体に捕獲された遷移金属イオンは負極の炭素材料上の電気二重層内部まで近づくことができ、電子を授受し還元析出したと考えられる。 A chain-like complex that forms a complex with lithium ions, such as ethylenediaminetetraacetic acid, can be applied, but when these are used as additives to non-aqueous electrolytes, transition metals are deposited on the negative electrode. The effect which suppresses was not acquired. The transition metal ions captured by the chain complex can approach the inside of the electric double layer on the carbon material of the negative electrode, and are considered to have received electrons and reduced and precipitated.
 また、非水電解液中の環状エーテル類の含有量は、非水電解液に対して0.001乃至1質量%にするのが好ましい。非水電解液に対する環状エーテル類の含有量が0.001質量%未満では、遷移金属が負極板上に析出し易くなり、環状エーテル類の含有量が1質量%を超えると、電解液の導電率および初期放電容量が低下し易くなるからである。 Further, the content of cyclic ethers in the non-aqueous electrolyte is preferably 0.001 to 1% by mass with respect to the non-aqueous electrolyte. When the content of the cyclic ether relative to the non-aqueous electrolyte is less than 0.001% by mass, the transition metal is likely to be deposited on the negative electrode plate, and when the content of the cyclic ether exceeds 1% by mass, the conductivity of the electrolyte This is because the rate and initial discharge capacity are likely to decrease.
 なお、上述のリチウム二次電池で用いる非水電解液は、リチウム二次電池用の非水電解液として単独で用いても良いことは言うまでもない。 In addition, it cannot be overemphasized that the nonaqueous electrolyte solution used with the above-mentioned lithium secondary battery may be used independently as a nonaqueous electrolyte solution for lithium secondary batteries.
本発明の実施の形態であるリチウム二次電池を構成する正極板、負極板およびセパレータを示す斜視図である。It is a perspective view which shows the positive electrode plate, negative electrode plate, and separator which comprise the lithium secondary battery which is embodiment of this invention. 本発明の実施の形態であるリチウム二次電池を示す斜視図である。It is a perspective view which shows the lithium secondary battery which is embodiment of this invention.
 以下、本発明に係るリチウム二次電池の実施の形態について説明する。 Hereinafter, embodiments of the lithium secondary battery according to the present invention will be described.
 非水電解液中に添加するアザクラウンエーテル類としては、1アザ-12-クラウン-4、1,7ジアザ-12-クラウン-4、1アザ-15-クラウン-5、1,7ジアザ-15-クラウン-5、1,4,7トリアザ-15-クラウン-5、1アザ-18-クラウン-6、1,7ジアザ-18-クラウン-6、1,10ジアザ-18-クラウン-6、1,4,7トリアザ-18-クラウン-6、等を用いる。 Examples of azacrown ethers added to the non-aqueous electrolyte include 1 aza-12-crown-4, 1,7 diaza-12-crown-4, 1 aza-15-crown-5, 1,7 diaza-15. Crown-5, 1,4,7 triaza-15-crown-5, 1aza-18-crown-6, 1,7 diaza-18-crown-6, 1,10 diaza-18-crown-6, 1 4,7 triaza-18-crown-6, and the like.
 また、非水電解液中に添加するチアクラウンエーテル類としては、1チア-12-クラウン-4、1,7ジチア-12-クラウン-4、1チア-15-クラウン-5、1,7ジチア-15-クラウン-5、1,4,7トリチア-15-クラウン-5、1チア-18-クラウン-6、1,7ジチア-18-クラウン-6、1,10ジチア-18-クラウン-6、1,4,7トリチア-18-クラウン-6、等を用いる。 The thiacrown ethers added to the non-aqueous electrolyte include 1 thia-12-crown-4, 1,7 dithia-12-crown-4, 1 thia-15-crown-5, 1,7 dithia. -15-crown-5, 1,4,7 trithia-15-crown-5, 1 thia-18-crown-6, 1,7 dithia-18-crown-6, 1,10 dithia-18-crown-6 1,4,7 Trithia-18-crown-6, etc. are used.
 非水電解液中に添加する環状エーテル類の添加量は、その遷移金属陽イオンの捕捉形式から想像されるように正極活物質であるリチウム含有遷移金属複合酸化物から溶出する遷移金属元素の量以上の添加量が必要である。一般に、多様な使用条件下で多種の正極活物質から溶出する遷移金属量を正確に予測することは困難であるが、想定される使用条件を加味して検討した結果、非水電解液に対し、0.001質量%から10質量%のクラウンエーテル類を添加することで効果が得られることが判明した。但し、添加量の上限は、各種クラウンエーテルの非水電解液への溶解性、溶解後の電解液の導電性を加味して1質量%添加以下とするのが望ましい。これらの環状エーテル類は単独のみならず、2種以上を混合しても良い。 The amount of cyclic ether added to the non-aqueous electrolyte is the amount of transition metal element eluted from the lithium-containing transition metal composite oxide as the positive electrode active material, as can be imagined from the capture form of the transition metal cation. The above addition amount is necessary. In general, it is difficult to accurately predict the amount of transition metal eluted from various positive electrode active materials under various usage conditions, but as a result of considering the assumed usage conditions, It was found that the effect can be obtained by adding 0.001 mass% to 10 mass% of crown ethers. However, the upper limit of the addition amount is desirably 1% by mass or less in consideration of the solubility of various crown ethers in the non-aqueous electrolyte and the conductivity of the electrolyte after dissolution. These cyclic ethers may be used alone or in combination of two or more.
