WO2013115335A1 - Electrolytic manganese dioxide, method for producing same, and use of same - Google Patents

Electrolytic manganese dioxide, method for producing same, and use of same Download PDF

Info

Publication number
WO2013115335A1
WO2013115335A1 PCT/JP2013/052258 JP2013052258W WO2013115335A1 WO 2013115335 A1 WO2013115335 A1 WO 2013115335A1 JP 2013052258 W JP2013052258 W JP 2013052258W WO 2013115335 A1 WO2013115335 A1 WO 2013115335A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
electrolytic
manganese dioxide
electrolytic manganese
oxide
Prior art date
Application number
PCT/JP2013/052258
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 比呂志
和正 末次
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2013115335A1 publication Critical patent/WO2013115335A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to electrolytic manganese dioxide that is used as a raw material for, for example, a positive electrode active material for a lithium secondary battery, and a method for producing the same.
  • Electrolytic manganese dioxide is widely used as a positive electrode active material for primary batteries such as alkaline batteries or as a raw material for lithium manganese composite oxides that are positive electrode active materials for lithium ion secondary batteries. Compared to electrolytic manganese dioxide used as a positive electrode active material for primary batteries, electrolytic manganese dioxide used as a positive electrode material for lithium secondary batteries is required to further reduce metal impurities.
  • agglomerated electrolytic manganese dioxide is deposited on the electrolytic electrode by electrolysis (electrolysis) of an electrolytic solution containing manganese ions, and this is pulverized to form a powder.
  • electrolysis electrolysis
  • Metal impurities are mixed when the agglomerated electrolytic manganese dioxide is pulverized. Accordingly, by improving the pulverization characteristics of electrolytic manganese dioxide, that is, by making electrolytic manganese dioxide easily pulverizable, mixing of metal impurities due to pulverization can be suppressed.
  • Non-Patent Document 1 the grinding characteristics of electrolytic manganese dioxide, it has been reported that the grinding characteristics are improved by increasing the BET specific surface area, and that other physical properties of electrolytic manganese dioxide do not affect the grinding characteristics.
  • the conventional easily pulverized electrolytic manganese dioxide has a high BET specific surface area. However, such electrolytic manganese dioxide has a low filling property. On the other hand, electrolytic manganese dioxide having a high filling property is a strong electrolytic manganese dioxide, and thus has poor grinding characteristics and is difficult to grind. Thus, conventional electrolytic manganese dioxide has either excellent grinding characteristics or excellent filling properties, and electrolytic manganese dioxide satisfying both of these has not been obtained.
  • An object of the present invention is to solve these problems and to provide an electrolytic manganese dioxide excellent in pulverization characteristics and excellent in filling properties and a method for producing the same.
  • the inventors of the present invention have made extensive studies on electrolytic manganese dioxide having excellent grinding characteristics. As a result, it has been found that electrolytic manganese dioxide having an apparent particle density and particle density different from the conventional ones has high filling properties and is easily pulverized. Furthermore, the present inventors have found that such electrolytic manganese dioxide can be produced by an electrolysis method different from the conventional one, and have completed the present invention.
  • the gist of the present invention is as follows. (1) An electrolytic manganese dioxide having an apparent particle density of 3.0 g / cm 3 or more and a particle density of 4.25 g / cm 3 or more. (2) The electrolytic manganese dioxide as described in (1) above, wherein the open pores are 0.01 mL (liter) / g or more. (3) The electrolytic manganese dioxide as described in (1) or (2) above, wherein the BET specific surface area is 10 m 2 / g or more and 45 m 2 / g or less. (4) The method for producing electrolytic manganese dioxide as described in any one of (1) to (3) above, wherein amorphous manganese oxide is mixed in an electrolytic solution. (5) The method for producing electrolytic manganese dioxide as described in (4) above, wherein amorphous manganese oxide is produced in the electrolytic solution, and the amorphous manganese oxide is mixed in the electrolytic solution.
  • the electrolytic manganese dioxide of the present invention has not only high filling properties but also easy grindability. Therefore, pulverization with less pulverization energy becomes possible. Furthermore, the pulverization time can be shortened. Thereby, it can be expected that metal impurities are prevented from being mixed from equipment in the manufacturing process. Thereby, the electrolytic manganese dioxide suitable for the positive electrode material for alkaline batteries, the manganese raw material for secondary battery materials, etc. with high filling property and few metal impurities can be provided industrially stably. Furthermore, such easily pulverizable electrolytic manganese dioxide can be easily industrially produced by the production method of the present invention.
  • the electrolytic manganese dioxide of the present invention has a particle density of 4.25 g / cm 3 or more and an apparent particle density of 3.0 g / cm 3 or more.
  • the filling properties of electrolytic manganese dioxide are enhanced.
  • the electrolytic manganese dioxide of the present invention satisfies both the particle density and the apparent particle density in the above range. As a result, the electrolytic manganese dioxide of the present invention becomes electrolytic manganese dioxide having high grinding characteristics, that is, easily grindable electrolytic manganese dioxide.
  • the apparent particle density in this invention is a density calculated
  • the particle density is a density obtained by excluding open pores from the volume of electrolytic manganese dioxide particles. That is, the density of the particles when the open pores are present in the electrolytic manganese dioxide particles but the closed pores are not present is the particle density.
  • the apparent particle density and the particle density can be determined by a mercury intrusion method, for example, a method described in Examples described later.
  • Apparent particle density of electrolytic manganese dioxide of the present invention is 3.0 g / cm 3 or more, preferably 3.5 g / cm 3 or more, more preferably 3.8 g / cm 3 or more, 4 More preferably, it is 0.0 g / cm 3 or more.
  • the apparent particle density is less than 3.0 g / cm 3 , the electrolytic manganese dioxide becomes porous particles.
  • the apparent particle density is 4.5 g / cm 3 or less, the electrolytic manganese dioxide has a sufficiently high filling property.
  • Particle density of electrolytic manganese dioxide of the present invention is 4.25 g / cm 3 or more, preferably 4.3 g / cm 3 or more, and more preferably 4.4 g / cm 3 or more.
  • electrolytic manganese dioxide becomes particles containing many closed pores.
  • the theoretical density of electrolytic manganese dioxide is 4.8 g / cm 3 . Therefore, the particle density of the electrolytic manganese dioxide of the present invention is at most 4.8 g / cm 3 or less.
  • both the particle density and the apparent particle density indicate the filling properties of electrolytic manganese dioxide.
  • the electrolytic manganese dioxide of the present invention has a high filling property.
  • the electrolytic manganese dioxide of the present invention becomes an easily pulverizable electrolytic manganese dioxide having excellent grinding characteristics.
  • the electrolytic manganese dioxide of the present invention preferably has an open pore of 0.01 mL / g or more, more preferably 0.015 mL / g or more, and further preferably 0.02 mL / g or more. 0.026 g / mL / g or more is even more preferable, and 0.03 mL / g or more is particularly preferable.
  • the open pores are 0.01 mL / g or more, the electrolytic manganese dioxide is more easily pulverized.
  • the number of pores in the electrolytic manganese dioxide increases, the particle density tends to decrease.
  • Examples of the open pores for having an appropriate particle density include at most 0.07 mL / g or less, and further 0.06 mL / g or less.
  • the amount of open pores is determined by the difference between the apparent particle density and the inverse of the particle density.
  • the electrolytic manganese dioxide of the present invention is easily pulverizable. That is, most of the pores present in the electrolytic manganese dioxide of the present invention are open pores. Further, these open pores are formed by irregularly connecting individual pores, and the open pores having an irregular shape with a pore diameter (approximate diameter) of 0.2 ⁇ m or more when approximated by a cylinder are used. It has become.
  • One of the causes that the electrolytic manganese dioxide of the present invention becomes easily pulverizable is that it has such a fine structure having many open pores having an irregular shape.
  • the electrolytic manganese dioxide of the present invention has not only fine open pores but also a fine structure with few closed pores, particularly fine particles having almost no coarse closed pores with a pore diameter exceeding 0.2 ⁇ m. Structure. Such a small number of coarse closed pores is considered as one of the causes that the electrolytic manganese dioxide of the present invention is not only excellent in pulverization characteristics but also excellent in filling properties.
  • the conventional electrolytic manganese dioxide has a fine structure having almost no open pores having an indefinite shape, and has a fine structure different from the electrolytic manganese dioxide of the present invention.
  • the difference in microstructure between the conventional electrolytic manganese dioxide and the electrolytic manganese dioxide of the present invention can be observed as a difference in the morphology of electrolytic manganese dioxide using a scanning electron microscope (hereinafter also referred to as SEM).
  • SEM scanning electron microscope
  • the form of the electrolytic manganese dioxide of the present invention has a fine structure having irregularly shaped open pores.
  • This fine structure is confirmed as an aggregate of electrolytic manganese dioxide having a substantially network-like primary structure.
  • Such a substantially network-like primary structure can also be confirmed as finely pulverized electrolytic manganese dioxide powder.
  • this substantially network-like primary structure can be observed particularly clearly.
  • the electrolytic manganese dioxide of the present invention preferably has a BET specific surface area of 10 m 2 / g or more, more preferably 15 m 2 / g or more, and further preferably 20 m 2 / g or more.
  • the BET specific surface area is 10 m 2 / g or more, the reactivity of electrolytic manganese dioxide tends to be high.
  • the BET specific surface area becomes higher than necessary, the filling properties of electrolytic manganese dioxide tend to be lowered. Therefore, the BET specific surface area is preferably 45 m 2 / g or less, more preferably 40 m 2 / g or less, and further preferably 35 m 2 / g or less.
  • the grinding characteristics of such electrolytic manganese dioxide tend to depend on the BET specific surface area. That is, when the BET specific surface area is increased, the crushing characteristics are increased, while when the BET specific surface area is decreased, the crushing characteristics are decreased.
  • the electrolytic manganese dioxide of the present invention is mainly affected by the hardness of the electrolytic manganese dioxide itself and the irregularly shaped open pores in the grinding characteristics. Therefore, the grinding characteristics of the electrolytic manganese dioxide of the present invention are not easily affected by the BET specific surface area.
  • the electrolytic manganese dioxide of the present invention has a full width at half maximum (hereinafter simply referred to as “FWHM”) of diffraction lines on the (110) plane in X-ray diffraction measurement of 1.7 ° or more and 4.0 ° or less. Preferably, it is 1.85 ° or more and 3.7 ° or less, and more preferably 2.0 ° or more and 3.5 ° or less. If FWHM is in this range, the reactivity between electrolytic manganese dioxide and lithium compounds tends to be high.
  • the diffraction line on the (110) plane in the X-ray diffraction measurement can be observed at 2 ⁇ around 22 ⁇ 1 ° in the XRD measurement pattern using CuK ⁇ rays as a light source.
  • the present invention is a method for producing electrolytic manganese dioxide, characterized in that amorphous manganese oxide is mixed in an electrolytic solution. That is, the production method of the present invention is a method for producing electrolytic manganese dioxide characterized by electrolyzing an electrolytic solution containing amorphous manganese oxide.
  • an electrolytic method in which an electrolytic solution is electrolyzed without using suspended particles (hereinafter referred to as “clarified electrolytic method”), or manganese compound particles are mixed with an electrolytic solution to make the electrolytic solution electrically
  • an electrolysis method that decomposes (hereinafter, “suspension electrolysis”).
  • crystalline manganese oxide has been used as manganese compound particles (hereinafter referred to as “suspended particles”) mixed in an electrolytic solution by a suspension electrolysis method.
  • the production method of the present invention is a suspension electrolysis method that uses amorphous (non-crystalline) manganese oxide as suspended particles, and substantially uses crystalline manganese oxide as suspended particles. This is a suspension electrolysis method.
  • the production method of the present invention is a method for producing manganese dioxide for electrolyzing an electrolytic solution containing amorphous manganese oxide.
  • the precipitation state of electrolytic manganese dioxide in the production method of the present invention is the same as the conventional clarification electrolysis method and crystalline manganese oxidation as suspension particles. This is different from the precipitation state of electrolytic manganese dioxide in a suspension electrolytic method using a product, that is, a production method in which an electrolytic solution containing crystalline manganese oxide is electrolyzed. Thereby, easily pulverizable electrolytic manganese dioxide is obtained.
  • amorphous manganese oxide is mixed in the electrolytic solution.
  • electrolytic manganese dioxide is electrolytically deposited from the electrolytic solution containing amorphous manganese oxide.
  • the amorphous manganese oxide may be an amorphous manganese oxide.
  • the amorphous manganese oxide preferably has a BET specific surface area of 80 m 2 / g or more, and more preferably 85 m 2 / g or more. It becomes easy to disperse
  • the degree of manganese oxidation of amorphous manganese oxide (x when manganese oxide is expressed as MnOx) has little influence on the grinding characteristics of the obtained electrolytic manganese dioxide. Therefore, the manganese oxidation degree of amorphous manganese oxide is not particularly limited. As the manganese oxidation degree of the manganese oxide, x can be 1.65 or more.
  • the amorphous manganese oxide is in the form of particles.
  • the amorphous manganese oxide preferably has an average particle size of 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, and even more preferably 0.9 ⁇ m or less.
  • an operation for preventing amorphous manganese oxide from precipitating during electrolysis for example, vigorous stirring of the electrolytic solution may be required.
  • the average particle size is 5 ⁇ m or less, amorphous manganese oxide is less likely to settle in the electrolytic solution, and this is easily dispersed uniformly in the electrolytic solution.
  • the average particle size is preferably 0.5 ⁇ m or more.
  • the amorphous manganese oxide having the above physical properties is obtained, for example, by dissolving a manganese compound in an acidic state and reprecipitating the amorphous manganese oxide, and further dissolving the manganese compound in an acidic solution such as an electrolytic solution, Mention may be made of amorphous manganese oxides obtained by reprecipitation.
  • the amorphous manganese oxide concentration in the electrolytic solution is preferably 0.5 mg / L or more, more preferably 0.9 mg / L, and more preferably 4 mg / L or more. More preferably, it is still more preferably 7 mg / L or more.
  • concentration of amorphous manganese oxide in the electrolytic solution is 0.5 mg / L or more, the effect of mixing amorphous manganese oxide can be obtained more easily, and more easily pulverized electrolytic manganese dioxide can be obtained. It becomes easy.
  • the concentration of the amorphous manganese oxide in the electrolytic solution does not need to be higher than necessary, and may be 20 mg / L or less, and further 15 mg / L or less.
  • amorphous manganese oxide concentration in the electrolytic solution becomes constant.
  • the physical properties, particularly the pulverization characteristics, of the electrolytic manganese dioxide obtained throughout the electrolysis tend to be uniform.
  • mixing method a method of mixing amorphous manganese oxide in the electrolytic solution (hereinafter also simply referred to as “mixing method”), that is, as a method of adding amorphous manganese oxide to the electrolytic solution, amorphous manganese oxide is used as the electrolytic solution.
  • a method of directly adding to and mixing with a slurry, a method of adding and mixing a slurry containing amorphous manganese oxide to an electrolytic solution, or a method of mixing an amorphous manganese oxide by generating amorphous manganese oxide in the electrolytic solution Etc. can be illustrated.
  • an amorphous manganese oxide can be generated in the electrolytic solution to mix it, and further, amorphous manganese can be obtained by dissolving and re-depositing the manganese compound in the electrolytic solution.
  • generating an oxide can be mentioned.
  • an electrolytic solution containing amorphous manganese oxide can be obtained.
  • the amorphous manganese oxide re-deposited from the manganese compound dissolved in the electrolytic solution becomes suspended particles, which are mixed in the electrolytic solution, and the electrolytic solution becomes an electrolytic solution containing amorphous manganese oxide. .
  • Examples of preferable manganese compounds to be dissolved in the electrolytic solution include crystalline manganese oxides and manganese oxides obtained by chemical reaction (hereinafter referred to as “chemical manganese oxides”). Compared with electrolytic manganese oxide obtained by an electrochemical reaction such as electrolysis and naturally produced manganese oxide, chemical manganese oxide can efficiently obtain a homogeneous amorphous manganese oxide in an electrolytic solution.
  • a chemical manganese oxide for example, a crystalline manganese oxide having a manganese oxidation degree of 1 or more and 1.6 or less (x is 1 or more and 1.6 or less when the manganese oxide is represented by MnOx)
  • trimanganese tetroxide Mn 3 O 4
  • manganese trioxide Mn 2 O 3
  • crystalline manganese oxide deposited by oxidizing divalent manganese Mn 2+
  • crystalline trimanganese tetraoxide Mn 3 O 4
  • Mn 2 O 3 crystalline trimanganese tetraoxide
  • Manganese dioxide (Mn 2 O 3 ) or both can be mentioned.
  • manganese oxidation such as trimanganese tetraoxide or manganese trioxide or a mixture thereof obtained by mixing a solution containing divalent manganese and an alkaline solution to oxidize and precipitate divalent manganese.
  • the oxidation of divalent manganese may be performed using an oxidizing agent such as air or oxygen.
  • These chemical manganese oxides are preferably mixed with the electrolytic solution without being subjected to a drying step after the deposition, and the mixed solution containing the chemical manganese oxide after the deposition is more directly mixed into the electrolytic solution as a slurry. preferable.
  • the chemical manganese oxide that has undergone the drying step becomes difficult to dissolve even when mixed in the electrolytic solution. Therefore, even if the chemical manganese oxide obtained through the drying process is mixed with the electrolytic solution, the amorphous manganese oxide does not substantially reprecipitate.
  • the chemical manganese oxide that has been subjected to a drying treatment after precipitation for example, a treatment for drying the water content to 20% by weight or less
  • a drying treatment after precipitation for example, a treatment for drying the water content to 20% by weight or less
  • the conditions other than the suspension electrolysis method using amorphous manganese oxide that is, the production method of electrolyzing an electrolytic solution containing amorphous manganese oxide, are as follows. be able to.
  • the electrolytic solution examples include one or more of a manganese chloride solution, a manganese sulfate solution, and a sulfuric acid-manganese sulfate mixed solution.
  • the electrolytic solution is preferably a sulfuric acid-manganese sulfate mixed solution.
  • the electrolytic solution in the present invention is preferably an aqueous solution.
  • a sulfuric acid-manganese sulfate mixed aqueous solution is particularly preferably used as the electrolytic solution.
  • the electrolysis step it is preferable to perform electrolysis while supplying a replenisher of manganese ions (hereinafter referred to as “supplemental manganese solution”) to the electrolyte.
  • supplemental manganese solution Electrolytic deposition of electrolytic manganese dioxide reduces manganese ions in the electrolyte.
  • the supplemental manganese solution is replenished.
  • the manganese ion concentration of the supplemental manganese solution is preferably 30 g / L or more and 110 g / L or less, and more preferably 30 g / L or more and 60 g / L or less.
  • a manganese sulfate solution is preferably used as the supplemental manganese solution.
  • a manganese chloride solution is used as the electrolytic solution, a supplemental manganese aqueous solution is used. It is preferable to use a manganese chloride solution as
  • the electrolyte solution preferably has an acid concentration of 15 g / L or more and 50 g / L or less, more preferably 20 g / L or more and 40 g / L or less, and 20 g / L or more and 30 g / L or less. More preferably.
  • the acid is sulfuric acid
  • the acid concentration is the concentration of sulfuric acid (H 2 SO 4 ).
  • the electrolysis step in the production process of the present invention the electrolysis current density is 0.5A / dm 2 or more, further 0.6 A / dm 2 or more, and further preferably not 0.8 A / dm 2 or more.
  • the electrolysis current density is 1.8 A / dm 2 or less, further 1.5 A / dm 2 or less, and further 1.3 A / dm 2 or less, an increase in electrolysis voltage during electrosynthesis is suppressed. There is a tendency. Thereby, it becomes easy to produce the electrolytic manganese dioxide of the present invention efficiently and stably.
  • the electrolysis current density is preferably 0.6 A / dm 2 or more and 1.5 A / dm 2 or less, 0.8 A / dm 2 or more, and 1. More preferably, it is 5 A / dm 2 or less.
  • the electrolysis temperature is preferably 90 ° C. or higher and 98 ° C. or lower, more preferably 95 ° C. or higher and 98 ° C. or lower. The higher the electrolysis temperature, the higher the production efficiency of electrolytic manganese dioxide.
  • the step of obtaining electrolytic manganese dioxide by electrolysis may be an electrolysis step, and thereafter, any one or more of a washing step, a pulverization step, and a neutralization step may be included.
  • the washing step the electrolytic manganese dioxide obtained by electrolysis is washed, and the attached electrolytic solution and the like are removed.
  • the washing method includes immersing electrolytic manganese dioxide in a water bath or a warm water bath.
  • the neutralization step the pH of the electrolytic manganese dioxide can be adjusted by immersing the electrolytic manganese dioxide in an aqueous alkali metal solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution.
  • electrolytic manganese dioxide has an arbitrary particle size.
  • any method such as wet pulverization or dry pulverization can be used.
  • the electrolytic manganese dioxide of the present invention can be used as a raw material for a lithium manganese composite oxide. Thereby, it can be expected to obtain a lithium-manganese composite oxide with few impurities such as iron.
  • the lithium manganese complex oxide can be obtained by mixing and baking the electrolytic manganese dioxide of the present invention and lithium or a lithium compound.
  • Any lithium compound may be used, and examples include lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and alkyl lithium.
  • Examples of preferable lithium compounds include lithium hydroxide, lithium oxide, and lithium carbonate.
  • Electrolytic manganese dioxide coarse particles were set in a mercury porosimeter (device name: Pore Sizer 9510, manufactured by Micromeritics), and the pore pressure distribution was measured by gradually changing the mercury pressure range from atmospheric pressure to 414 MPa.
  • the apparent particle density was obtained from the following equation. That is, the volume obtained by removing the mercury volume (V Hg ) introduced into the sample at atmospheric pressure from the volume (V c ) of the measurement container was regarded as the sample volume (V Mn ).
  • the mass (W Mn ) of the sample with respect to the sample volume was determined and used as the apparent particle density ( ⁇ A ).
  • the particle density was determined from the following equation.
  • the volume obtained by removing the mercury volume (V Hg ′) introduced into the sample at a pressure of 414 MPa from the volume (V c ) of the measurement container was regarded as the sample volume (V Mn ′).
  • the mass (W Mn ) of the sample with respect to the sample volume was determined and used as the particle density ( ⁇ P ).
  • the mercury volume introduced into the sample at atmospheric pressure corresponds to the volume formed between the particles.
  • the volume of mercury introduced into the sample at a pressure of 414 MPa corresponds to the total volume between the particles and the pore volume with a pore diameter of 200 nm.
  • open pores (1 / apparent particle density-1 / particle density)
  • the BET specific surface area of the sample was measured by nitrogen adsorption by the BET single point method.
  • a gas adsorption specific surface area measuring device (device name: Flowsorb III, manufactured by Shimadzu Corporation) was used. Prior to the measurement, the measurement sample was deaerated by heating at 150 ° C. for 60 minutes.
  • FWHM full width at half maximum
  • the grinding characteristics of the obtained electrolytic manganese dioxide were measured as follows. That is, the agglomerated electrolytic manganese dioxide obtained by electrolysis was coarsely pulverized in an agate mortar to obtain electrolytic manganese dioxide coarse particles having a particle diameter of 1.2 to 2.8 mm. 3 g of electrolytic manganese dioxide coarse particles were weighed and pulverized for 15 minutes using an automatic mortar (device name: ANM1000 type, manufactured by Nissho Science).
  • the pulverized electrolytic manganese dioxide powder is sieved with a sieve having an opening of 90 ⁇ m, and the weight of electrolytic manganese dioxide particles (electrolytic manganese dioxide particles having a particle diameter of 90 ⁇ m or less) that has passed through the sieve with respect to the total weight of the used electrolytic manganese dioxide coarse particles The ratio was calculated.
  • micro Vickers hardness of electrolytic manganese dioxide was measured as follows. For the measurement, a micro Vickers hardness meter (device name: MVK-E3, manufactured by Akashi Co., Ltd.) was used. As the measurement sample, an electrolytic manganese dioxide block of about 1 cm ⁇ 1 cm peeled off from the electrode after electrolytic deposition was used. As a pretreatment, the electrolytic manganese dioxide block was embedded in a resin and cut in a direction parallel to the electrodeposition thickness direction. Then, it was set as the measurement sample by grind
  • micro Vickers hardness was measured by driving a diamond indenter into a measurement sample after pretreatment with a weight of 50 kgf. In the measurement, nine regions are defined on the cut surface of the measurement sample so that the area of the analysis section is equally divided into nine parts, and a diamond indenter is driven into each region, and the average of the nine points obtained. The value was taken as the micro Vickers hardness (Hv) of the sample.
  • the particle concentration of a solution sample such as an electrolytic solution or a manganese replenishing solution was determined as follows. That is, a certain amount of the sample solution was filtered and solid-liquid separated, and the weight of the obtained solid phase was measured. The weight of the solid phase relative to the volume of the collected sample solution was determined, and the particle concentration was calculated.
  • Example 1 A manganese sulfate aqueous solution having a manganese concentration of 42 g / L is stirred, and a 1 mol / L sodium hydroxide aqueous solution is added thereto while blowing air into the manganese sulfate aqueous solution containing manganese oxide (hereinafter referred to as “manganese oxide slurry”). .) In addition, these processes were performed at 80 degreeC.
  • the manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetroxide (Mn 3 O 4 ). An XRD diagram of the obtained manganese trioxide is shown in FIG. Further, trimanganese tetroxide in the manganese oxide slurry had a particle size distribution that was close to a nodal shape, with a mode particle size of 1.3 ⁇ m and a maximum particle size of 26.1 ⁇ m.
  • the obtained manganese oxide slurry was mixed with a separately prepared manganese sulfate aqueous solution to obtain a manganese sulfate aqueous solution containing 25 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L, and this was supplied as a manganese replenisher solution. It was. Further, a sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution. Electrolytic manganese dioxide was produced by electrolyzing the manganese replenisher while continuously replenishing the electrolyte during the electrolysis period so that the sulfuric acid concentration of the electrolyte during the electrolysis period was constant. The electrolysis current density during electrolysis was 1.5 A / dm 2 , and the electrolysis temperature was 96 ° C.
  • the production conditions for electrolytic manganese dioxide are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
  • Example 2 Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the Mn 3 O 4 concentration in the manganese replenisher was 200 mg / L. It was confirmed that amorphous manganese oxide was generated in this example, and the concentration of amorphous manganese oxide in the electrolytic solution was 13 mg / L.
  • the production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3. Further, the pore size distribution of the produced electrolytic manganese dioxide is shown in FIG. As is apparent from FIG. 3, the pore volume of the electrolytic manganese dioxide of this example exceeding the pore diameter of 0.2 ⁇ m exceeded 0.03 mL / g. Thereby, in the electrolytic manganese dioxide in a present Example, it has confirmed that the pore whose pore diameter exceeds 0.2 micrometer exists as an open pore. Furthermore, the result of SEM observation of the manufactured electrolytic manganese dioxide is shown in FIG. From FIG. 4, it was confirmed that the electrolytic manganese dioxide had fine crystals having a substantially mesh shape, and thus had open pores having an irregular shape of 0.2 ⁇ m or more.
  • Example 3 Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the Mn 3 O 4 concentration in the manganese replenisher was 100 mg / L. It was confirmed that amorphous manganese oxide was generated in this example, and the concentration of amorphous manganese oxide in the electrolytic solution was 9.4 mg / L. The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3. Furthermore, by SEM observation, it was confirmed that the electrolytic manganese dioxide has fine crystals having a substantially mesh shape, and thereby has open pores having an irregular shape with an approximate diameter of the pores of 0.2 ⁇ m or more. .
  • Example 4 Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the Mn 3 O 4 concentration in the manganese replenisher was 50 mg / L. In this example, it was confirmed that the same amorphous manganese oxide as in Example 1 was formed, and the concentration of amorphous manganese oxide in the electrolytic solution was 7.5 mg / L. The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
  • Example 5 An aqueous manganese sulfate solution having a manganese concentration of 42 g / L was stirred, and 3 mol / L sodium hydroxide aqueous solution was added thereto while blowing air to obtain a manganese oxide slurry. After adding the aqueous sodium hydroxide solution, this was stirred for 1 hour while blowing air into the obtained manganese oxide slurry. In addition, these processes were performed at the temperature of 60 degreeC. After stirring, the manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetraoxide (Mn 3 O 4 ) similar to that in Example 1.
  • Mn 3 O 4 trimanganese tetraoxide
  • the manganese oxide slurry and a separately prepared manganese sulfate aqueous solution were mixed to obtain a manganese sulfate aqueous solution containing 15 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L, which was used as a manganese replenisher.
  • Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the manganese replenisher was used and that the electrolytic current density was 0.88 A / dm 2 . In this example, it was confirmed that the same amorphous manganese oxide as in Example 1 was generated. Moreover, the density
  • Table 1 shows the physical property evaluation results of the amorphous manganese oxide. The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
  • Example 6 An aqueous manganese sulfate solution having a manganese concentration of 42 g / L was stirred, and 3 mol / L sodium hydroxide aqueous solution was added thereto while blowing air to obtain a manganese oxide slurry. After adding the aqueous sodium hydroxide solution, this was stirred for 1 hour while blowing air into the obtained manganese oxide slurry. These treatments were performed at a temperature of 80 ° C. After stirring, the manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetraoxide (Mn 3 O 4 ). Further, the trimanganese tetraoxide in the manganese oxide slurry had a particle size distribution close to a nodal shape, the mode particle size was 8.48 ⁇ m and the maximum particle size was 62.2 ⁇ m.
  • trimanganese tetraoxide in the manganese oxide slurry had a particle size distribution close to a
  • a manganese sulfate aqueous solution containing 50 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L was obtained.
  • the obtained manganese sulfate aqueous solution was used as a manganese replenisher.
  • Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the manganese replenisher was used. In this example, an amorphous manganese oxide similar to that in Example 1 was produced, but the average particle size was larger than that in Example 1.
  • Table 1 shows the physical property evaluation results of the amorphous manganese oxide. The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
  • Example 7 A manganese oxide slurry was obtained in the same manner as in Example 5 except that the manganese oxide slurry after addition of the aqueous sodium hydroxide solution was not stirred.
  • the manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetroxide (Mn 3 O 4 ). Further, the trimanganese tetraoxide in the manganese oxide slurry had a shape with a particle size distribution close to nodal, the mode particle size was 1.26 ⁇ m, and the maximum particle size was 37.0 ⁇ m.
  • a manganese sulfate aqueous solution containing 50 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L was obtained.
  • the obtained manganese sulfate aqueous solution was used as a manganese replenisher.
  • Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the manganese replenisher was used.
  • Example 2 an amorphous manganese oxide similar to that in Example 1 was produced, but the average particle size was larger than that in Example 1.
  • the concentration of amorphous manganese oxide in the electrolytic solution was 4.4 mg / L.
  • Table 1 shows the physical property evaluation results of the amorphous manganese oxide. The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
  • Example 8 A manganese oxide slurry was obtained in the same manner as in Example 1 except that an aqueous manganese sulfate solution having a manganese concentration of 40 g / L was used.
  • the obtained manganese oxide was a single phase of trimanganese tetraoxide (Mn 3 O 4 ).
  • the trimanganese tetraoxide in the manganese oxide slurry has a shape in which the particle size distribution is distributed over a wide particle size range, and the mode particle size is 23.9 ⁇ m, but the frequency of the particle size of 1.26 ⁇ m. Was similar to this.
  • the maximum particle size was 104.7 ⁇ m.
  • a manganese sulfate aqueous solution containing 60 g / L of Mn 3 O 4 and manganese oxide having a manganese concentration of 40 g / L is obtained. This was used as a manganese replenisher. Further, a manganese sulfate aqueous solution having a manganese concentration of 40 g / L was separately prepared and used as an auxiliary manganese replenisher. A sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution. Electrolytic manganese dioxide was produced by performing electrolysis while supplying the manganese replenisher and the auxiliary manganese replenisher simultaneously and continuously to the electrolyte so that the sulfuric acid concentration of the electrolyte during the electrolysis was constant.
  • the electrolytic current density was 1.3 A / dm 2 and the electrolysis temperature was 96 ° C.
  • trimanganese tetraoxide was dissolved in the electrolytic solution and suspended particles were generated, and the concentration of the suspended particles in the electrolytic solution was 3.0 mg / L.
  • the results of the physical property evaluation of the suspended particles are shown in Table 1.
  • the generated suspended particles were amorphous manganese oxide.
  • the production conditions are shown in Table 4, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 5.
  • Example 9 The manganese oxide slurry obtained by the same method as in Example 8 is mixed with a separately prepared aqueous manganese sulfate solution, thereby containing 200 mg / L of Mn 3 O 4 and a manganese oxide having a manganese concentration of 40 g / L.
  • An aqueous manganese sulfate solution was obtained, which was used as a manganese replenisher.
  • Electrolytic manganese dioxide was produced in the same manner as in Example 8 except that the manganese replenisher was used. During the electrolysis period, it was confirmed that trimanganese tetraoxide was dissolved in the electrolytic solution and suspended particles were generated, and the concentration of the suspended particles in the electrolytic solution was 8.3 mg / L.
  • the produced suspended particles were the same amorphous manganese oxide as in Example 8.
  • the production conditions are shown in Table 4, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 5.
  • Example 10 The manganese oxide slurry obtained by the same method as in Example 8 was mixed with a separately prepared manganese sulfate aqueous solution, so that manganese oxide containing 240 mg / L of Mn 3 O 4 and having a manganese concentration of 40 g / L was used. An aqueous manganese sulfate solution was obtained, which was used as a manganese replenisher.
  • Electrolytic manganese dioxide was produced in the same manner as in Example 8 except that 88 A / dm 2 was used.
  • Comparative Example 1 A conventional easily pulverized electrolytic manganese dioxide was produced by the following method.
  • a sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution.
  • an aqueous manganese sulfate solution not containing Mn 3 O 4 was used as a manganese replenisher, and electrolysis was performed while continuously replenishing the electrolyte during the electrolysis period to produce manganese dioxide.
  • the electrolysis current density during electrolysis was 0.8 A / dm 2 , and the electrolysis temperature was 92 ° C.
  • the production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
  • the obtained electrolytic manganese dioxide had a BET specific surface area as high as 50 m 2 / g. However, the particle density was 3.9 g / mL. Thus, it has been confirmed that electrolytic manganese dioxide produced by an electrolytic method that does not use manganese oxide, that is, a so-called clarified electrolytic method, has a lower filling property than the electrolytic manganese dioxide of the present invention.
  • Comparative Example 2 A conventional electrolytic manganese dioxide having a high filling property was produced by the following method.
  • a sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 34 g / L was used as the electrolytic solution.
  • an aqueous manganese sulfate solution containing no Mn 3 O 4 was used as a manganese replenisher, and electrolysis was performed while replenishing the electrolyte continuously during the electrolysis period to produce manganese dioxide.
  • the electrolysis current density during electrolysis was 0.6 A / dm 2 , and the electrolysis temperature was 96 ° C.
  • the production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
  • the electrolytic manganese dioxide of the comparative example had a BET specific surface area as low as 20 m 2 / g and an apparent particle density of 3.9 g / mL, indicating a higher packing property than the electrified manganese dioxide of comparative example 1. Furthermore, the result of the SEM observation of the comparative example is shown in FIG. The microstructure of the electrolytic manganese dioxide was uniform and dense, and a substantially mesh-like microstructure like the electrolytic manganese dioxide of the present invention could not be confirmed.
  • Electrolytic manganese dioxide was produced by a suspension electrolysis method.
  • a sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution, and an aqueous manganese sulfate solution containing 50 mg / L of electrolytic manganese dioxide particles having an average particle size of 0.63 ⁇ m was used as a manganese replenisher for continuous electrolysis during the electrolysis period.
  • the solution was replenished and electrolysis was carried out at a current density of 1.5 A / dm 2 and an electrolysis temperature of 96 ° C. to produce electrolytic manganese dioxide.
  • the production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
  • the pore distribution of the produced electrolytic manganese dioxide is shown in FIG.
  • amorphous manganese oxide was not generated in the electrolytic solution. Moreover, the result of SEM observation of the produced electrolytic manganese dioxide is shown in FIG. From FIG. 6, it was confirmed that the electrolytic manganese dioxide had a fine structure in which coarse secondary particles of about 100 ⁇ m were aggregated. In addition, the electrolytic manganese dioxide had many open pores, and the apparent particle density was lower than that in Examples.
  • Comparative Example 4 Electrolytic manganese dioxide was produced under the same conditions as in Example 1 except that none of the manganese oxides were used (the manganese oxide particle concentration was adjusted to 0 mg / L). In the comparative example, the electrolysis voltage increased to 3.20 V during the electrolysis period, and as a result, the electrolytic manganese dioxide electrodeposited on the electrode dropped off from the electrode, and the electrolytic manganese dioxide could not be obtained.
  • the production conditions of Comparative Example 3 are shown in Table 6.
  • Example 5 Manganese oxide slurry was obtained in the same manner as in Example 1. Next, the manganese oxide slurry was filtered, and the obtained solid phase was dried at 110 ° C. overnight to obtain manganese oxide. The obtained manganese oxide was a single phase of trimanganese tetraoxide (Mn 3 O 4 ) and had a powder X-ray diffraction pattern equivalent to that of trimanganese tetraoxide of Example 1. The water content of the trimanganese tetraoxide was 20% or less.
  • FIG. 7 shows a powder X-ray diffraction pattern of trimanganese tetraoxide in the manganese replenisher in this comparative example
  • FIG. 8 shows a powder X-ray diffraction pattern of suspended particles in the electrolyte.
  • the production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
  • Comparative Example 6 An aqueous manganese sulfate solution containing 25 mg / L of electrolytic manganese dioxide particles having an average particle size of 0.63 ⁇ m and a manganese concentration of 40 g / L was used as a manganese replenisher, and the electrolytic current density was 0.88 A / dm 2 . Except for this, electrolytic manganese dioxide was produced in the same manner as in Example 1. The suspended particles in the electrolyte were the same electrolytic manganese dioxide as the manganese replenisher, and the particle concentration in the electrolyte was 4.6 mg / L. The production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
  • Example 3 the experimental conditions are the same as in Example 3 except that the drying treatment is performed on trimanganese tetraoxide.
  • the particle ratio of electrolytic manganese dioxide of Example 3 is 75% by weight, whereas the particle ratio of electrolytic manganese dioxide of Comparative Example 5 is 65% by weight, and Example 3 is 10% more than Comparative Example 5.
  • the percentage of particles was higher than%.
  • the electrolytic manganese dioxide of the present invention was excellent in grinding characteristics.
  • the electrolytic manganese dioxide of the comparative example 1 had a high grinding
  • the micro Vickers hardness of any of the examples also had an Hv of 400 or less, whereas all of the comparative examples had an Hv of over 400. From this, it was found that the electrolytic manganese dioxide of the example was easily pulverized and had low hardness. Further, the electrolytic manganese dioxide of Example 8 and Comparative Example 1 each had a particle ratio of 87% by weight. Nevertheless, the electrolytic manganese dioxide of Example 8 had a lower micro Vickers hardness than the electrolytic manganese dioxide of Comparative Example 1. From this, the grindability of the conventional easily grindable electrolytic manganese dioxide (Comparative Example 1) is derived from its high specific surface area, whereas the grindability of the electrolytic manganese dioxide of the present invention is that of electrolytic manganese dioxide. It was confirmed that it originated from its own hardness.
  • the electrolytic manganese dioxide of the present invention is suitably used as a positive electrode active material for a primary battery such as an alkaline battery or as a raw material for a lithium manganese composite oxide that is a positive electrode active material for a lithium ion secondary battery.

