JP2019133881A - Positive electrode active material for lithium ion battery, lithium ion battery, and manufacturing method of positive electrode active material for lithium ion battery - Google Patents
Positive electrode active material for lithium ion battery, lithium ion battery, and manufacturing method of positive electrode active material for lithium ion battery Download PDFInfo
- Publication number
- JP2019133881A JP2019133881A JP2018016729A JP2018016729A JP2019133881A JP 2019133881 A JP2019133881 A JP 2019133881A JP 2018016729 A JP2018016729 A JP 2018016729A JP 2018016729 A JP2018016729 A JP 2018016729A JP 2019133881 A JP2019133881 A JP 2019133881A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- lithium ion
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 216
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 51
- 239000011164 primary particle Substances 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 131
- 239000011572 manganese Substances 0.000 claims description 121
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 62
- 239000000843 powder Substances 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 33
- 239000012298 atmosphere Substances 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000007771 core particle Substances 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 11
- 238000001694 spray drying Methods 0.000 claims description 10
- 238000007580 dry-mixing Methods 0.000 claims description 9
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- SEVNKUSLDMZOTL-UHFFFAOYSA-H cobalt(2+);manganese(2+);nickel(2+);hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mn+2].[Co+2].[Ni+2] SEVNKUSLDMZOTL-UHFFFAOYSA-H 0.000 claims description 4
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- 239000007784 solid electrolyte Substances 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 description 53
- 239000002243 precursor Substances 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 29
- 238000010304 firing Methods 0.000 description 28
- 229910052723 transition metal Inorganic materials 0.000 description 27
- 150000003624 transition metals Chemical class 0.000 description 27
- 239000003518 caustics Substances 0.000 description 26
- 238000001035 drying Methods 0.000 description 26
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 25
- 229940044175 cobalt sulfate Drugs 0.000 description 25
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 25
- 229940099596 manganese sulfate Drugs 0.000 description 25
- 235000007079 manganese sulphate Nutrition 0.000 description 25
- 239000011702 manganese sulphate Substances 0.000 description 25
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 25
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 25
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 25
- 238000001914 filtration Methods 0.000 description 24
- 238000005406 washing Methods 0.000 description 24
- 229940053662 nickel sulfate Drugs 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 22
- 238000007600 charging Methods 0.000 description 18
- 238000007599 discharging Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000011812 mixed powder Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000003595 mist Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000006182 cathode active material Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- ZZTURJAZCMUWEP-UHFFFAOYSA-N diaminomethylideneazanium;hydrogen sulfate Chemical compound NC(N)=N.OS(O)(=O)=O ZZTURJAZCMUWEP-UHFFFAOYSA-N 0.000 description 2
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 2
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- PTAYFGHRDOMJGC-UHFFFAOYSA-N 4-aminobutyl(diaminomethylidene)azanium;hydrogen sulfate Chemical compound OS(O)(=O)=O.NCCCCN=C(N)N PTAYFGHRDOMJGC-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- HUTLKGYWXJKWOD-RGMNGODLSA-N S(=O)(=O)(O)O.C(C)OC([C@@H](N)CCCNC(N)=N)=O Chemical compound S(=O)(=O)(O)O.C(C)OC([C@@H](N)CCCNC(N)=N)=O HUTLKGYWXJKWOD-RGMNGODLSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical class [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法に関する。 The present invention relates to a positive electrode active material for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery.
現在用いられているリチウムイオン電池は、正極活物質として層状化合物LiMeO2(Meは平均で3価となるように選択されるカチオンであり、レドックスカチオンを必ず含む)、スピネル化合物LiMe2O4(以下、Meは上記同様)、オリビンLiMeXO4(Xは+Vの価数となるように選択されるカチオン)や蛍石型化合物Li5MeO4等を用いており、正極活物質質量あたりの取り出し可能な電気量としておおよそ100〜250mAh/gのものが提案されている。 Currently used lithium ion batteries include a layered compound LiMeO 2 as a positive electrode active material (Me is a cation selected to be trivalent on average, and always contains a redox cation), a spinel compound LiMe 2 O 4 ( Hereinafter, Me is the same as described above), olivine LiMeXO 4 (X is a cation selected so as to have a valence of + V), fluorite type compound Li 5 MeO 4, and the like can be taken out per mass of the positive electrode active material. As for the amount of electricity, a value of approximately 100 to 250 mAh / g has been proposed.
ただ、200mAh/gを安定して取り出すことのできる正極活物質は限られており、LiNiaCobMncO2(0.7≦a<1、a+b+c=1)などのような高いNi組成のもの(通称としてハイニッケルとよばれている)か、xLi2MnO3-(1-x)LiNi1/3Co1/3Mn1/3O2(0<x<1)などのような固溶体しかない。なかでもハイニッケルは、電極充填密度を従来から用いられているLiCoO2系の正極活物質と同等のレベルまで高くすることができる点で非常に注目されている。 However, positive electrode active materials that can stably extract 200 mAh / g are limited, and high such as LiNi a Co b Mn c O 2 (0.7 ≦ a <1, a + b + c = 1) Such as those with Ni composition (commonly called high nickel) or xLi 2 MnO 3- (1-x) LiNi 1/3 Co 1/3 Mn 1/3 O 2 (0 <x <1) There is only such a solid solution. Among these, high nickel is attracting a great deal of attention in that the electrode packing density can be increased to a level equivalent to that of a LiCoO 2 positive electrode active material conventionally used.
このハイニッケルを製造する場合、例えば特許文献1の段落0141〜0144に記載されているように、酸素雰囲気下で焼成することが一般的となっている。これは、ニッケルコバルトマンガン複合水酸化物粒子中のNi2+を焼成時にNi3+に酸化する際に、酸化に必要な化学量論量の酸素に加えて、生成したNi3+を高温でもその価数を保つために必要な酸素分圧を確保するためである。 When this high nickel is manufactured, as described in paragraphs 0141 to 0144 of Patent Document 1, for example, it is common to fire in an oxygen atmosphere. This is because when Ni 2+ in nickel cobalt manganese composite hydroxide particles is oxidized to Ni 3+ during firing, in addition to the stoichiometric amount of oxygen necessary for oxidation, the generated Ni 3+ is This is to ensure the oxygen partial pressure necessary to maintain the valence.
こうして生成したNi3+を含む正極活物質は、特許文献1に記載されているように、表面被覆や粉体物性を調節することで非常に良好なレート特性を示す電池を作製することができる。 As described in Patent Document 1, the positive electrode active material containing Ni 3+ thus produced can produce a battery exhibiting very good rate characteristics by adjusting the surface coating and powder physical properties. .
しかしながら、特許文献1では、表面被覆と平均二次粒子径・BET比表面積・重装密度を軽装密度で除した値の調整で高容量且つ高出力の正極活物質を得ているが、このような調整は電池設計の自由度を小さくしてしまうとともに、条件によってはもともと高いものと考えられていた容量が低くなり、電池特性に悪影響を及ぼすおそれがある。 However, in Patent Document 1, a high-capacity and high-power positive electrode active material is obtained by adjusting values obtained by dividing the surface coating, the average secondary particle diameter, the BET specific surface area, and the heavy density by the light density. Careful adjustment reduces the degree of freedom in battery design, and the capacity that was originally considered to be high depending on conditions may be reduced, which may adversely affect battery characteristics.
本発明は、電池特性の良好なリチウムイオン電池用正極活物質を提供することを課題とする。 This invention makes it a subject to provide the positive electrode active material for lithium ion batteries with favorable battery characteristics.
上記知見を基礎にして完成した本発明は一実施形態において、組成式:LiaNibCocMndO2
(前記式において、1.00≦a≦1.02、0.85≦b≦0.9、0.07≦c≦0.12、0.01≦d≦0.05、b+c+d=1)
で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であるリチウムイオン電池用正極活物質である。
In one embodiment of the present invention completed based on the above knowledge, a composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.02, 0.85 ≦ b ≦ 0.9, 0.07 ≦ c ≦ 0.12, 0.01 ≦ d ≦ 0.05, b + c + d = 1)
When the specific surface area is α (m 2 / g), the 1500 times tap density is β (g / cc), and the 10% volume diameter (D10) is γ (μm), α × β × γ is It is a positive electrode active material for lithium ion batteries having a primary particle aspect ratio of 1 to 4 and 3 to 6.
本発明は別の一実施形態において、コア粒子及び前記コア粒子表面に設けられた被膜を有する正極活物質であって、
組成式:LiaNibCocMndMzeO2
(前記式において、1.004≦a≦1.02、0.85≦b≦0.9、0.07≦c≦0.12、0.01≦d≦0.05、0≦e≦0.005、b+c+d=1、MzはW、Ti、Zrから選択される少なくとも1種)
で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であり、前記被膜は、前記Mzを含む粒子で構成されており且つアイランド状に形成されているリチウムイオン電池用正極活物質である。
In another embodiment, the present invention is a positive electrode active material having a core particle and a coating provided on the surface of the core particle,
Composition formula: Li a Ni b Co c Mn d Mz e O 2
(In the above formula, 1.004 ≦ a ≦ 1.02, 0.85 ≦ b ≦ 0.9, 0.07 ≦ c ≦ 0.12, 0.01 ≦ d ≦ 0.05, 0 ≦ e ≦ 0.005, b + c + d = 1, Mz is W, Ti, Zr At least one selected from)
When the specific surface area is α (m 2 / g), the 1500 times tap density is β (g / cc), and the 10% volume diameter (D10) is γ (μm), α × β × γ is 3 to 6, the aspect ratio of primary particles is 1 to 4, and the coating film is a positive electrode active material for a lithium ion battery that is formed of particles containing Mz and is formed in an island shape.
本発明のリチウムイオン電池用正極活物質は更に別の一実施形態において、メジアン径が3〜15μmである。 In yet another embodiment, the positive electrode active material for a lithium ion battery of the present invention has a median diameter of 3 to 15 μm.
本発明は更に別の一実施形態において、前記正極活物質(正極活物質A)と、組成式:LiaNibCocMndO2
(前記式において、1.00≦a≦1.02、0.80≦b<0.85、0.10<c≦0.15、0.01≦d≦0.05、b+c+d=1)で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4である正極活物質Bとを混合してなるリチウムイオン電池用正極活物質である。
In still another embodiment of the present invention, the positive electrode active material (positive electrode active material A) and a composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.02, 0.80 ≦ b <0.85, 0.10 <c ≦ 0.15, 0.01 ≦ d ≦ 0.05, b + c + d = 1), and the specific surface area is α (m 2 / g ), When 1500 times tap density is β (g / cc) and 10% volume diameter (D10) is γ (μm), α × β × γ is 3 to 6, and the aspect ratio of primary particles is 1 It is the positive electrode active material for lithium ion batteries formed by mixing the positive electrode active material B which is -4.
本発明のリチウムイオン電池用正極活物質は更に別の一実施形態において、前記正極活物質Bのメジアン径が3〜8μmである。 In still another embodiment of the positive electrode active material for a lithium ion battery of the present invention, the positive electrode active material B has a median diameter of 3 to 8 μm.
本発明のリチウムイオン電池用正極活物質は更に別の一実施形態において、前記正極活物質Aと前記正極活物質Bとを質量比で10:90〜90:10の割合で混合してなる。 In yet another embodiment, the positive electrode active material for a lithium ion battery of the present invention is obtained by mixing the positive electrode active material A and the positive electrode active material B in a mass ratio of 10:90 to 90:10.
本発明は更に別の一実施形態において、本発明の正極活物質Aと、コア粒子及び前記コア粒子表面に設けられた被膜を有する正極活物質であって、
組成式:LiaNibCocMndMzeO2
(前記式において、1.004≦a≦1.02、0.80≦b<0.85、0.10<c≦0.15、0.01≦d≦0.05、0≦e≦0.015、b+c+d=1、MzはW、Ti、Zrから選択される少なくとも1種)で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であり、前記被膜は、前記Mzを含む粒子で構成されており且つアイランド状に形成されている正極活物質Cとを混合してなるリチウムイオン電池用正極活物質である。
In yet another embodiment of the present invention, a positive electrode active material having the positive electrode active material A of the present invention, a core particle and a coating provided on the surface of the core particle,
Composition formula: Li a Ni b Co c Mn d Mz e O 2
(In the above formula, 1.004 ≦ a ≦ 1.02, 0.80 ≦ b <0.85, 0.10 <c ≦ 0.15, 0.01 ≦ d ≦ 0.05, 0 ≦ e ≦ 0.015, b + c + d = 1, Mz is W, Ti, Zr When the specific surface area is α (m 2 / g), the 1500 times tap density is β (g / cc), and the 10% volume diameter (D10) is γ (μm) In addition, α × β × γ is 3 to 6, the aspect ratio of primary particles is 1 to 4, and the coating is made of particles containing Mz and is formed in an island shape. It is a positive electrode active material for lithium ion batteries formed by mixing the substance C.
本発明のリチウムイオン電池用正極活物質は更に別の一実施形態において、前記正極活物質Cのメジアン径が3〜8μmである。 In still another embodiment of the positive electrode active material for a lithium ion battery of the present invention, the positive electrode active material C has a median diameter of 3 to 8 μm.
本発明のリチウムイオン電池用正極活物質は更に別の一実施形態において、前記正極活物質Aと前記正極活物質Cとを質量比で10:90〜90:10の割合で混合してなる。 In still another embodiment, the positive electrode active material for a lithium ion battery of the present invention is obtained by mixing the positive electrode active material A and the positive electrode active material C in a mass ratio of 10:90 to 90:10.
本発明は更に別の一実施形態において、本発明のリチウムイオン電池用正極活物質を備えた正極と、負極と、電解液又は固体電解質を含む電解質とを備えたリチウムイオン電池である。 In yet another embodiment, the present invention is a lithium ion battery including a positive electrode including the positive electrode active material for a lithium ion battery of the present invention, a negative electrode, and an electrolyte containing an electrolytic solution or a solid electrolyte.
