JP2017130395A - Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method of producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery - Google Patents

Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method of producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery Download PDF

Info

Publication number
JP2017130395A
JP2017130395A JP2016010037A JP2016010037A JP2017130395A JP 2017130395 A JP2017130395 A JP 2017130395A JP 2016010037 A JP2016010037 A JP 2016010037A JP 2016010037 A JP2016010037 A JP 2016010037A JP 2017130395 A JP2017130395 A JP 2017130395A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
active material
electrode active
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016010037A
Other languages
Japanese (ja)
Other versions
JP6599249B2 (en
Inventor
好喜 岩田
Yoshiki Iwata
好喜 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016010037A priority Critical patent/JP6599249B2/en
Publication of JP2017130395A publication Critical patent/JP2017130395A/en
Application granted granted Critical
Publication of JP6599249B2 publication Critical patent/JP6599249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a precursor for obtaining a positive electrode active material for lithium ion battery having excellent battery capacity and excellent cycle characteristics at the same time, and to provide positive electrode active material for lithium ion battery.SOLUTION: A positive electrode active material precursor for lithium ion battery is composed of composite powder precursor secondary particles, containing at least one kind selected from a group consisting of nickel, cobalt and manganese, and formed by aggregation of primary particles having average particle size of 1 μm or less. In the secondary particles, the abundance ratio of particles of 5 μm or less is 20% or less by number conversion based on a dry granularity measurement.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池用正極活物質前駆体、リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池に関する。   The present invention relates to a positive electrode active material precursor for a lithium ion battery, a positive electrode active material for a lithium ion battery, a method for producing a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池用正極活物質に用いられるリチウム複合粉末の形態は、一次粒子が凝集して二次粒子となっているものなどが知られている。粒径が大きく比表面積が小さいリチウム複合粉末は、電解液との接触が十分に取れず、電池容量が得られない。また、特許文献1には、微粒子が含まれるリチウム複合粉末は電極内で粒子に掛かる電圧が不均一となり、充放電を繰り返すと選択的に劣化して、容量が低下するなどのサイクル劣化が生じやすくなることが記載されている。そのため、適度な粒径で粒度分布の均一な正極活物質の前駆体である複合粉末を製造することが必要であり、平均粒径が3〜12μm、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.60以下であることが示されており、レーザー光回折散乱式粒度分析計で測定されている。また、特許文献2にも電池特性への影響として、正極活物質の前駆体の粒度分布を制御することが記載されている。 Known forms of the lithium composite powder used for the positive electrode active material for lithium ion batteries include those in which primary particles aggregate to form secondary particles. The lithium composite powder having a large particle size and a small specific surface area cannot be sufficiently brought into contact with the electrolytic solution, and battery capacity cannot be obtained. Further, Patent Document 1 discloses that lithium composite powder containing fine particles has nonuniform voltage applied to the particles in the electrode, and selectively deteriorates when charging and discharging are repeated, resulting in cycle deterioration such as a decrease in capacity. It is described that it becomes easy. Therefore, it is necessary to produce a composite powder that is a precursor of a positive electrode active material having an appropriate particle size and a uniform particle size distribution, and has an average particle size of 3 to 12 μm and an index indicating the spread of the particle size distribution [( d 90 -d 10 ) / average particle diameter] is 0.60 or less, and is measured by a laser light diffraction scattering particle size analyzer. Patent Document 2 also describes controlling the particle size distribution of the precursor of the positive electrode active material as an influence on battery characteristics.

低粒径二次粒子を制御する正極活物質の前駆体の製法に関して、特許文献3では反応溶液の開放面と接触する反応槽内の雰囲気の酸素濃度を0.2容量%以下に保持することにより、反応溶液中での金属元素、特にマンガンの酸化が抑制され、一次粒子が発達して高結晶性の球状の二次粒子が得られると記載されている。また、特許文献4では反応液中の溶存酸素を減らす目的で、不活性ガス雰囲気下で共沈反応させることが提案されている。   Regarding the method for producing the precursor of the positive electrode active material for controlling the secondary particles having a low particle size, in Patent Document 3, the oxygen concentration in the atmosphere in the reaction tank in contact with the open surface of the reaction solution is maintained at 0.2% by volume or less. Describes that the oxidation of metal elements, particularly manganese, in the reaction solution is suppressed, and primary particles develop to obtain highly crystalline spherical secondary particles. Patent Document 4 proposes co-precipitation reaction under an inert gas atmosphere for the purpose of reducing dissolved oxygen in the reaction solution.

WO2012/165654WO2012 / 165654 特表2010−536697号公報JP 2010-536697 A 特開2013−171744号公報JP 2013-171744 A 特開2003−59490号公報JP 2003-59490 A 特開2010−033785号公報JP 2010-033785 A

しかしながら、粉末状の二次粒子はその付着力により凝集しやすく、より小粒径の二次粒子は表面積が大きくより凝集が顕著になってしまう。この凝集した二次粒子の粒度を判別する方法として一般的には粉末を水や溶媒に分散し、超音波処理などによって機械的に凝集を解く方法が取られるが、特許文献5で指摘しているように再凝集の問題があり、正確な粒度分布を測定することは難しい。この湿式測定方法はレーザー回折散乱式粒度分布測定法により実施される。当該レーザー回折散乱式粒度分布測定法は、光回折・散乱現象を観測・解析する方法である。このような方法は、粒子の屈折率が必要なほか、粒子が小さくなると散乱の角度依存性がなくなる(広角に散乱するため側方や後方散乱光を取り込めない)ため測定精度が落ちるという欠点もある。そのため、従来、低粒径二次粒子の割合が正確に判別できない問題点があった。
共沈反応中の前駆体の酸化を防止するためには、反応液中の酸素濃度を制御することが必要となるが、特許文献3のような反応槽内雰囲気の酸素濃度を制御するだけでは反応液中の酸素濃度を十分に制御できるとは言えない。また、特許文献4では反応液中の溶存酸素の除去効果を示しているが、具体的な溶存酸素量について明示されておらず、正極活物質のタップ密度は1.95g/cm3と低く、比表面積は13.5m2/gと非常に大きいため低粒径二次粒子が多く存在しているものとなっている。
However, powdery secondary particles are likely to aggregate due to their adhesion, and smaller secondary particles have a larger surface area and become more prominent. As a method for discriminating the particle size of the agglomerated secondary particles, a method is generally used in which the powder is dispersed in water or a solvent and mechanically deagglomerated by ultrasonic treatment or the like. Therefore, there is a problem of reaggregation, and it is difficult to measure an accurate particle size distribution. This wet measurement method is carried out by a laser diffraction / scattering particle size distribution measurement method. The laser diffraction / scattering particle size distribution measuring method is a method for observing and analyzing light diffraction / scattering phenomena. Such a method requires the refractive index of the particles, and when the particles are small, the angle dependency of the scattering is lost (because it scatters to a wide angle so that side and backscattered light cannot be taken in), so the measurement accuracy decreases. is there. Therefore, conventionally, there has been a problem that the ratio of the secondary particles having a low particle size cannot be accurately determined.
In order to prevent the oxidation of the precursor during the coprecipitation reaction, it is necessary to control the oxygen concentration in the reaction solution, but it is only necessary to control the oxygen concentration in the reaction tank atmosphere as in Patent Document 3. It cannot be said that the oxygen concentration in the reaction solution can be sufficiently controlled. Patent Document 4 shows the effect of removing dissolved oxygen in the reaction solution, but the specific dissolved oxygen amount is not clearly shown, and the tap density of the positive electrode active material is as low as 1.95 g / cm 3 . Since the specific surface area is as large as 13.5 m 2 / g, many secondary particles with low particle diameter are present.

従来の正極活物質の製造においては、上記のように、正極活物質の前駆体の粒度分布を制御することが記載されているが、従来の前駆体の粒度分布は、特に低粒径二次粒子について精度良く測定されておらず、そのため、従来の前駆体の粒度分布の制御は曖昧な側面がある。また、共沈反応液中の溶存酸素量についても何ら記載がない。   In the production of the conventional positive electrode active material, as described above, it is described that the particle size distribution of the precursor of the positive electrode active material is controlled. Particles have not been measured with high accuracy, so there is an ambiguous aspect of controlling the particle size distribution of conventional precursors. Moreover, there is no description about the amount of dissolved oxygen in the coprecipitation reaction solution.

本発明は、電池容量及びサイクル特性がいずれも良好なリチウムイオン電池用正極活物質を得るための前駆体及びリチウムイオン電池用正極活物質を提供することを課題とする。   An object of the present invention is to provide a precursor for obtaining a positive electrode active material for a lithium ion battery and a positive electrode active material for a lithium ion battery, both of which have good battery capacity and cycle characteristics.