Abstract

Provided are an electrolytic manganese dioxide with which contamination by metal impurities during industrial production steps can be prevented, that is, an electrolytic manganese dioxide having excellent pulverization properties, and a method for producing the same. The electrolytic manganese dioxide has an apparent particle density of 3.0 g/cm3 or greater, a particle density of 4.25 g/cm3 or greater, and preferably a porosity of 0.01 mL/g or greater. The electrolytic manganese dioxide is produced by mixing an amorphous manganese oxide in an electrolyte solution.

Description

電解二酸化マンガン及びその製造方法並びにその用途Electrolytic manganese dioxide, method for producing the same, and use thereof
 本発明は、たとえばリチウム二次電池用正極活物質等の原料として使用される電解二酸化マンガン及びその製造方法に関するものである。 The present invention relates to electrolytic manganese dioxide that is used as a raw material for, for example, a positive electrode active material for a lithium secondary battery, and a method for producing the same.
 電解二酸化マンガンはアルカリ電池等の一次電池の正極活物質として、若しくは、リチウムイオン二次電池の正極活物質であるリチウムマンガン系複合酸化物の原料として広く使用されている。一次電池の正極活物質として使用される電解二酸化マンガンと比べ、リチウム二次電池用の正極材料原料として使用される電解二酸化マンガンは、より一層の金属不純物の低減が求められている。 Electrolytic manganese dioxide is widely used as a positive electrode active material for primary batteries such as alkaline batteries or as a raw material for lithium manganese composite oxides that are positive electrode active materials for lithium ion secondary batteries. Compared to electrolytic manganese dioxide used as a positive electrode active material for primary batteries, electrolytic manganese dioxide used as a positive electrode material for lithium secondary batteries is required to further reduce metal impurities.
 電解二酸化マンガン中の金属不純物を低減するためには、その粉砕特性を改善することが効果的と考えられる。すなわち、マンガンイオンを含有する電解液の電気分解(電解)により電解電極上に凝塊状の電解二酸化マンガンが析出し、これを粉砕して、粉末状とすることで、工業的に電解二酸化マンガンは得られている(例えば、特許文献1~3)。金属不純物は、凝塊状の電解二酸化マンガンを粉砕する際に混入する。したがって、電解二酸化マンガンの粉砕特性を向上させること、すなわち、電解二酸化マンガンを易粉砕性にすることで、粉砕による金属不純物の混入を抑制することができる。 In order to reduce metal impurities in electrolytic manganese dioxide, it is considered effective to improve the grinding characteristics. That is, agglomerated electrolytic manganese dioxide is deposited on the electrolytic electrode by electrolysis (electrolysis) of an electrolytic solution containing manganese ions, and this is pulverized to form a powder. (For example, Patent Documents 1 to 3). Metal impurities are mixed when the agglomerated electrolytic manganese dioxide is pulverized. Accordingly, by improving the pulverization characteristics of electrolytic manganese dioxide, that is, by making electrolytic manganese dioxide easily pulverizable, mixing of metal impurities due to pulverization can be suppressed.
 これまで、電解二酸化マンガンの粉砕特性については、BET比表面積が高くなることにより粉砕特性が向上すること、および、それ以外の電解二酸化マンガンの物性は粉砕特性に影響を与えないことが報告されている(非特許文献1)。 So far, regarding the grinding characteristics of electrolytic manganese dioxide, it has been reported that the grinding characteristics are improved by increasing the BET specific surface area, and that other physical properties of electrolytic manganese dioxide do not affect the grinding characteristics. (Non-Patent Document 1).
日本特開平11-126607号公報Japanese Unexamined Patent Publication No. 11-126607 日本特公昭57-42711号公報Japanese Patent Publication No.57-42711 日本特開昭51-104499号公報Japanese Unexamined Patent Publication No. 51-104499
 従来の易粉砕性の電解二酸化マンガンはBET比表面積が高かった。しかしながら、このような電解二酸化マンガンは充填性が低いものであった。一方、充填性の高い電解二酸化マンガンは、強固な電解二酸化マンガンであるため粉砕特性が悪く、粉砕しにくい難粉砕性のものであった。このように、従来の電解二酸化マンガンは粉砕特性に優れるか、充填性に優れるかのいずれかであり、この両者を満たす電解二酸化マンガンは得られていなかった。 The conventional easily pulverized electrolytic manganese dioxide has a high BET specific surface area. However, such electrolytic manganese dioxide has a low filling property. On the other hand, electrolytic manganese dioxide having a high filling property is a strong electrolytic manganese dioxide, and thus has poor grinding characteristics and is difficult to grind. Thus, conventional electrolytic manganese dioxide has either excellent grinding characteristics or excellent filling properties, and electrolytic manganese dioxide satisfying both of these has not been obtained.
 本発明はこれらの課題を解決し、粉砕特性に優れ、なおかつ、充填性にも優れた電解二酸化マンガン及びその製造方法を提供することを目的とする。 An object of the present invention is to solve these problems and to provide an electrolytic manganese dioxide excellent in pulverization characteristics and excellent in filling properties and a method for producing the same.
 本発明者等は、粉砕特性に優れた電解二酸化マンガンについて鋭意検討を重ねた。その結果、従来とは異なる見掛粒子密度および粒子密度を兼ね備えた電解二酸化マンガンが充填性が高く、なおかつ、易粉砕性であることを見出した。更には、このような電解二酸化マンガンは従来とは異なる電解方法によって製造できることを本発明者等は見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies on electrolytic manganese dioxide having excellent grinding characteristics. As a result, it has been found that electrolytic manganese dioxide having an apparent particle density and particle density different from the conventional ones has high filling properties and is easily pulverized. Furthermore, the present inventors have found that such electrolytic manganese dioxide can be produced by an electrolysis method different from the conventional one, and have completed the present invention.
 すなわち、本発明の要旨は以下の通りである。
 (1)見掛粒子密度が3.0g/cm以上、粒子密度が4.25g/cm以上であることを特徴とする電解二酸化マンガン。
 (2)開気孔が0.01mL(リットル)/g以上であることを特徴とする上記(1)に記載の電解二酸化マンガン。
 (3)BET比表面積が10m/g以上、45m/g以下であることを特徴とする上記(1)又は(2)に記載の電解二酸化マンガン。
 (4)アモルファスのマンガン酸化物を電解液中に混合することを特徴とする上記(1)乃至(3)のいずれかに記載の電解二酸化マンガンの製造方法。
 (5)電解液中でアモルファスのマンガン酸化物を生成させ、アモルファスのマンガン酸化物を電解液中に混合することを特徴とする上記(4)に記載の電解二酸化マンガンの製造方法。
That is, the gist of the present invention is as follows.
(1) An electrolytic manganese dioxide having an apparent particle density of 3.0 g / cm 3 or more and a particle density of 4.25 g / cm 3 or more.
(2) The electrolytic manganese dioxide as described in (1) above, wherein the open pores are 0.01 mL (liter) / g or more.
(3) The electrolytic manganese dioxide as described in (1) or (2) above, wherein the BET specific surface area is 10 m 2 / g or more and 45 m 2 / g or less.
(4) The method for producing electrolytic manganese dioxide as described in any one of (1) to (3) above, wherein amorphous manganese oxide is mixed in an electrolytic solution.
(5) The method for producing electrolytic manganese dioxide as described in (4) above, wherein amorphous manganese oxide is produced in the electrolytic solution, and the amorphous manganese oxide is mixed in the electrolytic solution.
 (6)電解液中でのマンガン化合物の溶解再析出により、アモルファスのマンガン酸化物を電解液中に混合することを特徴とする上記(4)又は(5)に記載の電解二酸化マンガンの製造方法。
 (7)マンガン化合物が結晶性のマンガン酸化物であることを特徴とする上記(6)に記載の電解二酸化マンガンの製造方法。
 (8)マンガン化合物が、マンガン酸化度が1以上、1.6以下の結晶性のマンガン酸化物であることを特徴とする上記(6)又は(7)に記載の電解二酸化マンガンの製造方法。
 (9)マンガン化合物が化学マンガン酸化物であることを特徴とする上記(6)乃至(8)のいずれかに記載の電解二酸化マンガンの製造方法。
 (10)マンガン化合物が四三酸化マンガン又は三二酸化マンガンもしくはその両者であることを特徴とする上記(6)乃至(9)のいずれかに記載の電解二酸化マンガンの製造方法。
(6) The method for producing electrolytic manganese dioxide as described in (4) or (5) above, wherein amorphous manganese oxide is mixed in the electrolytic solution by dissolution and reprecipitation of the manganese compound in the electrolytic solution. .
(7) The method for producing electrolytic manganese dioxide as described in (6) above, wherein the manganese compound is a crystalline manganese oxide.
(8) The method for producing electrolytic manganese dioxide as described in (6) or (7) above, wherein the manganese compound is a crystalline manganese oxide having a manganese oxidation degree of 1 or more and 1.6 or less.
(9) The method for producing electrolytic manganese dioxide as described in any one of (6) to (8) above, wherein the manganese compound is a chemical manganese oxide.
(10) The method for producing electrolytic manganese dioxide as described in any one of (6) to (9) above, wherein the manganese compound is trimanganese tetraoxide or manganese trioxide or both.
 (11)電解液中のアモルファスのマンガン酸化物濃度が0.5mg/L以上、20mg/L以下であることを特徴とする上記(4)乃至(10)のいずれかに記載の電解二酸化マンガン製造方法。
 (12)アモルファスのマンガン酸化物がBET比表面積80m/g以上であることを特徴とする上記(4)乃至(11)のいずれかに記載の電解二酸化マンガン製造方法。
 (13)電解液が硫酸-硫酸マンガン混合溶液であることを特徴とする上記(4)乃至(12)のいずれかに記載の電解二酸化マンガンの製造方法。
 (14)電解電流密度が0.5A/dm以上、1.5A/dm以下であることを特徴とする上記(4)乃至(13)のいずれかに記載の電解二酸化マンガン製造方法。
 (15)上記(1)乃至(3)のいずれかに記載の電解二酸化マンガンを用いて得られることを特徴とするリチウムマンガン系複合酸化物。
(11) The electrolytic manganese dioxide production according to any one of (4) to (10) above, wherein the concentration of amorphous manganese oxide in the electrolytic solution is 0.5 mg / L or more and 20 mg / L or less Method.
(12) The method for producing electrolytic manganese dioxide as described in any one of (4) to (11) above, wherein the amorphous manganese oxide has a BET specific surface area of 80 m 2 / g or more.
(13) The method for producing electrolytic manganese dioxide as described in any one of (4) to (12) above, wherein the electrolytic solution is a mixed solution of sulfuric acid and manganese sulfate.
(14) The electrolytic manganese dioxide production method as described in any one of (4) to (13) above, wherein the electrolytic current density is 0.5 A / dm 2 or more and 1.5 A / dm 2 or less.
(15) A lithium manganese composite oxide obtained by using the electrolytic manganese dioxide according to any one of (1) to (3).
 本発明の電解二酸化マンガンは充填性が高いだけでなく易粉砕性である。そのため、より少ない粉砕エネルギーでの粉砕が可能となる。さらには、その粉砕時間を短くすることができる。これにより、製造工程の機器等からの金属不純物の混入を抑制することが期待できる。これにより、アルカリ電池用正極材料や二次電池材料用のマンガン原料などに適した、充填性が高く、なおかつ、金属不純物の少ない電解二酸化マンガンを工業的に安定して提供することができる。さらに、本発明の製造方法により、このような易粉砕性の電解二酸化マンガンを容易に工業的に製造することができる。 The electrolytic manganese dioxide of the present invention has not only high filling properties but also easy grindability. Therefore, pulverization with less pulverization energy becomes possible. Furthermore, the pulverization time can be shortened. Thereby, it can be expected that metal impurities are prevented from being mixed from equipment in the manufacturing process. Thereby, the electrolytic manganese dioxide suitable for the positive electrode material for alkaline batteries, the manganese raw material for secondary battery materials, etc. with high filling property and few metal impurities can be provided industrially stably. Furthermore, such easily pulverizable electrolytic manganese dioxide can be easily industrially produced by the production method of the present invention.
実施例1で得られた四三酸化マンガンの粉末X線回折(XRD)図X-ray powder diffraction (XRD) diagram of trimanganese tetraoxide obtained in Example 1 実施例1で得られたアモルファスのマンガン酸化物の粉末X線回折図Powder X-ray diffraction pattern of amorphous manganese oxide obtained in Example 1 実施例2及び比較例3で得られた電解二酸化マンガンの細孔径分布図(図中、実線が実施例2、破線が比較例3)Pore size distribution diagram of electrolytic manganese dioxide obtained in Example 2 and Comparative Example 3 (in the figure, solid line is Example 2 and broken line is Comparative Example 3) 実施例2で得られた電解二酸化マンガンのSEM観察結果(図中スケールは10μm)SEM observation result of electrolytic manganese dioxide obtained in Example 2 (scale in the figure is 10 μm)
比較例2で得られた電解二酸化マンガンのSEM観察結果(図中スケールは10μm)SEM observation result of electrolytic manganese dioxide obtained in Comparative Example 2 (scale in the figure is 10 μm) 比較例3で得られた電解二酸化マンガンのSEM観察結果(図中スケールは10μm)SEM observation result of electrolytic manganese dioxide obtained in Comparative Example 3 (scale in the figure is 10 μm) 比較例5のマンガン酸化物スラリー中のマンガン酸化物の粉末X線回折パターンPowder X-ray diffraction pattern of manganese oxide in manganese oxide slurry of Comparative Example 5 比較例5の電解液中のマンガン酸化物の粉末X線回折パターンPowder X-ray diffraction pattern of manganese oxide in the electrolyte solution of Comparative Example 5
 以下、本発明の電解二酸化マンガンについて説明する。
 本発明の電解二酸化マンガンは粒子密度が4.25g/cm以上、見掛粒子密度が3.0g/cm以上である。粒子密度(particle density)及び見掛粒子密度(apparent particle density)のいずれかが上記の範囲を満たすことで、電解二酸化マンガンの充填性が高くなる。さらに、本発明の電解二酸化マンガンは、上記の範囲の粒子密度と見掛粒子密度の両者を満たす。これにより、本発明の電解二酸化マンガンは粉砕特性が高い電解二酸化マンガン、すなわち、易粉砕性の電解二酸化マンガンとなる。
Hereinafter, the electrolytic manganese dioxide of the present invention will be described.
The electrolytic manganese dioxide of the present invention has a particle density of 4.25 g / cm 3 or more and an apparent particle density of 3.0 g / cm 3 or more. When either one of the particle density and the apparent particle density satisfies the above range, the filling properties of electrolytic manganese dioxide are enhanced. Furthermore, the electrolytic manganese dioxide of the present invention satisfies both the particle density and the apparent particle density in the above range. As a result, the electrolytic manganese dioxide of the present invention becomes electrolytic manganese dioxide having high grinding characteristics, that is, easily grindable electrolytic manganese dioxide.
 なお、本発明における見掛粒子密度とは、電解二酸化マンガン粒子の形骸体積を基準として求められる密度である。すなわち、電解二酸化マンガン粒子に閉気孔及び開気孔が存在しないとみなした場合の粒子の密度が見掛粒子密度である。
 一方、粒子密度とは、電解二酸化マンガン粒子の形骸体積から開気孔を除外して求められる密度である。すなわち、電解二酸化マンガン粒子に開気孔は存在するが、閉気孔が存在しないとみなした場合の粒子の密度が粒子密度である。
 見掛粒子密度及び粒子密度は、水銀圧入法、例えば、後述する実施例に記載の方法等により求めることができる。
In addition, the apparent particle density in this invention is a density calculated | required on the basis of the volume of electrolytic manganese dioxide particles. That is, the apparent particle density is the density of particles when it is considered that closed pores and open pores do not exist in the electrolytic manganese dioxide particles.
On the other hand, the particle density is a density obtained by excluding open pores from the volume of electrolytic manganese dioxide particles. That is, the density of the particles when the open pores are present in the electrolytic manganese dioxide particles but the closed pores are not present is the particle density.
The apparent particle density and the particle density can be determined by a mercury intrusion method, for example, a method described in Examples described later.
 本発明の電解二酸化マンガンの見掛粒子密度は3.0g/cm以上であり、3.5g/cm以上であることが好ましく、3.8g/cm以上であることがより好ましく、4.0g/cm以上であることが更に好ましい。見掛粒子密度が3.0g/cm未満であると、電解二酸化マンガンが多孔質な粒子となる。一方、見掛粒子密度が4.5g/cm以下であれば、十分に充填性の高い電解二酸化マンガンとなる。 Apparent particle density of electrolytic manganese dioxide of the present invention is 3.0 g / cm 3 or more, preferably 3.5 g / cm 3 or more, more preferably 3.8 g / cm 3 or more, 4 More preferably, it is 0.0 g / cm 3 or more. When the apparent particle density is less than 3.0 g / cm 3 , the electrolytic manganese dioxide becomes porous particles. On the other hand, when the apparent particle density is 4.5 g / cm 3 or less, the electrolytic manganese dioxide has a sufficiently high filling property.
 本発明の電解二酸化マンガンの粒子密度は4.25g/cm以上であり、4.3g/cm以上であることが好ましく、4.4g/cm以上であることがより好ましい。粒子密度が4.25g/cm未満であると、電解二酸化マンガンが閉気孔を多く含む粒子となる。一方、電解二酸化マンガンの理論密度は4.8g/cmである。そのため、本発明の電解二酸化マンガンの粒子密度は高くとも4.8g/cm以下となる。 Particle density of electrolytic manganese dioxide of the present invention is 4.25 g / cm 3 or more, preferably 4.3 g / cm 3 or more, and more preferably 4.4 g / cm 3 or more. When the particle density is less than 4.25 g / cm 3 , electrolytic manganese dioxide becomes particles containing many closed pores. On the other hand, the theoretical density of electrolytic manganese dioxide is 4.8 g / cm 3 . Therefore, the particle density of the electrolytic manganese dioxide of the present invention is at most 4.8 g / cm 3 or less.
 このように、粒子密度及び見掛粒子密度はいずれも電解二酸化マンガンの充填性を示す。これらのいずれかが本発明の範囲を満たすことで、本発明の電解二酸化マンガンは高い充填性を有する。これに加え、粒子密度と見掛粒子密度の両者が本発明の範囲を満たすことで、本発明の電解二酸化マンガンは粉砕特性に優れた、易粉砕性の電解二酸化マンガンとなる。 Thus, both the particle density and the apparent particle density indicate the filling properties of electrolytic manganese dioxide. When any of these satisfies the scope of the present invention, the electrolytic manganese dioxide of the present invention has a high filling property. In addition, when both the particle density and the apparent particle density satisfy the scope of the present invention, the electrolytic manganese dioxide of the present invention becomes an easily pulverizable electrolytic manganese dioxide having excellent grinding characteristics.
 さらに、本発明の電解二酸化マンガンは、開気孔が0.01mL/g以上であることが好ましく、0.015mL/g以上であることがより好ましく、0.02mL/g以上であることが更に好ましく、0.026g/mL/g以上であることが更により好ましく、0.03mL/g以上であることが特に好ましい。開気孔が0.01mL/g以上であることで、電解二酸化マンガンがより易粉砕性になりやすい。一方、電解二酸化マンガン中に気孔が多くなりすぎると粒子密度が低下する傾向にある。適度な粒子密度を有するための開気孔として、例えば、高くとも0.07mL/g以下、更には、0.06mL/g以下を挙げることができる。なお、開気孔の量は、見掛粒子密度と粒子密度の逆数の差により求める。 Furthermore, the electrolytic manganese dioxide of the present invention preferably has an open pore of 0.01 mL / g or more, more preferably 0.015 mL / g or more, and further preferably 0.02 mL / g or more. 0.026 g / mL / g or more is even more preferable, and 0.03 mL / g or more is particularly preferable. When the open pores are 0.01 mL / g or more, the electrolytic manganese dioxide is more easily pulverized. On the other hand, when the number of pores in the electrolytic manganese dioxide increases, the particle density tends to decrease. Examples of the open pores for having an appropriate particle density include at most 0.07 mL / g or less, and further 0.06 mL / g or less. The amount of open pores is determined by the difference between the apparent particle density and the inverse of the particle density.