本発明は更に別の一実施形態において、本発明のリチウムイオン電池用正極活物質、或いは、前記正極活物質Bを製造するための方法であり、真密度が3.7〜3.8g/ccであり、タップ密度が1.3〜1.9g/ccであるニッケルコバルトマンガン水酸化物粉体を水酸化リチウムと乾式混合する工程、及び、前記乾式混合して得られた粉体を酸素雰囲気下、400〜500℃で焼成し、冷却せず昇温した後、更に700〜800℃で焼成する工程を含むリチウムイオン電池用正極活物質の製造方法である。 In yet another embodiment of the present invention, the positive electrode active material for a lithium ion battery of the present invention or a method for producing the positive electrode active material B, the true density is 3.7 to 3.8 g / cc, A step of dry-mixing nickel cobalt manganese hydroxide powder having a tap density of 1.3 to 1.9 g / cc with lithium hydroxide, and the powder obtained by dry-mixing the powder in an oxygen atmosphere at 400 to 500 ° C. The method for producing a positive electrode active material for a lithium ion battery includes a step of firing at 700 to 800 ° C. after firing without cooling and heating.
本発明は更に別の一実施形態において、本発明のリチウムイオン電池用正極活物質、或いは、前記正極活物質Cを製造するための方法であり、真密度が3.7〜3.8g/ccであり、タップ密度が1.3〜1.9g/ccであるニッケルコバルトマンガン水酸化物粒子を水中に分散してスラリーとする工程、TiO2、ZrO2、及びWO3からなる群から選択された少なくとも1種のメジアン径が0.1〜0.8μmの粒子を前記スラリーに添加して噴霧乾燥する工程、前記噴霧乾燥で生成した噴霧乾燥物を水酸化リチウムと乾式混合する工程、及び、前記乾式混合して得られた粉体を酸素雰囲気下、400〜500℃で焼成し、冷却せず昇温した後、更に700〜800℃で焼成する工程を含むリチウムイオン電池用正極活物質の製造方法である。 In yet another embodiment of the present invention, the positive electrode active material for a lithium ion battery of the present invention or a method for producing the positive electrode active material C, the true density is 3.7 to 3.8 g / cc, A step of dispersing nickel cobalt manganese hydroxide particles having a tap density of 1.3 to 1.9 g / cc in water to form a slurry; at least one median selected from the group consisting of TiO 2 , ZrO 2 , and WO 3 A step of adding particles having a diameter of 0.1 to 0.8 μm to the slurry and spray-drying, a step of dry-mixing the spray-dried product generated by the spray-drying with lithium hydroxide, and a powder obtained by the dry-mixing This is a method for producing a positive electrode active material for a lithium ion battery, comprising a step of firing the body at 400 to 500 ° C. in an oxygen atmosphere, raising the temperature without cooling, and further firing at 700 to 800 ° C.
本発明によれば、電池特性の良好なリチウムイオン電池用正極活物質を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries with a favorable battery characteristic can be provided.
〔実施形態1に係るリチウムイオン電池用正極活物質〕
本発明の実施形態1に係るリチウムイオン電池用正極活物質は、組成式:LiaNibCocMndO2
(前記式において、1.00≦a≦1.02、0.85≦b≦0.9、0.07≦c≦0.12、0.01≦d≦0.05、b+c+d=1)で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4である。
[Positive electrode active material for lithium ion battery according to Embodiment 1]
The positive electrode active material for a lithium ion battery according to Embodiment 1 of the present invention has a composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.02, 0.85 ≦ b ≦ 0.9, 0.07 ≦ c ≦ 0.12, 0.01 ≦ d ≦ 0.05, b + c + d = 1), and the specific surface area is α (m 2 / g ), When 1500 times tap density is β (g / cc) and 10% volume diameter (D10) is γ (μm), α × β × γ is 3 to 6, and the aspect ratio of primary particles is 1 ~ 4.
本発明の実施形態1に係るリチウムイオン電池用正極活物質は比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6となるように制御されている。α×βは、あるタップされた体積中の正極活物質の全表面積を表している。このα×βに正極活物質のもつ10%体積径(D10)であるγを掛け合わせたα×β×γを3〜6に制御することで、正極活物質の良好な充填性を保ちながら、粒度分布の広がりを抑制することができ、放電容量及びサイクル特性等の電池特性が良好となる。 The positive electrode active material for a lithium ion battery according to Embodiment 1 of the present invention has a specific surface area of α (m 2 / g), a 1500 times tap density of β (g / cc), and a 10% volume diameter (D10) of γ (μm ), Α × β × γ is controlled to be 3-6. α × β represents the total surface area of the positive electrode active material in a tapped volume. By controlling α × β × γ, which is obtained by multiplying α × β by γ, which is the 10% volume diameter (D10) of the positive electrode active material, to 3 to 6, while maintaining good filling properties of the positive electrode active material Thus, the spread of the particle size distribution can be suppressed, and battery characteristics such as discharge capacity and cycle characteristics are improved.
本発明の実施形態1に係るリチウムイオン電池用正極活物質は一次粒子と二次粒子とを備え、一次粒子のアスペクト比が1〜4と小さく制御されているため、正極活物質の粒子が重質となり、正極活物質中の電子伝導性が向上した結果、直流抵抗を低減することができる。一次粒子のアスペクト比は1.2以上であってもよく、1.4以上であってもよく、3.5以下であってもよく、2.5以下であってもよい。 Since the positive electrode active material for a lithium ion battery according to Embodiment 1 of the present invention includes primary particles and secondary particles, and the aspect ratio of the primary particles is controlled to be as small as 1 to 4, the positive electrode active material particles are heavy. As a result, the direct current resistance can be reduced as a result of improving the electronic conductivity in the positive electrode active material. The aspect ratio of the primary particles may be 1.2 or more, 1.4 or more, 3.5 or less, or 2.5 or less.
本発明の実施形態1に係るリチウムイオン電池用正極活物質のメジアン径は3〜15μmであるのが好ましい。メジアン径が3μmより小さい場合は、正極活物質粒子の凹凸が大きくなるおそれがあり、そのような正極活物質粒子は電極作製の際に溶剤を多く粒子内に取り込み、電極作製が難しくなるおそれがあり、また電池にした際に集電体からの正極活物質の剥がれが生じるおそれがある。メジアン径が15μmより大きい場合は、充放電時に電極内でのリチウムイオンの移動が長距離となって使用電流値によっては必要な出力が得られない場合があり、また正極活物質粒子自体が割れやすくなるおそれがある。 The median diameter of the positive electrode active material for a lithium ion battery according to Embodiment 1 of the present invention is preferably 3 to 15 μm. When the median diameter is smaller than 3 μm, the unevenness of the positive electrode active material particles may be increased, and such a positive electrode active material particle may take up a large amount of solvent during the electrode preparation, which may make the electrode preparation difficult. In addition, there is a possibility that the positive electrode active material may be peeled off from the current collector when the battery is used. If the median diameter is larger than 15 μm, the movement of lithium ions in the electrode during charging / discharging may take a long distance, and the required output may not be obtained depending on the operating current value, and the cathode active material particles themselves may crack. May be easier.
〔実施形態2に係るリチウムイオン電池用正極活物質〕
本発明の実施形態2に係るリチウムイオン電池用正極活物質は、コア粒子及びコア粒子表面に設けられた被膜を有する正極活物質であって、
組成式:LiaNibCocMndMzeO2
(前記式において、1.004≦a≦1.02、0.85≦b≦0.9、0.07≦c≦0.12、0.01≦d≦0.05、0≦e≦0.005、b+c+d=1、MzはW、Ti、Zrから選択される少なくとも1種)で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であり、被膜はMzを含む粒子で構成されており且つアイランド状に形成されている。
[Positive electrode active material for lithium ion battery according to Embodiment 2]
The positive electrode active material for a lithium ion battery according to Embodiment 2 of the present invention is a positive electrode active material having a core particle and a coating provided on the surface of the core particle,
Composition formula: Li a Ni b Co c Mn d Mz e O 2
(In the above formula, 1.004 ≦ a ≦ 1.02, 0.85 ≦ b ≦ 0.9, 0.07 ≦ c ≦ 0.12, 0.01 ≦ d ≦ 0.05, 0 ≦ e ≦ 0.005, b + c + d = 1, Mz is W, Ti, Zr When the specific surface area is α (m 2 / g), the 1500 times tap density is β (g / cc), and the 10% volume diameter (D10) is γ (μm) In addition, α × β × γ is 3 to 6, the aspect ratio of the primary particles is 1 to 4, and the coating is composed of particles containing Mz and is formed in an island shape.
本発明の実施形態2に係るリチウムイオン電池用正極活物質は比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6となるように制御されている。α×βは、あるタップされた体積中の正極活物質の全表面積を表している。このα×βに正極活物質のもつ10%体積径(D10)であるγを掛け合わせたα×β×γを3〜6に制御することで、正極活物質の良好な充填性を保ちながら、粒度分布の広がりを抑制することができ、放電容量及びサイクル特性等の電池特性が良好となる。 The positive electrode active material for a lithium ion battery according to Embodiment 2 of the present invention has a specific surface area of α (m 2 / g), a 1500 times tap density of β (g / cc), and a 10% volume diameter (D10) of γ (μm ), Α × β × γ is controlled to be 3-6. α × β represents the total surface area of the positive electrode active material in a tapped volume. By controlling α × β × γ, which is obtained by multiplying α × β by γ, which is the 10% volume diameter (D10) of the positive electrode active material, to 3 to 6, while maintaining good filling properties of the positive electrode active material Thus, the spread of the particle size distribution can be suppressed, and battery characteristics such as discharge capacity and cycle characteristics are improved.
本発明の実施形態2に係るリチウムイオン電池用正極活物質は一次粒子と二次粒子とを備え、一次粒子のアスペクト比が1〜4と小さく制御されているため、正極活物質の粒子が重質となり、正極活物質中の電子伝導性が向上した結果、直流抵抗を低減することができる。一次粒子のアスペクト比は1.2以上であってもよく、1.4以上であってもよく、3.5以下であってもよく、2.5以下であってもよい。 Since the positive electrode active material for a lithium ion battery according to Embodiment 2 of the present invention includes primary particles and secondary particles, and the aspect ratio of the primary particles is controlled to be as small as 1 to 4, the positive electrode active material particles are heavy. As a result, the direct current resistance can be reduced as a result of improving the electronic conductivity in the positive electrode active material. The aspect ratio of the primary particles may be 1.2 or more, 1.4 or more, 3.5 or less, or 2.5 or less.
前述の特許文献1では直接充放電に寄与しない添加物を正極活物質粒子全面に被覆する形をとっている(被覆層)のに対し、本発明の実施形態2に係るリチウムイオン電池用正極活物質は被膜がMz(W、Ti、Zrから選択される少なくとも1種)を含む粒子で構成されており且つアイランド状に形成されている。このため、本発明の実施形態2に係るリチウムイオン電池用正極活物質によれば、直接充放電に寄与しない添加物の量を低減することができ、このため高出力で放電容量及びサイクル特性が良好となる。 In Patent Document 1 described above, an additive that does not directly contribute to charge / discharge is coated on the entire surface of the positive electrode active material particles (coating layer), whereas the positive electrode active for a lithium ion battery according to Embodiment 2 of the present invention. In the substance, the coating is composed of particles containing Mz (at least one selected from W, Ti, and Zr) and is formed in an island shape. Therefore, according to the positive electrode active material for a lithium ion battery according to Embodiment 2 of the present invention, it is possible to reduce the amount of the additive that does not directly contribute to charging / discharging, and therefore, the discharge capacity and cycle characteristics are high in output. It becomes good.
本発明の実施形態2に係るリチウムイオン電池用正極活物質のメジアン径は3〜15μmであるのが好ましい。メジアン径が3μmより小さい場合は、正極活物質粒子の凹凸が大きくなるおそれがあり、そのような正極活物質粒子は電極作製の際に溶剤を多く粒子内に取り込み、電極作製が難しくなるおそれがあり、また電池にした際に集電体からの正極活物質の剥がれが生じるおそれがある。メジアン径が15μmより大きい場合は、充放電時に電極内でのリチウムイオンの移動が長距離となって使用電流値によっては必要な出力が得られない場合があり、また正極活物質粒子自体が割れやすくなるおそれがある。 The median diameter of the positive electrode active material for a lithium ion battery according to Embodiment 2 of the present invention is preferably 3 to 15 μm. When the median diameter is smaller than 3 μm, the unevenness of the positive electrode active material particles may be increased, and such a positive electrode active material particle may take up a large amount of solvent during the electrode preparation, which may make the electrode preparation difficult. In addition, there is a possibility that the positive electrode active material may be peeled off from the current collector when the battery is used. If the median diameter is larger than 15 μm, the movement of lithium ions in the electrode during charging / discharging may take a long distance, and the required output may not be obtained depending on the operating current value, and the cathode active material particles themselves may crack. May be easier.
〔実施形態3に係るリチウムイオン電池用正極活物質〕
本発明の実施形態3に係るリチウムイオン電池用正極活物質は、実施形態1又は2に係る正極活物質(正極活物質Aとする)と、組成式:LiaNibCocMndO2
(前記式において、1.00≦a≦1.02、0.80≦b<0.85、0.10<c≦0.15、0.01≦d≦0.05、b+c+d=1)で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4である正極活物質Bとを混合してなる。正極活物質Aは放電容量により優れており、正極活物質Bはサイクル特性により優れているため、この混合により良好な体積エネルギー密度及びサイクル特性が実現できる。
[Positive electrode active material for lithium ion battery according to Embodiment 3]
The positive electrode active material for a lithium ion battery according to Embodiment 3 of the present invention includes a positive electrode active material (referred to as positive electrode active material A) according to Embodiment 1 or 2, and a composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.02, 0.80 ≦ b <0.85, 0.10 <c ≦ 0.15, 0.01 ≦ d ≦ 0.05, b + c + d = 1), and the specific surface area is α (m 2 / g ), When 1500 times tap density is β (g / cc) and 10% volume diameter (D10) is γ (μm), α × β × γ is 3 to 6, and the aspect ratio of primary particles is 1 It mixes with the positive electrode active material B which is -4. Since the positive electrode active material A is superior in discharge capacity and the positive electrode active material B is excellent in cycle characteristics, a good volume energy density and cycle characteristics can be realized by this mixing.