本発明者は、正極活物質前駆体の低粒径二次粒子が電池特性へ大いに影響すること、及び、当該低粒径二次粒子の存在量を十分に評価することで、低粒径二次粒子の存在量を精度良く制御した正極活物質前駆体が得られ、それによって電池容量及びサイクル特性がいずれも良好なリチウムイオン電池用正極活物質を得ることができることを見出した。   The present inventor has confirmed that the low particle size secondary particles of the positive electrode active material precursor greatly affect the battery characteristics and sufficiently evaluate the abundance of the low particle size secondary particles to reduce the low particle size secondary particles. It has been found that a positive electrode active material precursor in which the abundance of secondary particles is accurately controlled is obtained, whereby a positive electrode active material for a lithium ion battery having good battery capacity and cycle characteristics can be obtained.

上記知見を基礎にして完成した本発明は一側面において、ニッケル、コバルト及びマンガンからなる群から選ばれる少なくとも一種を含み、且つ、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末前駆体二次粒子からなり、前記二次粒子は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下であるリチウムイオン電池用正極活物質前駆体である。   In one aspect, the present invention completed based on the above knowledge includes at least one selected from the group consisting of nickel, cobalt and manganese, and a composite formed by agglomerating primary particles having an average particle size of 1 μm or less It consists of powder precursor secondary particles, and the secondary particles are positive electrode active material precursors for lithium ion batteries in which the proportion of particles of 5 μm or less is 20% or less in terms of the number by dry particle size measurement.

本発明の正極活物質前駆体は一実施形態において、組成式:LiaNibCocMnd2
(前記式において、1.0≦a≦1.05、0.4≦b≦0.9、0.1≦c+d≦0.6)で表される。
In one embodiment, the positive electrode active material precursor of the present invention has a composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.0 ≦ a ≦ 1.05, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c + d ≦ 0.6).

本発明は別の一側面において、ニッケル、コバルト及びマンガンからなる群から選ばれる少なくとも一種の元素を含み、且つ、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末二次粒子からなり、前記二次粒子は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下であるリチウムイオン電池用正極活物質である。   Another aspect of the present invention is a composite powder secondary particle comprising at least one element selected from the group consisting of nickel, cobalt and manganese, and formed by agglomerating primary particles having an average particle size of 1 μm or less The secondary particles are a positive electrode active material for a lithium ion battery in which the proportion of particles having a size of 5 μm or less is 20% or less in terms of the number by dry particle size measurement.

本発明のリチウムイオン電池用正極活物質は一実施形態において、組成式:LiaNibCocMnd2(前記式において、1.0≦a≦1.05、0.4≦b≦0.9、0.1≦c+d≦0.6)で表される。 In one embodiment, the positive electrode active material for a lithium ion battery of the present invention has a composition formula: Li a Ni b Co c Mn d O 2 (where 1.0 ≦ a ≦ 1.05, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c + d ≦ 0.6).

本発明は更に別の一側面において、不活性ガスをバブリングして溶存酸素量を1.0mg/L以下とした、ニッケル源、コバルト源、マンガン源を含む水溶液を用意する工程と、不活性ガスをバブリングして溶存酸素量を1.0mg/L以下とした10〜30質量%苛性ソーダ水を用意する工程と、硫酸アンモニア溶液を反応槽に投入後、前記反応槽の混合液の温度を30〜60℃に制御し、且つ、前記反応槽の混合液に不活性ガスをバブリングさせながら、前記ニッケル源、コバルト源、マンガン源を含む水溶液と、前記硫酸アンモニア溶液を一定量で連続的に加えながら、前記苛性ソーダ水を、前記反応槽のpHが10.8〜11.3になるよう管理しながら投入して、前記反応槽の混合液中のNH3/メタルのモル比が最終的に0.2〜0.8になるように調整し、前記反応槽内の混合溶液は一定流量で濃縮槽に送液し、ろ布を通して、濃縮したスラリーをオーバーフローさせ、反応槽へ戻し、反応槽内の容量は一定に保ち、前記NH3/メタルのモル比を調整した反応槽の混合液に対し、溶存酸素量を1.0mg/L以下に保ちながら撹拌し、80〜200時間粒子成長させ、共沈中間体を作製する工程と、前記共沈中間体をろ過して得られた残渣を水洗することで、本発明のリチウムイオン電池用正極活物質前駆体を得る工程と、前記リチウムイオン電池用正極活物質前駆体をリチウム化合物と混合し、焼成することでリチウムイオン電池用正極活物質を得る工程とを備えたリチウムイオン電池用正極活物質の製造方法である。 In yet another aspect of the present invention, a step of preparing an aqueous solution containing a nickel source, a cobalt source, and a manganese source in which an inert gas is bubbled to have a dissolved oxygen amount of 1.0 mg / L or less; The step of preparing 10 to 30% by mass of caustic soda water in which the dissolved oxygen amount was 1.0 mg / L or less by bubbling, and after the ammonia sulfate solution was added to the reaction vessel, the temperature of the mixed solution in the reaction vessel was changed to 30 to 30%. While controlling the temperature at 60 ° C. and bubbling an inert gas in the reaction mixture, the aqueous solution containing the nickel source, cobalt source and manganese source and the ammonia sulfate solution are continuously added in a constant amount. The caustic soda water was added while controlling the pH of the reaction vessel to be 10.8 to 11.3, so that the NH 3 / metal molar ratio in the mixed solution of the reaction vessel was finally 0. 2 The mixed solution in the reaction tank is sent to the concentration tank at a constant flow rate, and the concentrated slurry is overflowed through the filter cloth and returned to the reaction tank. The volume in the reaction tank is Stirring while maintaining the amount of dissolved oxygen at 1.0 mg / L or less with respect to the mixed solution in the reaction vessel in which the NH 3 / metal molar ratio was adjusted, the particles were grown for 80 to 200 hours, and the coprecipitation intermediate A step of obtaining a positive electrode active material precursor for a lithium ion battery according to the present invention by washing the residue obtained by filtering the coprecipitation intermediate, and the positive electrode active for a lithium ion battery. A method for producing a positive electrode active material for a lithium ion battery comprising a step of mixing a material precursor with a lithium compound and firing to obtain a positive electrode active material for a lithium ion battery.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極活物質を備えたリチウムイオン電池用正極である。   In still another aspect, the present invention provides a positive electrode for a lithium ion battery including the positive electrode active material for a lithium ion battery of the present invention.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を備えたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery including the positive electrode for a lithium ion battery of the present invention.

本発明によれば、電池容量及びサイクル特性がいずれも良好なリチウムイオン電池用正極活物質を得るための前駆体及びリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the precursor for obtaining the positive electrode active material for lithium ion batteries with favorable battery capacity and cycling characteristics, and the positive electrode active material for lithium ion batteries can be provided.

(リチウムイオン電池用正極活物質前駆体の構成)
本発明のリチウムイオン電池用正極活物質前駆体は、ニッケル、コバルト及びマンガンからなる群から選ばれる少なくとも一種を含み、且つ、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末前駆体二次粒子からなり、前記二次粒子は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下である。本発明のリチウムイオン電池用正極活物質前駆体は、このように平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末前駆体二次粒子からなり、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下(低粒径二次粒子の存在割合が20%以下)であり、容量低下やサイクル劣化の要因となる低粒径二次粒子の存在割合が抑制されている。このため、焼成後に得られる正極活物質の電池容量が向上し、且つ、サイクル特性が良好となる。より好ましくは本発明のリチウムイオン電池用正極活物質前駆体は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が10%以下である。なお、本発明において、「5μm以下の粒子」は、二次粒子の投影面積円相当径である。
(Configuration of positive electrode active material precursor for lithium ion battery)
The positive electrode active material precursor for a lithium ion battery according to the present invention includes at least one selected from the group consisting of nickel, cobalt and manganese, and a composite powder formed by agglomerating primary particles having an average particle size of 1 μm or less It consists of precursor secondary particles, and the secondary particles have a content ratio of particles of 5 μm or less in terms of number by dry particle size measurement of 20% or less. The positive electrode active material precursor for a lithium ion battery of the present invention is composed of composite powder precursor secondary particles formed by agglomerating primary particles having an average particle diameter of 1 μm or less in this way, and is converted into a number by dry particle size measurement. The proportion of particles with a particle size of 5 μm or less is 20% or less (the proportion of particles with low particle size is 20% or less), and the proportion of particles with low particle size that causes capacity reduction or cycle deterioration is suppressed. Has been. For this reason, the battery capacity of the positive electrode active material obtained after firing is improved and the cycle characteristics are improved. More preferably, in the positive electrode active material precursor for a lithium ion battery of the present invention, the proportion of particles having a size of 5 μm or less is 10% or less in terms of the number by dry particle size measurement. In the present invention, “particles of 5 μm or less” is a projected area equivalent circle diameter of secondary particles.