 本発明の電解二酸化マンガンが易粉砕性であることは、その微細構造からも確認することができる。すなわち、本発明の電解二酸化マンガンに存在する気孔は、そのほとんどが開気孔(open pore)である。さらには、これらの開気孔は個々の気孔が不規則に連結することにより形成されたものであり、円筒近似した場合の気孔の直径(近似直径)が0.2μm以上の不定形状の開気孔となっている。このような不定形状の開気孔を多く有する微細構造を有することが、本発明の電解二酸化マンガンが易粉砕性となる原因のひとつとして考えられる。 It can be confirmed from the fine structure that the electrolytic manganese dioxide of the present invention is easily pulverizable. That is, most of the pores present in the electrolytic manganese dioxide of the present invention are open pores. Further, these open pores are formed by irregularly connecting individual pores, and the open pores having an irregular shape with a pore diameter (approximate diameter) of 0.2 μm or more when approximated by a cylinder are used. It has become. One of the causes that the electrolytic manganese dioxide of the present invention becomes easily pulverizable is that it has such a fine structure having many open pores having an irregular shape.
 さらに、本発明の電解二酸化マンガンは、微細な開気孔のみならず、閉気孔(closed pore)が少ない微細構造、特に、細孔直径が0.2μmを超える粗大な閉気孔をほとんど有さない微細構造である。このような粗大な閉気孔が少ないことが、本発明の電解二酸化マンガンが粉砕特性に優れるだけでなく、充填性にも優れた電解二酸化マンガンとなる原因のひとつとして考えられる。一方、従来の電解二酸化マンガンは、不定形状の開気孔をほとんど有さない微細構造であり、本発明の電解二酸化マンガンとは異なった微細構造である。 Furthermore, the electrolytic manganese dioxide of the present invention has not only fine open pores but also a fine structure with few closed pores, particularly fine particles having almost no coarse closed pores with a pore diameter exceeding 0.2 μm. Structure. Such a small number of coarse closed pores is considered as one of the causes that the electrolytic manganese dioxide of the present invention is not only excellent in pulverization characteristics but also excellent in filling properties. On the other hand, the conventional electrolytic manganese dioxide has a fine structure having almost no open pores having an indefinite shape, and has a fine structure different from the electrolytic manganese dioxide of the present invention.
 これら従来の電解二酸化マンガンと本発明の電解二酸化マンガンの微細構造の違いは、走査型電子顕微鏡(以下、SEMともいう。)などにより、電解二酸化マンガンの形態(morophorogy)の違いとして観察することができる場合がある。特に、本発明の電解二酸化マンガンの形態は、不定形状の開気孔を有する微細構造を有する。この微細構造は略網目状の一次構造を有する電解二酸化マンガンの集合体として確認される。なお、このような略網目状の一次構造は微粉砕された電解二酸化マンガン粉末としても確認することができる。これに加え、電極から剥離した状態の電解二酸化マンガン、いわゆるチップの状態の電解二酸化マンガンにおいて、特に明確にこの略網目状の一次構造を観察することができる。 The difference in microstructure between the conventional electrolytic manganese dioxide and the electrolytic manganese dioxide of the present invention can be observed as a difference in the morphology of electrolytic manganese dioxide using a scanning electron microscope (hereinafter also referred to as SEM). There are cases where it is possible. In particular, the form of the electrolytic manganese dioxide of the present invention has a fine structure having irregularly shaped open pores. This fine structure is confirmed as an aggregate of electrolytic manganese dioxide having a substantially network-like primary structure. Such a substantially network-like primary structure can also be confirmed as finely pulverized electrolytic manganese dioxide powder. In addition to this, in the electrolytic manganese dioxide peeled from the electrode, that is, the so-called chip-like electrolytic manganese dioxide, this substantially network-like primary structure can be observed particularly clearly.
 さらに、本発明の電解二酸化マンガンは易粉砕性であるため、粉砕性を示す指標である硬度が従来の電解二酸化マンガンと比べても低い。そのため、本発明の電解二酸化マンガンは、マイクロビッカース硬度がHv=400以下、更にはHv=350以下、また更にはHv=300以下であることが好ましい。 Furthermore, since the electrolytic manganese dioxide of the present invention is easily pulverized, the hardness, which is an indicator of pulverization, is lower than that of conventional electrolytic manganese dioxide. Therefore, the electrolytic manganese dioxide of the present invention preferably has a micro Vickers hardness of Hv = 400 or less, more preferably Hv = 350 or less, and even more preferably Hv = 300 or less.
 本発明の電解二酸化マンガンは、BET比表面積が10m/g以上であることが好ましく、15m/g以上であることがより好ましく、20m/g以上であることが更に好ましい。BET比表面積が10m/g以上であることで、電解二酸化マンガンの反応性が高くなりやすい。一方、BET比表面積が必要以上に高くなると、電解二酸化マンガンの充填性が低くなる傾向にある。そのため、BET比表面積は45m/g以下であることが好ましく、40m/g以下であることがより好ましく、35m/g以下であることが更に好ましい。 The electrolytic manganese dioxide of the present invention preferably has a BET specific surface area of 10 m 2 / g or more, more preferably 15 m 2 / g or more, and further preferably 20 m 2 / g or more. When the BET specific surface area is 10 m 2 / g or more, the reactivity of electrolytic manganese dioxide tends to be high. On the other hand, when the BET specific surface area becomes higher than necessary, the filling properties of electrolytic manganese dioxide tend to be lowered. Therefore, the BET specific surface area is preferably 45 m 2 / g or less, more preferably 40 m 2 / g or less, and further preferably 35 m 2 / g or less.
 なお、BET比表面積が高く粉砕特性が優れる従来の電解二酸化マンガンは不定形状の開気孔をほとんど有さない。そのため、このような電解二酸化マンガンの粉砕特性はBET比表面積に依存する傾向にある。すなわち、BET比表面積が高くなると粉砕特性が高くなる一方、BET比表面積が低くなるとは粉砕特性が低くなる。これに対し、本発明の電解二酸化マンガンは、その粉砕特性は主に電解二酸化マンガン自身の硬さや、不定形状の開気孔の影響が大きくなる。そのため、本発明の電解二酸化マンガンの粉砕特性はBET比表面積の影響を受けにくい。 Note that conventional electrolytic manganese dioxide with a high BET specific surface area and excellent grinding characteristics has almost no open pores of irregular shape. Therefore, the grinding characteristics of such electrolytic manganese dioxide tend to depend on the BET specific surface area. That is, when the BET specific surface area is increased, the crushing characteristics are increased, while when the BET specific surface area is decreased, the crushing characteristics are decreased. On the other hand, the electrolytic manganese dioxide of the present invention is mainly affected by the hardness of the electrolytic manganese dioxide itself and the irregularly shaped open pores in the grinding characteristics. Therefore, the grinding characteristics of the electrolytic manganese dioxide of the present invention are not easily affected by the BET specific surface area.
 本発明の電解二酸化マンガンは、X線回折測定における(110)面の回折線の半価全幅(以下、単に「FWHM」とする)が1.7°以上、4.0°以下であることが好ましく、1.85°以上、3.7°以下であることがより好ましく、2.0°以上、3.5°以下であることが更により好ましい。FWHMがこの範囲であれば、電解二酸化マンガンとリチウム化合物等との反応性が高くなりやすい。なお、X線回折測定における(110)面の回折線は、CuKα線を光源とするXRD測定パターンにおいて、2θが22±1°付近に観測することができる。 The electrolytic manganese dioxide of the present invention has a full width at half maximum (hereinafter simply referred to as “FWHM”) of diffraction lines on the (110) plane in X-ray diffraction measurement of 1.7 ° or more and 4.0 ° or less. Preferably, it is 1.85 ° or more and 3.7 ° or less, and more preferably 2.0 ° or more and 3.5 ° or less. If FWHM is in this range, the reactivity between electrolytic manganese dioxide and lithium compounds tends to be high. In addition, the diffraction line on the (110) plane in the X-ray diffraction measurement can be observed at 2θ around 22 ± 1 ° in the XRD measurement pattern using CuKα rays as a light source.
 次に、本発明の電解二酸化マンガンの製造方法について説明する。
 本発明は、アモルファスのマンガン酸化物を電解液中に混合することを特徴とする電解二酸化マンガンの製造方法である。すなわち、本発明の製造方法はアモルファスのマンガン酸化物を含む電解液を電解することを特徴とする電解二酸化マンガンの製造方法である。
Next, the manufacturing method of the electrolytic manganese dioxide of this invention is demonstrated.
The present invention is a method for producing electrolytic manganese dioxide, characterized in that amorphous manganese oxide is mixed in an electrolytic solution. That is, the production method of the present invention is a method for producing electrolytic manganese dioxide characterized by electrolyzing an electrolytic solution containing amorphous manganese oxide.
 電解二酸化マンガンの製造方法としては、懸濁粒子を用いずに電解液を電気分解する電解方法(以下、「清澄電解法」)、又は、マンガン化合物粒子を電解液に混合して電解液を電気分解する電解方法(以下、「懸濁電解法」)がある。従来、懸濁電解法で電解液に混合されるマンガン化合物粒子(以下、「懸濁粒子」)としては、結晶性のマンガン酸化物が使用されている。これに対し、本発明の製造方法は、懸濁粒子としてアモルファス(非結晶質)のマンガン酸化物を使用する懸濁電解法であり、懸濁粒子として結晶性のマンガン酸化物を実質的に使用しない懸濁電解方法である。 As a method for producing electrolytic manganese dioxide, an electrolytic method in which an electrolytic solution is electrolyzed without using suspended particles (hereinafter referred to as “clarified electrolytic method”), or manganese compound particles are mixed with an electrolytic solution to make the electrolytic solution electrically There is an electrolysis method that decomposes (hereinafter, “suspension electrolysis”). Conventionally, crystalline manganese oxide has been used as manganese compound particles (hereinafter referred to as “suspended particles”) mixed in an electrolytic solution by a suspension electrolysis method. In contrast, the production method of the present invention is a suspension electrolysis method that uses amorphous (non-crystalline) manganese oxide as suspended particles, and substantially uses crystalline manganese oxide as suspended particles. This is a suspension electrolysis method.
 したがって、本発明の製造方法は、アモルファスのマンガン酸化物を含む電解液を電解する二酸化マンガンの製造方法である。懸濁粒子としてアモルファスのマンガン酸化物を使用する懸濁電解法とすることで、本発明の製造方法における電解二酸化マンガンの析出状態が、従来の清澄電解法及び懸濁粒子として結晶性のマンガン酸化物を使用する懸濁電解法、すなわち結晶性マンガン酸化物を含有する電解液を電解する製造方法における電解二酸化マンガンの析出状態と異なるものとなる。これにより、易粉砕性の電解二酸化マンガンが得られる。 Therefore, the production method of the present invention is a method for producing manganese dioxide for electrolyzing an electrolytic solution containing amorphous manganese oxide. By employing a suspension electrolysis method using amorphous manganese oxide as suspension particles, the precipitation state of electrolytic manganese dioxide in the production method of the present invention is the same as the conventional clarification electrolysis method and crystalline manganese oxidation as suspension particles. This is different from the precipitation state of electrolytic manganese dioxide in a suspension electrolytic method using a product, that is, a production method in which an electrolytic solution containing crystalline manganese oxide is electrolyzed. Thereby, easily pulverizable electrolytic manganese dioxide is obtained.
 本発明の製造方法では、アモルファスのマンガン酸化物を電解液中に混合する。これにより、アモルファスのマンガン酸化物を含む電解液から電解二酸化マンガンが電解析出される。 In the production method of the present invention, amorphous manganese oxide is mixed in the electrolytic solution. Thereby, electrolytic manganese dioxide is electrolytically deposited from the electrolytic solution containing amorphous manganese oxide.
 アモルファスのマンガン酸化物とは、非結晶質のマンガン酸化物であればよい。なお、「非結晶質」とは、粉末X線回折測定において、最も強度の大きい回折ピーク(例えば、CuKαを線源とした場合の2θ=37±1°の回折ピーク)の半価全幅が1.0°以上、更には1.5°以上である。このように、アモルファスのマンガン酸化物は粉末X線回折測定で明瞭な回折ピークを示さない。 The amorphous manganese oxide may be an amorphous manganese oxide. The term “amorphous” means that the full width at half maximum of the diffraction peak having the highest intensity (for example, 2θ = 37 ± 1 ° diffraction peak when CuKα is used as a radiation source) is 1 in powder X-ray diffraction measurement. 0.0 ° or more, and further 1.5 ° or more. Thus, amorphous manganese oxide does not show a clear diffraction peak in powder X-ray diffraction measurement.
 アモルファスのマンガン酸化物は、BET比表面積が80m/g以上であることが好ましく、85m/g以上であることがより好ましい。アモルファスのマンガン酸化物のBET比表面積が80m/g以上であることで電解液中に均一に分散しやすくなる。
 アモルファスのマンガン酸化物のマンガンの酸化度(マンガン酸化物をMnOxで表記した場合のx)は、得られる電解二酸化マンガンの粉砕特性に与える影響は少ない。そのため、アモルファスのマンガン酸化物のマンガン酸化度は特に限定はない。マンガン酸化物のマンガン酸化度としてxが1.65以上を挙げることができる。
The amorphous manganese oxide preferably has a BET specific surface area of 80 m 2 / g or more, and more preferably 85 m 2 / g or more. It becomes easy to disperse | distribute uniformly in electrolyte solution because the BET specific surface area of an amorphous manganese oxide is 80 m < 2 > / g or more.
The degree of manganese oxidation of amorphous manganese oxide (x when manganese oxide is expressed as MnOx) has little influence on the grinding characteristics of the obtained electrolytic manganese dioxide. Therefore, the manganese oxidation degree of amorphous manganese oxide is not particularly limited. As the manganese oxidation degree of the manganese oxide, x can be 1.65 or more.
 本発明の電解二酸化マンガンの製造方法において、アモルファスのマンガン酸化物は粒子状である。アモルファスのマンガン酸化物は平均粒子径が5μm以下であることが好ましく、3μm以下であることがより好ましく、1μm以下であることが更に好ましく、0.9μm以下であることが更により好ましい。平均粒子径が5μmを超える場合、電解中にアモルファスのマンガン酸化物が沈降しないようするための操作、例えば、電解液を強く攪拌するなど、が必要となる場合がある。平均粒子径が5μm以下であることで、電解液中でアモルファスのマンガン酸化物が沈降しにくくなり、これが電解液中に均一に分散しやすくなる。アモルファスのマンガン酸化物同士の凝集を抑制するため、平均粒子径は0.5μm以上であることが好ましい。
 上記の物性を有するアモルファスのマンガン酸化物は、例えば、マンガン化合物を酸性下で溶解し、再析出させて得られるアモルファスのマンガン酸化物、更にはマンガン化合物を電解液等の酸性溶液で溶解し、再析出させて得られるアモルファスのマンガン酸化物を挙げることができる。
In the method for producing electrolytic manganese dioxide of the present invention, the amorphous manganese oxide is in the form of particles. The amorphous manganese oxide preferably has an average particle size of 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less, and even more preferably 0.9 μm or less. When the average particle diameter exceeds 5 μm, an operation for preventing amorphous manganese oxide from precipitating during electrolysis, for example, vigorous stirring of the electrolytic solution may be required. When the average particle size is 5 μm or less, amorphous manganese oxide is less likely to settle in the electrolytic solution, and this is easily dispersed uniformly in the electrolytic solution. In order to suppress aggregation of amorphous manganese oxides, the average particle size is preferably 0.5 μm or more.
The amorphous manganese oxide having the above physical properties is obtained, for example, by dissolving a manganese compound in an acidic state and reprecipitating the amorphous manganese oxide, and further dissolving the manganese compound in an acidic solution such as an electrolytic solution, Mention may be made of amorphous manganese oxides obtained by reprecipitation.
 本発明の製造方法では、電解液中のアモルファスのマンガン酸化物濃度が0.5mg/L以上であることが好ましく、0.9mg/Lであることがより好ましく、4mg/L以上であることが更に好ましく、7mg/L以上であることが更により好ましい。電解液中のアモルファスのマンガン酸化物の濃度が0.5mg/L以上であることで、アモルファスのマンガン酸化物を混合した効果がより得られやすくなり、易粉砕性の電解二酸化マンガンが一層得られやすくなる。電解液中のアモルファスのマンガン酸化物の濃度は必要以上に高くする必要はなく、20mg/L以下、更には15mg/L以下であればよい。 In the production method of the present invention, the amorphous manganese oxide concentration in the electrolytic solution is preferably 0.5 mg / L or more, more preferably 0.9 mg / L, and more preferably 4 mg / L or more. More preferably, it is still more preferably 7 mg / L or more. When the concentration of amorphous manganese oxide in the electrolytic solution is 0.5 mg / L or more, the effect of mixing amorphous manganese oxide can be obtained more easily, and more easily pulverized electrolytic manganese dioxide can be obtained. It becomes easy. The concentration of the amorphous manganese oxide in the electrolytic solution does not need to be higher than necessary, and may be 20 mg / L or less, and further 15 mg / L or less.
 本発明の製造方法において、電解液中のアモルファスのマンガン酸化物濃度が一定となるように、これを電解液中に混合することが好ましい。これにより、電解全期間中を通して得られる電解二酸化マンガンの物性、特に粉砕特性が均一になりやすい。
 電解液中にアモルファスのマンガン酸化物を混合する方法(以下、単に「混合方法」ともいう。)、すなわち、電解液にアモルファスのマンガン酸化物を含ませる方法として、アモルファスのマンガン酸化物を電解液に直接添加して混合する方法、アモルファスのマンガン酸化物を含有したスラリーを電解液に添加して混合する方法、又は電解液中でアモルファスのマンガン酸化物を生成させることで、これを混合する方法などを例示することができる。
In the production method of the present invention, it is preferable to mix this in the electrolytic solution so that the amorphous manganese oxide concentration in the electrolytic solution becomes constant. As a result, the physical properties, particularly the pulverization characteristics, of the electrolytic manganese dioxide obtained throughout the electrolysis tend to be uniform.
As a method of mixing amorphous manganese oxide in the electrolytic solution (hereinafter also simply referred to as “mixing method”), that is, as a method of adding amorphous manganese oxide to the electrolytic solution, amorphous manganese oxide is used as the electrolytic solution. A method of directly adding to and mixing with a slurry, a method of adding and mixing a slurry containing amorphous manganese oxide to an electrolytic solution, or a method of mixing an amorphous manganese oxide by generating amorphous manganese oxide in the electrolytic solution Etc. can be illustrated.
 好ましい混合方法として、電解液中でアモルファスのマンガン酸化物を生成させることで、これを混合する方法を挙げることができ、更には、電解液中でのマンガン化合物の溶解再析出により、アモルファスのマンガン酸化物を生成させることで、これを混合する方法を挙げることができる。これによりアモルファスのマンガン酸化物を含む電解液を得ることができる。これらの場合、電解液中で溶解したマンガン化合物から再析出したアモルファスのマンガン酸化物が懸濁粒子となり、これが電解液中に混合され、電解液がアモルファスのマンガン酸化物を含有する電解液となる。 As a preferred mixing method, an amorphous manganese oxide can be generated in the electrolytic solution to mix it, and further, amorphous manganese can be obtained by dissolving and re-depositing the manganese compound in the electrolytic solution. The method of mixing this by producing | generating an oxide can be mentioned. Thereby, an electrolytic solution containing amorphous manganese oxide can be obtained. In these cases, the amorphous manganese oxide re-deposited from the manganese compound dissolved in the electrolytic solution becomes suspended particles, which are mixed in the electrolytic solution, and the electrolytic solution becomes an electrolytic solution containing amorphous manganese oxide. .
 電解液中で溶解させる好ましいマンガン化合物として、結晶性のマンガン酸化物、更には化学反応により得られるマンガン酸化物(以下、「化学マンガン酸化物」とする。)を挙げることができる。電解等の電気化学的反応により得られる電解マンガン酸化物や、天然に産出する天然マンガン酸化物と比べ、化学マンガン酸化物は電解液中で均質なアモルファスのマンガン酸化物を効率よく得られる。 Examples of preferable manganese compounds to be dissolved in the electrolytic solution include crystalline manganese oxides and manganese oxides obtained by chemical reaction (hereinafter referred to as “chemical manganese oxides”). Compared with electrolytic manganese oxide obtained by an electrochemical reaction such as electrolysis and naturally produced manganese oxide, chemical manganese oxide can efficiently obtain a homogeneous amorphous manganese oxide in an electrolytic solution.