リチウムイオン電池用正極活物質Bのメジアン径は3〜8μmであるのが好ましい。これは、正極活物質Aは放電容量により優れており、ブレンドする際には体積エネルギー密度向上の点から比較的大きい粒子径を活用する方がよいのに対し、正極活物質Bはサイクル特性により優れているため、充放電時のリチウムイオンの移動距離を少なくした方がよいことから比較的小さい粒子径を活用する方がよいという観点によるものである。 The median diameter of the positive electrode active material B for a lithium ion battery is preferably 3 to 8 μm. This is because the positive electrode active material A is superior in discharge capacity, and it is better to use a relatively large particle diameter from the viewpoint of improving the volume energy density when blending, whereas the positive electrode active material B has a cycle characteristic. Since it is excellent, it is better to use a relatively small particle diameter because it is better to reduce the movement distance of lithium ions during charging and discharging.
本発明の実施形態3に係るリチウムイオン電池用正極活物質は正極活物質Aと正極活物質Bとを質量比で10:90〜90:10の割合で混合されていることが好ましい。このような構成によれば、サイクル特性に加えて出力も改善されることがある。 In the positive electrode active material for a lithium ion battery according to Embodiment 3 of the present invention, the positive electrode active material A and the positive electrode active material B are preferably mixed in a mass ratio of 10:90 to 90:10. According to such a configuration, the output may be improved in addition to the cycle characteristics.
〔実施形態4に係るリチウムイオン電池用正極活物質〕
本発明の実施形態4に係るリチウムイオン電池用正極活物質は、実施形態1又は2に係る正極活物質Aと、コア粒子及び前記コア粒子表面に設けられた被膜を有する正極活物質であって、組成式:LiaNibCocMndMzeO2
(前記式において、1.004≦a≦1.02、0.80≦b<0.85、0.10<c≦0.15、0.01≦d≦0.05、0≦e≦0.015、b+c+d=1、MzはW、Ti、Zrから選択される少なくとも1種)で表され、比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であり、被膜はMzを含む粒子で構成されており且つアイランド状に形成されている正極活物質Cとを混合してなる。正極活物質Aは放電容量により優れており、正極活物質Cはサイクル特性により優れているため、この混合により良好な体積エネルギー密度及びサイクル特性が実現できる。
[Positive electrode active material for lithium ion battery according to Embodiment 4]
A positive electrode active material for a lithium ion battery according to Embodiment 4 of the present invention is a positive electrode active material having positive electrode active material A according to Embodiment 1 or 2, core particles and a coating provided on the surface of the core particles. composition formula: Li a Ni b Co c Mn d Mz e O 2
(In the above formula, 1.004 ≦ a ≦ 1.02, 0.80 ≦ b <0.85, 0.10 <c ≦ 0.15, 0.01 ≦ d ≦ 0.05, 0 ≦ e ≦ 0.015, b + c + d = 1, Mz is W, Ti, Zr When the specific surface area is α (m 2 / g), the 1500 times tap density is β (g / cc), and the 10% volume diameter (D10) is γ (μm) In addition, α × β × γ is 3 to 6, the primary particles have an aspect ratio of 1 to 4, the coating is composed of particles containing Mz, and is formed in an island shape. Mixed. Since the positive electrode active material A is superior in discharge capacity and the positive electrode active material C is superior in cycle characteristics, a good volume energy density and cycle characteristics can be realized by this mixing.
リチウムイオン電池用正極活物質Cのメジアン径は3〜8μmであるのが好ましい。これは、正極活物質Aは放電容量により優れており、ブレンドする際には体積エネルギー密度向上の点から比較的大きい粒子径を活用する方がよいのに対し、正極活物質Cはサイクル特性により優れているため、充放電時のリチウムイオンの移動距離を少なくした方がよいことから比較的小さい粒子径を活用する方がよいという観点によるものである。 The median diameter of the positive electrode active material C for a lithium ion battery is preferably 3 to 8 μm. This is because the positive electrode active material A is superior in discharge capacity, and it is better to use a relatively large particle diameter from the viewpoint of improving the volume energy density when blending, whereas the positive electrode active material C has a cycle characteristic. Since it is excellent, it is better to use a relatively small particle diameter because it is better to reduce the movement distance of lithium ions during charging and discharging.
本発明の実施形態4に係るリチウムイオン電池用正極活物質は正極活物質Aと正極活物質Cとを質量比で10:90〜90:10の割合で混合されていることが好ましい。このような構成によれば、サイクル特性に加えて出力も改善されることがある。 In the positive electrode active material for a lithium ion battery according to Embodiment 4 of the present invention, the positive electrode active material A and the positive electrode active material C are preferably mixed at a mass ratio of 10:90 to 90:10. According to such a configuration, the output may be improved in addition to the cycle characteristics.
〔本発明の実施形態1〜4に係るリチウムイオン電池用正極活物質の製造方法〕
次に、本発明の実施形態1〜4に係るリチウムイオン電池用正極活物質A〜Cの製造方法の一実施形態について詳細に説明する。まず、硫酸ニッケル・硫酸コバルト・硫酸マンガンが溶解している遷移金属水溶液、苛性ソーダ水溶液(以降、「苛性」と称することがある)、アンモニア水溶液(以降、「安水」と称することがある)を用意し、これらを一つの反応容器または反応装置内の反応槽に投入し、遷移金属水酸化物(以降、「前駆体」と称することがある)粒子を含むスラリーとする。この際、クロスフローろ過装置との間で循環させながら反応してもよい。
[Method for Producing Cathode Active Material for Lithium Ion Battery According to Embodiments 1 to 4 of the Present Invention]
Next, an embodiment of a method for producing positive electrode active materials A to C for lithium ion batteries according to Embodiments 1 to 4 of the present invention will be described in detail. First, an aqueous transition metal solution in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved, an aqueous caustic soda solution (hereinafter sometimes referred to as “caustic”), an aqueous ammonia solution (hereinafter sometimes referred to as “anhydrous”). These are prepared and charged into one reaction vessel or a reaction vessel in the reaction apparatus to form a slurry containing transition metal hydroxide (hereinafter, sometimes referred to as “precursor”) particles. Under the present circumstances, you may react, making it circulate between crossflow filtration apparatuses.
この際、真密度が3.7〜3.8g/cc、タップ密度が1.3〜1.9g/ccとなるように、前駆体粉体を製造することが好ましい。これらの前駆体粉体を得る方法は特に決められたものはなく、既知の晶析法の中から上記に見合う製造条件を選定することで達成することができる。尚、前駆体粒子の製造の際、上記の遷移金属水溶液・苛性・安水に加えて、グアニジン水溶液またはグアニジン誘導体(L-アルギニンエチルエステル硫酸塩、アグマチン硫酸塩等)の水溶液(以降、「G液」と称することがある)を追加で投入してもよい。 At this time, it is preferable to produce the precursor powder so that the true density is 3.7 to 3.8 g / cc and the tap density is 1.3 to 1.9 g / cc. There is no particular method for obtaining these precursor powders, and this can be achieved by selecting production conditions suitable for the above from known crystallization methods. In the production of the precursor particles, in addition to the above transition metal aqueous solution / caustic / aqueous solution, an aqueous solution of guanidine or guanidine derivative (L-arginine ethyl ester sulfate, agmatine sulfate, etc.) (hereinafter referred to as `` G (Sometimes referred to as “liquid”).
得られた前駆体粒子を既知の方法でろ過・水洗し、乾燥する。これらの前駆体粒子について、純水に分散させた上でTi、Zr、Wの酸化物をその中に添加物として添加分散し、マイクロミストドライヤなどを用いて噴霧乾燥してもよい。この際、前駆体の表面にTi、Zr、Wの酸化物が付着する(以降、「被覆前駆体」と称することがある)。この場合、用いるTi、Zr、Wの酸化物は、平均粒径D50が0.1〜0.8μmのものを用いるのが好ましい。また、Ti・Zr・Wは、被覆前駆体の表面にアイランド状に存在することが好ましい。これは、被覆前駆体のEPMA等で容易に確認可能である。 The obtained precursor particles are filtered, washed with water by a known method, and dried. These precursor particles may be dispersed in pure water, and oxides of Ti, Zr, and W may be added and dispersed therein as an additive, and spray dried using a micromist dryer or the like. At this time, Ti, Zr, and W oxides adhere to the surface of the precursor (hereinafter, sometimes referred to as “coating precursor”). In this case, it is preferable to use an oxide of Ti, Zr, and W having an average particle diameter D50 of 0.1 to 0.8 μm. Further, Ti · Zr · W is preferably present in an island shape on the surface of the coating precursor. This can be easily confirmed by the coating precursor EPMA or the like.
前駆体又は被覆前駆体と、水酸化リチウム1水和物とをLi/(Ni+Co+Mn+(あれば)添加物)がモル比で1.00〜1.02(被覆前駆体を用いる場合は1.004〜1.02)となるように乾式混合し焼成する。この際、水酸化リチウム1水和物は予めD90が20μmより小さくなるようにジェットミルにて粉砕しておくことが好ましい(入手段階でD90が20μmより小さい場合は本工程をスキップすることが可能)。乾式混合はヘンシェルミキサー、ナウターミキサー等が使用可能だが、ヘンシェルミキサーで行うことが好ましい。回転数等はよく混合できるように任意に設定できるが、例えば20Lのヘンシェルミキサーの場合、1000〜2000rpmで4〜6分間混合することが好ましい。混合した粉を、マッフル炉、トンネルキルン、プッシャー炉、ローラーハースキルンなどの焼成炉で焼成する。焼成は量産化が容易なローラーハースキルンを用いることがより好ましい。焼成時の操作としては、まず、酸素雰囲気としてから2〜3時間で400〜500℃に昇温し、昇温後の温度をキープしたまま3〜10時間維持する。その後冷却せず昇温して700〜800℃で1〜10時間キープする。その後室温まで冷却する。生成した焼成物はブロック状となっている。 The precursor / coating precursor and lithium hydroxide monohydrate have a molar ratio of Li / (Ni + Co + Mn + additive if any) of 1.00 to 1.02 (1.004 to 1.02 when using a coating precursor). And dry-mix. At this time, lithium hydroxide monohydrate is preferably pulverized in advance by a jet mill so that D90 is smaller than 20 μm (if D90 is smaller than 20 μm at the acquisition stage, this step can be skipped). ). The dry mixing can be performed using a Henschel mixer, a Nauter mixer, or the like, but is preferably performed using a Henschel mixer. The number of revolutions and the like can be arbitrarily set so that they can be mixed well. For example, in the case of a 20 L Henschel mixer, it is preferable to mix at 1000 to 2000 rpm for 4 to 6 minutes. The mixed powder is fired in a firing furnace such as a muffle furnace, tunnel kiln, pusher furnace, roller hearth kiln. It is more preferable to use a roller hearth kiln that can be easily mass-produced. As an operation at the time of firing, the temperature is first raised to 400 to 500 ° C. in 2 to 3 hours from the oxygen atmosphere, and the temperature after the temperature rise is maintained for 3 to 10 hours while keeping the temperature. Then, the temperature is raised without cooling and kept at 700 to 800 ° C. for 1 to 10 hours. Then cool to room temperature. The produced fired product has a block shape.
焼成後のブロックを、ドライエアー中でロールクラッシャーとパルベライザーとで解砕して正極活物質粉体とすることができる。ドライエアーの露点は-30℃以下とすることが好ましい。より好ましくは-40℃以下である。また、得られた正極活物質粉体を、図1の装置を用いて電解酸化してもよい。 The fired block can be crushed with a roll crusher and a pulverizer in dry air to obtain a positive electrode active material powder. The dew point of dry air is preferably −30 ° C. or lower. More preferably, it is −40 ° C. or lower. Further, the obtained positive electrode active material powder may be electrolytically oxidized using the apparatus of FIG.
このようにして得られた正極活物質Aを単独で、もしくは正極活物質Aと正極活物質B又は正極活物質Cとをドライエアー中でブレンドして本発明の実施形態に係る正極活物質とする。ブレンドは例えばナウターミキサーなどを用いると容易に製造可能である。 The positive electrode active material A thus obtained is used alone or by blending the positive electrode active material A and the positive electrode active material B or the positive electrode active material C in dry air. To do. The blend can be easily produced using, for example, a Nauter mixer.
〔リチウムイオン電池〕
本発明の各実施形態に係るリチウムイオン電池用正極活物質を用いてリチウムイオン電池用正極を作製し、更に当該リチウムイオン電池用正極と、負極と、電解液又は固体電解質を含む電解質とを用いてリチウムイオン電池を作製することができる。
[Lithium ion battery]
A positive electrode for a lithium ion battery is produced using the positive electrode active material for a lithium ion battery according to each embodiment of the present invention, and further using the positive electrode for a lithium ion battery, a negative electrode, and an electrolyte containing an electrolyte or a solid electrolyte. Thus, a lithium ion battery can be manufactured.