本発明のリチウムイオン電池用正極活物質前駆体は、組成式:LiaNibCocMnd2
(前記式において、1.0≦a≦1.05、0.4≦b≦0.9、0.1≦c+d≦0.6)で表されるのが好ましい。
リチウムの比率が1.0〜1.05であるが、これは、1.0未満では、前駆体によって得られるリチウムイオン電池用正極活物質が安定した結晶構造を保持し難く、1.05超では電池の高容量が確保できなくなるおそれがあるためである。また、ニッケルの組成が0.4〜0.9であるため、当該リチウムイオン電池用正極活物質を用いたリチウムイオン電池の容量、サイクル特性がバランスよく向上する。より好ましくは0.5〜0.9、より好ましくは0.75〜0.9である。
The positive electrode active material precursor for a lithium ion battery according to the present invention has a composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, it is preferable that 1.0 ≦ a ≦ 1.05, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c + d ≦ 0.6).
The ratio of lithium is 1.0 to 1.05. However, if the ratio is less than 1.0, the positive electrode active material for lithium ion batteries obtained by the precursor hardly retains a stable crystal structure, and exceeds 1.05. This is because the high capacity of the battery may not be secured. Moreover, since the composition of nickel is 0.4 to 0.9, the capacity and cycle characteristics of the lithium ion battery using the positive electrode active material for lithium ion battery are improved in a well-balanced manner. More preferably, it is 0.5-0.9, More preferably, it is 0.75-0.9.

(リチウムイオン電池用正極活物質の構成)
本発明の前駆体によって得られるリチウムイオン電池用正極活物質は、ニッケル、コバルト及びマンガンからなる群から選ばれる少なくとも一種の元素を含み、且つ、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末二次粒子からなり、前記二次粒子は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下である。本発明のリチウムイオン電池用正極活物質は、このように平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末二次粒子からなり、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下(低粒径二次粒子の存在割合が20%以下)であり、容量低下やサイクル劣化の要因となる低粒径二次粒子の存在割合が抑制されている。このため、当該正極活物質の電池容量が向上し、且つ、サイクル特性が良好となる。より好ましくは本発明のリチウムイオン電池用正極活物質は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が10%以下である。
(Configuration of positive electrode active material for lithium ion battery)
The positive electrode active material for a lithium ion battery obtained by the precursor of the present invention contains at least one element selected from the group consisting of nickel, cobalt and manganese, and primary particles have an average particle diameter of 1 μm or less aggregated. It consists of the formed composite powder secondary particles, and the secondary particles have a content ratio of particles of 5 μm or less in terms of the number by dry particle size measurement of 20% or less. The positive electrode active material for a lithium ion battery of the present invention is composed of composite powder secondary particles formed by agglomerating primary particles having an average particle diameter of 1 μm or less, and having a particle size of 5 μm or less by dry particle size measurement. The existence ratio of the particles is 20% or less (the existence ratio of the low particle size secondary particles is 20% or less), and the existence ratio of the low particle size secondary particles, which causes a decrease in capacity and cycle deterioration, is suppressed. For this reason, the battery capacity of the said positive electrode active material improves, and cycling characteristics become favorable. More preferably, in the positive electrode active material for a lithium ion battery of the present invention, the proportion of particles having a size of 5 μm or less is 10% or less in terms of the number by dry particle size measurement.

本発明のリチウムイオン電池用正極活物質は、組成式:LiaNibCocMnd2
(前記式において、1.0≦a≦1.05、0.4≦b≦0.9、0.1≦c+d≦0.6)で表されるのが好ましい。
リチウムの比率が1.0〜1.05であるが、これは、1.0未満では、安定した結晶構造を保持し難く、1.05超では電池の高容量が確保できなくなるおそれがあるためである。また、ニッケルの組成が0.4〜0.9であるため、当該リチウムイオン電池用正極活物質を用いたリチウムイオン電池の容量、サイクル特性がバランスよく向上する。より好ましくは0.5〜0.9、より好ましくは0.75〜0.9である。
The positive electrode active material for a lithium ion battery of the present invention has a composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, it is preferable that 1.0 ≦ a ≦ 1.05, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c + d ≦ 0.6).
The ratio of lithium is 1.0 to 1.05. This is because if it is less than 1.0, it is difficult to maintain a stable crystal structure, and if it exceeds 1.05, a high capacity of the battery may not be secured. It is. Moreover, since the composition of nickel is 0.4 to 0.9, the capacity and cycle characteristics of the lithium ion battery using the positive electrode active material for lithium ion battery are improved in a well-balanced manner. More preferably, it is 0.5-0.9, More preferably, it is 0.75-0.9.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.

まず、ニッケル源、コバルト源、マンガン源として、例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガンを、所定のモル比で含む水溶液を用意し、窒素ガス等の不活性ガスをバブリングして溶存酸素量を1.0mg/L以下とする。
また、窒素ガス等の不活性ガスをバブリングして溶存酸素量を1.0mg/L以下とした10〜30質量%苛性ソーダ水を用意する。
次に、硫酸アンモニア溶液を反応槽に投入後、上記ニッケル源、コバルト源、マンガン源を含む水溶液と硫酸アンモニア溶液を一定量で連続的に加えながら、上記窒素ガス等の不活性ガスをバブリングして溶存酸素量を1.0mg/L以下とした10〜30質量%苛性ソーダ水を、当該反応槽のpHが10.8〜11.3になるよう管理しながら反応槽に投入し、水溶液中のNH3/メタルのモル比が最終的に0.2〜0.8になるよう調整する。
ここで、反応槽内の混合溶液は一定流量で濃縮槽に送液し、通気度10〜100cc/mL・分のろ布を通して、濃縮したスラリーをオーバーフローさせ、反応槽へ戻し、反応槽内の容量は一定に保つ。
このとき反応槽は恒温槽及び加温ジャケット等を用いて30〜60℃に加温し、反応液中に窒素ガス等の不活性ガスをバブリングさせる。その後、溶存酸素量を1.0mg/L以下に保ちながら撹拌し、80〜200時間粒子成長させ、共沈中間体を作製する。
First, as a nickel source, a cobalt source, and a manganese source, for example, an aqueous solution containing nickel sulfate, cobalt sulfate, and manganese sulfate at a predetermined molar ratio is prepared, and an inert gas such as nitrogen gas is bubbled to reduce the amount of dissolved oxygen. 1.0 mg / L or less.
Moreover, 10-30 mass% caustic soda water which bubbling inert gas, such as nitrogen gas, and made dissolved oxygen amount 1.0 mg / L or less is prepared.
Next, after adding the sulfuric acid ammonia solution to the reaction vessel, an inert gas such as the nitrogen gas is bubbled while continuously adding a constant amount of the aqueous solution containing the nickel source, cobalt source and manganese source and the ammonium sulfate solution. Then, 10 to 30% by mass of caustic soda water having a dissolved oxygen amount of 1.0 mg / L or less was added to the reaction vessel while controlling the pH of the reaction vessel to be 10.8 to 11.3. The final molar ratio of NH 3 / metal is adjusted to 0.2 to 0.8.
Here, the mixed solution in the reaction tank is sent to the concentration tank at a constant flow rate, and the concentrated slurry is overflowed through a filter cloth having an air permeability of 10 to 100 cc / mL · min, and returned to the reaction tank. Keep the capacity constant.
At this time, the reaction vessel is heated to 30 to 60 ° C. using a thermostatic bath and a heating jacket, and an inert gas such as nitrogen gas is bubbled into the reaction solution. Then, stirring is performed while keeping the dissolved oxygen amount at 1.0 mg / L or less, and particle growth is performed for 80 to 200 hours to prepare a coprecipitation intermediate.

続いて、共沈中間体をろ過・水洗することで共沈前駆体(本発明の正極活物質前駆体)を得る。顕微鏡光学系下で共沈前駆体を走査することで個別の粒子の画像を取り込み、静止画像解析の技術を用いて粒度を測定する(乾式粒度測定)。   Then, a coprecipitation precursor (positive electrode active material precursor of the present invention) is obtained by filtering and washing the coprecipitation intermediate. By scanning the coprecipitation precursor under a microscope optical system, an image of individual particles is captured, and the particle size is measured using a technique of still image analysis (dry particle size measurement).