 このような化学マンガン酸化物として、例えば、マンガン酸化度が1以上、1.6以下の結晶性のマンガン酸化物(マンガン酸化物をMnOxで表した場合のxが1以上、1.6以下)、更には四三酸化マンガン(Mn)又は三二酸化マンガン(Mn)もしくはその両者を挙げることができる。更には2価マンガン(Mn2+)を酸化して析出させた結晶性のマンガン酸化物、更には2価マンガンを酸化して析出させた結晶性の四三酸化マンガン(Mn)又は三二酸化マンガン(Mn)もしくはその両者を挙げることができる。より具体的には、2価マンガンを含有する溶液とアルカリ溶液とを混合して2価マンガンを酸化して析出させることにより得られる四三酸化マンガン又は三二酸化マンガンもしくはこれらの混合物などのマンガン酸化物を挙げることができる。2価マンガンの酸化は、空気、酸素等の酸化剤を使用して行ってもよい。 As such a chemical manganese oxide, for example, a crystalline manganese oxide having a manganese oxidation degree of 1 or more and 1.6 or less (x is 1 or more and 1.6 or less when the manganese oxide is represented by MnOx) Furthermore, trimanganese tetroxide (Mn 3 O 4 ), manganese trioxide (Mn 2 O 3 ), or both can be mentioned. Further, crystalline manganese oxide deposited by oxidizing divalent manganese (Mn 2+ ), crystalline trimanganese tetraoxide (Mn 3 O 4 ) or three deposited by oxidizing divalent manganese and further precipitated. Manganese dioxide (Mn 2 O 3 ) or both can be mentioned. More specifically, manganese oxidation such as trimanganese tetraoxide or manganese trioxide or a mixture thereof obtained by mixing a solution containing divalent manganese and an alkaline solution to oxidize and precipitate divalent manganese. You can list things. The oxidation of divalent manganese may be performed using an oxidizing agent such as air or oxygen.
 これらの化学マンガン酸化物は、その析出後に乾燥工程を経ない状態で電解液に混合することが好ましく、析出後の化学マンガン酸化物を含む混合溶液をそのままスラリーとして電解液に混合することがより好ましい。乾燥工程を経た化学マンガン酸化物は、電解液中に混合しても溶解しにくくなる。そのため、乾燥工程を得た化学マンガン酸化物を電解液に混合しても、アモルファスのマンガン酸化物が実質的に再析出しなくなる。したがって、析出後に乾燥処理、例えば、含水率を20重量%以下まで乾燥する処理を施した化学マンガン酸化物をそのまま乾燥粉として電解液に混合した場合、又は、これを再度溶媒に分散してスラリーとして電解液に混合した場合は、アモルファスのマンガン酸化物が実質的に生成せず、混合した化学マンガン酸化物がそのまま懸濁粒子となる。 These chemical manganese oxides are preferably mixed with the electrolytic solution without being subjected to a drying step after the deposition, and the mixed solution containing the chemical manganese oxide after the deposition is more directly mixed into the electrolytic solution as a slurry. preferable. The chemical manganese oxide that has undergone the drying step becomes difficult to dissolve even when mixed in the electrolytic solution. Therefore, even if the chemical manganese oxide obtained through the drying process is mixed with the electrolytic solution, the amorphous manganese oxide does not substantially reprecipitate. Therefore, when the chemical manganese oxide that has been subjected to a drying treatment after precipitation, for example, a treatment for drying the water content to 20% by weight or less, is directly mixed with the electrolyte as a dry powder, or is dispersed in a solvent again to form a slurry. When mixed with an electrolytic solution, amorphous manganese oxide is not substantially formed, and the mixed chemical manganese oxide becomes suspension particles as it is.
 本発明の製造方法では、アモルファスのマンガン酸化物を用いた懸濁電解法、すなわち、アモルファスのマンガン酸化物を含む電解液を電解する製造方法とすること以外の条件は、以下のものを例示することができる。 In the production method of the present invention, the conditions other than the suspension electrolysis method using amorphous manganese oxide, that is, the production method of electrolyzing an electrolytic solution containing amorphous manganese oxide, are as follows. be able to.
 電解液として、塩化マンガン溶液、硫酸マンガン溶液、硫酸-硫酸マンガン混合溶液のいずれか1種以上が例示できる。これらの中でも、電解液は硫酸-硫酸マンガン混合溶液であることが好ましい。硫酸-硫酸マンガン混合溶液を電解液とすることにより、電解期間中の硫酸濃度が一定となり、長期間電解を行なった場合であっても硫酸濃度が一定になる。これにより、物性が均一な電解二酸化マンガンが得られやすくなる。
 本発明における電解液は、水溶液であるのが好ましい。なかでも硫酸-硫酸マンガン混合水溶液を電解液とすることが特に好ましい。
Examples of the electrolytic solution include one or more of a manganese chloride solution, a manganese sulfate solution, and a sulfuric acid-manganese sulfate mixed solution. Among these, the electrolytic solution is preferably a sulfuric acid-manganese sulfate mixed solution. By using the sulfuric acid-manganese sulfate mixed solution as the electrolytic solution, the sulfuric acid concentration becomes constant during the electrolysis period, and the sulfuric acid concentration becomes constant even when electrolysis is performed for a long time. Thereby, it becomes easy to obtain electrolytic manganese dioxide having uniform physical properties.
The electrolytic solution in the present invention is preferably an aqueous solution. Of these, a sulfuric acid-manganese sulfate mixed aqueous solution is particularly preferably used as the electrolytic solution.
 電解工程では電解液へマンガンイオンの補給液(以下、「補給マンガン溶液」とする)を補給しながら電解することが好ましい。電解二酸化マンガンの電解析出により電解液中のマンガンイオンは減少する。電解期間中の電解液のマンガンイオン濃度を一定にするため、補給マンガン溶液は補給される。マンガンイオン供給を効率的に行うため、補給マンガン溶液のマンガンイオン濃度は、30g/L以上、110g/L以下であることが好ましく、30g/L以上、60g/L以下であることがより好ましい。なお、電解液として硫酸マンガン溶液若しくは硫酸-硫酸マンガン混合溶液を使用した場合は、補給マンガン溶液として硫酸マンガン溶液を使用することが好ましく、電解液として塩化マンガン溶液を使用した場合は、補給マンガン水溶液として塩化マンガン溶液を使用することが好ましい。 In the electrolysis step, it is preferable to perform electrolysis while supplying a replenisher of manganese ions (hereinafter referred to as “supplemental manganese solution”) to the electrolyte. Electrolytic deposition of electrolytic manganese dioxide reduces manganese ions in the electrolyte. In order to make the manganese ion concentration of the electrolytic solution constant during the electrolysis period, the supplemental manganese solution is replenished. In order to efficiently supply manganese ions, the manganese ion concentration of the supplemental manganese solution is preferably 30 g / L or more and 110 g / L or less, and more preferably 30 g / L or more and 60 g / L or less. When a manganese sulfate solution or a sulfuric acid-manganese sulfate mixed solution is used as the electrolytic solution, a manganese sulfate solution is preferably used as the supplemental manganese solution. When a manganese chloride solution is used as the electrolytic solution, a supplemental manganese aqueous solution is used. It is preferable to use a manganese chloride solution as
 電解液は、その酸濃度が15g/L以上、50g/L以下であることが好ましく、20g/L以上、40g/L以下であることがより好ましく、20g/L以上、30g/L以下であることが更に好ましい。なお、酸が硫酸である場合、酸濃度は硫酸(HSO)の濃度となる。
 本発明の製造方法における電解工程では、電解電流密度が0.5A/dm以上、更には0.6A/dm以上、また更には0.8A/dm以上であることが好ましい。一方、電解電流密度が1.8A/dm以下、更には1.5A/dm以下、また更には1.3A/dm以下であると、電解合成時の電解電圧の上昇が抑制される傾向にある。これにより、効率的、かつ安定的に本発明の電解二酸化マンガンを製造しやすくなる。
The electrolyte solution preferably has an acid concentration of 15 g / L or more and 50 g / L or less, more preferably 20 g / L or more and 40 g / L or less, and 20 g / L or more and 30 g / L or less. More preferably. When the acid is sulfuric acid, the acid concentration is the concentration of sulfuric acid (H 2 SO 4 ).
The electrolysis step in the production process of the present invention, the electrolysis current density is 0.5A / dm 2 or more, further 0.6 A / dm 2 or more, and further preferably not 0.8 A / dm 2 or more. On the other hand, when the electrolysis current density is 1.8 A / dm 2 or less, further 1.5 A / dm 2 or less, and further 1.3 A / dm 2 or less, an increase in electrolysis voltage during electrosynthesis is suppressed. There is a tendency. Thereby, it becomes easy to produce the electrolytic manganese dioxide of the present invention efficiently and stably.
 本発明の電解二酸化マンガンをより安定的に得るために、電解電流密度は0.6A/dm以上、1.5A/dm以下であることが好ましく、0.8A/dm以上、1.5A/dm以下であることがより好ましい。電解温度は90℃以上、98℃以下が好ましく、95℃以上、98℃以下がより好ましい。電解温度が高いほど、電解二酸化マンガンの製造効率が上がりやすい。 In order to obtain the electrolytic manganese dioxide of the present invention more stably, the electrolysis current density is preferably 0.6 A / dm 2 or more and 1.5 A / dm 2 or less, 0.8 A / dm 2 or more, and 1. More preferably, it is 5 A / dm 2 or less. The electrolysis temperature is preferably 90 ° C. or higher and 98 ° C. or lower, more preferably 95 ° C. or higher and 98 ° C. or lower. The higher the electrolysis temperature, the higher the production efficiency of electrolytic manganese dioxide.
 本発明の製造方法では、電解により電解二酸化マンガンを得る工程を電解工程とし、その後に、洗浄工程、粉砕工程及び中和工程のいずれか1つ以上を含んでいてもよい。
 洗浄工程では、電解により得られた電解二酸化マンガンを洗浄し、付着した電解液等を除去する。洗浄方法は、水浴や温水浴に電解二酸化マンガンを浸漬することが挙げられる。
 中和工程では、水酸化ナトリウム水溶液などのアルカリ金属水溶液やアンモニア水溶液に電解二酸化マンガンを浸漬するなどして、電解二酸化マンガンのpHを調整することができる。
 粉砕工程では、電解二酸化マンガンを任意の粒子径とする。粉砕方法は湿式粉砕や乾式粉砕など任意の方法を用いることができる。
In the production method of the present invention, the step of obtaining electrolytic manganese dioxide by electrolysis may be an electrolysis step, and thereafter, any one or more of a washing step, a pulverization step, and a neutralization step may be included.
In the washing step, the electrolytic manganese dioxide obtained by electrolysis is washed, and the attached electrolytic solution and the like are removed. The washing method includes immersing electrolytic manganese dioxide in a water bath or a warm water bath.
In the neutralization step, the pH of the electrolytic manganese dioxide can be adjusted by immersing the electrolytic manganese dioxide in an aqueous alkali metal solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution.
In the pulverization step, electrolytic manganese dioxide has an arbitrary particle size. As the pulverization method, any method such as wet pulverization or dry pulverization can be used.
 本発明の電解二酸化マンガンは、リチウムマンガン系複合酸化物の原料として使用することができる。これにより、鉄をはじめとする不純物の少ないリチウムマンガン系複合酸化物を得ることが期待できる。 The electrolytic manganese dioxide of the present invention can be used as a raw material for a lithium manganese composite oxide. Thereby, it can be expected to obtain a lithium-manganese composite oxide with few impurities such as iron.
 本発明の電解二酸化マンガンをリチウムマンガン系複合酸化物とする場合、本発明の電解二酸化マンガンと、リチウム又はリチウム化合物とを混合、焼成してリチウムマンガン系複合酸化物を得ることができる。
 リチウム化合物は、如何なるものを用いてもよく、水酸化リチウム、酸化リチウム、炭酸リチウム、ヨウ化リチウム、硝酸リチウム、シュウ酸リチウム、及びアルキルリチウム等が例示される。好ましいリチウム化合物としては、水酸化リチウム、酸化リチウム、及び炭酸リチウムなどが例示できる。
When the electrolytic manganese dioxide of the present invention is a lithium manganese complex oxide, the lithium manganese complex oxide can be obtained by mixing and baking the electrolytic manganese dioxide of the present invention and lithium or a lithium compound.
Any lithium compound may be used, and examples include lithium hydroxide, lithium oxide, lithium carbonate, lithium iodide, lithium nitrate, lithium oxalate, and alkyl lithium. Examples of preferable lithium compounds include lithium hydroxide, lithium oxide, and lithium carbonate.
 以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (見掛粒子密度、粒子密度及び細孔分布の測定)
 得られた電解二酸化マンガンの見掛粒子密度、粒子密度、及び細孔分布は以下の様に測定した。すなわち、電解により得られた凝塊状の電解二酸化マンガンをメノウ乳鉢で粗粉砕し、粒径1.2~2.8mmの電解二酸化マンガン粗粒とした。電解二酸化マンガン粗粒を水銀ポロシメーター(装置名:ポアサイザー9510、マイクロメリティクス社製)にセットし、水銀の圧力範囲を大気圧から414MPaまで段階的に変化させて細孔分布の測定を行った。
 見掛粒子密度は以下の式より求めた。すなわち、測定容器の容積(V)から、大気圧で試料中に導入された水銀容積(VHg)を除去した体積を、試料容積(VMn)とみなした。当該試料容積に対する、試料の質量(WMn)を求め見掛粒子密度(ρ)とした。
       VMn=V-VHg
       ρ=WMn/VMn
 さらに、粒子密度は以下の式より求めた。すなわち、測定容器の容積(V)から、414MPaの圧力で試料中に導入された水銀容積(VHg’)を除去した体積を、試料容積(VMn’)とみなした。当該試料容積に対する、試料の質量(WMn)を求め粒子密度(ρ)とした。
       VMn’=V-VHg
       ρ=WMn/VMn
 なお、大気圧で試料中に導入された水銀容積は粒子間に形成された容積に相当する。一方、414MPaの圧力で試料中に導入された水銀容積は、粒子間及び細孔直径200nmの細孔容積の合計容積に相当する。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.
(Measurement of apparent particle density, particle density and pore distribution)
The apparent particle density, particle density, and pore distribution of the obtained electrolytic manganese dioxide were measured as follows. That is, the agglomerated electrolytic manganese dioxide obtained by electrolysis was coarsely pulverized in an agate mortar to obtain electrolytic manganese dioxide coarse particles having a particle diameter of 1.2 to 2.8 mm. Electrolytic manganese dioxide coarse particles were set in a mercury porosimeter (device name: Pore Sizer 9510, manufactured by Micromeritics), and the pore pressure distribution was measured by gradually changing the mercury pressure range from atmospheric pressure to 414 MPa.
The apparent particle density was obtained from the following equation. That is, the volume obtained by removing the mercury volume (V Hg ) introduced into the sample at atmospheric pressure from the volume (V c ) of the measurement container was regarded as the sample volume (V Mn ). The mass (W Mn ) of the sample with respect to the sample volume was determined and used as the apparent particle density (ρ A ).
V Mn = V c -V Hg
ρ A = W Mn / V Mn
Furthermore, the particle density was determined from the following equation. That is, the volume obtained by removing the mercury volume (V Hg ′) introduced into the sample at a pressure of 414 MPa from the volume (V c ) of the measurement container was regarded as the sample volume (V Mn ′). The mass (W Mn ) of the sample with respect to the sample volume was determined and used as the particle density (ρ P ).
V Mn '= V c -V Hg '
ρ P = W Mn / V Mn '
Note that the mercury volume introduced into the sample at atmospheric pressure corresponds to the volume formed between the particles. On the other hand, the volume of mercury introduced into the sample at a pressure of 414 MPa corresponds to the total volume between the particles and the pore volume with a pore diameter of 200 nm.
 (開気孔の算出)
 水銀ポロシメーター法により測定された見掛粒子密度(g/mL)及び粒子密度(g/mL)の値を用い、以下の式から開気孔(mL/g)を算出した。
      開気孔 = (1/見掛粒子密度―1/粒子密度)
(Calculation of open pores)
Using the apparent particle density (g / mL) and particle density (g / mL) values measured by the mercury porosimeter method, open pores (mL / g) were calculated from the following formula.
Open pores = (1 / apparent particle density-1 / particle density)
 (BET比表面積の測定)
 試料のBET比表面積はBET1点法の窒素吸着により測定した。測定装置にはガス吸着式比表面積測定装置(装置名:フローソーブIII、島津社製)を用いた。測定に先立ち、150℃で60分間加熱して測定試料の脱気処理を行った。
(Measurement of BET specific surface area)
The BET specific surface area of the sample was measured by nitrogen adsorption by the BET single point method. As the measuring device, a gas adsorption specific surface area measuring device (device name: Flowsorb III, manufactured by Shimadzu Corporation) was used. Prior to the measurement, the measurement sample was deaerated by heating at 150 ° C. for 60 minutes.
 (半価全幅(FWHM)の測定)
 電解二酸化マンガンのFWHMは、一般的なX線回折装置(装置名:MXP-3、マックサイエンス社製)を使用して測定した。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、および測定範囲は2θとして5°から80°の範囲で測定した。得られた粉末X線回折パターンの結果より、2θが22±1°付近の回折線の半価全幅を求めFWHMとした。
(Measurement of full width at half maximum (FWHM))
The FWHM of electrolytic manganese dioxide was measured using a general X-ray diffractometer (device name: MXP-3, manufactured by Mac Science). A CuKα ray (λ = 1.5405 mm) is used as the radiation source, the measurement mode is step scan, the scan condition is 0.04 ° per second, the measurement time is 3 seconds, and the measurement range is 2 ° to 5 ° to 80 °. Measured with From the result of the obtained powder X-ray diffraction pattern, the full width at half maximum of the diffraction line having 2θ of around 22 ± 1 ° was determined and was defined as FWHM.
 (結晶性の測定)
 マンガン補給液及び電解液中のマンガン酸化物の結晶相及び結晶性は、これらをろ過、乾燥して得られた固相の粉末X線回折(XRD)測定により確認した。XRD測定の条件はFWHMの測定と同様とし、また、回折強度が最も大きい回折ピークの半価全幅を求めFWHMとした。
(Measurement of crystallinity)
The crystal phase and crystallinity of the manganese oxide in the manganese replenisher and electrolyte were confirmed by powder X-ray diffraction (XRD) measurement of the solid phase obtained by filtering and drying them. The conditions for the XRD measurement were the same as those for the FWHM measurement, and the full width at half maximum of the diffraction peak having the highest diffraction intensity was determined as FWHM.
 (平均粒子径の測定)
 試料0.5gを純水50mL中に投入し、10秒間超音波照射を行い調製した分散スラリーを測定装置(装置名:マイクロトラックHRA、HONEWELL製)に所定量投入し、レーザー回折法で粒度分布の測定を行なった。得られた粒度分布データから、粒子径分布、平均粒子径及び最大粒子径を求めた。また、最も頻度の高い粒子径を求め、これを最頻粒子径とした。測定において、純水の屈折率を1.33、マンガン酸化物の屈折率を2.20とした。なお、マンガン酸化物スラリー等の溶液試料については、これをそのまま同様な条件で、超音波照射及び測定を行った。
(Measurement of average particle size)
0.5 g of sample is put into 50 mL of pure water, ultrasonic dispersion is performed for 10 seconds, and a predetermined amount of the dispersed slurry prepared is put into a measuring device (device name: Microtrac HRA, manufactured by HONEWELL), and the particle size distribution by laser diffraction method Was measured. From the obtained particle size distribution data, the particle size distribution, average particle size and maximum particle size were determined. Moreover, the most frequent particle diameter was calculated | required and this was made into the mode particle diameter. In the measurement, the refractive index of pure water was 1.33, and the refractive index of manganese oxide was 2.20. In addition, about the solution samples, such as a manganese oxide slurry, this was directly subjected to ultrasonic irradiation and measurement under the same conditions.
 (粉砕特性の測定)
 得られた電解二酸化マンガンの粉砕特性は以下の様に測定した。
 すなわち、電解により得られた凝塊状の電解二酸化マンガンをメノウ乳鉢で粗粉砕し、粒径1.2~2.8mmの電解二酸化マンガン粗粒とした。電解二酸化マンガン粗粒3gを量りとり、自動乳鉢(装置名:ANM1000型、日陶科学製)を使用して15分間粉砕した。粉砕後の電解二酸化マンガン粉末を目開き90μmの篩で篩分けし、使用した電解二酸化マンガン粗粒全体重量に対する、篩を通過した電解二酸化マンガン粒子(粒子径90μm以下の電解二酸化マンガン粒子)の重量の割合を求めた。
(Measurement of grinding characteristics)