以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。なお、各例で焼成炉から出されてからは、評価時に雰囲気を調整する必要があった場合を除いて、基本的にドライエアー中で管理した。また、TiO2、ZrO2はメジアン径が0.3〜0.4μm、WO3はメジアン径が0.6〜0.7μmのものを用いた。 Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples. In addition, after taking out from the baking furnace in each case, it managed in dry air fundamentally except the case where it was necessary to adjust atmosphere at the time of evaluation. Further, TiO 2 and ZrO 2 having a median diameter of 0.3 to 0.4 μm and WO 3 having a median diameter of 0.6 to 0.7 μm were used.
(実施例1)
硫酸ニッケル:硫酸コバルト:硫酸マンガンがモル比で85:12:3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.85Co0.12Mn0.03(OH)2の前駆体粉体を得た。
(Example 1)
Prepare transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate: cobalt sulfate: manganese sulfate is 85: 12: 3, and put them in one reaction tank. A precursor powder of Ni 0.85 Co 0.12 Mn 0.03 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.85Co0.12Mn0.03(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.01となるように一つの袋に計量し、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体(粗混合粉)を袋から全てヘンシェルミキサーに入れて、1500rpmで5分間混合し、混合した粉体(混合粉)をアルミナ匣鉢に充填した。焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、490℃(表中では「プレ焼成温度」と表示)で8時間保持した後、昇温して700℃(表中では「焼成温度」と表示)で4時間保持した。これを5℃/minで室温まで冷却した。冷却後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して実施例1の正極活物質とした。 This Ni 0.85 Co 0.12 Mn 0.03 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are put in one bag so that Li / (Ni + Co + Mn) is 1.01 in an air atmosphere with a humidity of 60%. The sample was weighed and the bag was inflated so that the opening was grasped by hand so that the powder did not leak. The hand that was not grasped was placed on the bottom of the bag, and the bag was shaken with both hands to roughly mix. All of the coarsely mixed powder (crude mixed powder) was put into a Henschel mixer from the bag, mixed at 1500 rpm for 5 minutes, and the mixed powder (mixed powder) was filled in an alumina slag. Fill the firing furnace with oxygen, put the alumina sagger in the firing furnace to an oxygen atmosphere of 0.1 MPa, hold at 490 ° C. (indicated as “pre-baking temperature” in the table) for 8 hours, and then raise the temperature. And kept at 700 ° C. (indicated as “calcination temperature” in the table) for 4 hours. This was cooled to room temperature at 5 ° C./min. After cooling, the alumina mortar was taken out from the firing furnace into dry air and crushed with a roll crusher and an ACM pulverizer to obtain a positive electrode active material of Example 1.
(実施例2)
硫酸ニッケル:硫酸コバルト:硫酸マンガンがモル比で85:12:3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.85Co0.12Mn0.03(OH)2の前駆体粉体を得た。これを実施例1と同様に水酸化リチウムと混合して焼成し、解砕することで実施例2の正極活物質とした。
(Example 2)
Prepare transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate: cobalt sulfate: manganese sulfate is 85: 12: 3, and put them in one reaction tank. A precursor powder of Ni 0.85 Co 0.12 Mn 0.03 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying. In the same manner as in Example 1, this was mixed with lithium hydroxide, baked, and pulverized to obtain a positive electrode active material of Example 2.
(実施例3)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で90:7:3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.9Co0.07Mn0.03(OH)2の前駆体粉体を得た。このNi0.9Co0.07Mn0.03(OH)2とD90が20μm以下であるLiOH・H2Oとを一つの袋に計量したこと、焼成温度を740℃にしたこと以外は実施例2と同様にして実施例3の正極活物質を得た。
(Example 3)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 90: 7: 3 in separate tanks. A precursor powder of Ni 0.9 Co 0.07 Mn 0.03 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying. Except that this Ni 0.9 Co 0.07 Mn 0.03 (OH) 2 and LiOH · H 2 O having a D90 of 20 μm or less were weighed in one bag and the firing temperature was 740 ° C., the same as in Example 2. The positive electrode active material of Example 3 was obtained.
(実施例4)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で89.5:7.1:3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.895Co0.071Mn0.03(OH)2の前駆体粉体を得た。
(Example 4)
Prepare transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 89.5: 7.1: 3, and put them in one reaction tank. A precursor powder of Ni 0.895 Co 0.071 Mn 0.03 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.895Co0.071Mn0.03(OH)2とZrO2とを、Ni:Co:Mn:Zr=0.895:0.071:0.03:0.0036となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrがNi0.895Co0.071Mn0.03(OH)2にアイランド状に被覆したNi0.895Co0.071Mn0.03Zr0.0036(OH)2を得た。 Ni 0.895 Co 0.071 Mn 0.03 (OH) 2 and ZrO 2 are mixed so that Ni: Co: Mn: Zr = 0.895: 0.071: 0.03: 0.0036 and the solid content is 10 wt% in total. Ni 0.895 Co 0.071 Mn 0.03 Zr 0.0036 (OH) 2 in which Zr is coated with Ni 0.895 Co 0.071 Mn 0.03 (OH) 2 in an island shape. Got.
このNi0.895Co0.071Mn0.03Zr0.0036(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.018となるように一つの袋に計量したこと、焼成温度を720℃にしたこと以外は実施例1と同様にして実施例4の正極活物質を得た。 This Ni 0.895 Co 0.071 Mn 0.03 Zr 0.0036 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are combined in one atmosphere so that Li / (Ni + Co + Mn) is 1.018 in an air atmosphere with a humidity of 60%. A positive electrode active material of Example 4 was obtained in the same manner as in Example 1 except that it was weighed in a bag and the firing temperature was 720 ° C.
(実施例5)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で89.3:7.2:3.1となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.893Co0.072Mn0.031(OH)2の前駆体粉体を得た。
(Example 5)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 89.3: 7.2: 3.1 in separate tanks. The precursor powder of Ni 0.893 Co 0.072 Mn 0.031 (OH) 2 having the true density and tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.893Co0.072Mn0.031(OH)2とZrO2とTiO2とを、Ni:Co:Mn:Zr:Ti=0.893:0.072:0.031:0.0028:0.0013となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrおよびTiがNi0.893Co0.072Mn0.031(OH)2にアイランド状に被覆したNi0.893Co0.072Mn0.031Zr0.0028Ti0.0013(OH)2を得た。 The Ni 0.893 Co 0.072 Mn 0.031 (OH) 2 , ZrO 2, and TiO 2 are mixed so that Ni: Co: Mn: Zr: Ti = 0.893: 0.072: 0.031: 0.0028: 0.0013 and the solid content is as a whole. dispersed in pure water to a 10 wt% concentration, subjected to spray drying in Fujisaki electric Ltd. micro mist dryer, Ni and Zr and Ti is coated on the islands to Ni 0.893 Co 0.072 Mn 0.031 (OH ) 2 0.893 Co 0.072 Mn 0.031 Zr 0.0028 Ti 0.0013 (OH) 2 was obtained.
このNi0.893Co0.072Mn0.031Zr0.0028Ti0.0013(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.009となるように一つの袋に計量したこと以外は実施例2と同様にして実施例5の正極活物質を得た。 This Ni 0.893 Co 0.072 Mn 0.031 Zr 0.0028 Ti 0.0013 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are set so that Li / (Ni + Co + Mn) is 1.000 in an air atmosphere with a humidity of 60%. A positive electrode active material of Example 5 was obtained in the same manner as Example 2 except that it was weighed into one bag.
(実施例6)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で88.1:10:1.9となるように調製した遷移金属水溶液、苛性、安水と、G液としてグアニジン硫酸塩水溶液とを別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.881Co0.10Mn0.019(OH)2の前駆体粉体を得た。
(Example 6)
Prepare a separate tank of transition metal aqueous solution, caustic, and aqueous solution prepared so that nickel sulfate, cobalt sulfate, and manganese sulfate have a molar ratio of 88.1: 10: 1.9, and guanidine sulfate aqueous solution as G solution. Ni 0.881 Co 0.10 Mn 0.019 (OH) 2 precursor powder having the true density and the tap density shown in Table 1 is obtained by putting it into one reaction vessel, reacting by crystallization method, filtering, washing and drying. Obtained.
このNi0.881Co0.10Mn0.019(OH)2とWO3とを、Ni:Co:Mn:W=0.881:0.10:0.019:0.001となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、WがNi0.881Co0.10Mn0.019(OH)2にアイランド状に被覆したNi0.881Co0.10Mn0.019W0.001(OH)2を得た。 The Ni 0.881 Co 0.10 Mn 0.019 (OH) 2 and WO 3 are mixed so that Ni: Co: Mn: W = 0.881: 0.10: 0.019: 0.001 and the total solid content is 10 wt%. Ni 0.881 Co 0.10 Mn 0.019 W 0.001 (OH) 2 coated with Ni 0.881 Co 0.10 Mn 0.019 (OH) 2 in an island shape after being spray-dried with a micro mist dryer manufactured by Fujisaki Electric. Got.
このNi0.881Co0.10Mn0.019W0.001(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.005となるように一つの袋に計量したこと、焼成温度を720℃にしたこと以外は実施例1と同様にして実施例6の正極活物質を得た。 This Ni 0.881 Co 0.10 Mn 0.019 W 0.001 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are combined in one atmosphere so that Li / (Ni + Co + Mn) is 1.005 in an air atmosphere with a humidity of 60%. A positive electrode active material of Example 6 was obtained in the same manner as in Example 1 except that it was weighed in a bag and the firing temperature was 720 ° C.
(実施例7)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で87.5:7.5:5となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.875Co0.075Mn0.05(OH)2の前駆体粉体を得た。
(Example 7)
Prepare transition metal aqueous solution, caustic and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 87.5: 7.5: 5, and put them in one reaction tank. The precursor powder of Ni 0.875 Co 0.075 Mn 0.05 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.875Co0.075Mn0.05(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.020となるように一つの袋に計量し、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体(粗混合粉)を袋から全部ヘンシェルミキサーに入れて、1500rpmで5分間混合し、混合した粉体(混合粉)をアルミナ匣鉢に充填した。焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、500℃で8時間保持した後、昇温して700℃で4時間保持した。これを5℃/minで室温まで冷却した。冷却後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕し、図1の装置にて超臨界酸素中10Vで30秒電解酸化を行い、実施例7の正極活物質を得た。 This Ni 0.875 Co 0.075 Mn 0.05 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are put in one bag so that Li / (Ni + Co + Mn) is 1.020 in an air atmosphere with a humidity of 60%. The sample was weighed and the bag was inflated so that the opening was grasped by hand so that the powder did not leak. The hand that was not grasped was placed on the bottom of the bag, and the bag was shaken with both hands to roughly mix. All of the coarsely mixed powder (crude mixed powder) was put into a Henschel mixer from the bag and mixed at 1500 rpm for 5 minutes, and the mixed powder (mixed powder) was filled in an alumina sagger. The firing furnace was filled with oxygen, and the alumina sagger was placed in a firing furnace to make an oxygen atmosphere of 0.1 MPa, held at 500 ° C. for 8 hours, then heated to 700 ° C. for 4 hours. This was cooled to room temperature at 5 ° C./min. After cooling, the alumina bowl is taken out from the firing furnace into dry air, crushed with a roll crusher and an ACM pulverizer, and subjected to electrolytic oxidation at 10 V in supercritical oxygen for 30 seconds using the apparatus shown in FIG. A positive electrode active material was obtained.
(実施例8)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で87.0:12:1となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.870Co0.12Mn0.01(OH)2の前駆体粉体を得た。
(Example 8)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 87.0: 12: 1 in separate tanks. A precursor powder of Ni 0.870 Co 0.12 Mn 0.01 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.870Co0.12Mn0.01(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.000となるように一つの袋に計量したこと、プレ焼成温度を480℃にしたこと、焼成温度を740℃にしたこと以外は実施例1と同様にして実施例8の正極活物質を得た。 This Ni 0.870 Co 0.12 Mn 0.01 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are put in one bag so that Li / (Ni + Co + Mn) is 1.000 in an air atmosphere with a humidity of 60%. A positive electrode active material of Example 8 was obtained in the same manner as in Example 1 except that weighing was performed, the pre-baking temperature was 480 ° C., and the baking temperature was 740 ° C.
(製造例1)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で80.0:15:5となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.800Co0.15Mn0.05(OH)2の前駆体粉体を得た。
(Production Example 1)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 80.0: 15: 5 in separate tanks. The precursor powder of Ni 0.800 Co 0.15 Mn 0.05 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.800Co0.15Mn0.05(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.020となるように一つの袋に計量したこと、焼成温度を740℃にしたこと以外は実施例1と同様にして製造例1の正極活物質を得た。 This Ni 0.800 Co 0.15 Mn 0.05 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are put in one bag so that Li / (Ni + Co + Mn) is 1.020 in an air atmosphere with a humidity of 60%. A positive electrode active material of Production Example 1 was obtained in the same manner as in Example 1 except that weighing was performed and the firing temperature was set to 740 ° C.
(製造例2)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で84.0:15:1となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.840Co0.15Mn0.01(OH)2の前駆体粉体を得た。
(Production Example 2)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 84.0: 15: 1, and put them in one reaction tank. A precursor powder of Ni 0.840 Co 0.15 Mn 0.01 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.840Co0.15Mn0.01(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.000となるように一つの袋に計量したこと、焼成温度を720℃にしたこと以外は実施例1と同様にして製造例2の正極活物質を得た。 This Ni 0.840 Co 0.15 Mn 0.01 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are put in one bag so that Li / (Ni + Co + Mn) is 1.000 in an air atmosphere with a humidity of 60%. A positive electrode active material of Production Example 2 was obtained in the same manner as in Example 1 except that weighing was performed and the firing temperature was 720 ° C.
(製造例3)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で83.9:11.1:5となるように調製した遷移金属水溶液、苛性、安水と、G液としてグアニジン硫酸塩水溶液とを別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.839Co0.111Mn0.05(OH)2の前駆体粉体を得た。
(Production Example 3)
Prepare a separate tank of transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 83.9: 11.1: 5, and guanidine sulfate aqueous solution as G solution. Ni 0.839 Co 0.111 Mn 0.05 (OH) 2 precursor powder having the true density and tap density shown in Table 1 is obtained by putting it into one reaction vessel, reacting by crystallization, filtering, washing and drying. Obtained.