 本発明で使用した非水電解液は、環状カーボネートであるエチレンカーボネート(EC)と鎖状カーボネートであるジエチルカーボネート(DEC)を体積比で1:1に混合した混合溶媒に、電解質としてLiPF6を1mol・dm-3溶解させたものである。 The non-aqueous electrolyte used in the present invention was prepared by mixing LiPF 6 as an electrolyte in a mixed solvent in which ethylene carbonate (EC) as a cyclic carbonate and diethyl carbonate (DEC) as a chain carbonate were mixed at a volume ratio of 1: 1. 1 mol · dm −3 dissolved.
 電解質としては、ここで述べた以外に、LiClO4、LiBF4、LiOSO2CF3、LiN(SO2CF)2、LiNC(SO2CF)3、リチウムビスオキサレートボレートなどを使用することができる。 As the electrolyte, LiClO 4 , LiBF 4 , LiOSO 2 CF 3 , LiN (SO 2 CF) 2 , LiNC (SO 2 CF) 3 , lithium bisoxalate borate, etc. can be used other than those described here. .
 溶媒としては、環状カーボネート、環状エステル、エーテル類などが一般に用いられている。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチルカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネートなどが、鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネートなどが、環状エステルとしてはγ-ブチルラクトン、2-メチル-γ-ブチルラクトンなどが、エーテル類としてはテトラヒドロフロン、1,4-ジオキサン、1,3-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルエーテル、ジエチルエーテル、エチレングリコールなどが一般に用いられており、これらを単独、若しくは2種類以上を混合して使用することができる。 As the solvent, cyclic carbonates, cyclic esters, ethers and the like are generally used. Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethyl carbonate, fluoroethylene carbonate, and trifluoropropylene carbonate, and chain carbonates include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propyl. Carbonates, etc., cyclic esters such as γ-butyl lactone, 2-methyl-γ-butyl lactone, etc., ethers such as tetrahydrofurone, 1,4-dioxane, 1,3-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl ether, diethyl ether, ethylene glycol, etc. are generally used. These are used alone or in combination of two or more. Can be used as a mixture.
 上記の非水電解液に対して、既述のクラウンエーテル類を質量比で好ましくは0.001質量%から1質量%添加することで本発明に係るリチウム二次電池を構成することができる。 The lithium secondary battery according to the present invention can be constituted by adding the above-described crown ethers in a mass ratio, preferably 0.001% by mass to 1% by mass, with respect to the non-aqueous electrolyte.
 正極活物質としては、溶出する遷移金属元素としてNi,Co,Mnを想定したLi(Ni1/3Co1/3Mn1/3)O2、およびFeを想定したLiFePO4の2種類を合成した。Li(Ni1/3Co1/3Mn1/3)O2は、Li2CO3、Ni(OH)2、Co(OH)3、Mn(OH)4を所定の配合比で秤量後混合し、900℃の空気中で加熱して所定の活物質を得た。LiFePO4は、FeC24、NH42PO4、Li2CO3を所定の配合比で秤量後アセトン中で混合し、60℃で真空乾燥した後、窒素気流中700℃で加熱して所定の活物質を得た。本発明は電解液添加剤に関するものであり、正極活物質は遷移元素を含有していればよく、ここで挙げた活物質に限定されるものではなく、LiMn24、LiCoO2、LiNiO2等や、ここで述べた正極活物質中の遷移金属元素の一部を元素置換したもの等も使用することができる。 As the positive electrode active material, two types are synthesized: Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 assuming Ni, Co, Mn as eluting transition metal elements, and LiFePO 4 assuming Fe. did. Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 is Li 2 CO 3 , Ni (OH) 2 , Co (OH) 3 , Mn (OH) 4 are weighed and mixed at a predetermined mixing ratio And heated in air at 900 ° C. to obtain a predetermined active material. For LiFePO 4 , FeC 2 O 4 , NH 4 H 2 PO 4 , and Li 2 CO 3 are weighed at a predetermined blending ratio, mixed in acetone, vacuum dried at 60 ° C., and then heated at 700 ° C. in a nitrogen stream. Thus, a predetermined active material was obtained. The present invention relates to an electrolytic solution additive, and the positive electrode active material only needs to contain a transition element, and is not limited to the active materials listed here. LiMn 2 O 4 , LiCoO 2 , LiNiO 2 Etc., and those obtained by substituting a part of the transition metal element in the positive electrode active material described herein can also be used.
 これら活物質と、導電助剤としてアセチレンブラック、結着剤としてポリフッ化ビニリデンをそれぞれ88:6:6の重量比で分散溶媒であるN-メチル-2-ピロリドン中に分散させ混合しスラリを作製する。このスラリを正極集電体となる厚さ20μmのアルミ箔上に塗布し、乾燥して分散溶媒であるN-メチル-2-ピロリドンを蒸発・乾燥気化させた後ロールプレスにより所定の活物質密度の正極合剤を得る。 A slurry is prepared by dispersing and mixing these active materials, acetylene black as a conductive aid, and polyvinylidene fluoride as a binder in a dispersion solvent of N-methyl-2-pyrrolidone in a weight ratio of 88: 6: 6, respectively. To do. This slurry is applied on a 20 μm thick aluminum foil serving as a positive electrode current collector, dried to evaporate and vaporize N-methyl-2-pyrrolidone as a dispersion solvent, and then a predetermined active material density by a roll press. To obtain a positive electrode mixture.