このようにして、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末前駆体二次粒子からなり、当該二次粒子が、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下であるリチウムイオン電池用正極活物質前駆体を得る。   In this way, the composite powder precursor secondary particles are formed by agglomerating primary particles having an average particle diameter of 1 μm or less. The secondary particles are particles having a particle size of 5 μm or less in terms of the number by dry particle size measurement. A positive electrode active material precursor for a lithium ion battery having an abundance ratio of 20% or less is obtained.

次に、この共沈前駆体をLi/(Ni+Co+Mn)が所定の比となるようにリチウム化合物と混合した後、酸素雰囲気の焼成炉に入れ、300〜〜400℃で1〜5時間焼成後、450〜550℃で2〜10時間の焼成、続いて650〜900℃で2〜10時間の焼成を行うことで、正極活物質を得る。その後、必要であれば、焼成体を例えばパルベライザー等を用いて解砕することにより正極活物質の粉体が得られる。
リチウム化合物としては、水酸化リチウム、硝酸リチウムや炭酸リチウム等が挙げられる。
Next, this coprecipitation precursor was mixed with a lithium compound so that Li / (Ni + Co + Mn) had a predetermined ratio, and then placed in a firing furnace in an oxygen atmosphere, and after firing at 300 to 400 ° C. for 1 to 5 hours, A positive electrode active material is obtained by baking at 450-550 degreeC for 2 to 10 hours, and baking at 650-900 degreeC for 2 to 10 hours. Thereafter, if necessary, the powder of the positive electrode active material can be obtained by crushing the fired body using, for example, a pulverizer.
Examples of the lithium compound include lithium hydroxide, lithium nitrate, and lithium carbonate.

(リチウムイオン電池用正極及びそれを有するリチウムイオン電池の製造方法)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けることで作製される。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を用いて製造される。
(Positive electrode for lithium ion battery and method for producing lithium ion battery having the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. It is produced by providing it on one or both sides of the current collector. Moreover, the lithium ion battery which concerns on embodiment of this invention is manufactured using the positive electrode for lithium ion batteries of such a structure.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。なお、以下の実施例及び比較例において、乾式粒度測定で測定する二次粒子の粒径は、投影面積円相当径である。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples. In the following examples and comparative examples, the particle size of secondary particles measured by dry particle size measurement is a projected area equivalent circle diameter.

(実施例1)
窒素ガスバブリングすることで溶存酸素量を0.9mg/Lとした硫酸ニッケル、硫酸コバルト、硫酸マンガンをNi:Co:Mn=8:1:1のモル比で含む1.5mol/Lの水溶液を反応容積10Lの晶析反応槽に用意した。
また、窒素ガスバブリングすることで溶存酸素量を0.9mg/Lとした20質量%の苛性ソーダ水を用意した。
次に、上記反応槽に2.5g/Lの硫酸アンモニア溶液9,000mLを投入し、6枚羽根パドルで500rpmの回転数で撹拌しつつ、上記ニッケル源、コバルト源、マンガン源を含む水溶液と硫酸アンモニア溶液を一定量で連続的に加えながら、上記苛性ソーダ水を、当該反応槽内の混合溶液のpHが11.0±0.1になるよう管理しながら反応槽に投入し、反応槽内の混合溶液中のNH3/メタルのモル比が最終的に0.4になるよう調整した。反応槽内の混合溶液は一定流量で内容積2Lの濃縮槽に送液し、通気度30cc/mL・分のろ布を通して、濃縮したスラリーをオーバーフローさせ、反応槽へ戻し、反応槽内の容量は一定にした。このとき反応槽は恒温槽及び加温ジャケット等を用いて50℃に加温し、且つ、窒素ガスをバブリングさせて溶存酸素量を0.9mg/Lまで低減させ、その後、溶存酸素量を0.9mg/Lに保ちながら撹拌し、150時間まで反応を継続し、粒子成長させ、共沈中間体を作製した。
次に、共沈中間体をろ過・水洗することで共沈前駆体を得た。ここでの溶存酸素量はHORIBA社製(DOMETER OM−51)溶存酸素計を用いて測定した。
共沈前駆体のレーザー回折散乱式粒度分布測定法(湿式粒度測定)で求められる体積基準の粒度分布を測定したところ、Dmin:6.0μm、D10:8.1μm、D50:10.5μm、D90:13.4μm、Dmax:26.2μmであった。顕微鏡光学系下で試料を走査することで約2万個の個別粒子の画像を取り込み、静止画像解析の技術を用いて粒度を測定した(乾式粒度測定)。個数基準での5μm以下は6.4%、5μm超えて10μm以下:33.3%、10μm超えて20μm以下:60.3%、20μm超え:0.1%の割合となった。この共沈前駆体をLi/(Ni+Co+Mn)=1.01となるように水酸化リチウムを混合した後、酸素雰囲気の焼成炉に入れ、350℃で2時間焼成後、500℃で8時間、800℃で5時間焼成することで焼成中間体を得た。次に、得られた焼成物をパルベライザーにて解砕することにより正極材活物質の粉体を得た。 湿式粒度測定は、マイクロトラック・ベル社製(MT3300EXII)レーザー回折散乱式粒度分布測定装置を用いて行った。洗浄された撹拌槽に純水を満たし、セル内を循環させ、共沈前駆体を投入、超音波分散させたのち、レーザー光を照射した光回折・散乱強度を検出することによって測定した。
Example 1
A 1.5 mol / L aqueous solution containing nickel sulfate, cobalt sulfate, and manganese sulfate at a molar ratio of Ni: Co: Mn = 8: 1: 1 with a dissolved oxygen content of 0.9 mg / L by bubbling nitrogen gas. A crystallization reaction tank having a reaction volume of 10 L was prepared.
Moreover, 20 mass% caustic soda water which prepared dissolved oxygen amount as 0.9 mg / L by bubbling nitrogen gas was prepared.
Next, 9,000 mL of a 2.5 g / L ammonia sulfate solution was charged into the reaction vessel, and the aqueous solution containing the nickel source, cobalt source, and manganese source was stirred with a 6-blade paddle at 500 rpm. While adding a constant amount of ammonia sulfate solution continuously, the above caustic soda water was added to the reaction tank while controlling the pH of the mixed solution in the reaction tank to be 11.0 ± 0.1. The NH 3 / metal molar ratio in the mixed solution was adjusted to finally be 0.4. The mixed solution in the reaction tank is sent at a constant flow rate to a 2 L concentration tank, and the filtered slurry is overflowed through a filter cloth with an air permeability of 30 cc / mL · min. Made constant. At this time, the reaction vessel is heated to 50 ° C. using a thermostatic bath, a heating jacket, etc., and nitrogen gas is bubbled to reduce the amount of dissolved oxygen to 0.9 mg / L. Thereafter, the amount of dissolved oxygen is reduced to 0. Stirring while maintaining at 9 mg / L, the reaction was continued for 150 hours to grow particles, and a coprecipitation intermediate was produced.
Next, the coprecipitation intermediate was filtered and washed with water to obtain a coprecipitation precursor. The amount of dissolved oxygen here was measured using a dissolved oxygen meter manufactured by HORIBA (DOMETER OM-51).
When the volume-based particle size distribution obtained by the laser diffraction / scattering particle size distribution measurement method (wet particle size measurement) of the coprecipitation precursor was measured, Dmin: 6.0 μm, D10: 8.1 μm, D50: 10.5 μm, D90 : 13.4 μm, Dmax: 26.2 μm. An image of about 20,000 individual particles was captured by scanning the sample under a microscope optical system, and the particle size was measured using a technique of still image analysis (dry particle size measurement). On the basis of the number, 5 μm or less was 6.4%, 5 μm to 10 μm or less: 33.3%, 10 μm to 20 μm or less: 60.3%, 20 μm or more: 0.1%. This coprecipitated precursor was mixed with lithium hydroxide so that Li / (Ni + Co + Mn) = 1.01, then placed in an oxygen atmosphere firing furnace, fired at 350 ° C. for 2 hours, then heated at 500 ° C. for 8 hours, 800 A calcined intermediate was obtained by calcining at 5 ° C. for 5 hours. Next, the obtained fired product was pulverized with a pulverizer to obtain a powder of a positive electrode active material. The wet particle size measurement was performed using a Microtrac Bell (MT3300EXII) laser diffraction / scattering particle size distribution analyzer. The washing tank was filled with pure water, circulated in the cell, charged with a coprecipitation precursor, subjected to ultrasonic dispersion, and then measured by detecting light diffraction / scattering intensity irradiated with laser light.

(実施例2)
硫酸ニッケル、硫酸コバルト、硫酸マンガンをNi:Co:Mn=8.2:1.5:0.3のモル比で含む1.5mol/Lの水溶液、硫酸アンモニア溶液を準備し、NH3/メタルのモル比を最終的に0.6にする以外は実施例1と同様に行い、共沈前駆体を得た。湿式粒度測定を行ったところ、Dmin:6.0μm、D10:8.5μm、D50:11.0μm、D90:15.1μm、Dmax:26.2μmであった。乾式粒度測定を行ったところ、個数基準での5μm以下は2.3%、5μm超えて10μm以下:13.1%、10μm超えて20μm以下:84.3%、20μm超え:0.3%の割合となった。この共沈前駆体は実施例1と同様に調製し、正極材活物質の粉体を得た。
(Example 2)
Prepare a 1.5 mol / L aqueous solution and an ammonium sulfate solution containing nickel sulfate, cobalt sulfate, and manganese sulfate at a molar ratio of Ni: Co: Mn = 8.2: 1.5: 0.3, NH 3 / metal A coprecipitation precursor was obtained in the same manner as in Example 1 except that the molar ratio of was finally 0.6. When the wet particle size measurement was performed, the results were Dmin: 6.0 μm, D10: 8.5 μm, D50: 11.0 μm, D90: 15.1 μm, and Dmax: 26.2 μm. When dry particle size measurement was performed, 5 μm or less on the basis of the number was 2.3%, 5 μm to 10 μm or less: 13.1%, 10 μm to 20 μm or less: 84.3%, 20 μm or more: 0.3% It became a ratio. The coprecipitation precursor was prepared in the same manner as in Example 1 to obtain a positive electrode active material powder.

(実施例3)
硫酸ニッケル、硫酸コバルト、硫酸マンガンをNi:Co:Mn=8.2:1.5:0.3のモル比で含む1.5mol/Lの水溶液、硫酸アンモニア溶液を準備し、反応槽pHを11.2±0.1、NH3/メタルのモル比を最終的に0.3にする以外は実施例1と同様に行い、共沈前駆体を得た。湿式粒度測定を行ったところ、Dmin:10.1μm、D10:13.5μm、D50:17.3μm、D90:23.3μm、Dmax:44.0μmであった。乾式粒度測定を行ったところ、個数基準での5μm以下は12.0%、5μm超えて10μm以下:3.5%、10μm超えて20μm以下:71.5%、20μm超え:13.0%の割合となった。この共沈前駆体をLi/(Ni+Co+Mn)=1.02となるように水酸化リチウムとともに酸素雰囲気の焼成炉に入れ、350℃で2時間焼成後、500℃で8時間、800℃で5時間焼成することで焼成中間体を得た。次に、得られた焼成物をパルベライザーにて解砕することにより正極材活物質の粉体を得た。
(Example 3)
Prepare a 1.5 mol / L aqueous solution and an ammonium sulfate solution containing nickel sulfate, cobalt sulfate, and manganese sulfate at a molar ratio of Ni: Co: Mn = 8.2: 1.5: 0.3, and adjust the reaction vessel pH. A coprecipitation precursor was obtained in the same manner as in Example 1 except that the molar ratio of 11.2 ± 0.1 and NH 3 / metal was finally set to 0.3. When the wet particle size measurement was performed, Dmin was 10.1 μm, D10 was 13.5 μm, D50 was 17.3 μm, D90 was 23.3 μm, and Dmax was 44.0 μm. When dry particle size measurement was performed, 5 μm or less on a number basis was 12.0%, 5 μm to 10 μm or less: 3.5%, 10 μm to 20 μm or less: 71.5%, 20 μm or more: 13.0% It became a ratio. This coprecipitation precursor was placed in an oxygen atmosphere firing furnace together with lithium hydroxide so that Li / (Ni + Co + Mn) = 1.02, fired at 350 ° C. for 2 hours, then at 500 ° C. for 8 hours, and at 800 ° C. for 5 hours. A fired intermediate was obtained by firing. Next, the obtained fired product was pulverized with a pulverizer to obtain a powder of a positive electrode active material.

(実施例4)
反応槽pHを11.3±0.1、NH3/メタルのモル比を最終的に0.2にする以外は実施例1と同様に行い、共沈前駆体を得た。湿式粒度測定を行ったところ、Dmin:8.5μm、D10:11.7μm、D50:15.0μm、D90:20.5μm、Dmax:37.0μmであった。乾式粒度測定を行ったところ、個数基準での5μm以下は17.7%、5μm超えて10μm以下:15.8%、10μm超えて20μm以下:64.1%、20μm超え:2.4%の割合となった。この共沈前駆体をLi/(Ni+Co+Mn)=1.02となるように水酸化リチウムとともに酸素雰囲気の焼成炉に入れ、実施例1と同様に調製し、正極材活物質の粉体を得た。
Example 4
A coprecipitation precursor was obtained in the same manner as in Example 1 except that the reactor pH was 11.3 ± 0.1 and the NH 3 / metal molar ratio was finally 0.2. When the wet particle size measurement was performed, Dmin: 8.5 μm, D10: 11.7 μm, D50: 15.0 μm, D90: 20.5 μm, and Dmax: 37.0 μm. When dry particle size measurement was performed, 5 μm or less on a number basis was 17.7%, 5 μm to 10 μm or less: 15.8%, 10 μm to 20 μm or less: 64.1%, 20 μm or more: 2.4% It became a ratio. This coprecipitated precursor was placed in a firing furnace in an oxygen atmosphere together with lithium hydroxide so that Li / (Ni + Co + Mn) = 1.02 and prepared in the same manner as in Example 1 to obtain a positive electrode active material powder. .

(比較例1)
反応槽pHを11.5±0.1、NH3/メタルのモル比を最終的に0.3にする以外は実施例1と同様に行い、共沈前駆体を得た。湿式粒度測定を行ったところ、Dmin:6.0μm、D10:8.6μm、D50:11.1μm、D90:15.3μm、Dmax:31.1μmであった。乾式粒度測定を行ったところ、個数基準での5μm以下は25.3%、5μm超えて10μm以下:16.2%、10μm超えて20μm以下:58.2%、20μm超え:0.2%の割合となった。この共沈前駆体は実施例1と同様に調製し、正極材活物質の粉体を得た。
(Comparative Example 1)
A coprecipitation precursor was obtained in the same manner as in Example 1 except that the reactor pH was 11.5 ± 0.1 and the NH 3 / metal molar ratio was finally 0.3. When the wet particle size measurement was performed, the results were Dmin: 6.0 μm, D10: 8.6 μm, D50: 11.1 μm, D90: 15.3 μm, and Dmax: 31.1 μm. When dry particle size measurement was performed, 5 μm or less on a number basis was 25.3%, 5 μm to 10 μm or less: 16.2%, 10 μm to 20 μm or less: 58.2%, 20 μm or more: 0.2% It became a ratio. The coprecipitation precursor was prepared in the same manner as in Example 1 to obtain a positive electrode active material powder.

(比較例2)
窒素ガスバブリングをしない硫酸ニッケル、硫酸コバルト、硫酸マンガンをNi:Co:Mn=8:1:1のモル比で含む1.5mol/Lの水溶液と、20質量%の苛性ソーダ水を用意した。反応容積10Lの晶析反応槽に2.5g/Lの硫酸アンモニア溶液9,000mLを投入し、6枚羽根パドルで500rpmの回転数で撹拌しつつ、反応槽pHが11.0±0.1になるように用意した硫酸金属塩と苛性ソーダ水を投入しながら、反応槽内に窒素ガス雰囲気となるよう、0.5L/分で流通させ、共沈反応を開始した。反応液中の溶存酸素量は1.4mg/Lであった。次に、実施例1と同様にNH3/メタルのモル比が最終的に0.4になるよう調整した。反応槽内の混合溶液は一定流量で内容積2Lの濃縮槽に送液し、通気度30cc/mL・分のろ布を通して、濃縮したスラリーをオーバーフローさせ、反応槽へ戻し、反応槽内の容量を一定にした。このとき反応槽は恒温槽及び加温ジャケットにて50℃に加温した。その後、反応槽中に窒素ガスを流通させた状態で撹拌しながら150時間粒子成長させ、共沈中間体を作製し、ろ過・水洗することで共沈前駆体を得た。湿式粒度測定を行ったところ、Dmin:6.0μm、D10:8.4μm、D50:10.7μm、D90:14.3μm、Dmax:26.2μmであった。乾式粒度測定によって個数基準での5μm以下は30.5%、5μm超えて10μm以下:2.2%、10μm超えて20μm以下:62.7%、20μm超え:4.6%の割合となった。この共沈前駆体は実施例1と同様に調製し、正極材活物質の粉体を得た。
(Comparative Example 2)
A 1.5 mol / L aqueous solution containing nickel sulfate, cobalt sulfate, and manganese sulfate without nitrogen gas bubbling in a molar ratio of Ni: Co: Mn = 8: 1: 1 and 20% by mass of caustic soda water were prepared. A crystallization reaction tank having a reaction volume of 10 L was charged with 9,000 mL of a 2.5 g / L ammonia sulfate solution and stirred at a rotation speed of 500 rpm with a 6-blade paddle. The coprecipitation reaction was started by supplying a metal sulfate and caustic soda water prepared so as to become a nitrogen gas atmosphere in the reaction tank at 0.5 L / min. The amount of dissolved oxygen in the reaction solution was 1.4 mg / L. Next, in the same manner as in Example 1, the NH 3 / metal molar ratio was finally adjusted to 0.4. The mixed solution in the reaction tank is sent at a constant flow rate to a 2 L concentration tank, and the filtered slurry is overflowed through a filter cloth with an air permeability of 30 cc / mL · min. Was made constant. At this time, the reaction vessel was heated to 50 ° C. using a thermostatic bath and a heating jacket. Thereafter, the particles were grown for 150 hours with stirring in a state where nitrogen gas was circulated in the reaction tank to produce a coprecipitation intermediate, which was filtered and washed to obtain a coprecipitation precursor. When the wet particle size measurement was performed, Dmin: 6.0 μm, D10: 8.4 μm, D50: 10.7 μm, D90: 14.3 μm, Dmax: 26.2 μm. According to dry particle size measurement, the ratio of 5 μm or less on the number basis was 30.5%, 5 μm to 10 μm or less: 2.2%, 10 μm to 20 μm or less: 62.7%, 20 μm or more: 4.6% . The coprecipitation precursor was prepared in the same manner as in Example 1 to obtain a positive electrode active material powder.

−正極活物質前駆体及び正極活物質の組成−
各正極活物質前駆体及び正極活物質中の金属含有量を、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。また、酸素含有量はLECO法で測定し、いずれも組成式において「O2」であることを確認した。実施例1ではLi1.01Ni0.80Co0.10Mn0.102、実施例2ではLi1.01Ni0.82Co0.15Mn0.032、実施例3ではLi1.02Ni0.82Co0.15Mn0.032、実施例4ではLi1.02Ni0.80Co0.10Mn0.102、比較例1および2ではLi1.01Ni0.80Co0.10Mn0.102で組成が示される正極活物質前駆体及び正極活物質を得た。
-Composition of positive electrode active material precursor and positive electrode active material-
The metal content in each positive electrode active material precursor and the positive electrode active material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. Further, the oxygen content was measured by the LECO method, and it was confirmed that all were “O 2 ” in the composition formula. Li 1.01 Ni 0.80 Co 0.10 Mn 0.10 O 2 in Example 1, Li 1.01 Ni 0.82 Co 0.15 Mn 0.03 O 2 in Example 2 , Li 1.02 Ni 0.82 Co 0.15 Mn 0.03 O 2 in Example 3, Li in Example 4 1.02 Ni 0.80 Co 0.10 Mn 0.10 O 2 , and in Comparative Examples 1 and 2, a positive electrode active material precursor and a positive electrode active material having a composition represented by Li 1.01 Ni 0.80 Co 0.10 Mn 0.10 O 2 were obtained.

−正極活物質の乾式粒度個数換算%及び体積基準の粒度分布−
各正極材活物質の粉体についても、前駆体と同様に、レーザー回折散乱式粒度分布測定法(湿式粒度測定)で求められる体積基準の粒度分布を測定したところ、表2に示す結果となった。また、顕微鏡光学系下で試料を走査することで約2万個の個別粒子の画像を取り込み、静止画像解析の技術を用いて粒度を測定し(乾式粒度測定)、表1に示す結果を得た。
-Dry particle size conversion% of positive electrode active material and volume-based particle size distribution-
As for the powder of each positive electrode active material, the volume-based particle size distribution obtained by the laser diffraction / scattering particle size distribution measurement method (wet particle size measurement) was measured as in the precursor, and the results shown in Table 2 were obtained. It was. In addition, by scanning the sample under a microscope optical system, an image of about 20,000 individual particles is captured, and the particle size is measured using a technique of still image analysis (dry particle size measurement), and the results shown in Table 1 are obtained. It was.

−正極活物質前駆体及び正極活物質のタップ密度−
株式会社セイシン企業製のタップデンサーを用いて求めた。具体的には、10ccのメスシリンダーに正極活物質前駆体及び正極活物質5gを投入し、当該タップデンサーに設置し、1500回上下振動し、メスシリンダーの目盛を読み取り、正極活物質前駆体及び正極活物質の体積と質量から算出した。
-Tap density of positive electrode active material precursor and positive electrode active material-
It was determined using a tap denser manufactured by Seishin Corporation. Specifically, a positive electrode active material precursor and 5 g of a positive electrode active material are charged into a 10 cc graduated cylinder, installed on the tap denser, vibrated up and down 1500 times, read the scale of the graduated cylinder, It calculated from the volume and mass of the positive electrode active material.

−正極活物質前駆体及び正極活物質の比表面積−
一般的な窒素ガス吸着法によって、正極活物質前駆体及び正極活物質のBET比表面積を測定した。
-Specific surface area of positive electrode active material precursor and positive electrode active material-
The BET specific surface areas of the positive electrode active material precursor and the positive electrode active material were measured by a general nitrogen gas adsorption method.

−正極活物質の真密度−
株式会社島津製作所製の乾式密度計を使用し、ヘリウムガスを用いて定容積膨張法にて正極活物質の真密度を測定した。
-True density of positive electrode active material-
Using a dry density meter manufactured by Shimadzu Corporation, the true density of the positive electrode active material was measured by a constant volume expansion method using helium gas.

−正極材活物質の一次粒子径−
FIB断面加工を施し、研磨断面について電子顕微鏡によるSIM像観察から一次粒子の平均粒径を測定した。断面観察写真から二次粒子を10個選び、中心を通る線を引き、線上にかかる一次粒子の粒子径を一粒毎に測り、平均の一次粒子径を求めた。その結果、実施例1では0.44μm、実施例2では0.46μm、実施例3では0.44μm、実施例4では0.50μm、比較例1では0.54μm、比較例2では0.55μmであった。なお、一次粒子が多数凝集してほぼ球状または楕円状の二次粒子を形成していた。
-Primary particle size of positive electrode active material-
FIB cross-section processing was performed, and the average particle diameter of the primary particles was measured for the polished cross-section by observing a SIM image with an electron microscope. Ten secondary particles were selected from the cross-sectional observation photograph, a line passing through the center was drawn, the particle diameter of the primary particles on the line was measured for each particle, and the average primary particle diameter was obtained. As a result, 0.44 μm in Example 1, 0.46 μm in Example 2, 0.44 μm in Example 3, 0.50 μm in Example 4, 0.54 μm in Comparative Example 1, and 0.55 μm in Comparative Example 2. Met. In addition, a large number of primary particles aggregated to form secondary particles that are approximately spherical or elliptical.

−電池特性(電池容量、サイクル特性)の評価−
正極活物質と、導電材と、バインダー(PVDF)を94:3:3の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の対極Liコインセル(CR2032)を準備し、電解液に1M−LiPF6をEC−DMC(3:7)に溶解したものを用いて、25℃で1Cの放電電流で得られた初期放電容量と10サイクル後の放電容量とを比較することによってサイクル特性(容量維持率)を測定した。具体的な評価条件及び表1に記載の容量維持率と直流抵抗増加率の定義を以下に示す。
・初回充放電(初期容量):25℃、充電4.3V;0.1C;20h、放電3.0V;0.05C。
・サイクル特性(容量維持率):55℃雰囲気で充放電サイクル評価(充電4.3V;1C、放電1C;3.0Vcut)を行ったときの、1サイクル目に対する10サイクル目の放電容量の割合。
・直流抵抗増加率:55℃雰囲気で充放電サイクル評価(充電4.3V;1C、放電1C;3.0Vcut)を行ったときの、1サイクル目に対する10サイクル目の直流抵抗値の割合。
これらの結果を表1及び表2に示す。
-Evaluation of battery characteristics (battery capacity, cycle characteristics)-
A positive electrode active material, a conductive material, and a binder (PVDF) are weighed in a ratio of 94: 3: 3, and the binder is dissolved in an organic solvent (N-methylpyrrolidone), and the positive electrode active material and the conductive material are mixed. Then, it was made into a slurry, applied onto an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a counter electrode Li coin cell (CR2032) for evaluation in which the counter electrode was Li was prepared, and 1C at 25 ° C. was obtained using 1M-LiPF 6 dissolved in EC-DMC (3: 7) as an electrolyte. The cycle characteristics (capacity retention ratio) were measured by comparing the initial discharge capacity obtained with the discharge current with the discharge capacity after 10 cycles. Specific evaluation conditions and definitions of the capacity maintenance rate and the DC resistance increase rate shown in Table 1 are shown below.
First charge / discharge (initial capacity): 25 ° C., charge 4.3 V; 0.1 C; 20 h, discharge 3.0 V; 0.05 C.
Cycle characteristics (capacity retention rate): Ratio of discharge capacity of the 10th cycle to the 1st cycle when charge / discharge cycle evaluation (charge 4.3V; 1C, discharge 1C; 3.0Vcut) was performed in a 55 ° C. atmosphere .
DC resistance increase rate: The ratio of the DC resistance value of the 10th cycle to the 1st cycle when the charge / discharge cycle evaluation (charge 4.3V; 1C, discharge 1C; 3.0Vcut) was performed in an atmosphere at 55 ° C.
These results are shown in Tables 1 and 2.

Figure 2017130395
Figure 2017130395

Figure 2017130395
Figure 2017130395

(評価結果)
表1からわかるように、実施例1〜4では、前駆体について、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末前駆体二次粒子からなり、二次粒子は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下であったため、容量及びサイクル特性が両方とも良好であった。
一方、比較例1では、反応槽pHを11.5±0.1で制御したため、ニッケル、コバルト及びマンガンの溶解度が減少し、核発生反応が優勢となることで低粒径二次粒子が生成したため、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%を超え、容量低下を招いたほか、サイクル特性も悪化した。
比較例2では反応液中の溶存酸素量が1.0mg/Lを超えていたため、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%を超え、容量低下を招いたほか、サイクル特性も悪化した。
なお、二次粒子の粒度分布を湿式測定により評価した表2からわかるように、湿式測定で全て粒径が6μmと評価されたものであっても、実際は表1の乾式測定に示すように粒径が5μmを超えるものや、5μm以下のものも含まれている。すなわち、従来行っていた湿式測定によれば、6μm以下の粒径は、それ以上の詳細な粒度分布の評価ができていないことがわかる。そして、本発明では、正極活物質前駆体について、このような低粒径の粒度分布を精度良く制御することで、電池容量及びサイクル特性がいずれも良好な正極活物質を作製している。
また、正極活物質のタップ密度、比表面積及び真密度は、それぞれ粒子サイズの分布によって差が生じないことが確認された。
(Evaluation results)
As can be seen from Table 1, in Examples 1 to 4, the precursors consisted of composite powder precursor secondary particles formed by agglomeration of primary particles having an average particle diameter of 1 μm or less. Since the ratio of particles having a size of 5 μm or less was 20% or less in terms of the number by particle size measurement, both the capacity and the cycle characteristics were good.
On the other hand, in Comparative Example 1, since the reaction vessel pH was controlled at 11.5 ± 0.1, the solubility of nickel, cobalt, and manganese decreased, and the nucleation reaction became dominant, resulting in the formation of low particle size secondary particles. Therefore, the proportion of particles having a particle size of 5 μm or less in terms of the number by dry particle size measurement exceeded 20%, resulting in a decrease in capacity and a deterioration in cycle characteristics.
In Comparative Example 2, the amount of dissolved oxygen in the reaction solution exceeded 1.0 mg / L, so the presence ratio of particles of 5 μm or less in terms of the number by dry particle size measurement exceeded 20%, leading to a decrease in capacity. Cycle characteristics also deteriorated.
As can be seen from Table 2 in which the particle size distribution of the secondary particles was evaluated by wet measurement, even if the particle size was all evaluated to 6 μm by wet measurement, the particle size distribution was actually as shown in Table 1 dry measurement. Those having a diameter exceeding 5 μm and those having a diameter of 5 μm or less are also included. That is, according to the conventional wet measurement, it can be seen that the particle size distribution of 6 μm or less has not been able to evaluate more detailed particle size distribution. In the present invention, the positive electrode active material precursor has a good battery capacity and good cycle characteristics by accurately controlling such a particle size distribution with a low particle size.
Further, it was confirmed that the tap density, specific surface area, and true density of the positive electrode active material did not differ depending on the particle size distribution.

Claims (7)

ニッケル、コバルト及びマンガンからなる群から選ばれる少なくとも一種を含み、且つ、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末前駆体二次粒子からなり、
前記二次粒子は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下であるリチウムイオン電池用正極活物質前駆体。
Comprising at least one selected from the group consisting of nickel, cobalt and manganese, and comprising composite powder precursor secondary particles formed by agglomeration of primary particles having an average particle diameter of 1 μm or less,
The secondary particles are positive electrode active material precursors for lithium ion batteries in which the proportion of particles having a size of 5 μm or less is 20% or less in terms of the number by dry particle size measurement.
組成式:LiaNibCocMnd2
(前記式において、1.0≦a≦1.05、0.4≦b≦0.9、0.1≦c+d≦0.6)
で表される請求項1に記載のリチウムイオン電池用正極活物質前駆体。
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.0 ≦ a ≦ 1.05, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c + d ≦ 0.6)
The positive electrode active material precursor for lithium ion batteries of Claim 1 represented by these.
ニッケル、コバルト及びマンガンからなる群から選ばれる少なくとも一種の元素を含み、且つ、平均粒子径が1μm以下の一次粒子が凝集して形成された複合粉末二次粒子からなり、
前記二次粒子は、乾式粒度測定による個数換算にて5μm以下の粒子の存在割合が20%以下であるリチウムイオン電池用正極活物質。
Comprising at least one element selected from the group consisting of nickel, cobalt, and manganese, and comprising composite powder secondary particles formed by agglomeration of primary particles having an average particle diameter of 1 μm or less,
The secondary particle is a positive electrode active material for a lithium ion battery in which the presence ratio of particles of 5 μm or less is 20% or less in terms of the number by dry particle size measurement.
組成式:LiaNibCocMnd2
(前記式において、1.0≦a≦1.05、0.4≦b≦0.9、0.1≦c+d≦0.6)
で表される請求項3に記載のリチウムイオン電池用正極活物質。
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.0 ≦ a ≦ 1.05, 0.4 ≦ b ≦ 0.9, 0.1 ≦ c + d ≦ 0.6)
The positive electrode active material for lithium ion batteries of Claim 3 represented by these.
不活性ガスをバブリングして溶存酸素量を1.0mg/L以下とした、ニッケル源、コバルト源、マンガン源を含む水溶液を用意する工程と、
不活性ガスをバブリングして溶存酸素量を1.0mg/L以下とした10〜30質量%苛性ソーダ水を用意する工程と、
硫酸アンモニア溶液を反応槽に投入後、前記反応槽の混合液の温度を30〜60℃に制御し、且つ、前記反応槽の混合液に不活性ガスをバブリングさせながら、前記ニッケル源、コバルト源、マンガン源を含む水溶液と、前記硫酸アンモニア溶液を一定量で連続的に加えながら、前記苛性ソーダ水を、前記反応槽のpHが10.8〜11.3になるよう管理しながら投入して、前記反応槽の混合液中のNH3/メタルのモル比が最終的に0.2〜0.8になるように調整し、前記反応槽内の混合溶液は一定流量で濃縮槽に送液し、ろ布を通して、濃縮したスラリーをオーバーフローさせ、反応槽へ戻し、反応槽内の容量は一定に保ち、前記NH3/メタルのモル比を調整した反応槽の混合液に対し、溶存酸素量を1.0mg/L以下に保ちながら撹拌し、80〜200時間粒子成長させ、共沈中間体を作製する工程と、
前記共沈中間体をろ過して得られた残渣を水洗することで、請求項1に記載のリチウムイオン電池用正極活物質前駆体を得る工程と、
前記リチウムイオン電池用正極活物質前駆体をリチウム化合物と混合し、焼成することでリチウムイオン電池用正極活物質を得る工程と、
を備えたリチウムイオン電池用正極活物質の製造方法。
Preparing an aqueous solution containing a nickel source, a cobalt source, and a manganese source by bubbling an inert gas so that the dissolved oxygen amount is 1.0 mg / L or less;
Bubbling an inert gas to prepare 10 to 30% by mass of caustic soda water with a dissolved oxygen amount of 1.0 mg / L or less;
After the ammonia sulfate solution is charged into the reaction vessel, the temperature of the mixed solution in the reaction vessel is controlled to 30 to 60 ° C., and an inert gas is bubbled through the mixed solution in the reaction vessel, and the nickel source and cobalt source In addition, while continuously adding an aqueous solution containing a manganese source and the ammonia sulfate solution in a constant amount, the caustic soda water is added while controlling the pH of the reaction vessel to be 10.8 to 11.3, The molar ratio of NH 3 / metal in the reaction mixture is finally adjusted to 0.2 to 0.8, and the mixed solution in the reaction tank is sent to the concentration tank at a constant flow rate. Through the filter cloth, the concentrated slurry is overflowed, returned to the reaction vessel, the volume in the reaction vessel is kept constant, and the dissolved oxygen content is adjusted with respect to the mixed solution in the reaction vessel with the NH 3 / metal molar ratio adjusted. Do not keep below 1.0mg / L Et stirring, then 80 to 200 hours particle growth, a process of forming a coprecipitation between the body,
The step of obtaining the positive electrode active material precursor for a lithium ion battery according to claim 1 by washing the residue obtained by filtering the coprecipitation intermediate with water;
Mixing the positive electrode active material precursor for a lithium ion battery with a lithium compound and baking to obtain a positive electrode active material for a lithium ion battery;
The manufacturing method of the positive electrode active material for lithium ion batteries provided with.
請求項3又は4に記載のリチウムイオン電池用正極活物質を備えたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries provided with the positive electrode active material for lithium ion batteries of Claim 3 or 4. 請求項6に記載のリチウムイオン電池用正極を備えたリチウムイオン電池。   The lithium ion battery provided with the positive electrode for lithium ion batteries of Claim 6.
JP2016010037A 2016-01-21 2016-01-21 Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Active JP6599249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010037A JP6599249B2 (en) 2016-01-21 2016-01-21 Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010037A JP6599249B2 (en) 2016-01-21 2016-01-21 Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2017130395A true JP2017130395A (en) 2017-07-27
JP6599249B2 JP6599249B2 (en) 2019-10-30

Family

ID=59395759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010037A Active JP6599249B2 (en) 2016-01-21 2016-01-21 Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Country Status (1)

Country Link
JP (1) JP6599249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786708A (en) * 2018-08-08 2018-11-13 华友新能源科技(衢州)有限公司 A kind of dense bucket control system and the method using the system synthesis ternary precursor
CN109461895A (en) * 2018-06-29 2019-03-12 北京当升材料科技股份有限公司 A kind of preparation method of the nickelic positive electrode of lithium ion battery
JP2019133881A (en) * 2018-02-01 2019-08-08 Jx金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery, and manufacturing method of positive electrode active material for lithium ion battery
KR20200028722A (en) 2018-09-07 2020-03-17 주식회사 엘지화학 Method for preparing positive electrode active material precursor for lithium secondary battery
CN113365950A (en) * 2019-10-23 2021-09-07 株式会社Lg化学 Method for preparing positive active material precursor and positive active material precursor
WO2023016580A1 (en) * 2021-08-12 2023-02-16 巴斯夫杉杉电池材料有限公司 Cerium-bismuth composite oxide doped lithium ion battery positive electrode material and preparation method therefor
KR20230135847A (en) 2022-03-17 2023-09-26 주식회사 엘지화학 Method for preparing positive electrode active material precursor for lithium secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251191A (en) * 2007-03-29 2008-10-16 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2010092706A (en) * 2008-10-08 2010-04-22 Univ Of Fukui Positive electrode material for nonaqueous electrolyte secondary battery
JP2012221855A (en) * 2011-04-12 2012-11-12 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery, and battery pack, electronic device, electric vehicle, power storage device, and electric power system comprising nonaqueous electrolyte battery
WO2012169274A1 (en) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP2013134822A (en) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc Positive electrode active material for nonaqueous secondary battery and nonaqueous lithium secondary battery
JP2013235786A (en) * 2012-05-10 2013-11-21 Tanaka Chemical Corp Positive electrode active material and method for producing the same, positive electrode active material precursor, positive electrode for lithium secondary battery, and lithium secondary battery
JP2014129188A (en) * 2012-12-28 2014-07-10 Sumitomo Metal Mining Co Ltd Nickel composite hydroxide and production method thereof, cathode active material and production method thereof, and nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251191A (en) * 2007-03-29 2008-10-16 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2010092706A (en) * 2008-10-08 2010-04-22 Univ Of Fukui Positive electrode material for nonaqueous electrolyte secondary battery
JP2012221855A (en) * 2011-04-12 2012-11-12 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery, and battery pack, electronic device, electric vehicle, power storage device, and electric power system comprising nonaqueous electrolyte battery
WO2012169274A1 (en) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP2013134822A (en) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc Positive electrode active material for nonaqueous secondary battery and nonaqueous lithium secondary battery
JP2013235786A (en) * 2012-05-10 2013-11-21 Tanaka Chemical Corp Positive electrode active material and method for producing the same, positive electrode active material precursor, positive electrode for lithium secondary battery, and lithium secondary battery
JP2014129188A (en) * 2012-12-28 2014-07-10 Sumitomo Metal Mining Co Ltd Nickel composite hydroxide and production method thereof, cathode active material and production method thereof, and nonaqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133881A (en) * 2018-02-01 2019-08-08 Jx金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery, and manufacturing method of positive electrode active material for lithium ion battery
CN109461895A (en) * 2018-06-29 2019-03-12 北京当升材料科技股份有限公司 A kind of preparation method of the nickelic positive electrode of lithium ion battery
CN108786708A (en) * 2018-08-08 2018-11-13 华友新能源科技(衢州)有限公司 A kind of dense bucket control system and the method using the system synthesis ternary precursor
CN108786708B (en) * 2018-08-08 2024-02-06 华友新能源科技(衢州)有限公司 Control system of thickener and method for synthesizing ternary precursor by using system
KR20200028722A (en) 2018-09-07 2020-03-17 주식회사 엘지화학 Method for preparing positive electrode active material precursor for lithium secondary battery
CN113365950A (en) * 2019-10-23 2021-09-07 株式会社Lg化学 Method for preparing positive active material precursor and positive active material precursor
JP2022519550A (en) * 2019-10-23 2022-03-24 エルジー・ケム・リミテッド Manufacturing method of positive electrode active material precursor and positive electrode active material precursor
EP3907186A4 (en) * 2019-10-23 2022-04-13 LG Chem, Ltd. Method for preparing positive electrode active material precursor and positive electrode active material precursor
JP7254407B2 (en) 2019-10-23 2023-04-10 エルジー・ケム・リミテッド Method for producing positive electrode active material precursor and positive electrode active material precursor
CN113365950B (en) * 2019-10-23 2023-06-20 株式会社Lg化学 Method for preparing positive electrode active material precursor and positive electrode active material precursor
WO2023016580A1 (en) * 2021-08-12 2023-02-16 巴斯夫杉杉电池材料有限公司 Cerium-bismuth composite oxide doped lithium ion battery positive electrode material and preparation method therefor
KR20230135847A (en) 2022-03-17 2023-09-26 주식회사 엘지화학 Method for preparing positive electrode active material precursor for lithium secondary battery

Also Published As

Publication number Publication date
JP6599249B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6599249B2 (en) Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10326133B2 (en) Methods of making inorganic compounds
JP6265117B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
JP4789066B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US8592085B2 (en) Nickel-cobalt-maganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
JP5959953B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery active material manufacturing method, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5316726B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
JP6603058B2 (en) Method for producing lithium-containing composite oxide and lithium-containing composite oxide
JP2011198759A (en) Positive electrode active material precursor particulate powder, positive electrode active material particulate powder, and nonaqueous electrolyte secondary battery
JP2016088834A (en) Nickel composite hydroxide and manufacturing method therefor
JP2011057518A (en) High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP2018022568A (en) Method for manufacturing nickel manganese composite hydroxide particles, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2011251862A (en) Manganese oxide and method for producing the same
JP7124307B2 (en) Method for producing nickel-cobalt-aluminum composite hydroxide
JP2013246983A (en) Method for manufacturing nickel-cobalt composite hydroxide
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2022116215A (en) Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide
JP6458542B2 (en) Nickel hydroxide particle powder and manufacturing method thereof, positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2019164981A (en) Manufacturing method of positive electrode active material precursor for lithium ion secondary battery, manufacturing method of intermediate of positive electrode active material for lithium ion secondary battery, and manufacturing method of positive electrode active material for lithium ion secondary battery, including combination thereof
JP2014205617A (en) Manganese oxide and method for producing lithium manganate using the same
JP2013171743A (en) Nickel cobalt complex hydroxide, and method for manufacturing the same
JP2015173122A (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191002

R150 Certificate of patent or registration of utility model

Ref document number: 6599249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250