このNi0.839Co0.111Mn0.05(OH)2とD90が20μm以下であるLiOH・H2Oとを一つの袋に計量したこと、焼成温度を720℃にしたこと以外は実施例1と同様にして製造例3の正極活物質を得た。 Except that this Ni 0.839 Co 0.111 Mn 0.05 (OH) 2 and LiOH · H 2 O having a D90 of 20 μm or less were weighed in one bag and the firing temperature was 720 ° C., the same as in Example 1. A positive electrode active material of Production Example 3 was obtained.
(製造例4)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で82.8:14.7:2.5となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.828Co0.147Mn0.025(OH)2の前駆体粉体を得た。
(Production Example 4)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 82.8: 14.7: 2.5 in separate tanks. A precursor powder of Ni 0.828 Co 0.147 Mn 0.025 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.828Co0.147Mn0.025(OH)2とWO3とを、Ni:Co:Mn:W=0.828:0.147:0.025:0.002となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、WがNi0.828Co0.147Mn0.025(OH)2にアイランド状に被覆したNi0.828Co0.147Mn0.025W0.002(OH)2を得た。 Ni 0.828 Co 0.147 Mn 0.025 (OH) 2 and WO 3 are mixed so that Ni: Co: Mn: W = 0.828: 0.147: 0.025: 0.002 and the total solid content is 10 wt%. Ni 0.828 Co 0.147 Mn 0.025 W 0.002 (OH) 2 coated with Ni 0.828 Co 0.147 Mn 0.025 (OH) 2 in an island shape after spray drying with a micro mist dryer manufactured by Fujisaki Electric. Got.
このNi0.828Co0.147Mn0.025W0.002(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.010となるように一つの袋に計量したこと、焼成温度を730℃にしたこと以外は実施例7と同様にして製造例4の正極活物質を得た。 This Ni 0.828 Co 0.147 Mn 0.025 W 0.002 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are combined into one so that Li / (Ni + Co + Mn) is 1.010 in an air atmosphere with a humidity of 60%. A positive electrode active material of Production Example 4 was obtained in the same manner as in Example 7, except that it was weighed in a bag and the firing temperature was 730 ° C.
(製造例5)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で84.0:14.0:2となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.840Co0.140Mn0.02(OH)2の前駆体粉体を得た。
(Production Example 5)
Prepare transition metal aqueous solution, caustic and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 84.0: 14.0: 2, and put them in separate reactors. A precursor powder of Ni 0.840 Co 0.140 Mn 0.02 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.840Co0.140Mn0.02(OH)2とTiO2とWO3とを、Ni:Co:Mn:Ti:W=0.840:0.140:0.02:0.003:0.006となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、TiおよびWがNi0.840Co0.140Mn0.02(OH)2にアイランド状に被覆したNi0.840Co0.140Mn0.02Ti0.003W0.006(OH)2を得た。 The Ni 0.840 Co 0.140 Mn 0.02 (OH) 2 , TiO 2 and WO 3 are combined so that Ni: Co: Mn: Ti: W = 0.840: 0.140: 0.02: 0.003: 0.006 and the solid content is as a whole. dispersed in pure water to a 10 wt% concentration, subjected to spray drying in Fujisaki electric Ltd. micro mist dryer, Ni which Ti and W were coated in an island shape on the Ni 0.840 Co 0.140 Mn 0.02 (OH ) 2 0.840 Co 0.140 Mn 0.02 Ti 0.003 W 0.006 (OH) 2 was obtained.
このNi0.840Co0.140Mn0.02Ti0.003W0.006(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.020となるように一つの袋に計量したこと、プレ焼成温度を480℃にしたこと以外は実施例1と同様にして製造例5の正極活物質を得た。 This Ni 0.840 Co 0.140 Mn 0.02 Ti 0.003 W 0.006 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are set so that Li / (Ni + Co + Mn) is 1.020 in an air atmosphere with a humidity of 60%. A positive electrode active material of Production Example 5 was obtained in the same manner as Example 1 except that it was weighed into one bag and the pre-baking temperature was 480 ° C.
(製造例6)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で81.8:15:3.2となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.818Co0.15Mn0.032(OH)2の前駆体粉体を得た。
(Production Example 6)
Prepare transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 81.8: 15: 3.2. A precursor powder of Ni 0.818 Co 0.15 Mn 0.032 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.818Co0.15Mn0.032(OH)2とD90が20μm以下であるLiOH・H2Oとを一つの袋に計量したこと、焼成温度を740℃にしたこと以外は実施例1と同様にして製造例6の正極活物質を得た。 Except that this Ni 0.818 Co 0.15 Mn 0.032 (OH) 2 and LiOH · H 2 O having a D90 of 20 μm or less were weighed in one bag and the firing temperature was 740 ° C., the same as in Example 1. A positive electrode active material of Production Example 6 was obtained.
(製造例7)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で80.4:14.9:3.3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.804Co0.149Mn0.033(OH)2の前駆体粉体を得た。
(Production Example 7)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 80.4: 14.9: 3.3 in separate tanks. The precursor powder of Ni 0.804 Co 0.149 Mn 0.033 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.804Co0.149Mn0.033(OH)2とZrO2とを、Ni:Co:Mn:Zr=0.804:0.149:0.033:0.014となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrがNi0.804Co0.149Mn0.033(OH)2にアイランド状に被覆したNi0.804Co0.149Mn0.033Zr0.014(OH)2を得た。 Ni 0.804 Co 0.149 Mn 0.033 (OH) 2 and ZrO 2 are mixed so that Ni: Co: Mn: Zr = 0.804: 0.149: 0.033: 0.014 and the total solid content is 10 wt%. Ni 0.804 Co 0.149 Mn 0.033 Zr 0.014 (OH) 2 in which Zr is coated with Ni 0.804 Co 0.149 Mn 0.033 (OH) 2 in an island shape. Got.
このNi0.804Co0.149Mn0.033Zr0.014(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.008となるように一つの袋に計量したこと、焼成温度を740℃にしたこと以外は実施例1と同様にして製造例7の正極活物質を得た。 This Ni 0.804 Co 0.149 Mn 0.033 Zr 0.014 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are combined in one atmosphere so that Li / (Ni + Co + Mn) is 1.008 in an atmospheric atmosphere with a humidity of 60%. A positive electrode active material of Production Example 7 was obtained in the same manner as in Example 1 except that it was weighed in a bag and the firing temperature was 740 ° C.
(製造例8)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で80.6:14.8:3.1となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.806Co0.148Mn0.031(OH)2の前駆体粉体を得た。
(Production Example 8)
Prepare the transition metal aqueous solution, caustic and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 80.6: 14.8: 3.1 in separate tanks. A precursor powder of Ni 0.806 Co 0.148 Mn 0.031 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.806Co0.148Mn0.031(OH)2とZrO2とTiO2とを、Ni:Co:Mn:Zr:Ti=0.806:0.148:0.031:0.01:0.005となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrおよびTiがNi0.806Co0.148Mn0.031(OH)2にアイランド状に被覆したNi0.806Co0.148Mn0.031Zr0.01Ti0.005(OH)2を得た。 The Ni 0.806 Co 0.148 Mn 0.031 (OH) 2 , ZrO 2 and TiO 2 are mixed so that Ni: Co: Mn: Zr: Ti = 0.006: 0.148: 0.031: 0.01: 0.005 and the total solid content is dispersed in pure water to a 10 wt% concentration, subjected to spray drying in Fujisaki electric Ltd. micro mist dryer, Ni and Zr and Ti is coated on the islands to Ni 0.806 Co 0.148 Mn 0.031 (OH ) 2 0.806 Co 0.148 Mn 0.031 Zr 0.01 Ti 0.005 (OH) 2 was obtained.
このNi0.806Co0.148Mn0.031Zr0.01Ti0.005(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.005となるように一つの袋に計量したこと、焼成温度を720℃にしたこと以外は実施例1と同様にして製造例8の正極活物質を得た。 This Ni 0.806 Co 0.148 Mn 0.031 Zr 0.01 Ti 0.005 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are set so that Li / (Ni + Co + Mn) is 1.005 in an air atmosphere with a humidity of 60%. A positive electrode active material of Production Example 8 was obtained in the same manner as Example 1 except that it was weighed in one bag and the firing temperature was 720 ° C.
(比較例1)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で85:12:3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.850Co0.12Mn0.03(OH)2の前駆体粉体を得た。これを実施例1と同様に水酸化リチウムと混合して焼成し、解砕することで比較例1の正極活物質とした。
(Comparative Example 1)
Prepare transition metal aqueous solution prepared so that nickel sulfate, cobalt sulfate, and manganese sulfate have a molar ratio of 85: 12: 3, caustic, and aqueous solution in separate tanks. A precursor powder of Ni 0.850 Co 0.12 Mn 0.03 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying. This was mixed with lithium hydroxide, fired and crushed in the same manner as in Example 1 to obtain a positive electrode active material of Comparative Example 1.
(比較例2)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で90:7:3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.9Co0.07Mn0.03(OH)2の前駆体粉体を得た。
(Comparative Example 2)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 90: 7: 3 in separate tanks. A precursor powder of Ni 0.9 Co 0.07 Mn 0.03 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.9Co0.07Mn0.03(OH)2とD90が20μm以下であるLiOH・H2Oとを一つの袋に計量したこと、プレ焼成温度を530℃にしたこと、焼成温度を780℃にしたこと以外は実施例2と同様にして比較例2の正極活物質を得た。 This Ni 0.9 Co 0.07 Mn 0.03 (OH) 2 and LiOH · H 2 O having a D90 of 20 μm or less were weighed in one bag, the pre-baking temperature was set to 530 ° C., and the baking temperature was set to 780 ° C. A positive electrode active material of Comparative Example 2 was obtained in the same manner as Example 2 except that.
(比較例3)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で89.4:7.2:3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.894Co0.072Mn0.03(OH)2の前駆体粉体を得た。
(Comparative Example 3)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 89.4: 7.2: 3 in separate tanks. A precursor powder of Ni 0.894 Co 0.072 Mn 0.03 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.894Co0.072Mn0.03(OH)2とZrO2とを、Ni:Co:Mn:Zr=0.894:0.072:0.03:0.0037となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrがNi0.894Co0.072Mn0.03(OH)2にアイランド状に被覆したNi0.894Co0.072Mn0.03Zr0.0037(OH)2を得た。 Ni 0.894 Co 0.072 Mn 0.03 (OH) 2 and ZrO 2 are mixed so that Ni: Co: Mn: Zr = 0.894: 0.072: 0.03: 0.0037 and the total solid content is 10 wt%. Ni 0.894 Co 0.072 Mn 0.03 Zr 0.0037 (OH) 2 in which Zr is coated with Ni 0.894 Co 0.072 Mn 0.03 (OH) 2 in an island shape by spraying with a micro mist dryer manufactured by Fujisaki Electric. Got.
このNi0.894Co0.072Mn0.03Zr0.0037(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.042となるように一つの袋に計量したこと、プレ焼成温度を470℃にしたこと、焼成温度を740℃にしたこと以外は実施例1と同様にして比較例3の正極活物質を得た。 This Ni 0.894 Co 0.072 Mn 0.03 Zr 0.0037 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are combined in one atmosphere so that Li / (Ni + Co + Mn) is 1.042 in an atmospheric atmosphere with a humidity of 60%. A positive electrode active material of Comparative Example 3 was obtained in the same manner as in Example 1 except that it was weighed in a bag, the pre-baking temperature was 470 ° C., and the baking temperature was 740 ° C.
(比較例4)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で89.3:7.2:3.1となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.893Co0.072Mn0.031(OH)2の前駆体粉体を得た。
(Comparative Example 4)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 89.3: 7.2: 3.1 in separate tanks. The precursor powder of Ni 0.893 Co 0.072 Mn 0.031 (OH) 2 having the true density and tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.893Co0.072Mn0.031(OH)2とZrO2とTiO2とを、Ni:Co:Mn:Zr:Ti=0.893:0.072:0.031:0.0028:0.0013となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrおよびTiがNi0.893Co0.072Mn0.031(OH)2にアイランド状に被覆したNi0.893Co0.072Mn0.031Zr0.0028Ti0.0013(OH)2を得た。 The Ni 0.893 Co 0.072 Mn 0.031 (OH) 2 , ZrO 2, and TiO 2 are mixed so that Ni: Co: Mn: Zr: Ti = 0.893: 0.072: 0.031: 0.0028: 0.0013 and the solid content is as a whole. dispersed in pure water to a 10 wt% concentration, subjected to spray drying in Fujisaki electric Ltd. micro mist dryer, Ni and Zr and Ti is coated on the islands to Ni 0.893 Co 0.072 Mn 0.031 (OH ) 2 0.893 Co 0.072 Mn 0.031 Zr 0.0028 Ti 0.0013 (OH) 2 was obtained.
このNi0.893Co0.072Mn0.031Zr0.0028Ti0.0013(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.009となるように一つの袋に計量したこと、焼成温度を760℃にしたこと以外は実施例2と同様にして比較例4の正極活物質を得た。 This Ni 0.893 Co 0.072 Mn 0.031 Zr 0.0028 Ti 0.0013 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are set so that Li / (Ni + Co + Mn) is 1.000 in an air atmosphere with a humidity of 60%. A positive electrode active material of Comparative Example 4 was obtained in the same manner as Example 2 except that it was weighed into one bag and the firing temperature was 760 ° C.