The grinding characteristics of the obtained electrolytic manganese dioxide were measured as follows.
That is, the agglomerated electrolytic manganese dioxide obtained by electrolysis was coarsely pulverized in an agate mortar to obtain electrolytic manganese dioxide coarse particles having a particle diameter of 1.2 to 2.8 mm. 3 g of electrolytic manganese dioxide coarse particles were weighed and pulverized for 15 minutes using an automatic mortar (device name: ANM1000 type, manufactured by Nissho Science). The pulverized electrolytic manganese dioxide powder is sieved with a sieve having an opening of 90 μm, and the weight of electrolytic manganese dioxide particles (electrolytic manganese dioxide particles having a particle diameter of 90 μm or less) that has passed through the sieve with respect to the total weight of the used electrolytic manganese dioxide coarse particles The ratio was calculated.
 (マイクロビッカース硬度の測定)
 電解二酸化マンガンのマイクロビッカース硬度を以下の様に測定した。測定にはマイクロビッカース硬度計(装置名:MVK-E3、株式会社アカシ製)を用いた。測定試料には、電解析出後、電極から剥離した1cm×1cm程度の電解二酸化マンガンブロックを使用した。前処理として、電解二酸化マンガンブロックを樹脂に包埋し、これを電着厚み方向と平行となる方向で切断した。その後、電解二酸化マンガンブロックの切断面を研磨することで測定試料とした。加重50kgfでダイアモンド圧子を前処理後の測定試料に打ち込むことで、マイクロビッカース硬度を測定した。測定は測定試料の切断面において、当該析断面の面積がほぼ均等に9等分されるように9個の領域を定め、各領域に1点ずつダイアモンド圧子を打ち込み、得られた9点の平均値をもって試料のマイクロビッカース硬度(Hv)とした。
(Measurement of micro Vickers hardness)
The micro Vickers hardness of electrolytic manganese dioxide was measured as follows. For the measurement, a micro Vickers hardness meter (device name: MVK-E3, manufactured by Akashi Co., Ltd.) was used. As the measurement sample, an electrolytic manganese dioxide block of about 1 cm × 1 cm peeled off from the electrode after electrolytic deposition was used. As a pretreatment, the electrolytic manganese dioxide block was embedded in a resin and cut in a direction parallel to the electrodeposition thickness direction. Then, it was set as the measurement sample by grind | polishing the cut surface of an electrolytic manganese dioxide block. The micro Vickers hardness was measured by driving a diamond indenter into a measurement sample after pretreatment with a weight of 50 kgf. In the measurement, nine regions are defined on the cut surface of the measurement sample so that the area of the analysis section is equally divided into nine parts, and a diamond indenter is driven into each region, and the average of the nine points obtained. The value was taken as the micro Vickers hardness (Hv) of the sample.
 (粒子濃度の測定)
 電解液やマンガン補給液などの溶液試料の粒子濃度は次のようにして求めた。すなわち、一定量の試料溶液をろ過して固液分離し、得られた固相の重量を測定した。回収した試料溶液の体積に対する当該固相の重量を求め、粒子濃度を算出した。
(Measurement of particle concentration)
The particle concentration of a solution sample such as an electrolytic solution or a manganese replenishing solution was determined as follows. That is, a certain amount of the sample solution was filtered and solid-liquid separated, and the weight of the obtained solid phase was measured. The weight of the solid phase relative to the volume of the collected sample solution was determined, and the particle concentration was calculated.
 実施例1
 マンガン濃度42g/Lの硫酸マンガン水溶液を攪拌し、これに空気を吹き込みながら1mol/Lの水酸化ナトリウム水溶液を添加してマンガン酸化物を含む硫酸マンガン水溶液(以下、「マンガン酸化物スラリー」とする。)を得た。なお、これらの処理は80℃で行った。得られたマンガン酸化物スラリー中のマンガン酸化物は四三酸化マンガン(Mn)の単相であった。得られた四三酸化マンガンのXRD図を図1に示す。また、当該マンガン酸化物スラリー中の四三酸化マンガンは、その粒子径分布がノモーダルに近い形状であり、最頻粒子径が1.3μm及び最大粒子径が26.1μmであった。
Example 1
A manganese sulfate aqueous solution having a manganese concentration of 42 g / L is stirred, and a 1 mol / L sodium hydroxide aqueous solution is added thereto while blowing air into the manganese sulfate aqueous solution containing manganese oxide (hereinafter referred to as “manganese oxide slurry”). .) In addition, these processes were performed at 80 degreeC. The manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetroxide (Mn 3 O 4 ). An XRD diagram of the obtained manganese trioxide is shown in FIG. Further, trimanganese tetroxide in the manganese oxide slurry had a particle size distribution that was close to a nodal shape, with a mode particle size of 1.3 μm and a maximum particle size of 26.1 μm.
 得られたマンガン酸化物スラリーを、別途調製した硫酸マンガン水溶液と混合することで、Mnを25mg/L含み、マンガン濃度が42g/Lである硫酸マンガン水溶液を得、これをマンガン補給液とした。
 また、電解液として硫酸濃度が25g/Lである硫酸-硫酸マンガン水溶液を用いた。
 電解期間中の電解液の硫酸濃度が一定となるように、このマンガン補給液を、電解期間中、連続的に電解液に補給しながら電解することで、電解二酸化マンガンを製造した。電解時の電解電流密度は1.5A/dm、電解温度は96℃とした。
The obtained manganese oxide slurry was mixed with a separately prepared manganese sulfate aqueous solution to obtain a manganese sulfate aqueous solution containing 25 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L, and this was supplied as a manganese replenisher solution. It was.
Further, a sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution.
Electrolytic manganese dioxide was produced by electrolyzing the manganese replenisher while continuously replenishing the electrolyte during the electrolysis period so that the sulfuric acid concentration of the electrolyte during the electrolysis period was constant. The electrolysis current density during electrolysis was 1.5 A / dm 2 , and the electrolysis temperature was 96 ° C.
 Mnを含有するマンガン補給液を電解液に添加することにより、Mnが電解液中で溶解してアモルファスのマンガン酸化物が生成(再析出)することが確認できた。また、電解液中のアモルファスのマンガン酸化物濃度は6.9mg/Lであった。電解液中のアモルファスのマンガン酸化物の物性評価結果を表1に示し、XRD図を図2に示した。 It was confirmed that by adding a manganese replenisher containing Mn 3 O 4 to the electrolyte, Mn 3 O 4 was dissolved in the electrolyte and amorphous manganese oxide was generated (re-deposited). The amorphous manganese oxide concentration in the electrolytic solution was 6.9 mg / L. The physical property evaluation results of the amorphous manganese oxide in the electrolytic solution are shown in Table 1, and the XRD diagram is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた電解二酸化マンガンは見掛粒子密度が4.0g/cm(=4.0g/mL)、粒子密度が4.3g/cm(=4.3g/mL)であり、高い充填性を示していた。
 また、電解二酸化マンガンの製造条件を表2に示し、製造した電解二酸化マンガンの物性評価結果を表3に示した。
The obtained electrolytic manganese dioxide has an apparent particle density of 4.0 g / cm 3 (= 4.0 g / mL) and a particle density of 4.3 g / cm 3 (= 4.3 g / mL). Was showing.
The production conditions for electrolytic manganese dioxide are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
 実施例2
 マンガン補給液中のMn濃度を200mg/Lとしたこと以外は実施例1と同様な方法により電解二酸化マンガンを製造した。
 当該実施例においてアモルファスのマンガン酸化物が生成していることが確認でき、電解液中のアモルファスのマンガン酸化物の濃度は13mg/Lであった。
Example 2
Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the Mn 3 O 4 concentration in the manganese replenisher was 200 mg / L.
It was confirmed that amorphous manganese oxide was generated in this example, and the concentration of amorphous manganese oxide in the electrolytic solution was 13 mg / L.
 製造条件を表2に示し、製造した電解二酸化マンガンの物性評価結果を表3に示した。また、製造した電解二酸化マンガンの細孔径分布を図3に示した。図3から明らかなように、本実施例の電解二酸化マンガンの細孔直径0.2μmを超える細孔容積は0.03mL/gを超えていた。これにより、本実施例での電解二酸化マンガンでは細孔直径が0.2μmを超える気孔が開気孔として存在していることが確認できた。
 さらに、製造した電解二酸化マンガンのSEM観察の結果を図4に示した。図4から、当該電解二酸化マンガンは略網目状をした微細結晶を有し、これにより0.2μm以上の不定形状をした開気孔を有していることが確認できた。
The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3. Further, the pore size distribution of the produced electrolytic manganese dioxide is shown in FIG. As is apparent from FIG. 3, the pore volume of the electrolytic manganese dioxide of this example exceeding the pore diameter of 0.2 μm exceeded 0.03 mL / g. Thereby, in the electrolytic manganese dioxide in a present Example, it has confirmed that the pore whose pore diameter exceeds 0.2 micrometer exists as an open pore.
Furthermore, the result of SEM observation of the manufactured electrolytic manganese dioxide is shown in FIG. From FIG. 4, it was confirmed that the electrolytic manganese dioxide had fine crystals having a substantially mesh shape, and thus had open pores having an irregular shape of 0.2 μm or more.
実施例3
 マンガン補給液中のMn濃度を100mg/Lとしたこと以外は実施例1と同様な方法により電解二酸化マンガンを製造した。
 当該実施例においてアモルファスのマンガン酸化物が生成していることが確認でき、電解液中のアモルファスのマンガン酸化物の濃度は9.4mg/Lであった。
 製造条件を表2に示し、製造した電解二酸化マンガンの物性評価結果を表3に示した。さらに、SEM観察により、当該電解二酸化マンガンは略網目状をした微細結晶を有し、これにより細孔の近似直径が0.2μm以上の不定形状をした開気孔を有していることを確認した。
Example 3
Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the Mn 3 O 4 concentration in the manganese replenisher was 100 mg / L.
It was confirmed that amorphous manganese oxide was generated in this example, and the concentration of amorphous manganese oxide in the electrolytic solution was 9.4 mg / L.
The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3. Furthermore, by SEM observation, it was confirmed that the electrolytic manganese dioxide has fine crystals having a substantially mesh shape, and thereby has open pores having an irregular shape with an approximate diameter of the pores of 0.2 μm or more. .
 実施例4
 マンガン補給液中のMn濃度を50mg/Lとしたこと以外は実施例1と同様な方法により電解二酸化マンガンを製造した。
 本実施例において、実施例1と同様なアモルファスのマンガン酸化物が生成していることが確認でき、電解液中のアモルファスのマンガン酸化物の濃度は7.5mg/Lであった。
 製造条件を表2に示し、製造した電解二酸化マンガンの物性評価結果を表3に示した。
Example 4
Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the Mn 3 O 4 concentration in the manganese replenisher was 50 mg / L.
In this example, it was confirmed that the same amorphous manganese oxide as in Example 1 was formed, and the concentration of amorphous manganese oxide in the electrolytic solution was 7.5 mg / L.
The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
 実施例5
 マンガン濃度42g/Lの硫酸マンガン水溶液を攪拌しこれに空気を吹き込みながら3mol/Lの水酸化ナトリウム水溶液を添加してマンガン酸化物スラリーを得た。水酸化ナトリウム水溶液の添加後、得られたマンガン酸化物スラリーに空気を吹き込みながら、これを1時間攪拌した。なお、これらの処理は温度60℃で行った。攪拌後、得られたマンガン酸化物スラリー中のマンガン酸化物は実施例1と同様な四三酸化マンガン(Mn)の単相であった。
Example 5
An aqueous manganese sulfate solution having a manganese concentration of 42 g / L was stirred, and 3 mol / L sodium hydroxide aqueous solution was added thereto while blowing air to obtain a manganese oxide slurry. After adding the aqueous sodium hydroxide solution, this was stirred for 1 hour while blowing air into the obtained manganese oxide slurry. In addition, these processes were performed at the temperature of 60 degreeC. After stirring, the manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetraoxide (Mn 3 O 4 ) similar to that in Example 1.
 当該マンガン酸化物スラリーと、別途調製した硫酸マンガン水溶液とを混合することでMnを15mg/L含み、マンガン濃度が42g/Lである硫酸マンガン水溶液を得、これをマンガン補給液とした。
 当該マンガン補給液を使用したこと、及び、電解電流密度を0.88A/dmとしたこと以外は実施例1と同様な方法で電解二酸化マンガンを製造した。
 本実施例において、実施例1と同様なアモルファスのマンガン酸化物が生成していることが確認できた。また、電解液中のアモルファスのマンガン酸化物の濃度は0.9mg/Lであった。アモルファスのマンガン酸化物の物性評価結果を表1に示した。
 製造条件を表2に示し、製造した電解二酸化マンガンの物性評価結果を表3に示した。
The manganese oxide slurry and a separately prepared manganese sulfate aqueous solution were mixed to obtain a manganese sulfate aqueous solution containing 15 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L, which was used as a manganese replenisher. .
Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the manganese replenisher was used and that the electrolytic current density was 0.88 A / dm 2 .
In this example, it was confirmed that the same amorphous manganese oxide as in Example 1 was generated. Moreover, the density | concentration of the amorphous manganese oxide in electrolyte solution was 0.9 mg / L. Table 1 shows the physical property evaluation results of the amorphous manganese oxide.
The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
 実施例6
 マンガン濃度42g/Lの硫酸マンガン水溶液を攪拌しこれに空気を吹き込みながら3mol/Lの水酸化ナトリウム水溶液を添加してマンガン酸化物スラリーを得た。水酸化ナトリウム水溶液の添加後、得られたマンガン酸化物スラリーに空気を吹き込みながら、これを1時間攪拌した。なお、これらの処理は温度80℃で行った。攪拌後、得られたマンガン酸化物スラリー中のマンガン酸化物は四三酸化マンガン(Mn)の単相であった。また、当該マンガン酸化物スラリー中の四三酸化マンガンは、その粒子径分布がノモーダルに近い形状であり、最頻粒子径が8.48μm及び最大粒子径が62.2μmであった。
Example 6
An aqueous manganese sulfate solution having a manganese concentration of 42 g / L was stirred, and 3 mol / L sodium hydroxide aqueous solution was added thereto while blowing air to obtain a manganese oxide slurry. After adding the aqueous sodium hydroxide solution, this was stirred for 1 hour while blowing air into the obtained manganese oxide slurry. These treatments were performed at a temperature of 80 ° C. After stirring, the manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetraoxide (Mn 3 O 4 ). Further, the trimanganese tetraoxide in the manganese oxide slurry had a particle size distribution close to a nodal shape, the mode particle size was 8.48 μm and the maximum particle size was 62.2 μm.
 当該マンガン酸化物スラリーと、別途調製した硫酸マンガン水溶液とを混合することでMnを50mg/L含み、マンガン濃度が42g/Lである硫酸マンガン水溶液を得た。得られた硫酸マンガン水溶液をマンガン補給液とした。
 当該マンガン補給液を使用したこと以外は実施例1と同様な方法で電解二酸化マンガンを製造した。
 本実施例において、実施例1と同様なアモルファスのマンガン酸化物が生成したが、その平均粒子径は実施例1のものよりも大きかった。また、電解液中のアモルファスのマンガン酸化物の濃度は7.5mg/Lであった。アモルファスのマンガン酸化物の物性評価結果を表1に示した。
 製造条件を表2に示し、製造した電解二酸化マンガンの物性評価結果を表3に示した。
By mixing the manganese oxide slurry and a separately prepared manganese sulfate aqueous solution, a manganese sulfate aqueous solution containing 50 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L was obtained. The obtained manganese sulfate aqueous solution was used as a manganese replenisher.
Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the manganese replenisher was used.
In this example, an amorphous manganese oxide similar to that in Example 1 was produced, but the average particle size was larger than that in Example 1. Moreover, the density | concentration of the amorphous manganese oxide in electrolyte solution was 7.5 mg / L. Table 1 shows the physical property evaluation results of the amorphous manganese oxide.
The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
 実施例7
 水酸化ナトリウム水溶液添加後のマンガン酸化物スラリーの攪拌をしなかったこと以外は実施例5と同様な方法でマンガン酸化物スラリーを得た。得られたマンガン酸化物スラリー中のマンガン酸化物は四三酸化マンガン(Mn)の単相であった。また、当該マンガン酸化物スラリー中の四三酸化マンガンは、その粒子径分布がノモーダルに近い形状であり、最頻粒子径が1.26μm及び最大粒子径が37.0μmであった。
Example 7
A manganese oxide slurry was obtained in the same manner as in Example 5 except that the manganese oxide slurry after addition of the aqueous sodium hydroxide solution was not stirred. The manganese oxide in the obtained manganese oxide slurry was a single phase of trimanganese tetroxide (Mn 3 O 4 ). Further, the trimanganese tetraoxide in the manganese oxide slurry had a shape with a particle size distribution close to nodal, the mode particle size was 1.26 μm, and the maximum particle size was 37.0 μm.
 当該マンガン酸化物スラリーと、別途調製した硫酸マンガン水溶液とを混合することでMnを50mg/L含み、マンガン濃度が42g/Lである硫酸マンガン水溶液を得た。得られた硫酸マンガン水溶液をマンガン補給液とした。
 当該マンガン補給液を使用したこと以外は実施例1と同様な方法で電解二酸化マンガンを製造した。
By mixing the manganese oxide slurry and a separately prepared manganese sulfate aqueous solution, a manganese sulfate aqueous solution containing 50 mg / L of Mn 3 O 4 and having a manganese concentration of 42 g / L was obtained. The obtained manganese sulfate aqueous solution was used as a manganese replenisher.
Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the manganese replenisher was used.
 本実施例において、実施例1と同様なアモルファスのマンガン酸化物が生成したが、その平均粒子径は実施例1のものよりも大きかった。また、電解液中のアモルファスのマンガン酸化物の濃度は4.4mg/Lであった。アモルファスのマンガン酸化物の物性評価結果を表1に示した。
 製造条件を表2に示し、製造した電解二酸化マンガンの物性評価結果を表3に示した。
In this example, an amorphous manganese oxide similar to that in Example 1 was produced, but the average particle size was larger than that in Example 1. The concentration of amorphous manganese oxide in the electrolytic solution was 4.4 mg / L. Table 1 shows the physical property evaluation results of the amorphous manganese oxide.
The production conditions are shown in Table 2, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例8
 マンガン濃度40g/Lの硫酸マンガン水溶液を使用したこと以外は実施例1と同様な方法でマンガン酸化物スラリーを得た。得られたマンガン酸化物は四三酸化マンガン(Mn)の単相であった。また、当該マンガン酸化物スラリー中の四三酸化マンガンは、その粒子径分布は広い粒子径範囲に分布した形状であり、最頻粒子径は23.9μmであるが、粒子径1.26μmの頻度もこれに準じるものであった。また、最大粒子径は104.7μmであった。
Example 8
A manganese oxide slurry was obtained in the same manner as in Example 1 except that an aqueous manganese sulfate solution having a manganese concentration of 40 g / L was used. The obtained manganese oxide was a single phase of trimanganese tetraoxide (Mn 3 O 4 ). Further, the trimanganese tetraoxide in the manganese oxide slurry has a shape in which the particle size distribution is distributed over a wide particle size range, and the mode particle size is 23.9 μm, but the frequency of the particle size of 1.26 μm. Was similar to this. The maximum particle size was 104.7 μm.
 得られたマンガン酸化物スラリーを、別途調製した硫酸マンガン水溶液と混合することで、Mnを60mg/L含み、マンガン濃度が40g/Lであるマンガン酸化物を含んだ硫酸マンガン水溶液を得、これをマンガン補給液とした。
 さらに、マンガン濃度40g/Lの硫酸マンガン水溶液を別途調製し、これを補助マンガン補給液とした。
 電解液として硫酸濃度が25g/Lである硫酸-硫酸マンガン水溶液を用いた。電解期間中の電解液の硫酸濃度が一定となるように、マンガン補給液及び補助マンガン補給液を同時に、連続的に、電解液に供給しながら電解することで電解二酸化マンガンを製造した。
By mixing the obtained manganese oxide slurry with a separately prepared manganese sulfate aqueous solution, a manganese sulfate aqueous solution containing 60 g / L of Mn 3 O 4 and manganese oxide having a manganese concentration of 40 g / L is obtained. This was used as a manganese replenisher.
Further, a manganese sulfate aqueous solution having a manganese concentration of 40 g / L was separately prepared and used as an auxiliary manganese replenisher.
A sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution. Electrolytic manganese dioxide was produced by performing electrolysis while supplying the manganese replenisher and the auxiliary manganese replenisher simultaneously and continuously to the electrolyte so that the sulfuric acid concentration of the electrolyte during the electrolysis was constant.