 図1に示すように、これを幅50mm、長さ80mmに切断して正極板1とし、この正極に正極集電タブ2を取り付けた。 As shown in FIG. 1, this was cut into a width of 50 mm and a length of 80 mm to form a positive electrode plate 1, and a positive electrode current collecting tab 2 was attached to the positive electrode.
 リチウムの挿入脱離が可能な炭素材料として、平均粒径10μmの天然黒鉛と結着剤としてポリフッ化ビニリデンを92:8の重量比で分散溶媒であるN-メチル-2-ピロリドン中に分散させ混合しスラリを作製する。このスラリを負極集電体となる厚さ10μmの銅箔上に塗布し、乾燥して分散溶媒であるN-メチル-2-ピロリドンを蒸発・乾燥気化させた後ロールプレスにより所定の活物質密度の負極合剤を得る。 As a carbon material capable of inserting and desorbing lithium, natural graphite having an average particle diameter of 10 μm and polyvinylidene fluoride as a binder are dispersed in a dispersion solvent of N-methyl-2-pyrrolidone in a weight ratio of 92: 8. Mix to make a slurry. This slurry is applied onto a 10 μm thick copper foil serving as a negative electrode current collector, dried to evaporate and dry N-methyl-2-pyrrolidone as a dispersion solvent, and then a predetermined active material density by a roll press. To obtain a negative electrode mixture.
 図1に示すように、これを幅55mm、長さ85mmに切断して負極板3とし、この負極に負極集電タブ4を取り付けた。 As shown in FIG. 1, this was cut into a width of 55 mm and a length of 85 mm to form a negative electrode plate 3, and a negative electrode current collecting tab 4 was attached to the negative electrode.
 本例では、炭素材料として天然黒鉛を用いたが、これに限定されるものではなく、非晶質炭素、人造黒鉛、ハードカーボン等も適宜使用できる。リチウムの酸化還元が可能な材料としては、Sn、SnO、Si、SiO、金属リチウム等も使用できる。また、結着剤としてフッ素系重合体のポリフッ化ビニリデンを使用したが、ジエン系重合体であるスチレンブタジエンゴム、アクリレート系重合体であるアクリル酸エステル等も適宜使用できる。 In this example, natural graphite is used as the carbon material. However, the present invention is not limited to this, and amorphous carbon, artificial graphite, hard carbon, and the like can be used as appropriate. As a material capable of oxidation and reduction of lithium, Sn, SnO, Si, SiO, metallic lithium, and the like can also be used. Moreover, although the fluoropolymer polyvinylidene fluoride is used as the binder, a styrene butadiene rubber that is a diene polymer, an acrylate ester that is an acrylate polymer, or the like can be used as appropriate.
 作製した正極板1と負極板3とを、厚さ30μm、幅58mm、長さ90mmのポリエチレン微多孔膜からなるセパレータ5を介して対向させ、積層状の電極群を作製する。セパレータとしては、ここで述べたポリエチレンに限定されるものではなく、ポリプロピレン微多孔膜、多孔性のポリエチレンとポリプロピレンとの多層フィルム、ポリエステル繊維、ポリアミド繊維、ガラス繊維等からなる不織布、及びこれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたものを挙げることができる。 The produced positive electrode plate 1 and the negative electrode plate 3 are opposed to each other through a separator 5 made of a polyethylene microporous film having a thickness of 30 μm, a width of 58 mm, and a length of 90 mm to produce a laminated electrode group. The separator is not limited to the polyethylene described here, but a polypropylene microporous film, a porous polyethylene / polypropylene multilayer film, polyester fiber, polyamide fiber, non-woven fabric made of glass fiber, etc., and their surfaces And ceramic fine particles such as silica, alumina, and titania attached thereto.
 この電極群を、図2に示すように、アルミニウム製のラミネートフィルム6で構成された電池容器内に収容させると共に、この電池容器内に電解液を1ml注入後、上記の正極集電タブと負極集電タブとを外部に取り出すようにして上記の電池容器の開口部を封口させて、試験用の電池を得た。アルミニウム製のラミネートフィルム6は、例えば、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。なお作製する電極サイズ、電極群形状、電池形状は任意に選定することができ上記の構成に限定されるものではない。 As shown in FIG. 2, the electrode group is housed in a battery container composed of an aluminum laminate film 6, and 1 ml of an electrolyte is injected into the battery container. A battery for testing was obtained by sealing the opening of the battery container so that the current collecting tab was taken out. The aluminum laminate film 6 is, for example, a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene or the like). The electrode size, electrode group shape, and battery shape to be produced can be arbitrarily selected and are not limited to the above-described configuration.
実験例Experimental example
 以下に本発明の具体例を説明する。 Specific examples of the present invention will be described below.
[実験例1~24]
 電解液は、エチレンカーボネート(EC)とジメチルカーボネートを体積比1:1で混合した溶媒に、電解質である6フッ化リン酸リチウム(LiPF6)を1mol・dm-3の濃度に溶解させたものを用い、これを標準電解液とした。正極活物質としてLi(Ni1/3Co1/3Mn1/3)O2を、負極活物質として天然黒鉛を用い、設計放電容量50mAhの電極群からなるリチウム二次電池を作製した。
[Experimental Examples 1 to 24]
The electrolyte is a solution in which lithium hexafluorophosphate (LiPF 6 ), which is an electrolyte, is dissolved at a concentration of 1 mol · dm −3 in a solvent in which ethylene carbonate (EC) and dimethyl carbonate are mixed at a volume ratio of 1: 1. This was used as a standard electrolyte. Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was used as the positive electrode active material, natural graphite was used as the negative electrode active material, and a lithium secondary battery comprising an electrode group with a designed discharge capacity of 50 mAh was produced.