(比較例5)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で80.6:9.8:9.6となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.806Co0.098Mn0.096(OH)2の前駆体粉体を得た。
(Comparative Example 5)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 80.6: 9.8: 9.6 in separate tanks. A precursor powder of Ni 0.806 Co 0.098 Mn 0.096 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.806Co0.098Mn0.096(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.020となるように一つの袋に計量したこと、焼成温度を840℃にしたこと以外は実施例1と同様にして比較例5の正極活物質を得た。 This Ni 0.806 Co 0.098 Mn 0.096 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are put in one bag so that Li / (Ni + Co + Mn) is 1.020 in an air atmosphere with a humidity of 60%. A positive electrode active material of Comparative Example 5 was obtained in the same manner as Example 1 except that the measurement was performed and the firing temperature was 840 ° C.
(比較例6)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で81.8:15:3.2となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.818Co0.15Mn0.032(OH)2の前駆体粉体を得た。
(Comparative Example 6)
Prepare transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 81.8: 15: 3.2. A precursor powder of Ni 0.818 Co 0.15 Mn 0.032 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.818Co0.15Mn0.032(OH)2とD90が20μm以下であるLiOH・H2Oとを一つの袋に計量したこと、焼成温度を680℃にしたこと以外は実施例1と同様にして比較例6の正極活物質を得た。 Except that this Ni 0.818 Co 0.15 Mn 0.032 (OH) 2 and LiOH · H 2 O having a D90 of 20 μm or less were weighed in one bag and the firing temperature was 680 ° C., the same as in Example 1. A positive electrode active material of Comparative Example 6 was obtained.
(比較例7)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で80.4:14.9:3.3となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.804Co0.149Mn0.033(OH)2の前駆体粉体を得た。
(Comparative Example 7)
Prepare the transition metal aqueous solution, caustic, and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 80.4: 14.9: 3.3 in separate tanks. The precursor powder of Ni 0.804 Co 0.149 Mn 0.033 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing with water and drying.
このNi0.804Co0.149Mn0.033(OH)2とZrO2とを、Ni:Co:Mn:Zr=0.804:0.149:0.033:0.014となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrがNi0.804Co0.149Mn0.033(OH)2にアイランド状に被覆したNi0.804Co0.149Mn0.033Zr0.014(OH)2を得た。 Ni 0.804 Co 0.149 Mn 0.033 (OH) 2 and ZrO 2 are mixed so that Ni: Co: Mn: Zr = 0.804: 0.149: 0.033: 0.014 and the total solid content is 10 wt%. Ni 0.804 Co 0.149 Mn 0.033 Zr 0.014 (OH) 2 in which Zr is coated with Ni 0.804 Co 0.149 Mn 0.033 (OH) 2 in an island shape. Got.
このNi0.804Co0.149Mn0.033Zr0.014(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.008となるように一つの袋に計量したこと、焼成温度を680℃にしたこと以外は実施例1と同様にして比較例7の正極活物質を得た。 This Ni 0.804 Co 0.149 Mn 0.033 Zr 0.014 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are combined in a single atmosphere so that Li / (Ni + Co + Mn) is 1.008 in an air atmosphere with a humidity of 60%. A positive electrode active material of Comparative Example 7 was obtained in the same manner as in Example 1 except that it was weighed in a bag and the firing temperature was 680 ° C.
(比較例8)
硫酸ニッケル、硫酸コバルト、硫酸マンガンがモル比で80.6:14.8:3.1となるように調製した遷移金属水溶液、苛性、安水を別々の槽に用意し、これを一つの反応槽に投入して晶析法により反応させ、ろ過・水洗・乾燥することで表1の真密度とタップ密度を有するNi0.806Co0.148Mn0.031(OH)2の前駆体粉体を得た。
(Comparative Example 8)
Prepare the transition metal aqueous solution, caustic and aqueous solution prepared so that the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate is 80.6: 14.8: 3.1 in separate tanks. A precursor powder of Ni 0.806 Co 0.148 Mn 0.031 (OH) 2 having the true density and the tap density shown in Table 1 was obtained by reacting by an analysis method, filtering, washing and drying.
このNi0.806Co0.148Mn0.031(OH)2とZrO2とTiO2とを、Ni:Co:Mn:Zr:Ti=0.806:0.148:0.031:0.01:0.005となるように、かつ固形分量が全体で10wt%の濃度となるように純水中に分散し、藤崎電機製マイクロミストドライヤで噴霧乾燥を行い、ZrおよびTiがNi0.806Co0.148Mn0.031(OH)2にアイランド状に被覆したNi0.806Co0.148Mn0.031Zr0.01Ti0.005(OH)2を得た。 The Ni 0.806 Co 0.148 Mn 0.031 (OH) 2 , ZrO 2 and TiO 2 are mixed so that Ni: Co: Mn: Zr: Ti = 0.006: 0.148: 0.031: 0.01: 0.005 and the total solid content is dispersed in pure water to a 10 wt% concentration, subjected to spray drying in Fujisaki electric Ltd. micro mist dryer, Ni and Zr and Ti is coated on the islands to Ni 0.806 Co 0.148 Mn 0.031 (OH ) 2 0.806 Co 0.148 Mn 0.031 Zr 0.01 Ti 0.005 (OH) 2 was obtained.
このNi0.806Co0.148Mn0.031Zr0.01Ti0.005(OH)2とD90が20μm以下であるLiOH・H2Oとを、湿度が60%の大気雰囲気にてLi/(Ni+Co+Mn)が1.005となるように一つの袋に計量したこと、焼成温度を820℃にしたこと以外は実施例1と同様にして比較例8の正極活物質を得た。 This Ni 0.806 Co 0.148 Mn 0.031 Zr 0.01 Ti 0.005 (OH) 2 and LiOH.H 2 O having a D90 of 20 μm or less are set so that Li / (Ni + Co + Mn) is 1.005 in an air atmosphere with a humidity of 60%. A positive electrode active material of Comparative Example 8 was obtained in the same manner as Example 1 except that it was weighed in one bag and the firing temperature was 820 ° C.
(実施例9)
実施例3の正極活物質と、製造例6の正極活物質とを、ドライエアー中で質量比80:20の割合で混合して実施例9の正極活物質とした。
(Example 9)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 6 were mixed at a mass ratio of 80:20 in dry air to obtain a positive electrode active material of Example 9.
(実施例10)
実施例3の正極活物質と、製造例6の正極活物質とを、ドライエアー中で質量比70:30の割合で混合して実施例10の正極活物質とした。
(Example 10)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 6 were mixed at a mass ratio of 70:30 in dry air to obtain a positive electrode active material of Example 10.
(実施例11)
実施例3の正極活物質と、製造例6の正極活物質とを、ドライエアー中で質量比60:40の割合で混合して実施例11の正極活物質とした。
(Example 11)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 6 were mixed at a mass ratio of 60:40 in dry air to obtain a positive electrode active material of Example 11.
(実施例12)
実施例3の正極活物質と、製造例6の正極活物質とを、ドライエアー中で質量比50:50の割合で混合して実施例12の正極活物質とした。
(Example 12)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 6 were mixed at a mass ratio of 50:50 in dry air to obtain a positive electrode active material of Example 12.
(実施例13)
実施例3の正極活物質と、製造例8の正極活物質とを、ドライエアー中で質量比70:30の割合で混合して実施例13の正極活物質とした。
(Example 13)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 8 were mixed at a mass ratio of 70:30 in dry air to obtain a positive electrode active material of Example 13.
(実施例14)
実施例5の正極活物質と、製造例8の正極活物質とを、ドライエアー中で質量比80:20の割合で混合して実施例14の正極活物質とした。
(Example 14)
The positive electrode active material of Example 5 and the positive electrode active material of Production Example 8 were mixed at a mass ratio of 80:20 in dry air to obtain a positive electrode active material of Example 14.
(実施例15)
実施例3の正極活物質と、製造例1の正極活物質とを、ドライエアー中で質量比90:10の割合で混合して実施例15の正極活物質とした。
(Example 15)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 1 were mixed at a mass ratio of 90:10 in dry air to obtain a positive electrode active material of Example 15.
(実施例16)
実施例3の正極活物質と、製造例2の正極活物質とを、ドライエアー中で質量比75:25の割合で混合して実施例16の正極活物質とした。
(Example 16)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 2 were mixed at a mass ratio of 75:25 in dry air to obtain a positive electrode active material of Example 16.
(実施例17)
実施例3の正極活物質と、製造例3の正極活物質とを、ドライエアー中で質量比60:40の割合で混合して実施例17の正極活物質とした。
(Example 17)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 3 were mixed at a mass ratio of 60:40 in dry air to obtain a positive electrode active material of Example 17.
(実施例18)
実施例3の正極活物質と、製造例4の正極活物質とを、ドライエアー中で質量比50:50の割合で混合して実施例18の正極活物質とした。
(Example 18)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 4 were mixed at a mass ratio of 50:50 in dry air to obtain a positive electrode active material of Example 18.
(実施例19)
実施例3の正極活物質と、製造例5の正極活物質とを、ドライエアー中で質量比40:60の割合で混合して実施例19の正極活物質とした。
(Example 19)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 5 were mixed at a mass ratio of 40:60 in dry air to obtain a positive electrode active material of Example 19.
(実施例20)
実施例3の正極活物質と、製造例7の正極活物質とを、ドライエアー中で質量比25:75の割合で混合して実施例20の正極活物質とした。
(Example 20)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 7 were mixed at a mass ratio of 25:75 in dry air to obtain a positive electrode active material of Example 20.
(実施例21)
実施例5の正極活物質と、製造例6の正極活物質とを、ドライエアー中で質量比10:90の割合で混合して実施例21の正極活物質とした。
(Example 21)
The positive electrode active material of Example 5 and the positive electrode active material of Production Example 6 were mixed at a mass ratio of 10:90 in dry air to obtain a positive electrode active material of Example 21.
(実施例22)
実施例3の正極活物質と、製造例6の正極活物質とを、ドライエアー中で質量比95:5の割合で混合して実施例22の正極活物質とした。
(Example 22)
The positive electrode active material of Example 3 and the positive electrode active material of Production Example 6 were mixed at a mass ratio of 95: 5 in dry air to obtain a positive electrode active material of Example 22.
(実施例23)
実施例5の正極活物質と、製造例8の正極活物質とを、ドライエアー中で質量比5:95の割合で混合して実施例23の正極活物質とした。
(Example 23)
The positive electrode active material of Example 5 and the positive electrode active material of Production Example 8 were mixed at a mass ratio of 5:95 in dry air to obtain a positive electrode active material of Example 23.
(比較例9)
比較例4の正極活物質と、比較例6の正極活物質とを、ドライエアー中で質量比95:5の割合で混合して比較例9の正極活物質とした。
(Comparative Example 9)
The positive electrode active material of Comparative Example 4 and the positive electrode active material of Comparative Example 6 were mixed in dry air at a mass ratio of 95: 5 to obtain a positive electrode active material of Comparative Example 9.
(比較例10)
実施例3の正極活物質と、比較例5の正極活物質とを、ドライエアー中で質量比70:30の割合で混合して比較例10の正極活物質とした。
(Comparative Example 10)
The positive electrode active material of Example 3 and the positive electrode active material of Comparative Example 5 were mixed in dry air at a mass ratio of 70:30 to obtain a positive electrode active material of Comparative Example 10.
(比較例11)
比較例2の正極活物質と、製造例8の正極活物質とを、ドライエアー中で質量比70:30の割合で混合して比較例11の正極活物質とした。
(Comparative Example 11)
The positive electrode active material of Comparative Example 2 and the positive electrode active material of Production Example 8 were mixed in dry air at a mass ratio of 70:30 to obtain a positive electrode active material of Comparative Example 11.
(評価)
こうしてできた各実施例、製造例及び比較例のサンプルを用いて下記の条件にて各評価を実施した。
−SEM、EPMAの評価−
SEM観察・EPMA測定には日本電子株式会社製のJSM−7000F型を用いた。SEM像の一例として、図2に実施例3のものを示す。一次粒子アスペクト比は、該SEM像から個々の一次粒子について一番長い部分を長軸径として読み取り、一番長い部分の両端を結ぶ直線に垂直な線のうち、一番長い部分を短軸径として読み取り、これら長軸径と短軸径の値から個々の一次粒子の(長軸径)/(短軸径)を計算により求め、その平均値を各例の一次粒子アスペクト比とした。この際、平均値を得るための測定n数は、10以上とした。また、アイランド被覆の有無は、EPMAのTi、Zr、Wのマッピング像から常法により判断した。
(Evaluation)
Each evaluation was carried out under the following conditions using the samples of Examples, Production Examples and Comparative Examples thus prepared.
-Evaluation of SEM and EPMA-
JSM-7000F type manufactured by JEOL Ltd. was used for SEM observation and EPMA measurement. As an example of the SEM image, FIG. The primary particle aspect ratio is determined by reading the longest part of each primary particle from the SEM image as the major axis diameter, and out of the lines perpendicular to the straight line connecting both ends of the longest part, the longest part is the minor axis diameter. And (major axis diameter) / (minor axis diameter) of each primary particle was calculated from the values of the major axis diameter and minor axis diameter, and the average value was taken as the primary particle aspect ratio of each example. At this time, the number of measurements n for obtaining an average value was 10 or more. In addition, the presence or absence of island coating was determined by a conventional method from the mapping image of EPMA Ti, Zr, and W.
−10%体積径D10:γ及びメジアン径の評価−
10%体積径D10:γ及びメジアン径は、日機装株式会社製のマイクロトラックMT3000EX IIによるレーザー回折法で測定した粒度分布における10%体積径及びメジアン径とした。
-10% volume diameter D10: Evaluation of γ and median diameter-
The 10% volume diameter D10: γ and the median diameter were defined as 10% volume diameter and median diameter in the particle size distribution measured by a laser diffraction method using Microtrack MT3000EX II manufactured by Nikkiso Co., Ltd.