 電解液に供給するマンガン補給液及び補助マンガン補給液は、その流量比をマンガン補給液:補助マンガン補給液=1:3とした。電解電流密度は1.3A/dm及び電解温度は96℃とした。
 電解期間中、電解液中で四三酸化マンガンが溶解し、懸濁粒子が生成していることが確認でき、電解液中の懸濁粒子の濃度は3.0mg/Lであった。当該懸濁粒子の物性評価の結果を表1に示す。生成した懸濁粒子は、アモルファスのマンガン酸化物であった。
 製造条件を表4に示し、製造した電解二酸化マンガンの物性評価結果を表5に示した。
The flow rate ratio of the manganese replenisher and auxiliary manganese replenisher supplied to the electrolyte was manganese replenisher: auxiliary manganese replenisher = 1: 3. The electrolytic current density was 1.3 A / dm 2 and the electrolysis temperature was 96 ° C.
During the electrolysis period, it was confirmed that trimanganese tetraoxide was dissolved in the electrolytic solution and suspended particles were generated, and the concentration of the suspended particles in the electrolytic solution was 3.0 mg / L. The results of the physical property evaluation of the suspended particles are shown in Table 1. The generated suspended particles were amorphous manganese oxide.
The production conditions are shown in Table 4, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 5.
 実施例9
 実施例8と同様な方法で得られたマンガン酸化物スラリーを、別途調製した硫酸マンガン水溶液と混合することで、Mnを200mg/L含み、マンガン濃度が40g/Lであるマンガン酸化物を含んだ硫酸マンガン水溶液を得、これをマンガン補給液とした。
 当該マンガン補給液を使用したこと以外は実施例8と同様な方法で電解二酸化マンガンを製造した。
 電解期間中、電解液中で四三酸化マンガンが溶解し、懸濁粒子が生成していることが確認でき、電解液中の懸濁粒子の濃度は8.3mg/Lであった。生成した懸濁粒子は、実施例8と同様なアモルファスのマンガン酸化物であった。
 製造条件を表4に示し、製造した電解二酸化マンガンの物性評価結果を表5に示した。
Example 9
The manganese oxide slurry obtained by the same method as in Example 8 is mixed with a separately prepared aqueous manganese sulfate solution, thereby containing 200 mg / L of Mn 3 O 4 and a manganese oxide having a manganese concentration of 40 g / L. An aqueous manganese sulfate solution was obtained, which was used as a manganese replenisher.
Electrolytic manganese dioxide was produced in the same manner as in Example 8 except that the manganese replenisher was used.
During the electrolysis period, it was confirmed that trimanganese tetraoxide was dissolved in the electrolytic solution and suspended particles were generated, and the concentration of the suspended particles in the electrolytic solution was 8.3 mg / L. The produced suspended particles were the same amorphous manganese oxide as in Example 8.
The production conditions are shown in Table 4, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 5.
 実施例10
 実施例8と同様な方法で得られたマンガン酸化物スラリーを、別途調製した硫酸マンガン水溶液と混合することで、Mnを240mg/L含み、マンガン濃度が40g/Lであるマンガン酸化物を含んだ硫酸マンガン水溶液を得、これをマンガン補給液とした。
 当該マンガン補給液を使用したこと、電解液に供給するマンガン補給液及び補助マンガン補給液の流量比をマンガン補給液:補助マンガン補給液=1:4としたこと、及び、電解電流密度を0.88A/dmとしたこと以外は実施例8と同様な方法で電解二酸化マンガンを製造した。
Example 10
The manganese oxide slurry obtained by the same method as in Example 8 was mixed with a separately prepared manganese sulfate aqueous solution, so that manganese oxide containing 240 mg / L of Mn 3 O 4 and having a manganese concentration of 40 g / L was used. An aqueous manganese sulfate solution was obtained, which was used as a manganese replenisher.
The manganese replenisher was used, the flow rate ratio of the manganese replenisher and auxiliary manganese replenisher supplied to the electrolyte was set to manganese replenisher: auxiliary manganese replenisher = 1: 4, and the electrolysis current density was set to 0. Electrolytic manganese dioxide was produced in the same manner as in Example 8 except that 88 A / dm 2 was used.
 電解期間中、電解液中で四三酸化マンガンが溶解し、懸濁粒子が生成していることが確認でき、電解液中の懸濁粒子の濃度は4.6mg/Lであった。生成した懸濁粒子は、実施例8と同様なアモルファスのマンガン酸化物であった。
 製造条件を表4に示し、製造した電解二酸化マンガンの物性評価結果を表5に示した。
During the electrolysis period, it was confirmed that trimanganese tetraoxide was dissolved in the electrolytic solution and suspended particles were generated, and the concentration of the suspended particles in the electrolytic solution was 4.6 mg / L. The produced suspended particles were the same amorphous manganese oxide as in Example 8.
The production conditions are shown in Table 4, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 5.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例1
 以下の方法で、従来の易粉砕性の電解二酸化マンガンを製造した。
 電解液として硫酸濃度が25g/Lである硫酸-硫酸マンガン水溶液を用いた。また、Mnを含まない硫酸マンガン水溶液をマンガン補給液とし、これを電解期間中連続的に電解液に補給しながら電解を行い、二酸化マンガンを製造した。電解時の電解電流密度は0.8A/dm、電解温度は92℃とした。製造条件を表6に示し、製造した電解二酸化マンガンの物性評価結果を表7に示した。
Comparative Example 1
A conventional easily pulverized electrolytic manganese dioxide was produced by the following method.
A sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution. Further, an aqueous manganese sulfate solution not containing Mn 3 O 4 was used as a manganese replenisher, and electrolysis was performed while continuously replenishing the electrolyte during the electrolysis period to produce manganese dioxide. The electrolysis current density during electrolysis was 0.8 A / dm 2 , and the electrolysis temperature was 92 ° C. The production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
 得られた電解二酸化マンガンのBET比表面積は50m/gと高かった。しかしながら、粒子密度が3.9g/mLであった。このように、マンガン酸化物を使用しない電解方法、いわゆる清澄電解法により製造される電解二酸化マンガンは本発明の電解二酸化マンガンよりも充填性が低いことが確認できた。 The obtained electrolytic manganese dioxide had a BET specific surface area as high as 50 m 2 / g. However, the particle density was 3.9 g / mL. Thus, it has been confirmed that electrolytic manganese dioxide produced by an electrolytic method that does not use manganese oxide, that is, a so-called clarified electrolytic method, has a lower filling property than the electrolytic manganese dioxide of the present invention.
 比較例2
 以下の方法で、従来の充填性の高い電解二酸化マンガンを製造した。
 電解液として硫酸濃度が34g/Lである硫酸-硫酸マンガン水溶液を用いた。また、Mnを含まない硫酸マンガン水溶液をマンガン補給液とし、これを電解期間中連続的に電解液に補給しながら電解を行い二酸化マンガンを製造した。電解時の電解電流密度は0.6A/dm、電解温度は96℃とした。製造条件を表6に示し、製造した電解二酸化マンガンの物性評価結果を表7に示した。
Comparative Example 2
A conventional electrolytic manganese dioxide having a high filling property was produced by the following method.
A sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 34 g / L was used as the electrolytic solution. Further, an aqueous manganese sulfate solution containing no Mn 3 O 4 was used as a manganese replenisher, and electrolysis was performed while replenishing the electrolyte continuously during the electrolysis period to produce manganese dioxide. The electrolysis current density during electrolysis was 0.6 A / dm 2 , and the electrolysis temperature was 96 ° C. The production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
 当該比較例の電解二酸化マンガンはBET比表面積が20m/gと低く、なおかつ、見掛粒子密度が3.9g/mLであり、比較例1の電化二酸化マンガンより高い充填性を示した。
 さらに、当該比較例のSEM観察の結果を図5に示した。当該電解二酸化マンガンの微細構造は均一で密なものであり、本発明の電解二酸化マンガンのような略網目状の微細構造は確認できなかった。
The electrolytic manganese dioxide of the comparative example had a BET specific surface area as low as 20 m 2 / g and an apparent particle density of 3.9 g / mL, indicating a higher packing property than the electrified manganese dioxide of comparative example 1.
Furthermore, the result of the SEM observation of the comparative example is shown in FIG. The microstructure of the electrolytic manganese dioxide was uniform and dense, and a substantially mesh-like microstructure like the electrolytic manganese dioxide of the present invention could not be confirmed.
 比較例3
 懸濁電解法により電解二酸化マンガンを製造した。電解液として硫酸濃度が25g/Lである硫酸-硫酸マンガン水溶液を用い、平均粒子径0.63μmの電解二酸化マンガン粒子を50mg/L含む硫酸マンガン水溶液をマンガン補給液として電解期間中連続的に電解液に補給し、電流密度1.5A/dm、電解温度96℃として電解を行い、電解二酸化マンガンを製造した。製造条件を表6に示し、製造した電解二酸化マンガンの物性評価結果を表7に示した。また、製造した電解二酸化マンガンの細孔分布を図3に示した。
Comparative Example 3
Electrolytic manganese dioxide was produced by a suspension electrolysis method. A sulfuric acid-manganese sulfate aqueous solution having a sulfuric acid concentration of 25 g / L was used as the electrolytic solution, and an aqueous manganese sulfate solution containing 50 mg / L of electrolytic manganese dioxide particles having an average particle size of 0.63 μm was used as a manganese replenisher for continuous electrolysis during the electrolysis period. The solution was replenished and electrolysis was carried out at a current density of 1.5 A / dm 2 and an electrolysis temperature of 96 ° C. to produce electrolytic manganese dioxide. The production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7. Moreover, the pore distribution of the produced electrolytic manganese dioxide is shown in FIG.
 当該比較例では、電解液中にアモルファスのマンガン酸化物は生成しなかった。また、製造した電解二酸化マンガンのSEM観察の結果を図6に示した。図6から、当該電解二酸化マンガンは、100μm程度の粗大な二次粒子が凝集した微細構造であることが確認できた。また、当該電解二酸化マンガンは開気孔が多く、実施例と比べて見掛粒子密度が低くなった。 In the comparative example, amorphous manganese oxide was not generated in the electrolytic solution. Moreover, the result of SEM observation of the produced electrolytic manganese dioxide is shown in FIG. From FIG. 6, it was confirmed that the electrolytic manganese dioxide had a fine structure in which coarse secondary particles of about 100 μm were aggregated. In addition, the electrolytic manganese dioxide had many open pores, and the apparent particle density was lower than that in Examples.
 比較例4
 いずれのマンガン酸化物も使用しなかったこと(マンガン酸化物粒子濃度が0mg/Lとなるようにしたこと)以外は、実施例1と同様な条件で電解二酸化マンガンを製造した。
 当該比較例では電解期間中に電解電圧が3.20Vまで上昇し、これにより電極上に電着した電解二酸化マンガンが電極から脱落し、電解二酸化マンガンを得ることができなかった。比較例3の製造条件を表6に示した。
Comparative Example 4
Electrolytic manganese dioxide was produced under the same conditions as in Example 1 except that none of the manganese oxides were used (the manganese oxide particle concentration was adjusted to 0 mg / L).
In the comparative example, the electrolysis voltage increased to 3.20 V during the electrolysis period, and as a result, the electrolytic manganese dioxide electrodeposited on the electrode dropped off from the electrode, and the electrolytic manganese dioxide could not be obtained. The production conditions of Comparative Example 3 are shown in Table 6.
 比較例5
 実施例1と同様な方法でマンガン酸化物スラリーを得た。次いで、当該マンガン酸化物スラリーをろ過し、得られた固相を110℃で一晩乾燥してマンガン酸化物を得た。得られたマンガン酸化物は四三酸化マンガン(Mn)の単相であり、実施例1の四三酸化マンガンと同等な粉末X線回折パターンを有していた。また、当該四三酸化マンガンの含水率は20%以下であった。
Comparative Example 5
Manganese oxide slurry was obtained in the same manner as in Example 1. Next, the manganese oxide slurry was filtered, and the obtained solid phase was dried at 110 ° C. overnight to obtain manganese oxide. The obtained manganese oxide was a single phase of trimanganese tetraoxide (Mn 3 O 4 ) and had a powder X-ray diffraction pattern equivalent to that of trimanganese tetraoxide of Example 1. The water content of the trimanganese tetraoxide was 20% or less.
 乾燥後の四三酸化マンガンを、マンガン濃度42g/Lの硫酸マンガン水溶液に分散させることで、当該四三酸化マンガンを100mg/L含み、マンガン濃度42g/Lのマンガン酸化物スラリーを得、これをマンガン補給液とした。
 当該マンガン補給液を使用したこと以外は実施例1と同様な方法で電解二酸化マンガンを製造した。電解液中の懸濁粒子濃度は9.4mg/Lであった。
 本比較例では、マンガン補給液中の四三酸化マンガンがそのまま残存して懸濁粒子となっていた。また、電解液中でアモルファスのマンガン酸化物は生成していなかった。本比較例における、マンガン補給液中の四三酸化マンガンの粉末X線回折パターンを図7に、電解液中の懸濁粒子の粉末X線回折パターンを図8に示す。
 製造条件を表6に示し、製造した電解二酸化マンガンの物性評価結果を表7に示した。
By dispersing the dried trimanganese tetraoxide in an aqueous manganese sulfate solution having a manganese concentration of 42 g / L, a manganese oxide slurry containing 100 mg / L of the trimanganese tetraoxide and having a manganese concentration of 42 g / L was obtained. A manganese replenisher was used.
Electrolytic manganese dioxide was produced in the same manner as in Example 1 except that the manganese replenisher was used. The suspended particle concentration in the electrolytic solution was 9.4 mg / L.
In this comparative example, trimanganese tetraoxide in the manganese replenisher remained as it was and became suspended particles. In addition, amorphous manganese oxide was not generated in the electrolytic solution. FIG. 7 shows a powder X-ray diffraction pattern of trimanganese tetraoxide in the manganese replenisher in this comparative example, and FIG. 8 shows a powder X-ray diffraction pattern of suspended particles in the electrolyte.
The production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
 比較例6
 平均粒子径0.63μmの電解二酸化マンガン粒子を25mg/L含み、マンガン濃度が40g/Lの硫酸マンガン水溶液をマンガン補給液として使用したこと、及び、電解電流密度を0.88A/dmとしたこと以外は実施例1と同様な方法で電解二酸化マンガンを製造した。電解液中の懸濁粒子はマンガン補給液と同じ電解二酸化マンガンであり、電解液中の粒子濃度は4.6mg/Lであった。
 製造条件を表6に示し、製造した電解二酸化マンガンの物性評価結果を表7に示した。
Comparative Example 6
An aqueous manganese sulfate solution containing 25 mg / L of electrolytic manganese dioxide particles having an average particle size of 0.63 μm and a manganese concentration of 40 g / L was used as a manganese replenisher, and the electrolytic current density was 0.88 A / dm 2 . Except for this, electrolytic manganese dioxide was produced in the same manner as in Example 1. The suspended particles in the electrolyte were the same electrolytic manganese dioxide as the manganese replenisher, and the particle concentration in the electrolyte was 4.6 mg / L.
The production conditions are shown in Table 6, and the physical property evaluation results of the produced electrolytic manganese dioxide are shown in Table 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (粉砕特性の評価)
 実施例及び比較例1、2、5及び6で製造した電解二酸化マンガンの粉砕特性を評価した。結果を表8に示した。その結果、実施例の電解二酸化マンガンは15分間の粉砕の後、90μm以下の粒子割合(以下、単に「粒子割合」とする。)が65重量%を超え、短時間で容易に粉砕されることが実証された。これに対し、比較例2の電解二酸化マンガンでは粒子割合が39重量%にとどまり、本発明の電解二酸化マンガンの半分程度しか粉砕されなかった。
(Evaluation of grinding characteristics)
The grinding characteristics of the electrolytic manganese dioxide produced in Examples and Comparative Examples 1, 2, 5 and 6 were evaluated. The results are shown in Table 8. As a result, the electrolytic manganese dioxide of the example has a particle ratio of 90 μm or less (hereinafter simply referred to as “particle ratio”) after pulverization for 15 minutes and easily pulverizes in a short time. Has been demonstrated. In contrast, the electrolytic manganese dioxide of Comparative Example 2 had a particle ratio of only 39% by weight, and only about half of the electrolytic manganese dioxide of the present invention was pulverized.
 さらには、四三酸化マンガンに乾燥処理を施した以外は、実施例3と同じ実験条件である。しかしながら、実施例3の電解二酸化マンガンの粒子割合が75重量%であるのに対し、比較例5の電解二酸化マンガンの粒子割合は65重量%であり、実施例3は比較例5よりも10重量%以上も粒子割合が高かった。
 これにより本発明の電解二酸化マンガンは粉砕特性に優れていることが確認できた。また、比較例1の電解二酸化マンガンは粉砕特性が高いものの、その充填性は低かった。これらの結果より、本発明の電解二酸化マンガンは充填性のみならず、粉砕特性にも優れた電解二酸化マンガンであることが確認できた。
Furthermore, the experimental conditions are the same as in Example 3 except that the drying treatment is performed on trimanganese tetraoxide. However, the particle ratio of electrolytic manganese dioxide of Example 3 is 75% by weight, whereas the particle ratio of electrolytic manganese dioxide of Comparative Example 5 is 65% by weight, and Example 3 is 10% more than Comparative Example 5. The percentage of particles was higher than%.
Thereby, it was confirmed that the electrolytic manganese dioxide of the present invention was excellent in grinding characteristics. Moreover, although the electrolytic manganese dioxide of the comparative example 1 had a high grinding | pulverization characteristic, the filling property was low. From these results, it was confirmed that the electrolytic manganese dioxide of the present invention is an electrolytic manganese dioxide excellent not only in filling properties but also in grinding characteristics.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(マイクロビッカース硬度の評価)
 実施例8、9及び10、並びに比較例1、2及び6で得られた電解二酸化マンガンのマイクロビッカース硬度を測定した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
(Evaluation of micro Vickers hardness)
The micro Vickers hardness of the electrolytic manganese dioxide obtained in Examples 8, 9, and 10 and Comparative Examples 1, 2, and 6 was measured. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
 いずれの実施例のマイクロビッカース硬度もHvが400以下であるのに対し、比較例のそれはいずれもHvが400を超えていた。これより、実施例の電解二酸化マンガンは易粉砕性であり、なおかつ、硬度が低いことが分かった。
 さらに、実施例8及び比較例1の電解二酸化マンガンは、いずれもその粒子割合が87重量%であった。それにも関わらず、実施例8の電解二酸化マンガンは比較例1の電解二酸化マンガンよりもマイクロビッカース硬度が低かった。これより、従来の易粉砕性の電解二酸化マンガン(比較例1)の粉砕性は、その高い比表面積に由来するものであるのに対し、本発明の電解二酸化マンガンの粉砕性は、電解二酸化マンガン自身の硬さに由来することが確認できた。
The micro Vickers hardness of any of the examples also had an Hv of 400 or less, whereas all of the comparative examples had an Hv of over 400. From this, it was found that the electrolytic manganese dioxide of the example was easily pulverized and had low hardness.
Further, the electrolytic manganese dioxide of Example 8 and Comparative Example 1 each had a particle ratio of 87% by weight. Nevertheless, the electrolytic manganese dioxide of Example 8 had a lower micro Vickers hardness than the electrolytic manganese dioxide of Comparative Example 1. From this, the grindability of the conventional easily grindable electrolytic manganese dioxide (Comparative Example 1) is derived from its high specific surface area, whereas the grindability of the electrolytic manganese dioxide of the present invention is that of electrolytic manganese dioxide. It was confirmed that it originated from its own hardness.
 本発明の電解二酸化マンガンは、アルカリ電池等の一次電池の正極活物質として、またはリチウムイオン二次電池の正極活物質であるリチウムマンガン系複合酸化物の原料として、好適に使用される。 The electrolytic manganese dioxide of the present invention is suitably used as a positive electrode active material for a primary battery such as an alkaline battery or as a raw material for a lithium manganese composite oxide that is a positive electrode active material for a lithium ion secondary battery.
 なお、2012年2月3日に出願された日本特許出願2012-022065号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2012-022065 filed on February 3, 2012 are cited herein as disclosure of the specification of the present invention. Incorporated.

Claims (15)

  1.  見掛粒子密度が3.0g/cm以上、粒子密度が4.25g/cm以上であることを特徴とする電解二酸化マンガン。 An electrolytic manganese dioxide having an apparent particle density of 3.0 g / cm 3 or more and a particle density of 4.25 g / cm 3 or more.
  2.  開気孔が0.01mL/g以上であることを特徴とする請求項1に記載の電解二酸化マンガン。 2. The electrolytic manganese dioxide according to claim 1, wherein the open pores are 0.01 mL / g or more.
  3.  BET比表面積が10m/g以上、45m/g以下であることを特徴とする請求項1又は2に記載の電解二酸化マンガン。 BET specific surface area of 10 m 2 / g or more, electrolytic manganese dioxide according to claim 1 or 2, characterized in that at most 45 m 2 / g.
  4.  アモルファスのマンガン酸化物を電解液中に混合することを特徴とする請求項1乃至3のいずれか一項に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to any one of claims 1 to 3, wherein amorphous manganese oxide is mixed in the electrolytic solution.
  5.  電解液中でアモルファスのマンガン酸化物を生成させ、アモルファスのマンガン酸化物を電解液中に混合することを特徴とする請求項4に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to claim 4, wherein amorphous manganese oxide is produced in the electrolytic solution, and the amorphous manganese oxide is mixed in the electrolytic solution.
  6.  電解液中でのマンガン化合物の溶解再析出により、アモルファスのマンガン酸化物を電解液中に混合することを特徴とする請求項4又は5に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to claim 4 or 5, wherein amorphous manganese oxide is mixed into the electrolytic solution by dissolution and reprecipitation of the manganese compound in the electrolytic solution.
  7.  マンガン化合物が結晶性のマンガン酸化物であることを特徴とする請求項6に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to claim 6, wherein the manganese compound is a crystalline manganese oxide.
  8.  マンガン化合物が、マンガン酸化度が1以上、1.6以下の結晶性のマンガン酸化物であることを特徴とする請求項6又は7に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to claim 6 or 7, wherein the manganese compound is a crystalline manganese oxide having a manganese oxidation degree of 1 or more and 1.6 or less.
  9.  マンガン化合物が化学マンガン酸化物であることを特徴とする請求項6乃至8のいずれか一項に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to any one of claims 6 to 8, wherein the manganese compound is a chemical manganese oxide.
  10.  マンガン化合物が四三酸化マンガン又は三二酸化マンガンもしくはその両者であることを特徴とする請求項6乃至9のいずれか一項に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to any one of claims 6 to 9, wherein the manganese compound is trimanganese tetraoxide or manganese trioxide or both.
  11.  電解液中のアモルファスのマンガン酸化物濃度が0.5mg/L以上、20mg/L以下であることを特徴とする請求項4乃至10のいずれか一項に記載の電解二酸化マンガン製造方法。 The method for producing electrolytic manganese dioxide according to any one of claims 4 to 10, wherein the concentration of amorphous manganese oxide in the electrolytic solution is 0.5 mg / L or more and 20 mg / L or less.
  12.  アモルファスのマンガン酸化物がBET比表面積80m/g以上であることを特徴とする請求項4乃至11のいずれか一項に記載の電解二酸化マンガン製造方法。 The method for producing electrolytic manganese dioxide according to any one of claims 4 to 11, wherein the amorphous manganese oxide has a BET specific surface area of 80 m 2 / g or more.
  13.  電解液が硫酸-硫酸マンガン混合溶液であることを特徴とする請求項4乃至12のいずれか一項に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to any one of claims 4 to 12, wherein the electrolytic solution is a mixed solution of sulfuric acid and manganese sulfate.
  14.  電解電流密度が0.5A/dm以上、1.5A/dm以下であることを特徴とする請求項4乃至13のいずれか一項に記載の電解二酸化マンガン製造方法。 The electrolytic manganese dioxide production method according to any one of claims 4 to 13, wherein an electrolytic current density is 0.5 A / dm 2 or more and 1.5 A / dm 2 or less.
  15.  請求項1乃至3のいずれか一項に記載の電解二酸化マンガンを用いて得られることを特徴とするリチウムマンガン系複合酸化物。 A lithium manganese based composite oxide obtained by using the electrolytic manganese dioxide according to any one of claims 1 to 3.
PCT/JP2013/052258 2012-02-03 2013-01-31 Electrolytic manganese dioxide, method for producing same, and use of same WO2013115335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-022065 2012-02-03
JP2012022065 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115335A1 true WO2013115335A1 (en) 2013-08-08

Family

ID=48905365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052258 WO2013115335A1 (en) 2012-02-03 2013-01-31 Electrolytic manganese dioxide, method for producing same, and use of same

Country Status (3)

Country Link
JP (1) JP2013177293A (en)
TW (1) TW201348516A (en)
WO (1) WO2013115335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575799A (en) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 Method for measuring impurity elements in electrolytic manganese dioxide for battery
WO2020045279A1 (en) * 2018-08-29 2020-03-05 東ソー株式会社 Electrolytic manganese dioxide, method for producing same, and use of same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822067B2 (en) * 2016-10-31 2021-01-27 東ソー株式会社 Electrolyzed manganese dioxide and its uses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104499A (en) * 1975-03-12 1976-09-16 Kazuo Nakamura Kendakuekinyoru denkainisankamangannoseizoho
JPS6338590A (en) * 1986-08-04 1988-02-19 Japan Metals & Chem Co Ltd Production of electrolytic manganese dioxide
JPH04136195A (en) * 1990-09-27 1992-05-11 Tosoh Corp Novel composite material
JP2005520290A (en) * 2002-03-08 2005-07-07 ザ ジレット カンパニー Improved manganese dioxide for alkaline batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104499A (en) * 1975-03-12 1976-09-16 Kazuo Nakamura Kendakuekinyoru denkainisankamangannoseizoho
JPS6338590A (en) * 1986-08-04 1988-02-19 Japan Metals & Chem Co Ltd Production of electrolytic manganese dioxide
JPH04136195A (en) * 1990-09-27 1992-05-11 Tosoh Corp Novel composite material
JP2005520290A (en) * 2002-03-08 2005-07-07 ザ ジレット カンパニー Improved manganese dioxide for alkaline batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575799A (en) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 Method for measuring impurity elements in electrolytic manganese dioxide for battery
WO2020045279A1 (en) * 2018-08-29 2020-03-05 東ソー株式会社 Electrolytic manganese dioxide, method for producing same, and use of same
JP2020033216A (en) * 2018-08-29 2020-03-05 東ソー株式会社 Electrolytic manganese dioxide, method for producing the same and use thereof
CN112601843A (en) * 2018-08-29 2021-04-02 东曹株式会社 Electrolytic manganese dioxide, method for producing same, and use thereof
JP7243081B2 (en) 2018-08-29 2023-03-22 東ソー株式会社 Electrolytic manganese dioxide, method for producing the same, and use thereof
US11936040B2 (en) 2018-08-29 2024-03-19 Tosoh Corporation Electrolytic manganese dioxide, method for producing same, and use of same

Also Published As

Publication number Publication date
TW201348516A (en) 2013-12-01
JP2013177293A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5998510B2 (en) Electrolytic manganese dioxide and method for producing the same, and method for producing lithium manganese composite oxide
Biswal et al. Electrolytic manganese dioxide (EMD): a perspective on worldwide production, reserves and its role in electrochemistry
ES2751355T3 (en) Electrolytic manganese dioxide, method of production thereof, and use thereof
JP5909845B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
JP5678482B2 (en) Manganese oxide and method for producing the same
ES2712946T3 (en) Manganese oxide and method to produce the same, and method to produce oxide of lithium manganese compound using the same
JP2011057518A (en) High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
US10033038B2 (en) Electrolytic manganese dioxide, method for producing same, and use of same
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP2009135067A (en) Electrolytic manganese dioxide, and production method and application therefor
JP2017130395A (en) Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method of producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
KR102005601B1 (en) Manganese(iii, iv) oxide and method for producing same
WO2013115335A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
KR102346042B1 (en) Beta-nickel hydroxide doped with aluminum
JP6862766B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
JP5811233B2 (en) Manganese oxide and method for producing lithium manganate using the same
JP2019081686A (en) Electrolytic manganese dioxide, manufacturing method therefor, and application thereof
JP6550729B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
JP7039927B2 (en) Electrolyzed manganese dioxide and its uses
WO2017170240A1 (en) Electrolytic manganese dioxide, method for manufacturing same, and use for same
JP2015189608A (en) Manganese dioxide for production of lithium manganate, and production method thereof
JP2017178750A (en) Nickel manganese complex oxyhydroxide and method for producing the same
JP2017057115A (en) Manganese oxide and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744004

Country of ref document: EP

Kind code of ref document: A1