 前記標準電解液に、これに対し、次の(a)~(j)の各添加剤を、表1に示す質量%で添加した。尚、実験例20は、(a)~(j)のいずれの添加剤も配合していない。 To the standard electrolyte, the following additives (a) to (j) were added in the mass% shown in Table 1. Note that Experimental Example 20 does not contain any of the additives (a) to (j).
(a)1アザ12-クラウン-4エーテル
(b)1アザ15-クラウン-5エーテル
(c)1アザ18-クラウン-6エーテル
(d)1チア12-クラウン-4エーテル
(e)1チア15-クラウン-5エーテル
(f)1チア18-クラウン-6エーテル
(g)12-クラウン-4エーテル
(h)15-クラウン-5エーテル
(i)18-クラウン-6エーテル
(j)エチレンジアミン四酢酸
 (実験例1)この標準電解液に重量比で0.001wt%の1アザ12-クラウン-4エーテルを添加した。
(A) 1 aza 12-crown-4 ether (b) 1 aza 15-crown-5 ether (c) 1 aza 18-crown-6 ether (d) 1 thia 12-crown-4 ether (e) 1 thia 15 -Crown-5 ether (f) 1 thia 18-crown-6 ether (g) 12-crown-4 ether (h) 15-crown-5 ether (i) 18-crown-6 ether (j) ethylenediaminetetraacetic acid ( Experimental Example 1) To this standard electrolyte solution, 0.001 wt% of 1 aza 12-crown-4 ether was added by weight.
 (実験例2)この標準電解液に重量比で1wt%の1アザ12-クラウン-4エーテルを添加した。 (Experimental Example 2) 1 aza 12-crown-4 ether having a weight ratio of 1 wt% was added to this standard electrolyte.
 (実験例3)この標準電解液に重量比で10wt%の1アザ12-クラウン-4エーテルを添加した。 (Experimental Example 3) 10 wt% of 1 aza 12-crown-4 ether was added to the standard electrolyte solution in a weight ratio.
 (実験例4)この標準電解液に重量比で0.001wt%の1アザ15-クラウン-5エーテルを添加した。 (Experimental Example 4) 0.001 wt% of 1 aza 15-crown-5 ether was added to this standard electrolyte solution in a weight ratio.
 (実験例5)この標準電解液に重量比で1wt%の1アザ15-クラウン-5エーテルを添加した。 (Experimental example 5) 1 aza 15-crown-5 ether having a weight ratio of 1 wt% was added to the standard electrolyte.
 (実験例6)この標準電解液に重量比で10wt%の1アザ15-クラウン-5エーテルを添加した。 (Experimental example 6) 1 aza 15-crown-5 ether having a weight ratio of 10 wt% was added to the standard electrolyte.
 (実験例7)この標準電解液に重量比で0.001wt%の1アザ18-クラウン-6エーテルを添加した。 (Experimental Example 7) 0.001 wt% of 1 aza 18-crown-6 ether was added to this standard electrolyte solution in a weight ratio.
 (実験例8)この標準電解液に重量比で1wt%の1アザ18-クラウン-6エーテルを添加した。 (Experimental Example 8) 1 aza 18-crown-6 ether having a weight ratio of 1 wt% was added to this standard electrolyte.
 (実験例9)この標準電解液に重量比で10wt%の1アザ18-クラウン-6エーテルを添加した。 (Experimental Example 9) 10 wt% of 1 aza 18-crown-6 ether was added to the standard electrolyte solution in a weight ratio.
 (実験例10)この標準電解液に重量比で0.001wt%の1チア12-クラウン-4エーテルを添加した。 (Experimental Example 10) 0.001 wt% 1 thia 12-crown-4 ether was added to the standard electrolyte solution in a weight ratio.
 (実験例11)この標準電解液に重量比で1wt%の1チア12-クラウン-4エーテルを添加した。 (Experimental Example 11) 1 thia 12-crown-4 ether having a weight ratio of 1 wt% was added to this standard electrolyte.
 (実験例12)この標準電解液に重量比で10wt%の1チア12-クラウン-4エーテルを添加した。 (Experimental Example 12) 1 thia 12-crown-4 ether having a weight ratio of 10 wt% was added to this standard electrolyte.
 (実験例13)この標準電解液に重量比で0.001wt%の1チア15-クラウン-5エーテルを添加した。 (Experimental example 13) 0.001 wt% of 1 thia 15-crown-5 ether was added to the standard electrolyte solution in a weight ratio.
 (実験例14)この標準電解液に重量比で1wt%の1チア15-クラウン-5エーテルを添加した。 (Experimental example 14) 1 thia 15-crown-5 ether having a weight ratio of 1 wt% was added to this standard electrolyte.
 (実験例15)この標準電解液に重量比で10wt%の1チア15-クラウン-5エーテルを添加した。 (Experimental Example 15) 10% by weight of 1 thia 15-crown-5 ether was added to this standard electrolyte.
 (実験例16)この標準電解液に重量比で0.001wt%の1チア18-クラウン-6エーテルを添加した。 (Experimental Example 16) 0.001 wt% 1 thia 18-crown-6 ether was added to this standard electrolyte solution in a weight ratio.
 (実験例17)この標準電解液に重量比で1wt%の1チア18-クラウン-6エーテルを添加した。 (Experimental Example 17) 1 thia 18-crown-6 ether having a weight ratio of 1 wt% was added to this standard electrolyte.
 (実験例18)この標準電解液に重量比で10wt%の1チア18-クラウン-6エーテルを添加した。 (Experimental Example 18) 1 thia 18-crown-6 ether having a weight ratio of 10 wt% was added to this standard electrolyte.
 (実験例19)1アザ12-クラウン-4エーテルと1アザ15-クラウン-5エーテルの重量配合比を1:1とした混合物をこの標準電解液に重量比で1wt%添加した。 (Experimental Example 19) A mixture of 1 aza 12-crown-4 ether and 1 aza 15-crown-5 ether in a weight ratio of 1: 1 was added to the standard electrolyte at 1 wt% by weight.
 (実験例20)標準電解液のみを用いた。 (Experiment 20) Only standard electrolyte was used.
 (実験例21)標準電解液に重量比で1wt%の12-クラウン-4エーテルを添加した。 (Experimental Example 21) 1 wt% of 12-crown-4 ether was added to the standard electrolyte solution.
 (実験例22)標準電解液に重量比で1wt%の15-クラウン-5エーテルを添加した。 (Experimental example 22) 15 wt% of 5 wt% ether was added to the standard electrolyte solution.
 (実験例23)標準電解液に重量比で1wt%の18-クラウン-6エーテルを添加した。 (Experimental example 23) 1 wt% 18-crown-6 ether was added to the standard electrolyte solution in a weight ratio.
 (実験例24)標準電解液に重量比で1wt%のエチレンジアミン四酢酸を添加した。 (Experimental Example 24) 1 wt% ethylenediaminetetraacetic acid was added to the standard electrolyte solution in a weight ratio.
[実験例25~34]
 実験例25~34では、正極活物質をLiFePO4とし、負極活物質として天然黒鉛を用い、設計放電容量50mAhの電極群からなるリチウム二次電池を、上記の実験例1~24と同様に作製した。
[Experimental Examples 25 to 34]
In Experimental Examples 25 to 34, a lithium secondary battery composed of an electrode group having a design discharge capacity of 50 mAh using LiFePO 4 as the positive electrode active material and natural graphite as the negative electrode active material was prepared in the same manner as in the above Experimental Examples 1 to 24. did.
 標準電解液に、これに対し、次の(a)~(c)の各添加剤を、表2に示す質量%で添加した。尚、実験例34は、(a)~(c)のいずれの添加剤も配合していない。 To the standard electrolyte solution, the following additives (a) to (c) were added in mass% shown in Table 2. In Experimental Example 34, none of the additives (a) to (c) was blended.
(a)1アザ12-クラウン-4エーテル
(b)1アザ15-クラウン-5エーテル
(c)1アザ18-クラウン-6エーテル
 (実験例25)標準電解液に重量比で0.001wt%の1アザ12-クラウン-4エーテル添加した。
(A) 1 aza 12-crown-4 ether (b) 1 aza 15-crown-5 ether (c) 1 aza 18-crown-6 ether (Experimental Example 25) 0.001 wt% by weight of standard electrolyte 1 Aza 12-crown-4 ether was added.
 (実験例26)標準電解液に重量比で1wt%の1アザ12-クラウン-4エーテルを添加した。 (Experimental Example 26) 1 aza 12-crown-4 ether at a weight ratio of 1 wt% was added to the standard electrolyte.
 (実験例27)標準電解液に重量比で10wt%の1アザ12-クラウン-4エーテルを添加した。 (Experimental example 27) 10 wt% of 1 aza 12-crown-4 ether was added to the standard electrolyte solution in a weight ratio.
 (実験例28)標準電解液に重量比で0.001wt%の1アザ15-クラウン-5エーテル添加した。 (Experimental Example 28) 0.001 wt% of 1 aza 15-crown-5 ether was added to the standard electrolyte solution in a weight ratio.
 (実験例29)標準電解液に重量比で1wt%の1アザ15-クラウン-5エーテルを添加した。 (Experimental example 29) 1 aza 15-crown-5 ether having a weight ratio of 1 wt% was added to the standard electrolyte.
 (実験例30)標準電解液に重量比で10wt%の1アザ15-クラウン-5エーテルを添加した。 (Experimental example 30) 1 aza 15-crown-5 ether having a weight ratio of 10 wt% was added to the standard electrolyte.
 (実験例31)標準電解液に重量比で0.001wt%の1アザ18-クラウン-6エーテル添加した。 (Experimental example 31) 0.001 wt% of 1 aza 18-crown-6 ether was added to the standard electrolyte.
 (実験例32)標準電解液に重量比で1wt%の1アザ18-クラウン-6エーテルを添加した。 (Experimental example 32) 1 aza 18-crown-6 ether having a weight ratio of 1 wt% was added to the standard electrolyte.
 (実験例33)標準電解液に重量比で10wt%の1アザ18-クラウン-6エーテルを添加した。 (Experimental example 33) 1 aza 18-crown-6 ether having a weight ratio of 10 wt% was added to the standard electrolyte.
 (実験例34)標準電解液のみを用いた。 (Experimental example 34) Only standard electrolyte was used.
 実験例1~19及び実験例25~33と実験例20~24及び実験例34に用いた電解液の導電率を、導電率計DS-52(堀場製作所製)を用いて測定した。その値を表1、2にそれぞれ示す。 The conductivity of the electrolyte solutions used in Experimental Examples 1 to 19, Experimental Examples 25 to 33, Experimental Examples 20 to 24, and Experimental Example 34 were measured using a conductivity meter DS-52 (manufactured by Horiba, Ltd.). The values are shown in Tables 1 and 2, respectively.
 実験例1~19及び実験例25~33と実験例20~24及び実験例34の電池を、充放電装置HJ1001(北斗電工製)を用いて、それぞれ25℃で充電終止電圧4.3V、5時間率(電流値10mA)の定電流充電、放電終止電圧2.8V、5時間率の定電流放電を実施し、初期の放電容量を確認した。その値を表1、2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Using the charge / discharge device HJ1001 (manufactured by Hokuto Denko), the batteries of Experimental Examples 1 to 19, and Experimental Examples 25 to 33, Experimental Examples 20 to 24, and Experimental Example 34 were respectively charged at 25 ° C. with a charge end voltage of 4.3 V, 5 A constant current charge at a time rate (current value of 10 mA), a discharge end voltage of 2.8 V, and a constant current discharge at a time rate of 5 hours were performed, and the initial discharge capacity was confirmed. The values are shown in Tables 1 and 2, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 その後、25℃で充電終止電圧4.3V、5時間率の定電流充電を行い、充電状態のまま60℃の恒温槽内で24日間エージングを実施した。エージング後の電池を恒温槽から取り出し、25℃で放電終止電圧2.8V、5時間率の定電流放電を実施し、その放電容量と初期の放電容量との割合を保存容量として表1、2にそれぞれ示す。 Thereafter, constant current charging at a charge end voltage of 4.3 V and a 5-hour rate was performed at 25 ° C., and aging was performed in a constant temperature bath at 60 ° C. for 24 days while being charged. The battery after aging was taken out from the thermostat, and a constant current discharge at a discharge end voltage of 2.8 V and a 5-hour rate was performed at 25 ° C., and the ratio between the discharge capacity and the initial discharge capacity was stored as Tables 1 and 2. Respectively.
 負極上に遷移金属元素が還元析出した場合には、試験後の負極に残存した遷移金属を元素分析することで確認できる。負極上に析出した遷移金属元素の定量は、以下に示す方法で実施した。 When the transition metal element is reduced and deposited on the negative electrode, it can be confirmed by elemental analysis of the transition metal remaining on the negative electrode after the test. Quantification of the transition metal element deposited on the negative electrode was carried out by the method shown below.
 試験後の電池を不活性ガス雰囲気化で空気に暴露されない状態で解体し、負極をジメチルカーボネート(DMC)で24時間浸漬洗浄し、洗浄後の負極活物質、バインダの混合物を負極銅箔から剥離して採取した。採取した混合物を密閉型加圧酸分解容器内で硝酸溶液に浸漬後、121℃で48時間加熱保持し、これより調整した溶液をICP-MS(アジレントテクノロジー製7500CX)を用いて定量した。定量結果は負極活物質に対する検出元素の重量比を存在率として算出した。結果を表1、2に併せて示す。 The battery after the test was disassembled without being exposed to air in an inert gas atmosphere, the negative electrode was immersed and washed with dimethyl carbonate (DMC) for 24 hours, and the negative electrode active material and binder mixture after the cleaning was peeled off from the negative electrode copper foil And collected. The collected mixture was immersed in a nitric acid solution in a sealed pressurized acid decomposition vessel and then heated and held at 121 ° C. for 48 hours, and the solution prepared therefrom was quantified using ICP-MS (7500CX manufactured by Agilent Technologies). The quantitative result was calculated as the abundance ratio by weight ratio of the detection element to the negative electrode active material. The results are shown in Tables 1 and 2.
 本発明の実験例1~19及び25~33(実験例20~24及び実験例34を除く実験例)では、全て、60℃でエージング後の遷移金属元素の析出による検出が認められなかった。環状エーテルの比較として実施した12-クラウン-4(実験例21)、15-クラウン-5(実験例22)、18-クラウン-6(実験例23)では、添加剤なし(実験例20)に比べてわずかに遷移金属元素の析出を防止する効果が得られたが、実験例1~19及び25~33(実験例20~24及び実験例34を除く実験例)には及ばない結果であった。また、鎖状エーテルとして実施したエチレンジアミン四酢酸(実験例24)では、遷移金属元素の析出防止効果が全く得られなかった。 In all of Experimental Examples 1 to 19 and 25 to 33 (Experimental examples excluding Experimental Examples 20 to 24 and Experimental Example 34) of the present invention, no detection due to precipitation of transition metal elements after aging at 60 ° C. was observed. 12-crown-4 (Experimental Example 21), 15-crown-5 (Experimental Example 22), and 18-crown-6 (Experimental Example 23), which were carried out as comparisons of cyclic ethers, had no additive (Experimental Example 20). Compared with Experimental Examples 1 to 19 and 25 to 33 (Experimental examples excluding Experimental Examples 20 to 24 and Experimental Example 34), the effect of slightly preventing the precipitation of transition metal elements was obtained. It was. Further, ethylenediaminetetraacetic acid (Experimental Example 24) carried out as a chain ether did not give any effect of preventing transition metal element precipitation.
 尚、添加剤を10質量%添加した実験例(実験例3,6,9,12,15,18,27,30及び33)では、添加剤を0.001質量並びに1質量%添加した実験例(実験例1,2,4,5,7,8,10,11,13,14,16,17,25,26,28,29,31及び32)に比べて、電解液の導電率の低下、及びこれを起因とする初期放電容量の低下が認められたため、添加剤の添加量は0.001から1質量%とするのが好ましい。 In addition, in the experimental examples (Experimental Examples 3, 6, 9, 12, 15, 18, 27, 30 and 33) in which the additive was added by 10% by mass, the experimental examples in which 0.001% by mass and 1% by mass of the additive were added. Compared with (Experimental Examples 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 25, 26, 28, 29, 31 and 32), the conductivity of the electrolyte is lowered. In addition, since a decrease in the initial discharge capacity due to this was observed, the amount of additive added is preferably 0.001 to 1% by mass.
 これらのことから、本発明においては、正極遷移金属酸化物から多様な遷移金属イオンが溶出しても、負極上での析出を防止することができる。 For these reasons, in the present invention, even if various transition metal ions are eluted from the positive electrode transition metal oxide, precipitation on the negative electrode can be prevented.
 以上、本発明の実施の形態および実験例について具体的に説明したが、本発明はこれらの実施の形態および実験例に限定されるものではなく、本発明の技術的思想に基づく変更が可能であるのは勿論である。 Although the embodiments and experimental examples of the present invention have been specifically described above, the present invention is not limited to these embodiments and experimental examples, and modifications based on the technical idea of the present invention are possible. Of course there is.
 本発明によれば、窒素原子に結合している水素が他の基で置換されていないアザクラウンエーテル類、及びチアクラウンエーテル類から選ばれる少なくとも1種の環状エーテル類が非水電解液に含まれているため、正極活物質から非水電解液中に溶出した遷移金属が負極板上に析出するのを防止することができる。その結果、過酷な使用条件下でも充放電サイクル特性および保存特性の低下を防止することができる。 According to the present invention, the non-aqueous electrolyte contains at least one cyclic ether selected from azacrown ethers in which hydrogen bonded to a nitrogen atom is not substituted with other groups, and thiacrown ethers. Therefore, it is possible to prevent the transition metal eluted from the positive electrode active material into the non-aqueous electrolyte from being deposited on the negative electrode plate. As a result, deterioration of charge / discharge cycle characteristics and storage characteristics can be prevented even under severe use conditions.
 1 正極板
 2 正極集電タブ
 3 負極板
 4 負極集電タブ
 5 セパレータ
 6 ラミネートフィルム
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode current collection tab 3 Negative electrode plate 4 Negative electrode current collection tab 5 Separator 6 Laminate film

Claims (6)

  1.  正極活物質としてリチウム含有遷移金属複合酸化物を含む正極板と、負極活物質としてリチウムの挿入脱離又は酸化還元が可能な材料を含む負極板と、前記正極板と前記負極板の間に介在されるセパレータと、リチウム塩を溶解させた非水電解液とを備えるリチウム二次電池において、
     前記非水電解液に、窒素原子に結合している水素が他の基で置換されていないアザクラウンエーテル類、及びチアクラウンエーテル類から選ばれる少なくとも1種の環状エーテル類が含まれており、
     前記非水電解液中の前記環状エーテル類の含有量が、前記非水電解液に対して0.001乃至1質量%であることを特徴とするリチウム二次電池。
    A positive electrode plate containing a lithium-containing transition metal composite oxide as a positive electrode active material, a negative electrode plate containing a material capable of insertion / extraction of lithium or oxidation / reduction as a negative electrode active material, and interposed between the positive electrode plate and the negative electrode plate In a lithium secondary battery comprising a separator and a non-aqueous electrolyte in which a lithium salt is dissolved,
    The non-aqueous electrolyte contains at least one cyclic ether selected from azacrown ethers in which hydrogen bonded to a nitrogen atom is not substituted with other groups, and thiacrown ethers,
    The lithium secondary battery, wherein a content of the cyclic ether in the non-aqueous electrolyte is 0.001 to 1% by mass with respect to the non-aqueous electrolyte.
  2.  正極活物質としてリチウム含有遷移金属複合酸化物を含む正極板と、負極活物質としてリチウムの挿入脱離又は酸化還元が可能な材料を含む負極板と、前記正極板と前記負極板の間に介在されるセパレータと、リチウム塩を溶解させた非水電解液とを備えるリチウム二次電池において、
     前記非水電解液に、窒素原子に結合している水素が他の基で置換されていないアザクラウンエーテル類、及びチアクラウンエーテル類から選ばれる少なくとも1種の環状エーテル類が含まれていることを特徴とするリチウム二次電池。
    A positive electrode plate containing a lithium-containing transition metal composite oxide as a positive electrode active material, a negative electrode plate containing a material capable of insertion / extraction of lithium or oxidation / reduction as a negative electrode active material, and interposed between the positive electrode plate and the negative electrode plate In a lithium secondary battery comprising a separator and a non-aqueous electrolyte in which a lithium salt is dissolved,
    The non-aqueous electrolyte contains at least one cyclic ether selected from azacrown ethers in which hydrogen bonded to a nitrogen atom is not substituted with other groups, and thiacrown ethers A lithium secondary battery characterized by.
  3.  前記非水電解液中の前記環状エーテル類の含有量が、前記非水電解液に対して0.001乃至1質量%であることを特徴とする請求項2に記載のリチウム二次電池。 3. The lithium secondary battery according to claim 2, wherein the content of the cyclic ether in the non-aqueous electrolyte is 0.001 to 1% by mass with respect to the non-aqueous electrolyte.
  4.  前記負極活物質が炭素材料であることを特徴とする請求項2または3に記載のリチウム二次電池。 The lithium secondary battery according to claim 2 or 3, wherein the negative electrode active material is a carbon material.
  5.  正極活物質としてリチウム含有遷移金属複合酸化物を含む正極板と、負極活物質としてリチウムの挿入脱離又は酸化還元が可能な材料を含む負極板と、前記正極板と前記負極板の間に介在されるセパレータと、リチウム塩を溶解させた非水電解液とを備えるリチウム二次電池用の非水電解液において、
     窒素原子に結合している水素が他の基で置換されていないアザクラウンエーテル類、及び、チアクラウンエーテル類から選ばれる少なくとも1種の環状エーテル類が含まれていることを特徴とするリチウム二次電池用の非水電解液。
    A positive electrode plate containing a lithium-containing transition metal composite oxide as a positive electrode active material, a negative electrode plate containing a material capable of insertion / extraction of lithium or oxidation / reduction as a negative electrode active material, and interposed between the positive electrode plate and the negative electrode plate In a non-aqueous electrolyte for a lithium secondary battery comprising a separator and a non-aqueous electrolyte in which a lithium salt is dissolved,
    Lithium disulfide characterized in that it contains at least one cyclic ether selected from azacrown ethers in which hydrogen bonded to a nitrogen atom is not substituted with other groups and thiacrown ethers Nonaqueous electrolyte for secondary batteries.
  6.  前記環状エーテル類の含有量が、前記非水電解液に対して0.001乃至1質量%であることを特徴とする請求項5に記載のリチウム二次電池用の非水電解液。 The non-aqueous electrolyte for a lithium secondary battery according to claim 5, wherein the content of the cyclic ether is 0.001 to 1% by mass with respect to the non-aqueous electrolyte.
PCT/JP2013/060218 2012-04-05 2013-04-03 Lithium secondary cell WO2013151096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012086318 2012-04-05
JP2012-086318 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013151096A1 true WO2013151096A1 (en) 2013-10-10

Family

ID=49300577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060218 WO2013151096A1 (en) 2012-04-05 2013-04-03 Lithium secondary cell

Country Status (2)

Country Link
JP (1) JPWO2013151096A1 (en)
WO (1) WO2013151096A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136855A1 (en) 2014-03-14 2015-09-17 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery, method for producing same and nonaqueous electrolyte
KR20190008099A (en) * 2017-07-14 2019-01-23 주식회사 엘지화학 Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP2019160710A (en) * 2018-03-16 2019-09-19 日本電信電話株式会社 Lithium air secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195548A (en) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000243446A (en) * 1998-12-25 2000-09-08 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2000306609A (en) * 1999-04-20 2000-11-02 Asahi Glass Co Ltd Secondary power supply
JP2010245034A (en) * 2009-03-19 2010-10-28 Sanyo Chem Ind Ltd Electrolyte for lithium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835874A (en) * 1981-08-27 1983-03-02 Kao Corp Chemical cell
JP5340860B2 (en) * 2008-09-03 2013-11-13 三洋化成工業株式会社 Additive for electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195548A (en) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000243446A (en) * 1998-12-25 2000-09-08 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2000306609A (en) * 1999-04-20 2000-11-02 Asahi Glass Co Ltd Secondary power supply
JP2010245034A (en) * 2009-03-19 2010-10-28 Sanyo Chem Ind Ltd Electrolyte for lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136855A1 (en) 2014-03-14 2015-09-17 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery, method for producing same and nonaqueous electrolyte
JP2015176765A (en) * 2014-03-14 2015-10-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte
US10249907B2 (en) 2014-03-14 2019-04-02 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery, method for producing same and nonaqueous electrolyte
KR20190008099A (en) * 2017-07-14 2019-01-23 주식회사 엘지화학 Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
US11081728B2 (en) 2017-07-14 2021-08-03 Lg Chem, Ltd. Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
JP7027645B2 (en) 2017-07-14 2022-03-02 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte additive, non-aqueous electrolyte for lithium secondary batteries containing it, and lithium secondary batteries
KR102645104B1 (en) * 2017-07-14 2024-03-08 주식회사 엘지에너지솔루션 Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP2019160710A (en) * 2018-03-16 2019-09-19 日本電信電話株式会社 Lithium air secondary battery
WO2019177082A1 (en) * 2018-03-16 2019-09-19 日本電信電話株式会社 Lithium air secondary battery
US20210249714A1 (en) * 2018-03-16 2021-08-12 Nippon Telegraph And Telephone Corporation Lithium Air Secondary Battery

Also Published As

Publication number Publication date
JPWO2013151096A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
EP2830141B1 (en) Lithium-sulfur secondary cell
JP4423277B2 (en) Lithium secondary battery
KR20190033448A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2012153734A1 (en) Nonaqueous electrolyte solution and lithium ion battery
JP2007207699A (en) Nonaqueous electrolyte secondary battery
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
CN105261790A (en) Electrolyte and lithium-ion battery including same
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
KR20180086601A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
CN103931030A (en) Lithium ion secondary battery and method for manufacturing same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
WO2014162529A1 (en) Negative electrode for lithium-ion secondary battery, lithium-ion secondary battery, and method for manufacturing said negative electrode and lithium-ion secondary battery
KR101651143B1 (en) Lithium secondary battery having improved cycle life
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP6911655B2 (en) A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element.
WO2013151096A1 (en) Lithium secondary cell
JP4691775B2 (en) Lithium secondary battery
KR20190012364A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP2010123300A (en) Lithium secondary battery and using method thereof
JP5271751B2 (en) Lithium ion secondary battery
JP2014067490A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772018

Country of ref document: EP

Kind code of ref document: A1