−比表面積の評価−
比表面積の測定は、正極活物質を150℃で2時間脱気させた後、カンタクローム社製のMonosorbにて、吸着ガスとしてHe70atm%-N230at%混合ガスを使用し、BET法(1点法)にて測定を行った。
-Evaluation of specific surface area-
The specific surface area was measured by degassing the positive electrode active material at 150 ° C. for 2 hours, and then using BET method (1) using a mixed gas of 70 atm% -N 2 30% as adsorption gas with Monosorb manufactured by Cantachrome. The point method was used for measurement.
−真密度の評価−
島津製作所製アキュピックII1340にて真密度の測定を行った。
-Evaluation of true density-
The true density was measured with Accupic II 1340 manufactured by Shimadzu Corporation.
−前駆体及び被覆前駆体のタップ密度の評価−
前駆体及び被覆前駆体のタップ密度の測定は、セイシン企業社製タップデンサーを用いて、粉体試料10gをメスシリンダーに入れ、30回タップした後の容積からタップ密度を測定した。
-Evaluation of tap density of precursor and coating precursor-
The tap density of the precursor and the coating precursor was measured using a tap denser manufactured by Seishin Enterprise Co., Ltd., 10 g of the powder sample was placed in a graduated cylinder, and the tap density was measured from the volume after tapping 30 times.
−正極活物質のタップ密度βの評価−
正極活物質のタップ密度βの測定は、セイシン企業社製タップデンサーを用いて、粉体試料10gをメスシリンダーに入れ、1500回タップした後の容積からタップ密度を測定した。
-Evaluation of tap density β of positive electrode active material-
The tap density β of the positive electrode active material was measured using a tap denser manufactured by Seishin Enterprise Co., Ltd., and 10 g of the powder sample was placed in a graduated cylinder and the tap density was measured from the volume after tapping 1500 times.
−電池特性の評価(液系リチウムイオン電池)−
ドライエアー中で、得られた正極活物質と、導電材(デンカブラック)と、バインダー(PVdF)とを90:5:5の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、アルゴン雰囲気のグローブボックス中にて、対極をLi金属箔とした評価用の2032型コインセルを作製し、電解液にLiPF6をECとDMCとの体積比1:1混合溶媒に1Mの濃度で溶解したものを用いて、放電レート0.05Cで得られた初期容量(25℃、充電上限電圧:4.3V、放電下限電圧:3.0V)を測定した。また、上記と同条件かつ同電解液で作製した2032型コインセルについて、温度を55℃に設定した恒温槽内にて、放電レート1C、充電上限電圧:4.3V、放電下限電圧:3.0Vで充放電を行い、これを1サイクル目として同じ充放電を20サイクルまで行い、1サイクル目の放電容量を100%とした際の20サイクル目の放電容量を百分率で計算し、20サイクル後容量維持率(%)とした。
-Evaluation of battery characteristics (Liquid lithium ion battery)-
In dry air, the obtained positive electrode active material, conductive material (Denka Black), and binder (PVdF) are weighed in a ratio of 90: 5: 5, and the binder is dissolved in an organic solvent (N-methylpyrrolidone). Then, a positive electrode active material and a conductive material were mixed to form a slurry, applied onto an Al foil, dried, and pressed to obtain a positive electrode. Subsequently, a 2032-type coin cell for evaluation with a Li metal foil as a counter electrode was produced in a glove box in an argon atmosphere, and LiPF 6 was used as an electrolytic solution, and a volume ratio of EC and DMC in a 1: 1 mixed solvent of 1M was used. The initial capacity obtained at a discharge rate of 0.05 C (25 ° C., upper limit voltage for charging: 4.3 V, lower limit voltage for discharging: 3.0 V) was measured using the sample dissolved at the concentration. In addition, a 2032 type coin cell manufactured under the same conditions as above and with the same electrolyte solution was charged at a discharge rate of 1 C, a charge upper limit voltage of 4.3 V, and a discharge lower limit voltage of 3.0 V in a thermostatic chamber set at 55 ° C. Discharge, and perform the same charge and discharge up to 20 cycles with this as the first cycle, calculate the discharge capacity at 20th cycle as a percentage when the discharge capacity at 1st cycle is 100%, capacity maintenance rate after 20 cycles (%).
−出力の評価(液系リチウムイオン電池)−
・負極の製法
脱硫油と軽油から得られた生コークスを、窒素ガス気流中加熱して得られた黒鉛材料と、結着剤のポリフッ化ビニリデンとを質量比で92:8に混合し、N−メチル−2−ピロリジノンを加えて混練した後、ペースト状にして銅箔の片面に塗布し、乾燥及び圧延操作を行い負極を作製した。尚、この負極の単位面積当たりの塗布量は、黒鉛材料の質量として、10mg/cm2となるように設定した。
-Output evaluation (Liquid lithium ion battery)-
・ Production method of negative electrode Raw material coke obtained from desulfurized oil and light oil was mixed with graphite material obtained by heating in a nitrogen gas stream and polyvinylidene fluoride as a binder at a mass ratio of 92: 8. After adding -methyl-2-pyrrolidinone and kneading, it was made into a paste and applied to one side of a copper foil, followed by drying and rolling operations to produce a negative electrode. The coating amount per unit area of the negative electrode was set to 10 mg / cm 2 as the mass of the graphite material.
・正極の製法
正極はドライエアー中で作製した。まず、各実施例、各製造例、各比較例で作製された正極活物質と、結着剤のポリフッ化ビニリデンおよびアセチレンブラックとを質量比で89:6:5に混合し、N−メチル−2−ピロリジノンを加えて混練した後、ペースト状にしてアルミニウム箔の片面に塗布し、乾燥及び圧延操作を行い各実施例、各製造例、各比較例の正極を作製した。尚、この各正極の単位面積当たりの塗布量は、正極活物質の質量として、20mg/cm2となるように設定した。
-Manufacturing method of a positive electrode The positive electrode was produced in dry air. First, the positive electrode active material produced in each example, each production example, and each comparative example, and polyvinylidene fluoride and acetylene black as a binder were mixed at a mass ratio of 89: 6: 5, and N-methyl- After 2-pyrrolidinone was added and kneaded, it was made into a paste and applied to one side of an aluminum foil, followed by drying and rolling operations to produce positive electrodes for each example, each production example, and each comparative example. The coating amount per unit area of each positive electrode was set to 20 mg / cm 2 as the mass of the positive electrode active material.
・電池組立
上述の各正極、上述の負極、セパレーター、電解液、電池殻部品をアルゴンガスが満たされたグローブボックス内に導入して常用の方法で電池を組み立てた。使用した電解液は、エチレンカーボネートとエチルメチルカーボネートが体積比で3:7に混合された溶媒にヘキサフルオロリン酸リチウム(LiPF6)が1mol/Lの濃度となるように溶解されたものである。
Battery assembly Each positive electrode, negative electrode, separator, electrolyte, and battery shell component described above were introduced into a glove box filled with argon gas, and a battery was assembled by a conventional method. The electrolyte used was a solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7. .
・電池試験
得られた電池を55℃の恒温室内に設置し、以下に示す充放電試験を行った。まず4mAの電流で、電池電圧が4.2Vとなるまで定電流で充電した。10分間休止(1)の後、同じ電流で電池電圧が3.0Vとなるまで定電流で放電した。これらの充電、休止、および放電を1つの充放電サイクル(1)とし、充放電サイクル(1)を3回繰り返した。その上で、充電電流を30mA、充電電圧を4.2V、充電時間を3時間とした定電流/定電圧充電を行い、10分間休止(2)の後、同じ電流(30mA)で電池電圧が3.0Vとなるまで定電流で放電させた。これらの充電、休止、および放電を1つの充放電サイクル(2)とし、充放電サイクル(2)を3回繰り返し、次に、充電電流を30mA、充電電圧を4.2V、充電時間を3時間とした定電流/定電圧充電を行い、10分間休止(3)の後、75mAで電池電圧が3.0Vとなるまで定電流で放電させた。この10分間休止(3)の開始から定電流放電完了までの一連のプロセスを定電流放電プロセスAとしたとき、定電流放電プロセスAの10分間休止後の開回路電圧(OCV)、及び定電流放電プロセスAの定電流放電開始3秒後の閉回路電圧(CCV)、定電流放電プロセスAの放電開始3秒後の放電電流(I)から、ラミネート外装電池の出力(単位W)を以下の式にて算出した。
出力(単位W)=(OCV−CCV)×I
これらの条件及び結果を表1〜3に示す。
-Battery test The obtained battery was installed in a constant temperature room of 55 degreeC, and the following charge / discharge test was done. First, it was charged with a constant current until the battery voltage reached 4.2 V at a current of 4 mA. After a pause (1) for 10 minutes, the battery was discharged at a constant current until the battery voltage reached 3.0 V with the same current. These charging, resting, and discharging were defined as one charging / discharging cycle (1), and the charging / discharging cycle (1) was repeated three times. After that, constant current / constant voltage charging was performed with a charging current of 30 mA, a charging voltage of 4.2 V, and a charging time of 3 hours. After 10 minutes of rest (2), the battery voltage was 3.0 with the same current (30 mA). The battery was discharged at a constant current until V was reached. These charging, resting, and discharging are defined as one charging / discharging cycle (2), and the charging / discharging cycle (2) is repeated three times. Next, the charging current is 30 mA, the charging voltage is 4.2 V, and the charging time is 3 hours. The constant current / constant voltage charging was performed, and after 10 minutes of rest (3), the battery was discharged at a constant current at 75 mA until the battery voltage reached 3.0V. When a series of processes from the start of the 10-minute pause (3) to the completion of the constant-current discharge is defined as a constant-current discharge process A, the open-circuit voltage (OCV) after the 10-minute pause of the constant-current discharge process A and the constant current From the closed circuit voltage (CCV) 3 seconds after the start of the constant current discharge of the discharge process A and the discharge current (I) 3 seconds after the start of the discharge of the constant current discharge process A, the output (unit W) of the laminated exterior battery is Calculated by the formula.
Output (unit W) = (OCV−CCV) × I
These conditions and results are shown in Tables 1-3.
1 電解酸化(陽極酸化)装置
2 超臨界酸素(圧力:5.1MPa、温度:160K)
3 陰極
4 陽極ドラム(外殻と一緒に5rpmで回転)
5 電解酸化中の活物質
6 セパレーター
1 Electrolytic oxidation (anodic oxidation) equipment
2 Supercritical oxygen (pressure: 5.1MPa, temperature: 160K)
3 Cathode
4 Anode drum (rotates at 5 rpm with outer shell)
5 Active material during electrolytic oxidation
6 Separator
Claims (12)
(前記式において、1.00≦a≦1.02、0.85≦b≦0.9、0.07≦c≦0.12、0.01≦d≦0.05、b+c+d=1)
で表され、
比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であるリチウムイオン電池用正極活物質。 Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.02, 0.85 ≦ b ≦ 0.9, 0.07 ≦ c ≦ 0.12, 0.01 ≦ d ≦ 0.05, b + c + d = 1)
Represented by
Α × β × γ is 3-6 when the specific surface area is α (m 2 / g), 1500 times tap density is β (g / cc), and 10% volume diameter (D10) is γ (μm). A positive electrode active material for a lithium ion battery, wherein the primary particles have an aspect ratio of 1 to 4.
組成式:LiaNibCocMndMzeO2
(前記式において、1.004≦a≦1.02、0.85≦b≦0.9、0.07≦c≦0.12、0.01≦d≦0.05、0≦e≦0.005、b+c+d=1、MzはW、Ti、Zrから選択される少なくとも1種)
で表され、
比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であり、
前記被膜は、前記Mzを含む粒子で構成されており且つアイランド状に形成されているリチウムイオン電池用正極活物質。 A positive electrode active material having a core particle and a coating provided on the surface of the core particle,
Composition formula: Li a Ni b Co c Mn d Mz e O 2
(In the above formula, 1.004 ≦ a ≦ 1.02, 0.85 ≦ b ≦ 0.9, 0.07 ≦ c ≦ 0.12, 0.01 ≦ d ≦ 0.05, 0 ≦ e ≦ 0.005, b + c + d = 1, Mz is W, Ti, Zr At least one selected from)
Represented by
Α × β × γ is 3-6 when the specific surface area is α (m 2 / g), 1500 times tap density is β (g / cc), and 10% volume diameter (D10) is γ (μm). Yes, the primary particles have an aspect ratio of 1 to 4,
The said coating film is a positive electrode active material for lithium ion batteries which is comprised by the particle | grains containing the said Mz, and is formed in the island form.
組成式:LiaNibCocMndO2
(前記式において、1.00≦a≦1.02、0.80≦b<0.85、0.10<c≦0.15、0.01≦d≦0.05、b+c+d=1)
で表され、
比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4である正極活物質Bと、
を混合してなるリチウムイオン電池用正極活物質。 The positive electrode active material A according to any one of claims 1 to 3,
Composition formula: Li a Ni b Co c Mn d O 2
(In the above formula, 1.00 ≦ a ≦ 1.02, 0.80 ≦ b <0.85, 0.10 <c ≦ 0.15, 0.01 ≦ d ≦ 0.05, b + c + d = 1)
Represented by
Α × β × γ is 3-6 when the specific surface area is α (m 2 / g), 1500 times tap density is β (g / cc), and 10% volume diameter (D10) is γ (μm). A positive electrode active material B having an aspect ratio of primary particles of 1 to 4;
A positive electrode active material for lithium ion batteries obtained by mixing
コア粒子及び前記コア粒子表面に設けられた被膜を有する正極活物質であって、
組成式:LiaNibCocMndMzeO2
(前記式において、1.004≦a≦1.02、0.80≦b<0.85、0.10<c≦0.15、0.01≦d≦0.05、0≦e≦0.015、b+c+d=1、MzはW、Ti、Zrから選択される少なくとも1種)
で表され、
比表面積をα(m2/g)、1500回タップ密度をβ(g/cc)、10%体積径(D10)をγ(μm)としたときに、α×β×γが3〜6であり、一次粒子のアスペクト比が1〜4であり、
前記被膜は、前記Mzを含む粒子で構成されており且つアイランド状に形成されている正極活物質Cと、
を混合してなるリチウムイオン電池用正極活物質。 The positive electrode active material A according to any one of claims 1 to 3,
A positive electrode active material having a core particle and a coating provided on the surface of the core particle,
Composition formula: Li a Ni b Co c Mn d Mz e O 2
(In the above formula, 1.004 ≦ a ≦ 1.02, 0.80 ≦ b <0.85, 0.10 <c ≦ 0.15, 0.01 ≦ d ≦ 0.05, 0 ≦ e ≦ 0.015, b + c + d = 1, Mz is W, Ti, Zr At least one selected from)
Represented by
Α × β × γ is 3-6 when the specific surface area is α (m 2 / g), 1500 times tap density is β (g / cc), and 10% volume diameter (D10) is γ (μm). Yes, the primary particles have an aspect ratio of 1 to 4,
The coating film is composed of particles containing the Mz and is formed into an island-like positive electrode active material C;
A positive electrode active material for lithium ion batteries obtained by mixing
真密度が3.7〜3.8g/ccであり、タップ密度が1.3〜1.9g/ccであるニッケルコバルトマンガン水酸化物粉体を水酸化リチウムと乾式混合する工程、及び、
前記乾式混合して得られた粉体を酸素雰囲気下、400〜500℃で焼成し、冷却せず昇温した後、更に700〜800℃で焼成する工程
を含むリチウムイオン電池用正極活物質の製造方法。 A method for producing the positive electrode active material for a lithium ion battery according to claim 1 or 3, or the positive electrode active material B in the positive electrode active material for a lithium ion battery according to claim 4 or 6,
A step of dry-mixing nickel cobalt manganese hydroxide powder having a true density of 3.7 to 3.8 g / cc and a tap density of 1.3 to 1.9 g / cc with lithium hydroxide; and
The powder obtained by dry mixing is fired at 400 to 500 ° C. in an oxygen atmosphere, heated without cooling, and further fired at 700 to 800 ° C. Production method.
真密度が3.7〜3.8g/ccであり、タップ密度が1.3〜1.9g/ccであるニッケルコバルトマンガン水酸化物粒子を水中に分散してスラリーとする工程、
TiO2、ZrO2、及びWO3からなる群から選択された少なくとも1種のメジアン径が0.1〜0.8μmの粒子を前記スラリーに添加して噴霧乾燥する工程、
前記噴霧乾燥で生成した噴霧乾燥物を水酸化リチウムと乾式混合する工程、及び、
前記乾式混合して得られた粉体を酸素雰囲気下、400〜500℃で焼成し、冷却せず昇温した後、更に700〜800℃で焼成する工程
を含むリチウムイオン電池用正極活物質の製造方法。 A method for producing the positive electrode active material for a lithium ion battery according to claim 2 or 3, or the positive electrode active material C in the positive electrode active material for a lithium ion battery according to claim 7 or 8,
A step of dispersing nickel cobalt manganese hydroxide particles having a true density of 3.7 to 3.8 g / cc and a tap density of 1.3 to 1.9 g / cc in water to form a slurry;
Adding at least one particle having a median diameter of 0.1 to 0.8 μm selected from the group consisting of TiO 2 , ZrO 2 , and WO 3 to the slurry and spray-drying;
A step of dry-mixing the spray-dried product produced by the spray-drying with lithium hydroxide; and
The powder obtained by dry mixing is fired at 400 to 500 ° C. in an oxygen atmosphere, heated without cooling, and further fired at 700 to 800 ° C. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018016729A JP6650956B2 (en) | 2018-02-01 | 2018-02-01 | Positive active material for lithium ion battery, lithium ion battery, and method for producing positive active material for lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018016729A JP6650956B2 (en) | 2018-02-01 | 2018-02-01 | Positive active material for lithium ion battery, lithium ion battery, and method for producing positive active material for lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019133881A true JP2019133881A (en) | 2019-08-08 |
JP6650956B2 JP6650956B2 (en) | 2020-02-19 |
Family
ID=67546408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018016729A Active JP6650956B2 (en) | 2018-02-01 | 2018-02-01 | Positive active material for lithium ion battery, lithium ion battery, and method for producing positive active material for lithium ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6650956B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112194197A (en) * | 2020-08-27 | 2021-01-08 | 浙江美都海创锂电科技有限公司 | High-nickel ternary positive electrode material with low internal resistance and low flatulence rate as well as preparation method and application thereof |
WO2021225094A1 (en) * | 2020-05-07 | 2021-11-11 | 住友化学株式会社 | Positive electrode active material precursor for lithium secondary battery, method for producing positive electrode active material precursor for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery |
CN114127993A (en) * | 2019-11-12 | 2022-03-01 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery |
JP2022090426A (en) * | 2020-12-07 | 2022-06-17 | プライムプラネットエナジー&ソリューションズ株式会社 | Cathode active material preparation material and utilization of them |
CN116173828A (en) * | 2023-02-22 | 2023-05-30 | 江苏正力新能电池技术有限公司 | Electrode material processing method and electrode plate processing method |
JP7336055B1 (en) * | 2022-03-24 | 2023-08-30 | Jx金属株式会社 | Positive electrode active materials for lithium ion batteries, positive electrode for lithium ion batteries, lithium ion batteries, positive electrode active materials for all-solid-state lithium-ion batteries, positive electrodes for all-solid-state lithium-ion batteries, all-solid-state lithium-ion batteries, positive electrode active materials for lithium-ion batteries Manufacturing method and manufacturing method of positive electrode active material for all-solid-state lithium-ion battery |
WO2023162993A1 (en) * | 2022-02-25 | 2023-08-31 | パナソニックエナジ-株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
WO2023181452A1 (en) * | 2022-03-24 | 2023-09-28 | Jx金属株式会社 | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, lithium-ion battery, positive electrode active material for solid-state lithium-ion battery, positive electrode for solid-state lithium-ion battery, solid-state lithium-ion battery, method for manufacturing positive electrode active material for lithium-ion battery, and method for manufacturing positive electrode active material for solid-state lithium-ion battery |
WO2024176499A1 (en) * | 2023-02-21 | 2024-08-29 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing positive electrode active material for all-solid-state lithium-ion battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08153513A (en) * | 1994-11-29 | 1996-06-11 | Sony Corp | Manufacture of positive electrode active material |
JP2004253305A (en) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | Positive electrode active material using surface-modified lithium nickel compound oxide, positive electrode material, lithium secondary battery, and manufacturing method for the surface-modified lithium nickel compound oxide |
JP2005011713A (en) * | 2003-06-19 | 2005-01-13 | Kureha Chem Ind Co Ltd | Positive electrode material for lithium secondary battery and its manufacturing method |
JP2005251716A (en) * | 2004-02-05 | 2005-09-15 | Nichia Chem Ind Ltd | Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP2008195608A (en) * | 2000-11-06 | 2008-08-28 | Tanaka Chemical Corp | High density cobalt-manganese coprecipitated nickel hydroxide and process for its production |
JP2016523794A (en) * | 2013-05-08 | 2016-08-12 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Spherical particles, their production and methods of using them |
JP2017517847A (en) * | 2014-05-27 | 2017-06-29 | ダウ グローバル テクノロジーズ エルエルシー | Improved lithium metal oxide cathode materials and methods for their preparation |
JP2017130395A (en) * | 2016-01-21 | 2017-07-27 | Jx金属株式会社 | Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method of producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
-
2018
- 2018-02-01 JP JP2018016729A patent/JP6650956B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08153513A (en) * | 1994-11-29 | 1996-06-11 | Sony Corp | Manufacture of positive electrode active material |
JP2008195608A (en) * | 2000-11-06 | 2008-08-28 | Tanaka Chemical Corp | High density cobalt-manganese coprecipitated nickel hydroxide and process for its production |
JP2004253305A (en) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | Positive electrode active material using surface-modified lithium nickel compound oxide, positive electrode material, lithium secondary battery, and manufacturing method for the surface-modified lithium nickel compound oxide |
JP2005011713A (en) * | 2003-06-19 | 2005-01-13 | Kureha Chem Ind Co Ltd | Positive electrode material for lithium secondary battery and its manufacturing method |
JP2005251716A (en) * | 2004-02-05 | 2005-09-15 | Nichia Chem Ind Ltd | Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP2016523794A (en) * | 2013-05-08 | 2016-08-12 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Spherical particles, their production and methods of using them |
JP2017517847A (en) * | 2014-05-27 | 2017-06-29 | ダウ グローバル テクノロジーズ エルエルシー | Improved lithium metal oxide cathode materials and methods for their preparation |
JP2017130395A (en) * | 2016-01-21 | 2017-07-27 | Jx金属株式会社 | Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method of producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114127993A (en) * | 2019-11-12 | 2022-03-01 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery |
CN114127993B (en) * | 2019-11-12 | 2023-11-14 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery |
WO2021225094A1 (en) * | 2020-05-07 | 2021-11-11 | 住友化学株式会社 | Positive electrode active material precursor for lithium secondary battery, method for producing positive electrode active material precursor for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery |
JP2021177459A (en) * | 2020-05-07 | 2021-11-11 | 住友化学株式会社 | Positive electrode active material precursor for lithium secondary battery, manufacturing method of positive electrode active material precursor for lithium secondary battery, and manufacturing method for positive electrode active material for lithium secondary battery |
CN112194197A (en) * | 2020-08-27 | 2021-01-08 | 浙江美都海创锂电科技有限公司 | High-nickel ternary positive electrode material with low internal resistance and low flatulence rate as well as preparation method and application thereof |
JP2022090426A (en) * | 2020-12-07 | 2022-06-17 | プライムプラネットエナジー&ソリューションズ株式会社 | Cathode active material preparation material and utilization of them |
JP7275094B2 (en) | 2020-12-07 | 2023-05-17 | プライムプラネットエナジー&ソリューションズ株式会社 | Materials for preparing positive electrode active materials and their uses |
WO2023162993A1 (en) * | 2022-02-25 | 2023-08-31 | パナソニックエナジ-株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
WO2023181452A1 (en) * | 2022-03-24 | 2023-09-28 | Jx金属株式会社 | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, lithium-ion battery, positive electrode active material for solid-state lithium-ion battery, positive electrode for solid-state lithium-ion battery, solid-state lithium-ion battery, method for manufacturing positive electrode active material for lithium-ion battery, and method for manufacturing positive electrode active material for solid-state lithium-ion battery |
JP7336055B1 (en) * | 2022-03-24 | 2023-08-30 | Jx金属株式会社 | Positive electrode active materials for lithium ion batteries, positive electrode for lithium ion batteries, lithium ion batteries, positive electrode active materials for all-solid-state lithium-ion batteries, positive electrodes for all-solid-state lithium-ion batteries, all-solid-state lithium-ion batteries, positive electrode active materials for lithium-ion batteries Manufacturing method and manufacturing method of positive electrode active material for all-solid-state lithium-ion battery |
WO2023182458A1 (en) * | 2022-03-24 | 2023-09-28 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, method for producing positive electrode active material for lithium ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery |
US20240079582A1 (en) * | 2022-03-24 | 2024-03-07 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, lithium ion battery, positive electrode active material for all-solid lithium ion batteries, positive electrode for all-solid lithium ion batteries, all-solid lithium ion battery, method for producing positive electrode active material for lithium ion batteries, and method for producing positive electrode active material for all-solid lithium ion batteries |
WO2024176499A1 (en) * | 2023-02-21 | 2024-08-29 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing positive electrode active material for all-solid-state lithium-ion battery |
CN116173828A (en) * | 2023-02-22 | 2023-05-30 | 江苏正力新能电池技术有限公司 | Electrode material processing method and electrode plate processing method |
Also Published As
Publication number | Publication date |
---|---|
JP6650956B2 (en) | 2020-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6650956B2 (en) | Positive active material for lithium ion battery, lithium ion battery, and method for producing positive active material for lithium ion battery | |
JP6627241B2 (en) | Positive active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP5903956B2 (en) | Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
WO2012160707A1 (en) | Positive electrode active material particles, and positive electrode and all-solid-state battery using same | |
JP2018523277A (en) | Cathode active material for lithium ion secondary battery, its preparation method and use | |
KR20110094023A (en) | Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell | |
CN104160530B (en) | Nonaqueous electrolytic solution secondary battery | |
JP2017226576A (en) | Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery | |
KR20110044936A (en) | Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same | |
JP2018014322A (en) | Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery | |
JP2022179554A (en) | lithium compound | |
WO2019087558A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and method for evaluating lithium metal composite oxide powder | |
JP6737930B1 (en) | Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for producing positive-electrode active material for all-solid-state lithium-ion battery | |
JP5447248B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using this positive electrode active material | |
JP2009064585A (en) | Manufacturing method of transition metal based compound for lithium secondary battery | |
WO2020218592A1 (en) | Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery | |
JP2017010842A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material | |
JP7119783B2 (en) | Method for producing transition metal composite hydroxide, transition metal composite hydroxide, method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery | |
JP2021034142A (en) | Production method of multiple oxide that is precursor of cathode active material for lithium ion secondary battery | |
JP2020107536A (en) | Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same | |
WO2021054467A1 (en) | Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery | |
JP6958629B2 (en) | Manufacturing method of nickel composite oxide and lithium nickel composite oxide | |
JP7167939B2 (en) | Positive electrode active material precursor for non-aqueous electrolyte secondary battery | |
JP7194493B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary batteries | |
US7829223B1 (en) | Process for preparing lithium ion cathode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190607 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190607 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6650956 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |