JP2022090426A - Cathode active material preparation material and utilization of them - Google Patents

Cathode active material preparation material and utilization of them Download PDF

Info

Publication number
JP2022090426A
JP2022090426A JP2020202820A JP2020202820A JP2022090426A JP 2022090426 A JP2022090426 A JP 2022090426A JP 2020202820 A JP2020202820 A JP 2020202820A JP 2020202820 A JP2020202820 A JP 2020202820A JP 2022090426 A JP2022090426 A JP 2022090426A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
particles
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020202820A
Other languages
Japanese (ja)
Other versions
JP7275094B2 (en
Inventor
友宏 横山
Tomohiro Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020202820A priority Critical patent/JP7275094B2/en
Publication of JP2022090426A publication Critical patent/JP2022090426A/en
Application granted granted Critical
Publication of JP7275094B2 publication Critical patent/JP7275094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a cathode active material preparation material for preparing a cathode active material capable of realizing an excellent cycle characteristic.SOLUTION: A cathode active material preparation material disclosed here, contains a raw material particle having a core part, and a coated part existed in at least one part of a front surface of the core part. The coated part is structured by small particles each having an average particle diameter of 1/10 or less of a particle diameter of the raw material particle in a SEM image of the raw material particle. In addition, the cathode active material preparation material contains a transition metal hydroxide comprising at least one kind of metal elements, selected from a group of Ni, Mn, and Co in the core part and the small particle.SELECTED DRAWING: Figure 5

Description

本発明は、正極活物質調製用材料と、該正極活物質調製用材料を用いた正極活物質製造方法に関する。 The present invention relates to a material for preparing a positive electrode active material and a method for producing a positive electrode active material using the material for preparing a positive electrode active material.

近年、リチウムイオン二次電池等の二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。 In recent years, secondary batteries such as lithium-ion secondary batteries have been used as portable power supplies for personal computers, mobile terminals, etc., and vehicle drive power supplies for electric vehicles (EV), hybrid vehicles (HV), plug-in hybrid vehicles (PHV), etc. It is suitably used for.

リチウムイオン二次電池の正極には、一般的にリチウムイオンを吸蔵および放出可能な正極活物質が備えられている。例えば、特許文献1には、サイクル特性や出力特性に優れたリチウムイオン二次電池を得るために、正極活物質として、粒度分布が狭く、中空構造を有するリチウム遷移金属含有複合酸化物粒子が開示されている。粒度分布が狭いことにより、粒子にかかる電圧の差が小さくなるため、粒子の選択的劣化を防ぎ、優れたサイクル特性を実現することができる。また、電解液が侵入可能な中空構造を有することにより、電解液との反応面積が大きくなるため、優れた出力特性を実現することができる。 The positive electrode of a lithium ion secondary battery is generally provided with a positive electrode active material capable of storing and releasing lithium ions. For example, Patent Document 1 discloses lithium transition metal-containing composite oxide particles having a narrow particle size distribution and a hollow structure as a positive electrode active material in order to obtain a lithium ion secondary battery having excellent cycle characteristics and output characteristics. Has been done. Since the difference in voltage applied to the particles is small due to the narrow particle size distribution, it is possible to prevent selective deterioration of the particles and realize excellent cycle characteristics. Further, since the hollow structure through which the electrolytic solution can penetrate increases the reaction area with the electrolytic solution, excellent output characteristics can be realized.

特開2018-104276号公報Japanese Unexamined Patent Publication No. 2018-104276

ところで、リチウムイオン二次電池用の正極活物質を製造するために、正極活物質前駆体粉体(正極活物質調製用材料)とリチウム化合物とを混合して焼成すると、焼結により粒子同士の接合が生じ得るため、正極活物質粒子の大きさにばらつきが生じる虞がある。これにより、充放電の繰り返しに伴う正極活物質粒子の劣化が生じやすくなるため、サイクル特性が低下する課題がある。 By the way, in order to produce a positive electrode active material for a lithium ion secondary battery, when a positive electrode active material precursor powder (material for preparing a positive electrode active material) and a lithium compound are mixed and fired, the particles are sintered. Since bonding may occur, the size of the positive electrode active material particles may vary. As a result, deterioration of the positive electrode active material particles is likely to occur due to repeated charging and discharging, and there is a problem that the cycle characteristics are deteriorated.

そこで、本発明は上記課題を鑑みてなされたものであり、優れたサイクル特性を実現し得る正極活物質を調製するための正極活物質調製用材料を提供することを主な目的とする。また別の側面から、かかる正極活物質調製用材料を用いた正極活物質製造方法を提供することを他の目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a material for preparing a positive electrode active material for preparing a positive electrode active material capable of realizing excellent cycle characteristics. From another aspect, another object is to provide a method for producing a positive electrode active material using such a material for preparing a positive electrode active material.

本発明者は、上記課題を解決するため鋭意検討を行ったところ、表面に小粒子を備えた正極活物質調製用材料を焼成することにより、焼結による粒子間の接合を抑制でき得ることを見出した。そして、かかる材料を用いて製造された正極活物質では、サイクル特性が良好になることを見出し、本発明を完成させた。
即ち、ここで開示される正極活物質調製用材料は、コア部と、該コア部の表面の少なくとも一部に存在する被覆部とを備える原料粒子を含み、該被覆部は、前記原料粒子のSEM像において、該原料粒子の粒子径の10分の1以下の平均粒子径を有する小粒子で構成されている。さらに、上記コア部および上記小粒子は、Ni、Mn、Coからなる群から選択される少なくとも一種の金属元素を備えた遷移金属水酸化物を含む。
かかる構成によれば、リチウムイオン二次電池に優れたサイクル特性を付与する正極活物質を製造するための正極活物質調製用材料が提供される。
As a result of diligent studies to solve the above problems, the present inventor has found that by firing a material for preparing a positive electrode active material having small particles on the surface, bonding between particles due to sintering can be suppressed. I found it. Then, they found that the positive electrode active material produced by using such a material had good cycle characteristics, and completed the present invention.
That is, the material for preparing a positive electrode active material disclosed here includes a raw material particle including a core portion and a coating portion existing on at least a part of the surface of the core portion, and the coating portion is the raw material particle. In the SEM image, it is composed of small particles having an average particle size of 1/10 or less of the particle size of the raw material particles. Further, the core portion and the small particles contain a transition metal hydroxide containing at least one metal element selected from the group consisting of Ni, Mn and Co.
According to such a configuration, a material for preparing a positive electrode active material for producing a positive electrode active material that imparts excellent cycle characteristics to a lithium ion secondary battery is provided.

また、ここに開示される正極活物質調製用材料の好ましい一態様では、上記小粒子のSEM像に基づく平均アスペクト比は1.7以下である。
かかる構成によれば、比表面積が増加し、優れた電気抵抗低減効果が発揮され得る。
Further, in a preferred embodiment of the material for preparing a positive electrode active material disclosed herein, the average aspect ratio of the small particles based on the SEM image is 1.7 or less.
According to such a configuration, the specific surface area is increased, and an excellent electric resistance reducing effect can be exhibited.

また、ここに開示される正極活物質調製用材料の好ましい一態様では、上記原料粒子のSEM像において、上記被覆部が上記コア部の表面を10%以上占有した上記原料粒子を含む。
かかる構成によれば、より優れたサイクル特性および電気抵抗低減効果が実現され得る。
Further, in a preferred embodiment of the material for preparing a positive electrode active material disclosed herein, the raw material particles include the raw material particles in which the covering portion occupies 10% or more of the surface of the core portion in the SEM image of the raw material particles.
According to such a configuration, more excellent cycle characteristics and electric resistance reducing effect can be realized.

また、ここに開示される正極活物質調製用材料の好ましい一態様では、上記原料粒子のレーザー回折・光散乱法に基づく平均粒子径は4μm以上6μm以下である。
かかる構成によれば、サイクル特性および電気抵抗低減効果をより高いレベルで実現し得る。
Further, in a preferred embodiment of the positive electrode active material preparing material disclosed herein, the average particle size of the raw material particles based on the laser diffraction / light scattering method is 4 μm or more and 6 μm or less.
According to such a configuration, the cycle characteristics and the electric resistance reducing effect can be realized at a higher level.

また、ここに開示される正極活物質調製用材料の好ましい一態様では、上記原料粒子の断面SEM像において、上記コア部よりも上記被覆部に含まれる上記小粒子の緻密性が高い。
かかる構成によれば、さらに高いレベルでサイクル特性および電気抵抗低減効果を実現し得る。
Further, in a preferred embodiment of the positive electrode active material preparing material disclosed herein, in the cross-sectional SEM image of the raw material particles, the fineness of the small particles contained in the covering portion is higher than that of the core portion.
According to such a configuration, the cycle characteristics and the electric resistance reducing effect can be realized at an even higher level.

また、上記課題を解決するべく、ここで開示される正極活物質調製用材料を用いた正極活物質の製造方法が提供される。即ち、ここで開示される正極活物質製造方法は、ここで開示される正極活物質調製用材料と、リチウム化合物とを混合すること、および、かかる混合による混合物を焼成すること、を包含する。
かかる構成によれば、リチウムイオン二次電池に優れたサイクル特性を付与し得る正極活物質が提供される。
Further, in order to solve the above problems, a method for producing a positive electrode active material using the material for preparing a positive electrode active material disclosed here is provided. That is, the method for producing a positive electrode active material disclosed herein includes mixing the material for preparing a positive electrode active material disclosed here with a lithium compound, and firing the mixture by such mixing.
According to such a configuration, a positive electrode active material capable of imparting excellent cycle characteristics to a lithium ion secondary battery is provided.

一実施形態に係る正極活物質調製用材料から製造された正極活物質を備えるリチウムイオン二次電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the lithium ion secondary battery which comprises the positive electrode active material manufactured from the positive electrode active material preparation material which concerns on one Embodiment. 一実施形態に係る正極活物質調製用材料から製造された正極活物質を備える捲回電極体の構成を示す模式分解図である。It is a schematic exploded view which shows the structure of the winding electrode body which comprises the positive electrode active material manufactured from the positive electrode active material preparation material which concerns on one Embodiment. 一実施形態に係る正極活物質の製造工程を説明するための大まかなフローチャートである。It is a rough flowchart for demonstrating the manufacturing process of the positive electrode active material which concerns on one Embodiment. 例2の正極活物質調製用材料を5000倍の倍率で観察したSEM像である。It is an SEM image which observed the material for preparing a positive electrode active material of Example 2 at a magnification of 5000 times. 例2の正極活物質調製用材料を15000倍の倍率で観察したSEM像である。6 is an SEM image obtained by observing the material for preparing the positive electrode active material of Example 2 at a magnification of 15,000 times. 例2の正極活物質調製用材料を15000倍の倍率で観察した断面SEM像である。6 is a cross-sectional SEM image obtained by observing the material for preparing the positive electrode active material of Example 2 at a magnification of 15,000 times. 例5の正極活物質調製用材料を15000倍の倍率で観察したSEM像である。6 is an SEM image obtained by observing the material for preparing the positive electrode active material of Example 5 at a magnification of 15,000 times.

以下、図面を参照しながら本発明の一実施形態について説明する。ここで開示される正極活物質調製用材料を用いて製造される正極活物質は、リチウムイオン二次電池の正極活物質として好適に用いることができるため、まず、リチウムイオン二次電池100の構成例について説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
また、本明細書において数値範囲をA~B(ここでA,Bは任意の数値)と記載している場合は、一般的な解釈と同様であり、A以上B以下を意味するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Since the positive electrode active material produced by using the positive electrode active material preparation material disclosed herein can be suitably used as the positive electrode active material of the lithium ion secondary battery, first, the configuration of the lithium ion secondary battery 100 is configured. An example will be described. Matters other than those specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art. Further, in the following drawings, members / parts having the same function are designated by the same reference numerals, and duplicate explanations may be omitted or simplified. Further, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations.
Further, when the numerical range is described as A to B (where A and B are arbitrary numerical values) in the present specification, it is the same as the general interpretation and means A or more and B or less. ..

本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。また、本明細書において「リチウムイオン二次電池」は、電荷担体としてリチウムイオンを利用し、正極と負極との間をリチウムイオンに伴う電荷の移動によって充放電を行う二次電池である。また、本明細書において「活物質」とは、電荷担体を可逆的に吸蔵・放出する材料をいう。 As used herein, the term "secondary battery" generally refers to a battery that can be repeatedly charged and discharged, and includes a so-called storage battery (that is, a chemical battery) such as a lithium ion secondary battery and a capacitor (that is, a physical battery) such as an electric double layer capacitor. ) Is included. Further, in the present specification, the "lithium ion secondary battery" is a secondary battery that uses lithium ions as a charge carrier and charges and discharges between a positive electrode and a negative electrode by the transfer of electric charges associated with the lithium ions. Further, in the present specification, the “active material” refers to a material that reversibly stores and releases charge carriers.

図1に示すリチウムイオン二次電池100は、電池ケース30の内部に、扁平形状の捲回電極体20と、非水電解質(図示せず)とが収容されることで構築される角型の密閉型電池である。電池ケース30には、外部接続用の正極端子42および負極端子44が備えられている。また、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。さらに、電池ケース30には、非水電解質を注液するための注液口(図示せず)が設けられている。電池ケース30の材質は、高強度であり軽量で熱伝導性が良い金属製材料が好ましく、このような金属材料として、例えば、アルミニウムやスチール等が挙げられる。 The lithium ion secondary battery 100 shown in FIG. 1 is a square type formed by accommodating a flat wound electrode body 20 and a non-aqueous electrolyte (not shown) inside a battery case 30. It is a sealed battery. The battery case 30 is provided with a positive electrode terminal 42 and a negative electrode terminal 44 for external connection. Further, a thin-walled safety valve 36 set to release the internal pressure when the internal pressure of the battery case 30 rises to a predetermined level or higher is provided. Further, the battery case 30 is provided with a liquid injection port (not shown) for injecting a non-aqueous electrolyte. The material of the battery case 30 is preferably a metal material having high strength, light weight, and good thermal conductivity, and examples of such a metal material include aluminum and steel.

捲回電極体20は、図1および図2に示されるように、長尺シート状の正極50と、長尺シート状の負極60とが、2枚の長尺シート状のセパレータ70を介して積層され、捲回軸を中心として捲回された電極体である。正極50は、正極集電体52と、該正極集電体52の片面または両面の長手側方向に形成された正極活物質層54とを備えている。正極集電体52の捲回軸方向(即ち、上記長手側方向に直交するシート幅方向)の片側の縁部には、該縁部に沿って帯状に正極活物質層54が形成されずに正極集電体52が露出した部分(即ち、正極集電体露出部52a)が設けられている。また、負極60は、負極集電体62と、該負極集電体62の片面または両面の長手側方向に形成された負極活物質層64とを備えている。負極集電体62の上記捲回軸方向の片側の反対側の縁部には、該縁部に沿って帯状に負極活物質層64が形成されずに負極集電体62が露出した部分(即ち、負極集電体露出部62a)が設けられている。正極集電体露出部52aと負極集電体露出部62aには、それぞれ正極集電板42aおよび負極集電板44aが接合されている。正極集電板42aは、外部接続用の正極端子42と電気的に接続されており、電池ケース30の内部と外部との導通を実現している。同様に、負極集電板44aは、外部接続用の負極端子44と電気的に接続されており、電池ケース30の内部と外部との導通を実現している。 As shown in FIGS. 1 and 2, the wound electrode body 20 has a long sheet-shaped positive electrode 50 and a long sheet-shaped negative electrode 60 via two long sheet-shaped separators 70. It is an electrode body that is laminated and wound around a winding axis. The positive electrode 50 includes a positive electrode current collector 52 and a positive electrode active material layer 54 formed in the longitudinal direction on one or both sides of the positive electrode current collector 52. On one edge of the positive electrode current collector 52 in the winding axis direction (that is, the sheet width direction orthogonal to the longitudinal direction), the positive electrode active material layer 54 is not formed in a band shape along the edge. A portion where the positive electrode current collector 52 is exposed (that is, a positive electrode current collector exposed portion 52a) is provided. Further, the negative electrode 60 includes a negative electrode current collector 62 and a negative electrode active material layer 64 formed in the longitudinal direction of one side or both sides of the negative electrode current collector 62. At the edge of the negative electrode current collector 62 on one side opposite to the winding axis direction, the negative electrode active material layer 64 is not formed in a band shape along the edge, and the negative electrode current collector 62 is exposed ( That is, the negative electrode current collector exposed portion 62a) is provided. A positive electrode current collector plate 42a and a negative electrode current collector plate 44a are bonded to the positive electrode current collector exposed portion 52a and the negative electrode current collector exposed portion 62a, respectively. The positive electrode current collector plate 42a is electrically connected to the positive electrode terminal 42 for external connection, and realizes conduction between the inside and the outside of the battery case 30. Similarly, the negative electrode current collector plate 44a is electrically connected to the negative electrode terminal 44 for external connection, and realizes conduction between the inside and the outside of the battery case 30.

正極50を構成する正極集電体52としては、例えば、アルミニウム箔が挙げられる。正極活物質層54は、ここで開示される正極活物質を備える。また、正極活物質層54は、導電材、バインダ等を含んでいてもよい。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。
正極活物質層54は、正極活物質と必要に応じて用いられる材料(導電材、バインダ等)とを適当な溶媒(例えばN-メチル-2-ピロリドン:NMP)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を正極集電体52の表面に塗工し、乾燥することによって形成することができる。
Examples of the positive electrode current collector 52 constituting the positive electrode 50 include aluminum foil. The positive electrode active material layer 54 includes the positive electrode active material disclosed here. Further, the positive electrode active material layer 54 may contain a conductive material, a binder, or the like. As the conductive material, for example, carbon black such as acetylene black (AB) or other carbon material (graphite or the like) can be preferably used. As the binder, for example, polyvinylidene fluoride (PVDF) or the like can be used.
In the positive electrode active material layer 54, the positive electrode active material and a material (conductive material, binder, etc.) used as needed are dispersed in an appropriate solvent (for example, N-methyl-2-pyrrolidone: NMP) to form a paste (or It can be formed by preparing a composition (in the form of a slurry), applying an appropriate amount of the composition to the surface of the positive electrode current collector 52, and drying the composition.

負極60を構成する負極集電体62としては、例えば、銅箔等が挙げられる。負極活物質層64は、負極活物質を含む。負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。また、負極活物質層64は、バインダ、増粘剤等をさらに含んでいてもよい。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。
負極活物質層64は、負極活物質と必要に応じて用いられる材料(バインダ等)とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を負極集電体62の表面に塗工し、乾燥することによって形成することができる。
Examples of the negative electrode current collector 62 constituting the negative electrode 60 include copper foil and the like. The negative electrode active material layer 64 contains a negative electrode active material. As the negative electrode active material, a carbon material such as graphite, hard carbon, or soft carbon can be used. Further, the negative electrode active material layer 64 may further contain a binder, a thickener and the like. As the binder, for example, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) or the like can be used.
In the negative electrode active material layer 64, a negative electrode active material and a material (binder or the like) used as needed are dispersed in an appropriate solvent (for example, ion-exchanged water) to prepare a paste-like (or slurry-like) composition. , An appropriate amount of the composition can be applied to the surface of the negative electrode current collector 62 and dried.

セパレータ70としては、従来からリチウムイオン二次電池に用いられるものと同様の各種微多孔質シートを用いることができ、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る微多孔質樹脂シートが挙げられる。かかる微多孔質樹脂シートは、単層構造であってもよく、二層以上の複層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。また、セパレータ70の表面には、耐熱層(HRL)を備えていてもよい。 As the separator 70, various microporous sheets similar to those conventionally used for lithium ion secondary batteries can be used, and for example, a microporous resin made of a resin such as polyethylene (PE) or polypropylene (PP). The sheet is mentioned. The microporous resin sheet may have a single-layer structure or a multi-layer structure having two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). Further, the surface of the separator 70 may be provided with a heat resistant layer (HRL).

非水電解質は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、カーボネート類、エステル類、エーテル類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。あるいは、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F-DMC)、トリフルオロジメチルカーボネート(TFDMC)のようなフッ素化カーボネート等のフッ素系溶媒を好ましく用いることができる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩を好適に用いることができる。支持塩の濃度は、特に限定されるものではないが、0.7mol/L以上1.3mol/L以下程度が好ましい。
なお、上記非水電解質は、本発明の効果を著しく損なわない限りにおいて、上述した非水溶媒、支持塩以外の成分を含んでいてもよく、例えば、ガス発生剤、被膜形成剤、分散剤、増粘剤等の各種添加剤を含み得る。
As the non-aqueous electrolyte, the same one as that of the conventional lithium ion secondary battery can be used, and typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used. As the non-aqueous solvent, an aprotic solvent such as carbonates, esters, ethers and the like can be used. Among them, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like can be preferably adopted. Alternatively, a fluorinated solvent such as a fluorinated carbonate such as monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), monofluoromethyldifluoromethyl carbonate (F-DMC) and trifluorodimethylcarbonate (TFDMC) is preferably used. be able to. As such a non-aqueous solvent, one kind may be used alone, or two or more kinds may be used in combination as appropriate. As the supporting salt, for example, lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 can be preferably used. The concentration of the supporting salt is not particularly limited, but is preferably about 0.7 mol / L or more and 1.3 mol / L or less.
The non-aqueous electrolyte may contain components other than the above-mentioned non-aqueous solvent and supporting salt as long as the effects of the present invention are not significantly impaired. It may contain various additives such as thickeners.

ここで開示される正極活物質調製用材料は、コア部と、該コア部の表面の少なくとも一部に存在する被覆部とを備える原料粒子を含む。
図4は、後述する実施例における例2の正極活物質調製用材料を走査型電子顕微鏡(SEM)を用いて5000倍の倍率で観察したSEM像であり、ここで開示される正極活物質調製用材料の代表的な一例を示す。図5は、例2の正極活物質調製用材料を15000倍の倍率で観察したSEM像であり、正極活物質調製用材料に含まれる原料粒子を拡大して示している。また、図6は、例2の正極活物質調製用材料を15000倍の倍率で観察した断面SEM像である。図4~6のSEM像からわかるように、原料粒子のコア部の表面に存在する被覆部は小粒子で構成されている。
なお、特に限定するものではないが、ここで開示される正極活物質調製用材料は、ここで開示される特徴を有する原料粒子を例えば30個数%以上、好ましくは50個数%以上、より好ましくは70個数%以上、さらに好ましくは80個数%以上、より一層好ましくは90個数%以上含むことが好ましい。かかる割合は、例えば図4のように、複数個の原料粒子が観察視野内にあるSEM像(例えば倍率5000倍以下)を無作為に複数(例えば10以上)取得し、かかる複数のSEM像それぞれにおいて、ここで開示される特徴を有する原料粒子の該SEM像全体の粒子に対しての存在割合(個数%)を算出し、かかる複数のSEM像での平均値を算出することで求めることができる。
The material for preparing a positive electrode active material disclosed herein includes a core portion and raw material particles having a coating portion present on at least a part of the surface of the core portion.
FIG. 4 is an SEM image obtained by observing the material for preparing the positive electrode active material of Example 2 in Examples described later using a scanning electron microscope (SEM) at a magnification of 5000 times, and the positive electrode active material preparation disclosed here. A typical example of a material is shown. FIG. 5 is an SEM image obtained by observing the material for preparing the positive electrode active material of Example 2 at a magnification of 15,000 times, and shows the raw material particles contained in the material for preparing the positive electrode active material in an enlarged manner. Further, FIG. 6 is a cross-sectional SEM image of the material for preparing the positive electrode active material of Example 2 observed at a magnification of 15,000 times. As can be seen from the SEM images of FIGS. 4 to 6, the coating portion existing on the surface of the core portion of the raw material particles is composed of small particles.
Although not particularly limited, the material for preparing a positive electrode active material disclosed herein contains, for example, 30% by number or more, preferably 50% by number or more, more preferably, the raw material particles having the characteristics disclosed here. It is preferably contained in an amount of 70% by number or more, more preferably 80% by number or more, and even more preferably 90% by number or more. For this ratio, for example, as shown in FIG. 4, a plurality of SEM images (for example, a magnification of 5000 times or less) in which a plurality of raw material particles are in the observation field of view are randomly acquired (for example, 10 or more), and each of the plurality of SEM images is obtained. In the above, the abundance ratio (number%) of the raw material particles having the characteristics disclosed here to the particles in the entire SEM image is calculated, and the average value in the plurality of SEM images can be calculated. can.

ここで開示される正極活物質調製用材料は、典型的には粉末状の粉末材料であるが、かかる粉末材料が適当な溶媒(例えば、水や有機溶媒)に分散したスラリーまたはペースト状であってもよい。 The material for preparing the positive electrode active material disclosed herein is typically a powder material in the form of a powder, but the powder material may be in the form of a slurry or paste in which the powder material is dispersed in a suitable solvent (for example, water or an organic solvent). You may.

上記原料粒子の平均粒子径は、特に限定されるものではないが、例えば、0.1μm以上20μm以下であって、典型的には1μm以上10μm以下である。また、好ましくは4μm以上9μm以下であって、より好ましくは4μm以上6μm以下であって、さらに好ましくは4.1μm以上5.8μm以下である。かかる範囲によると、焼結により原料粒子同士が接合されることがより抑制されるため、製造される正極活物質のサイクル特性を向上させることができ得る。
なお、本明細書において、「原料粒子の平均粒子径」は、レーザー回折・光散乱法に基づく体積基準の粒度分布において、粒子径の小さい側からの累積頻度50体積%に相当する粒子径D50(「メジアン径」ともいう。)のことをいう。
The average particle size of the raw material particles is not particularly limited, but is, for example, 0.1 μm or more and 20 μm or less, and typically 1 μm or more and 10 μm or less. Further, it is preferably 4 μm or more and 9 μm or less, more preferably 4 μm or more and 6 μm or less, and further preferably 4.1 μm or more and 5.8 μm or less. According to such a range, since the raw material particles are further suppressed from being bonded to each other by sintering, the cycle characteristics of the produced positive electrode active material can be improved.
In the present specification, the "average particle size of the raw material particles" is the particle size D50 corresponding to the cumulative frequency of 50% by volume from the smaller particle size side in the volume-based particle size distribution based on the laser diffraction / light scattering method. (Also called "median diameter").

ここで開示される正極活物質調製用材料は、コア部の表面の少なくとも一部に被覆部を備える原料粒子を含むが、好ましくは被覆部がコア部表面の10%以上を占有しており、より好ましくは30%以上、さらに好ましくは50%以上を占有する原料粒子を含む。かかる占有率(被覆率)により、焼結による原料粒子の接合を抑制し、さらに、製造される正極活物質の比表面積を向上させることができるため、焼結による粒度分布のばらつきが抑制され、かつ、電解質との接触面積が増加した正極活物質を製造することができる。これにより、サイクル特性が向上し、電気抵抗が低減したリチウムイオン二次電池を実現するための正極活物質を製造することができる。
なお、上記占有率は、SEM像に基づいて測定することができる。SEMを用いて原料粒子のSEM像を取得し、例えば、オープンソースであり、パブリックドメインの画像処理ソフトウェアとして著名な画像解析ソフト「ImageJ」を用いて、被覆部(小粒子)を白色、被覆部が存在しないコア部の表面(原料粒子中の小粒子が存在しない部分)を黒色とする二値化処理を行う。そして、原料粒子における被覆部が存在する部分(白色部分)の面積をNW、被覆部が存在せず表面が露出したコア部(黒色部分)の面積をNBとして、「NW/(NW+NB)×100」を算出することで被覆部の占有率(被覆率)を求めることができる。
The material for preparing a positive electrode active material disclosed herein contains raw material particles having a coating portion on at least a part of the surface of the core portion, but the coating portion preferably occupies 10% or more of the surface of the core portion. It contains raw material particles that occupy 30% or more, more preferably 50% or more. With this occupancy rate (coverage), it is possible to suppress the bonding of raw material particles due to sintering and further improve the specific surface area of the positive electrode active material to be produced, so that variations in the particle size distribution due to sintering are suppressed. Moreover, it is possible to produce a positive electrode active material having an increased contact area with the electrolyte. As a result, it is possible to manufacture a positive electrode active material for realizing a lithium ion secondary battery having improved cycle characteristics and reduced electrical resistance.
The occupancy rate can be measured based on the SEM image. The SEM image of the raw material particles is acquired using SEM, and for example, using the image analysis software "ImageJ", which is an open source and is well-known as image processing software in the public domain, the covering part (small particles) is white and the covering part is covered. A binarization treatment is performed to make the surface of the core portion (the portion of the raw material particles in which the small particles do not exist) black. Then, the area of the portion (white portion) of the raw material particles where the coating portion exists is NW, and the area of the core portion (black portion) where the coating portion does not exist and the surface is exposed is NB, and “NW / (NW + NB) × 100”. ], The occupancy rate (coverage rate) of the covering portion can be obtained.

上述した好適な被覆率(例えば10%以上)を有する原料粒子は、SEM視野内(例えば、倍率5000倍の視野)において、好ましくは30個数%以上存在しており、より好ましくは40個数%以上、さらに好ましくは50個数%以上存在する。かかる割合で存在していることにより、焼結による原料粒子同士の接合がより抑制され、さらに高いレベルで優れたサイクル特性を実現することができ得る。 The raw material particles having the above-mentioned suitable coverage (for example, 10% or more) are preferably present in the SEM visual field (for example, a visual field with a magnification of 5000 times) by 30% by number or more, and more preferably 40% by number or more. , More preferably, it is present in an amount of 50% or more. By being present in such a ratio, bonding of raw material particles due to sintering can be further suppressed, and excellent cycle characteristics can be realized at a higher level.

上記原料粒子の被覆部は、小粒子で構成されている。かかる小粒子は、該原料粒子の粒子径よりも小さな平均粒子径を有している。小粒子の平均粒子径は、特に制限されるものではないが、典型的には、原料粒子の粒子径の10分の1以下であり、例えば12分の1以下または15分の1以下であり得る。かかる粒子径の比較は、SEM像に基づいて行うことができ、例えば、図5に示すような、小粒子が目視できる倍率のSEM像(例えば15000倍)を取得することで、原料粒子一粒の粒子径と、該原料粒子が有する複数個の小粒子の平均粒子径との比較を行うことができる。
なお、原料粒子および小粒子の粒子径は、以下のようにして測定することができる。まず、SEM像において、各粒子の最大径を決定し、これを長径と規定する。次に、該長径に直交する径の中で最長となるものを決定し、これを短径と規定する。そして、かかる長径と短径とからなる楕円を仮定して、該楕円の面積から円相当径に換算することで、各粒子の粒子径とすることができる。小粒子については、原料粒子一粒に対し、複数個備えられ得るため、SEM像で目視できる複数の小粒子それぞれの粒子径を算出し、平均値を求める。
The coating portion of the raw material particles is composed of small particles. Such small particles have an average particle size smaller than the particle size of the raw material particles. The average particle size of the small particles is not particularly limited, but is typically 1/10 or less, for example, 1/12 or less or 1/15 or less of the particle size of the raw material particles. obtain. Such a comparison of particle sizes can be performed based on an SEM image. For example, by acquiring an SEM image (for example, 15,000 times) at a magnification at which small particles can be visually recognized as shown in FIG. 5, one raw particle is obtained. It is possible to compare the particle size of the above with the average particle size of a plurality of small particles contained in the raw material particles.
The particle size of the raw material particles and the small particles can be measured as follows. First, in the SEM image, the maximum diameter of each particle is determined, and this is defined as the major diameter. Next, the longest diameter orthogonal to the major axis is determined, and this is defined as the minor axis. Then, assuming an ellipse having such a major axis and a minor axis, the particle diameter of each particle can be obtained by converting the area of the ellipse into a circle-equivalent diameter. As for the small particles, since a plurality of small particles can be provided for each raw material particle, the particle size of each of the plurality of small particles visually observable in the SEM image is calculated, and the average value is obtained.

上記被覆部を構成する小粒子のSEM像に基づく平均アスペクト比(長径/短径)は、特に限定されるものではないが、1.7以下であることが好ましい。かかるアスペクト比であれば、小粒子の比表面積が増加するため、製造される正極活物質の比表面積を増加させ得る。これにより、電解質との接触面積が増加し、電気抵抗を低減し得る。 The average aspect ratio (major axis / minor axis) based on the SEM image of the small particles constituting the covering portion is not particularly limited, but is preferably 1.7 or less. With such an aspect ratio, the specific surface area of the small particles increases, so that the specific surface area of the produced positive electrode active material can be increased. As a result, the contact area with the electrolyte can be increased and the electrical resistance can be reduced.

上記原料粒子の断面SEM像において、上記コア部よりも上記被覆部に含まれる前記小粒子の緻密性が高いことが好ましい。換言すれば、小粒子の内部空隙がコア部の内部空隙よりも少ないことが好ましく、さらに、小粒子の内部に空隙がないことがより好ましい。小粒子の緻密性が高いことにより、ここで開示される正極活物質調製用材料の焼成時に、焼結が小粒子単体で進み易くなるため、焼結による原料粒子同士の接合が抑制され得る。これにより、製造される正極活物質粒子の粒度分布のばらつきが抑制され得る。また、正極活物質粒子の表面積を大きくすることができるため、優れた電池抵抗低減効果と優れたサイクル特性を実現し得る。
なお、断面SEM像は公知方法に従い取得することができる。コア部と小粒子の緻密性は、断面SEM像を測定することができ、目視あるいは断面SEM像における濃淡の差を画像解析ソフト(例、ImageJ)で解析することによって、コア部と小粒子の緻密性を比較することができる。
In the cross-sectional SEM image of the raw material particles, it is preferable that the small particles contained in the covering portion have higher density than the core portion. In other words, it is preferable that the internal voids of the small particles are smaller than the internal voids of the core portion, and it is more preferable that there are no voids inside the small particles. Due to the high density of the small particles, when the material for preparing the positive electrode active material disclosed here is fired, the sintering can easily proceed with the small particles alone, so that the bonding of the raw material particles due to the sintering can be suppressed. As a result, variations in the particle size distribution of the produced positive electrode active material particles can be suppressed. Further, since the surface area of the positive electrode active material particles can be increased, an excellent battery resistance reducing effect and excellent cycle characteristics can be realized.
The cross-sectional SEM image can be obtained according to a known method. The density of the core part and the small particles can be measured by measuring the cross-sectional SEM image, and by analyzing the difference in shading in the cross-sectional SEM image visually or by using image analysis software (eg, ImageJ), the core part and the small particles can be measured. The precision can be compared.

ここで開示される正極活物質調製用材料に含まれる原料粒子は、Ni、Mn、Coからなる群から選択される少なくとも一種の金属元素を備えた遷移金属水酸化物を含むことが好ましい。即ち、原料粒子が備えるコア部および被覆部(小粒子)は、かかる遷移金属水酸化物を含むことが好ましい。具体例としては、ニッケル系複合水酸化物、コバルト系複合水酸化物、マンガン系複合水酸化物、ニッケルマンガン系複合水酸化物、ニッケルコバルトマンガン系複合水酸化物、鉄ニッケルマンガン系複合水酸化物等が挙げられる。 The raw material particles contained in the material for preparing a positive electrode active material disclosed herein preferably contain a transition metal hydroxide containing at least one metal element selected from the group consisting of Ni, Mn, and Co. That is, it is preferable that the core portion and the coating portion (small particles) included in the raw material particles contain such a transition metal hydroxide. Specific examples include nickel-based composite hydroxides, cobalt-based composite hydroxides, manganese-based composite hydroxides, nickel-manganese-based composite hydroxides, nickel-cobalt-manganese-based composite hydroxides, and iron-nickel-manganese-based composite hydroxides. Things etc. can be mentioned.

なお、本明細書において「ニッケルコバルトマンガン系複合水酸化物」とは、Ni、Co、Mn、O、Hを構成元素とする水酸化物の他に、それら以外の1種または2種以上の添加的な元素を含んだ水酸化物をも包含する用語である。かかる添加的な元素の例としては、Mg、Ca、Al、Ti、V、Cr、Y、Zr、Nb、Mo、Hf、Ta、W、Na、Fe、Zn、Sn等の遷移金属元素や典型金属元素等が挙げられる。このことは、上記したニッケル系複合水酸化物、コバルト系複合水酸化物、マンガン系複合水酸化物、ニッケルマンガン系複合水酸化物等についても同様である。 In the present specification, the term "nickel-cobalt-manganese-based composite hydroxide" refers to one or more of other hydroxides having Ni, Co, Mn, O, and H as constituent elements. It is a term that also includes hydroxides containing additive elements. Examples of such additive elements include transition metal elements such as Mg, Ca, Al, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, Na, Fe, Zn, Sn and the like. Examples include metal elements. This also applies to the above-mentioned nickel-based composite hydroxide, cobalt-based composite hydroxide, manganese-based composite hydroxide, nickel-manganese-based composite hydroxide, and the like.

ニッケルコバルトマンガン系複合水酸化物としては、下式(I)で表される組成を有するものが好ましい。
NiCoMn(1-x-y-z)(OH) (I)
(式(I)中、x、y、zは、0.1<x<0.9、0.1<y<0.4、0.1<z<0.9、1≧x+y+zを具備しており、MはMg、Ca、Al、Ti、V、Cr、Y、Zr、Nb、Mo、Hf、Ta、W、Na、Fe、ZnおよびSnからなる群より選ばれる少なくとも一種の元素である。製造される正極活物質のエネルギー密度および熱安定性の観点から、x、yおよびzはそれぞれ、0.3≦x≦0.5、0.2≦y<0.4、0.2≦z<0.4を具備することが好ましい。)
The nickel-cobalt-manganese-based composite hydroxide preferably has a composition represented by the following formula (I).
Ni x Coy Mn z M (1-x-yz) (OH) 2 (I)
(In the formula (I), x, y, z comprises 0.1 <x <0.9, 0.1 <y <0.4, 0.1 <z <0.9, 1 ≧ x + y + z. M is at least one element selected from the group consisting of Mg, Ca, Al, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, Na, Fe, Zn and Sn. From the viewpoint of energy density and thermal stability of the positive electrode active material produced, x, y and z are 0.3 ≦ x ≦ 0.5, 0.2 ≦ y <0.4, 0.2 ≦, respectively. It is preferable to have z <0.4.)

次に、ここで開示される正極活物質調製用材料の好適な製造方法について説明する。なお、ここで開示される正極活物質調製用材料の製造方法は下記に限られない。 Next, a suitable manufacturing method of the material for preparing the positive electrode active material disclosed here will be described. The method for producing the material for preparing the positive electrode active material disclosed here is not limited to the following.

ここで開示される正極活物質調製用材料の好適な製造方法は、遷移金属水酸化物粒子を析出させる工程(以下、「析出工程」ともいう)と、上記水溶液をpH9~11の範囲に調整する工程(以下、「弱アルカリ処理工程」ともいう)と、上記遷移金属水酸化物粒子を成長させること(以下、「粒子成長工程」ともいう)、を包含する。 Suitable methods for producing the material for preparing the positive electrode active material disclosed herein include a step of precipitating transition metal hydroxide particles (hereinafter, also referred to as “precipitation step”) and adjusting the above aqueous solution to a pH range of 9 to 11. This step (hereinafter, also referred to as “weak alkali treatment step”) and the growth of the transition metal hydroxide particles (hereinafter, also referred to as “particle growth step”) are included.

まず、析出工程について説明する。析出工程は、通常の正極活物質の製造における遷移金属水酸化物粒子を晶析させる公知方法と同様であってよい。 First, the precipitation step will be described. The precipitation step may be the same as a known method for crystallizing transition metal hydroxide particles in the production of a normal positive electrode active material.

例えば、まず、遷移金属化合物の水溶液を準備する。遷移金属化合物としては、例えば、遷移金属の硫酸塩、遷移金属の硝酸塩、遷移金属のハロゲン化物等の水溶性化合物を用いることができる。かかる遷移金属の元素としては、Ni、Mn、Coからなる群から選択される少なくとも一種を用いることが好ましい。また、アルカリ化合物の水溶液を用意する。アルカリ化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等を用いることができ、好ましくは、水酸化ナトリウムである。また、アンモニア水を用意する。 For example, first, an aqueous solution of a transition metal compound is prepared. As the transition metal compound, for example, a water-soluble compound such as a sulfate of a transition metal, a nitrate of a transition metal, or a halide of a transition metal can be used. As the element of the transition metal, it is preferable to use at least one selected from the group consisting of Ni, Mn and Co. Also, prepare an aqueous solution of the alkaline compound. As the alkaline compound, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide and the like can be used, and sodium hydroxide is preferable. Also, prepare ammonia water.

一方で、反応容器中に水(典型的にはイオン交換水)を加え、反応容器中を撹拌しながら雰囲気を不活性ガス(例えば、Nガス、Arガス等)で置換する。次に、上記反応容器に上記アルカリ化合物の水溶液を加え、pHを調整する(例えば、pH11~13)。 On the other hand, water (typically ion-exchanged water) is added to the reaction vessel, and the atmosphere is replaced with an inert gas (for example, N2 gas, Ar gas, etc.) while stirring the inside of the reaction vessel. Next, an aqueous solution of the alkaline compound is added to the reaction vessel to adjust the pH (for example, pH 11 to 13).

上記反応容器中を撹拌しながら、上記遷移金属化合物の水溶液と、上記アンモニア水とを該反応容器に滴下する。このとき、上記反応容器内のpHが低下するため、上記アルカリ化合物の水溶液を適宜加えることにより、上記反応容器内のpHを11~13の範囲内に調整する。 While stirring the inside of the reaction vessel, the aqueous solution of the transition metal compound and the aqueous ammonia are added dropwise to the reaction vessel. At this time, since the pH in the reaction vessel is lowered, the pH in the reaction vessel is adjusted within the range of 11 to 13 by appropriately adding an aqueous solution of the alkaline compound.

上記遷移金属化合物の水溶液とアンモニア水とを滴下しながら、上記反応容器を所定時間(例えば、0.5時間~1.5時間)撹拌する。これにより、遷移金属水酸化物粒子を適度に成長させることができる。 The reaction vessel is stirred for a predetermined time (for example, 0.5 hour to 1.5 hours) while dropping the aqueous solution of the transition metal compound and aqueous ammonia. As a result, the transition metal hydroxide particles can be appropriately grown.

次に、弱アルカリ処理工程について説明する。上記反応容器に酸性の水溶液を加える、もしくは、アルカリ化合物の水溶液の供給を停止することにより、pHを9~11の範囲内に調整する。かかる酸性の水溶液は、特に限定されるものではないが、上記遷移金属化合物において、遷移金属と結合している陰イオンを含む水溶液を用いることが好ましい(例えば、遷移金属の硫酸塩の水溶液を用いた場合、硫酸を用いる等)。
そして、かかるpHの範囲としたまま、例えば1時間以下(典型的には10分以下)の間撹拌を維持する。かかる時間処理することにより、上記遷移金属水酸化物粒子の表面に新たに粒子の核が生成される。
Next, the weak alkali treatment step will be described. The pH is adjusted to the range of 9 to 11 by adding an acidic aqueous solution to the reaction vessel or stopping the supply of the alkaline compound aqueous solution. The acidic aqueous solution is not particularly limited, but it is preferable to use an aqueous solution containing an anion bonded to the transition metal in the transition metal compound (for example, an aqueous solution of a sulfate of the transition metal is used). If so, use sulfuric acid, etc.).
Then, stirring is maintained for, for example, 1 hour or less (typically 10 minutes or less) while maintaining the pH range. By the treatment for such a time, new nuclei of particles are generated on the surface of the transition metal hydroxide particles.

次に、粒子成長工程について説明する。上記反応容器中を撹拌しながら、上記アルカリ化合物の水溶液を加えることにより、上記反応容器内のpHが11~13の範囲内になるように調整する。その後、上記反応容器を所定時間(例えば、0.5時間~1.5時間)撹拌したまま維持する。これにより、上記遷移金属水酸化物粒子および該遷移金属水酸化物粒子の表面に生成された粒子を成長させることができる。 Next, the particle growth process will be described. The pH in the reaction vessel is adjusted to be in the range of 11 to 13 by adding an aqueous solution of the alkaline compound while stirring the inside of the reaction vessel. Then, the reaction vessel is maintained with stirring for a predetermined time (for example, 0.5 hour to 1.5 hours). Thereby, the transition metal hydroxide particles and the particles generated on the surface of the transition metal hydroxide particles can be grown.

その後、吸引濾過等によって上記遷移金属水酸化物粒子を回収し、水洗後、乾燥を行う。これにより、ここで開示される正極活物質調製用材料を得ることができる。 Then, the transition metal hydroxide particles are collected by suction filtration or the like, washed with water, and then dried. Thereby, the material for preparing the positive electrode active material disclosed here can be obtained.

なお、析出工程および粒子成長工程において、反応容器中をpH11~13の範囲内に調整する際、かかる範囲内で維持するpHを変化させることにより、平均粒子径の異なる正極活物質調製用材料を製造することができる。 When adjusting the inside of the reaction vessel to the range of pH 11 to 13 in the precipitation step and the particle growth step, by changing the pH maintained within this range, a material for preparing a positive electrode active material having a different average particle diameter can be obtained. Can be manufactured.

次に、ここで開示される正極活物質調製用材料を用いた好適な正極活物質製造方法について説明する。 Next, a suitable method for producing a positive electrode active material using the material for preparing a positive electrode active material disclosed here will be described.

ここで開示される正極活物質製造方法は、図3に示すように、ここで開示される正極活物質調製用材料と、リチウム化合物とを混合する工程(以下、「混合工程S10」ともいう)と、かかる工程により混合された混合物を焼成する工程(以下、「焼成工程S20」ともいう)と、を包含する。 As shown in FIG. 3, the method for producing a positive electrode active material disclosed here is a step of mixing the material for preparing a positive electrode active material disclosed here with a lithium compound (hereinafter, also referred to as “mixing step S10”). And a step of firing the mixture mixed by such a step (hereinafter, also referred to as “firing step S20”).

まず、混合工程S10について説明する。かかる工程では、まず、ここで開示される正極活物質調製用材料と、リチウム化合物とを準備する。かかる正極活物質調製用材料は、例えば、上述した方法で準備することができる。リチウム化合物としては、例えば、炭酸リチウム、硝酸リチウム、水酸化リチウム等の焼成により酸化物に変換される化合物を用いることができる。 First, the mixing step S10 will be described. In this step, first, the material for preparing the positive electrode active material disclosed here and the lithium compound are prepared. Such a material for preparing a positive electrode active material can be prepared, for example, by the method described above. As the lithium compound, for example, a compound that is converted into an oxide by firing, such as lithium carbonate, lithium nitrate, and lithium hydroxide, can be used.

得られた遷移金属水酸化物粒子と、リチウム化合物とを、公知の混合装置(例、シェーカミキサ、Vブレンダ、リボンミキサ、ジュリアミキサ、レーディゲミキサ等)を用いて公知方法に従って混合することにより、混合物を得ることができる。
なお、正極活物質調製用材料とリチウム化合物との混合量については、所望する正極活物質に含まれるリチウムと遷移金属との元素比に従えばよい。
The obtained transition metal hydroxide particles and the lithium compound are mixed according to a known method using a known mixing device (eg, Shaka mixer, V blender, ribbon mixer, Julia mixer, Lady Gemixer, etc.) to obtain a mixture. Obtainable.
The mixing amount of the material for preparing the positive electrode active material and the lithium compound may be according to the elemental ratio of lithium and the transition metal contained in the desired positive electrode active material.

次に、焼成工程S20について説明する。得られた混合物の焼成は、例えば、バッチ式の電気炉、連続式の電気炉等を用いて行うことができる。焼成温度は、例えば400℃以上1000℃以下とし、で焼成時間は、例えば2時間以上10時間以下で実施することができる。 Next, the firing step S20 will be described. Firing of the obtained mixture can be performed using, for example, a batch type electric furnace, a continuous type electric furnace, or the like. The firing temperature may be, for example, 400 ° C. or higher and 1000 ° C. or lower, and the firing time may be, for example, 2 hours or more and 10 hours or less.

リチウムイオン二次電池100は、各種用途に利用可能である。例えば、車両に搭載されるモーター用の高出力動力源(駆動用電源)として好適に用いることができる。車両の種類は特に限定されないが、典型的には自動車、例えばプラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)等が挙げられる。リチウムイオン二次電池100は、複数個が電気的に接続された組電池の形態で使用することもできる。 The lithium ion secondary battery 100 can be used for various purposes. For example, it can be suitably used as a high-output power source (driving power source) for a motor mounted on a vehicle. The type of vehicle is not particularly limited, but typically examples thereof include automobiles, for example, plug-in hybrid automobiles (PHVs), hybrid automobiles (HVs), electric vehicles (EVs), and the like. The lithium ion secondary battery 100 can also be used in the form of an assembled battery in which a plurality of lithium ion secondary batteries 100 are electrically connected.

以上、ここで開示される正極活物質製造方法で製造される正極活物質を備えるリチウムイオン二次電池の一例として、扁平形状の捲回電極体を備えた角型の非水電解液リチウムイオン二次電池について説明した。しかしながら、これは一例に過ぎず限定されるものではない。例えば、捲回電極体の代わりに、シート状の正極とシート状の負極とがセパレータを介して交互に積層された積層電極体を備えたリチウムイオン二次電池であってもよい。また、電解質としてポリマー電解質を使用するポリマー電池であっても良い。また、角型電池ケースの代わりに、円筒型、コイン型等の形状の電池ケースを用いても良く、電池ケースの代わりにラミネートフィルムを用いたラミネート型二次電池であってもよい。 As described above, as an example of a lithium ion secondary battery provided with a positive electrode active material manufactured by the positive electrode active material manufacturing method disclosed herein, a square non-aqueous electrolytic solution lithium ion secondary battery provided with a flat wound electrode body. The next battery was explained. However, this is only an example and is not limited. For example, instead of the wound electrode body, a lithium ion secondary battery may be provided in which a laminated electrode body in which a sheet-shaped positive electrode and a sheet-shaped negative electrode are alternately laminated via a separator is provided. Further, a polymer battery using a polymer electrolyte as the electrolyte may be used. Further, a cylindrical battery case, a coin-shaped battery case, or the like may be used instead of the square battery case, or a laminated secondary battery using a laminated film instead of the battery case may be used.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 Hereinafter, examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in such examples.

<正極活物質の準備>
(例1~4)
硫酸ニッケル(NiSO)、硫酸コバルト(CoSO)、硫酸マンガン(MnSO)とが1:1:1のモル比となるようにイオン交換水に溶解し、原料溶液を調製した。また、アンモニア水および水酸化ナトリウム水溶液を準備した。
反応容器内にイオン交換水を加え、撹拌しながら反応容器内の雰囲気を不活性ガスで置換し、不活性雰囲気にした。次に、かかる反応容器内にNaOH水溶液を加え、pHを11~13の範囲となるように調整した。そして、かかる反応容器に上記原料溶液とアンモニア水を一定量ずつ滴下した。このとき、pHを上記範囲内に保持するため、NaOH水溶液を適宜加えた。上記原料溶液とアンモニア水の滴下しながら、0.5時間~1.5時間撹拌した。かかる撹拌後、NaOH水溶液の供給を停止することでpHを9~11の範囲となるように調整し、0.1分~10分の間撹拌を維持した。その後、NaOH水溶液の供給を再開し、再度pHを11~13の範囲となるように調整し、0.5時間~1.5時間撹拌を維持し、沈殿物を得た。かかる沈殿物を吸引濾過により回収し、イオン交換水で洗浄した後、40℃~80℃で6時間~8時間減圧乾燥して、正極活物質調製用材料として水酸化物粒子の粉末を得た。
なお、例1~4は、上記反応容器中をpH11~13の範囲でそれぞれ異なる値のpHで保持した。
<Preparation of positive electrode active material>
(Examples 1 to 4)
A raw material solution was prepared by dissolving nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ), and manganese sulfate (MnSO 4 ) in ion-exchanged water so as to have a molar ratio of 1: 1: 1. In addition, aqueous ammonia and aqueous sodium hydroxide solution were prepared.
Ion-exchanged water was added to the reaction vessel, and the atmosphere inside the reaction vessel was replaced with an inert gas while stirring to create an inert atmosphere. Next, an aqueous NaOH solution was added into the reaction vessel to adjust the pH to be in the range of 11-13. Then, the above raw material solution and ammonia water were added dropwise to the reaction vessel in fixed amounts. At this time, in order to keep the pH within the above range, an aqueous NaOH solution was appropriately added. The mixture was stirred for 0.5 to 1.5 hours while dropping the above raw material solution and aqueous ammonia. After such stirring, the pH was adjusted to be in the range of 9 to 11 by stopping the supply of the NaOH aqueous solution, and stirring was maintained for 0.1 to 10 minutes. Then, the supply of the NaOH aqueous solution was restarted, the pH was adjusted again in the range of 11 to 13, and stirring was maintained for 0.5 to 1.5 hours to obtain a precipitate. The precipitate was collected by suction filtration, washed with ion-exchanged water, and dried under reduced pressure at 40 ° C to 80 ° C for 6 to 8 hours to obtain a powder of hydroxide particles as a material for preparing a positive electrode active material. ..
In Examples 1 to 4, the inside of the reaction vessel was maintained at a pH of different values in the range of pH 11 to 13.

得られた水酸化物粒子の粉末と、炭酸リチウム(LiCO)とを、該水酸化物粒子に含まれるニッケル、コバルトおよびマンガンの合計に対するリチウムのモル比が1:1となるように乳鉢で混合した。混合物をアルミナ製のるつぼに移し、マッフル炉内で400℃~1000℃で2時間~10時間焼成した。このようにして、例1~4の正極活物質であるリチウム複合酸化物(LiNi1/3Co1/3Mn1/3:NCM)粒子を得た。 The obtained hydroxide particle powder and lithium carbonate (Li 2 CO 3 ) are mixed so that the molar ratio of lithium to the total of nickel, cobalt and manganese contained in the hydroxide particles is 1: 1. Mixed in a dairy pot. The mixture was transferred to an alumina crucible and fired in a muffle furnace at 400 ° C. to 1000 ° C. for 2 to 10 hours. In this way, lithium composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 : NCM) particles, which are the positive electrode active materials of Examples 1 to 4, were obtained.

(例5)
上記例1の水酸化物粒子の粉末を得る工程において、pHを9~11の範囲となるように調整する工程を実施しなかったこと以外は、同様の工程を行い、例5の正極活物質を得た。
(Example 5)
In the step of obtaining the powder of the hydroxide particles of Example 1 above, the same steps were carried out except that the step of adjusting the pH to be in the range of 9 to 11 was not carried out, and the positive electrode active material of Example 5 was carried out. Got

<評価用リチウムイオン二次電池の作製>
評価用リチウムイオン二次電池として、上記作製した正極活物質(NCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、NCM:AB:PVDF=87:10:3の質量比となるようにN-メチル-2-ピロリドン中で混合し、正極活物質層形成用ペーストを調製した。このペーストをオールグッド社製のフィルムアプリケーターを用いてアルミニウム箔集電体の両面に塗布し、80℃で5分間乾燥させることにより正極シートを作製した。
<Manufacturing of lithium-ion secondary battery for evaluation>
As the lithium ion secondary battery for evaluation, the positive electrode active material (NCM) produced above, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were used as NCM: AB: PVDF = 87. A paste for forming a positive electrode active material layer was prepared by mixing in N-methyl-2-pyrrolidone so as to have a mass ratio of: 10: 3. This paste was applied to both sides of an aluminum foil current collector using a film applicator manufactured by Allgood, and dried at 80 ° C. for 5 minutes to prepare a positive electrode sheet.

負極活物質として、天然黒鉛(C)と、バインダとしてのスチレンブタジエンラバー(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=96:2:2の質量比となるようにイオン交換水中で混合して、負極活物質層形成用ペーストを調製した。このペーストをオールグッド社製のフィルムアプリケーターを用いて銅箔集電体の両面に塗布し、80℃で5分間乾燥させることにより負極シートを作製した。 Natural graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener are used in a mass ratio of C: SBR: CMC = 96: 2: 2. A paste for forming a negative electrode active material layer was prepared by mixing in ion-exchanged water so as to be. This paste was applied to both sides of a copper foil current collector using a film applicator manufactured by Allgood, and dried at 80 ° C. for 5 minutes to prepare a negative electrode sheet.

また、セパレータシートとしてPP/PE/PPの三層構造を有する多孔性ポリオレフィンシートを用意した。 Further, as a separator sheet, a porous polyolefin sheet having a three-layer structure of PP / PE / PP was prepared.

作製した正極シートと負極シートと用意したセパレータシートとを重ね合わせ、捲回して円筒型の捲回電極体を作製した。作製した捲回電極体の正極シートと負極シートにそれぞれ電極端子を溶接により取り付け、注液口を有する電池ケースに収容した。 The prepared positive electrode sheet, the negative electrode sheet, and the prepared separator sheet were superposed and wound to prepare a cylindrical wound electrode body. Electrode terminals were attached to the positive electrode sheet and the negative electrode sheet of the manufactured wound electrode body by welding, respectively, and housed in a battery case having a liquid injection port.

次に、電池ケースの注液口から非水電解液を封入し、当該注液口を気密に封止した。なお、非水電解液として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。以上のようにして、各実施例および各比較例の評価用リチウムイオン二次電池を得た。 Next, the non-aqueous electrolytic solution was sealed from the injection port of the battery case, and the injection port was hermetically sealed. As a non-aqueous electrolytic solution, LiPF 6 as a supporting salt was added to a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3. The one dissolved at a concentration of 0.0 mol / L was used. As described above, a lithium ion secondary battery for evaluation of each Example and each Comparative Example was obtained.

<平均粒子径の測定>
上記作製した各例の正極活物質調製用材料それぞれに対してレーザー回折式粒度分布測定装置を用いてメジアン径(D50)を測定した。その結果を「原料粒子平均粒子径(μm)」として表1に示す。また、各例の正極活物質それぞれに対しても同様にメジアン径(D50)を測定した。その結果を「正極活物質平均粒子径(μm)」として表1に示す。
<Measurement of average particle size>
The median diameter (D50) was measured using a laser diffraction type particle size distribution measuring device for each of the positive electrode active material preparation materials prepared above. The results are shown in Table 1 as "raw material particle average particle size (μm)". In addition, the median diameter (D50) was measured in the same manner for each of the positive electrode active materials of each example. The results are shown in Table 1 as "average particle size of positive electrode active material (μm)".

<SEM像に基づく原料粒子の解析>
上記作製した各例の正極活物質調製材料(水酸化物粒子の粉末)それぞれのSEM像(倍率5000倍、15000倍)を取得した。かかるSEM像に基づき、原料粒子の粒子径に対する、該原料粒子の被覆部を構成する小粒子の平均粒子径の比を測定した。その結果を「原料粒子径に対する小粒子径の比」として表1に示す。
また、かかるSEM像に基づいて小粒子の平均アスペクト比を測定した。結果を「小粒子アスペクト比」として表1に示す。
<Analysis of raw material particles based on SEM image>
SEM images (magnification of 5000 times and 15000 times) of each of the positive electrode active material preparation materials (powder of hydroxide particles) of each of the above-mentioned prepared examples were obtained. Based on the SEM image, the ratio of the average particle size of the small particles constituting the coating portion of the raw material particles to the particle size of the raw material particles was measured. The results are shown in Table 1 as "ratio of small particle size to raw material particle size".
In addition, the average aspect ratio of the small particles was measured based on the SEM image. The results are shown in Table 1 as "small particle aspect ratio".

ここで開示される正極活物質調製用材料の代表的なSEM像として、例2の正極活物質調製材料を5000倍の倍率および15000倍の倍率で観察したSEM像をそれぞれ図4、5に示す。また、図6に例2の正極活物質調製用材料の15000倍の倍率で観察したときの断面SEM像を示す。
また、従来技術の代表例として、図7に例5の正極活物質調製用材料の15000倍の倍率で観察したSEM像を示す。
As typical SEM images of the positive electrode active material preparation material disclosed here, SEM images obtained by observing the positive electrode active material preparation material of Example 2 at a magnification of 5000 times and a magnification of 15000 times are shown in FIGS. 4 and 5, respectively. .. Further, FIG. 6 shows a cross-sectional SEM image when observed at a magnification of 15,000 times that of the material for preparing the positive electrode active material of Example 2.
Further, as a representative example of the prior art, FIG. 7 shows an SEM image observed at a magnification of 15,000 times that of the material for preparing the positive electrode active material of Example 5.

<活性化処理および初期放電容量の測定>
定電流―定電圧方式とし、上記作製した各評価用リチウムイオン二次電池を1/3Cの電流値で4.1Vまで定電流充電を行った後、電流値が1/50Cになるまで定電圧充電を行い、満充電状態にした。その後、各評価用リチウムイオン二次電池を1/3Cの電流値で3.0Vまで定電流放電した。このときの放電容量を初期放電容量とした。なお、かかる充放電の操作は25℃で行った。また、ここで「1C」とは、1時間でSOC(state of charge)を0%から100%まで充電できる電流の大きさのことをいう。
<Activation treatment and measurement of initial discharge capacity>
A constant current-constant voltage method is used, and after constant current charging of each evaluation lithium ion secondary battery manufactured above to 4.1 V with a current value of 1 / 3C, a constant voltage is applied until the current value becomes 1 / 50C. It was charged and fully charged. Then, each evaluation lithium ion secondary battery was constantly discharged to 3.0 V at a current value of 1 / 3C. The discharge capacity at this time was taken as the initial discharge capacity. The charge / discharge operation was performed at 25 ° C. Further, “1C” here means the magnitude of the current that can charge the SOC (state of charge) from 0% to 100% in one hour.

<初期抵抗測定>
上記活性化した各評価用リチウムイオン二次電池を、3.70Vの開放電圧に調整した。これを、25℃の温度環境下に置いた。1Cの電流値で10秒間放電し、電圧変化量ΔVを求めた。電流値とΔVを用いて電池抵抗を算出した。例5の評価用リチウムイオン二次電池の初期抵抗を1.00とした場合の、各実施例の評価用リチウムイオン二次電池の初期抵抗の比を求めた。結果を「初期抵抗」として表1に示す。
<Initial resistance measurement>
Each of the activated lithium ion secondary batteries for evaluation was adjusted to an open circuit voltage of 3.70 V. This was placed in a temperature environment of 25 ° C. Discharging was performed for 10 seconds at a current value of 1C, and the amount of voltage change ΔV was determined. Battery resistance was calculated using the current value and ΔV. The ratio of the initial resistance of the evaluation lithium ion secondary battery of each example was obtained when the initial resistance of the evaluation lithium ion secondary battery of Example 5 was 1.00. The results are shown in Table 1 as "initial resistance".

<サイクル容量維持率の測定>
上記活性化した各評価用リチウムイオン二次電池を60℃の環境下に置いた。各評価用リチウムイオン二次電池を2Cで4.2Vまで定電流充電を行った後、2Cで3.0Vまで定電流放電を行うことを1サイクルとして、200サイクル繰り返した。その後、200サイクル後の放電容量を上述した初期放電容量と同様の方法で測定した。そして、サイクル容量維持率(%)を以下の式1:
(200サイクル後の放電容量)/(初期放電容量)×100・・・式1
により算出した。結果を「サイクル容量維持率(%)」として表1に示す。
<Measurement of cycle capacity maintenance rate>
Each of the activated lithium ion secondary batteries for evaluation was placed in an environment of 60 ° C. Each evaluation lithium-ion secondary battery was charged at a constant current of 4.2 V at 2C, and then discharged at a constant current of 3.0 V at 2C, which was repeated for 200 cycles. Then, the discharge capacity after 200 cycles was measured by the same method as the above-mentioned initial discharge capacity. Then, the cycle capacity retention rate (%) is calculated by the following equation 1:
(Discharge capacity after 200 cycles) / (Initial discharge capacity) x 100 ... Equation 1
Calculated by The results are shown in Table 1 as "cycle capacity retention rate (%)".

Figure 2022090426000002
Figure 2022090426000002

図4、5に示されるように、例2の正極活物質調製用材料に含まれる原料粒子には、コア部表面の少なくとも一部に小粒子からなる被覆部が存在していた。図示はしていないが、例1、3、4においても同様に小粒子からなる被覆部を備えた原料粒子が観察された。 As shown in FIGS. 4 and 5, in the raw material particles contained in the material for preparing the positive electrode active material of Example 2, a coating portion composed of small particles was present on at least a part of the surface of the core portion. Although not shown, in Examples 1, 3 and 4, raw material particles having a coating portion composed of small particles were also observed.

表1に示すように、原料粒子の粒子径に対する、該原料粒子の被覆部を構成する小粒子の平均粒子径の比が10分の1以下である特徴を有する正極活物質調製用材料から製造された例1~4の正極活物質は、例5の正極活物質と比較して、リチウムイオン二次電池により優れたサイクル特性(サイクル容量維持率)を実現できることがわかる。さらに、例1~4では、例5よりも初期抵抗を低減させることがわかる。
さらに、原料粒子の平均粒子径が4μm以上6μm以下である例1および2においては、特に優れたサイクル特性および初期抵抗低減効果を実現できることがわかる。
したがって、ここで開示される正極活物質調製用材料によれば、リチウムイオン二次電池の初期抵抗を低減させ、優れたサイクル特性を付与する正極活物質を製造することができることがわかる。
As shown in Table 1, it is produced from a material for preparing a positive electrode active material having a characteristic that the ratio of the average particle size of the small particles constituting the coating portion of the raw material particles to the particle size of the raw material particles is 1/10 or less. It can be seen that the positive electrode active materials of Examples 1 to 4 can realize excellent cycle characteristics (cycle capacity retention rate) by the lithium ion secondary battery as compared with the positive electrode active materials of Example 5. Further, it can be seen that in Examples 1 to 4, the initial resistance is reduced as compared with Example 5.
Further, it can be seen that particularly excellent cycle characteristics and initial resistance reducing effect can be realized in Examples 1 and 2 in which the average particle size of the raw material particles is 4 μm or more and 6 μm or less.
Therefore, according to the material for preparing the positive electrode active material disclosed here, it can be seen that the positive electrode active material can be produced by reducing the initial resistance of the lithium ion secondary battery and imparting excellent cycle characteristics.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above.

20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極
52 正極集電体
52a 正極集電体露出部
54 正極活物質層
60 負極
62 負極集電体
62a 負極集電体露出部
64 負極活物質層
70 セパレータ
100 リチウムイオン二次電池
20 Winding electrode body 30 Battery case 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode 52 Positive electrode collector 52a Positive electrode current collector exposed part 54 Positive electrode active material layer 60 Negative electrode 62 Negative electrode collection Electrode 62a Negative electrode current collector Exposed part 64 Negative electrode active material layer 70 Separator 100 Lithium ion secondary battery

Claims (6)

リチウムイオン二次電池用の正極活物質調製用材料であって、
コア部と、該コア部の表面の少なくとも一部に存在する被覆部とを備える原料粒子を含み、
前記被覆部は、前記原料粒子のSEM像において、該原料粒子の粒子径の10分の1以下の平均粒子径を有する小粒子で構成されており、
ここで、前記コア部および前記小粒子は、Ni、Mn、Coからなる群から選択される少なくとも一種の金属元素を備えた遷移金属水酸化物を含む、
正極活物質調製用材料。
A material for preparing positive electrode active materials for lithium-ion secondary batteries.
Contains raw material particles comprising a core portion and a coating portion present on at least a portion of the surface of the core portion.
The covering portion is composed of small particles having an average particle size of 1/10 or less of the particle size of the raw material particles in the SEM image of the raw material particles.
Here, the core portion and the small particles include a transition metal hydroxide having at least one metal element selected from the group consisting of Ni, Mn, and Co.
Material for preparing positive electrode active material.
前記小粒子のSEM像に基づく平均アスペクト比は1.7以下である、請求項1に記載の正極活物質調製用材料。 The material for preparing a positive electrode active material according to claim 1, wherein the average aspect ratio of the small particles based on the SEM image is 1.7 or less. 前記原料粒子のSEM像において、前記被覆部が前記コア部の表面を10%以上占有した前記原料粒子を含む、請求項1または2に記載の正極活物質調製用材料。 The material for preparing a positive electrode active material according to claim 1 or 2, which comprises the raw material particles in which the covering portion occupies 10% or more of the surface of the core portion in the SEM image of the raw material particles. 前記原料粒子のレーザー回折・光散乱法に基づく平均粒子径は4μm以上6μm以下である、請求項1~3の何れか一項に記載の正極活物質調製用材料。 The material for preparing a positive electrode active material according to any one of claims 1 to 3, wherein the raw material particles have an average particle diameter of 4 μm or more and 6 μm or less based on a laser diffraction / light scattering method. 前記原料粒子の断面SEM像において、前記コア部よりも前記被覆部に含まれる前記小粒子の緻密性が高い、請求項1~4の何れか一項に記載の正極活物質調製用材料。 The material for preparing a positive electrode active material according to any one of claims 1 to 4, wherein the small particles contained in the covering portion have higher density than the core portion in the cross-sectional SEM image of the raw material particles. 請求項1~5の何れか一項に記載の正極活物質調製用材料と、リチウム化合物とを混合すること、および、
前記混合した混合物を焼成すること、
を包含する、正極活物質製造方法。

Mixing the material for preparing a positive electrode active material according to any one of claims 1 to 5 with a lithium compound, and
Firing the mixed mixture,
A method for producing a positive electrode active material, which comprises.

JP2020202820A 2020-12-07 2020-12-07 Materials for preparing positive electrode active materials and their uses Active JP7275094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020202820A JP7275094B2 (en) 2020-12-07 2020-12-07 Materials for preparing positive electrode active materials and their uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020202820A JP7275094B2 (en) 2020-12-07 2020-12-07 Materials for preparing positive electrode active materials and their uses

Publications (2)

Publication Number Publication Date
JP2022090426A true JP2022090426A (en) 2022-06-17
JP7275094B2 JP7275094B2 (en) 2023-05-17

Family

ID=81992550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020202820A Active JP7275094B2 (en) 2020-12-07 2020-12-07 Materials for preparing positive electrode active materials and their uses

Country Status (1)

Country Link
JP (1) JP7275094B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502332A (en) * 2007-10-29 2011-01-20 デジョン イーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode of lithium secondary battery including the same, and lithium secondary battery
JP2016033848A (en) * 2012-12-28 2016-03-10 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2018097137A1 (en) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 Transition metal-containing composite hydroxide and production method thereof, positive electrode active substance for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP2018095505A (en) * 2016-12-13 2018-06-21 住友金属鉱山株式会社 Composite hydroxide containing transition metal and process for manufacturing the same and cathode active material for non-aqueous electrolyte secondary battery and process for manufacturing the same
JP2019021423A (en) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP2019133881A (en) * 2018-02-01 2019-08-08 Jx金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery, and manufacturing method of positive electrode active material for lithium ion battery
JP2020027800A (en) * 2018-08-14 2020-02-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nickel based active material precursor for lithium secondary battery, manufacturing method the same, nickel based active material for lithium secondary battery formed from the same, and lithium secondary battery including positive electrode containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502332A (en) * 2007-10-29 2011-01-20 デジョン イーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode of lithium secondary battery including the same, and lithium secondary battery
JP2016033848A (en) * 2012-12-28 2016-03-10 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2018097137A1 (en) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 Transition metal-containing composite hydroxide and production method thereof, positive electrode active substance for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP2018095505A (en) * 2016-12-13 2018-06-21 住友金属鉱山株式会社 Composite hydroxide containing transition metal and process for manufacturing the same and cathode active material for non-aqueous electrolyte secondary battery and process for manufacturing the same
JP2019021423A (en) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP2019133881A (en) * 2018-02-01 2019-08-08 Jx金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery, and manufacturing method of positive electrode active material for lithium ion battery
JP2020027800A (en) * 2018-08-14 2020-02-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nickel based active material precursor for lithium secondary battery, manufacturing method the same, nickel based active material for lithium secondary battery formed from the same, and lithium secondary battery including positive electrode containing the same

Also Published As

Publication number Publication date
JP7275094B2 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP5650247B2 (en) Lithium ion secondary battery
JP2007257890A (en) Positive electrode material for nonaqueous lithium ion battery and battery using this
US11967700B2 (en) Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle and a rock salt layer
CN112054193A (en) Positive electrode material for secondary battery and secondary battery using the same
CN112242508A (en) Nonaqueous electrolyte secondary battery
CN112054190A (en) Positive electrode material for lithium secondary battery and lithium secondary battery using the same
CN112242509B (en) Nonaqueous electrolyte secondary battery
JP7235405B2 (en) Non-aqueous electrolyte secondary battery
JP2020202023A (en) Positive electrode of secondary battery, and secondary battery using the same
JP7275094B2 (en) Materials for preparing positive electrode active materials and their uses
CN113497232A (en) Positive electrode active material and secondary battery provided with same
JP2021018898A (en) Nonaqueous electrolyte secondary battery
US11923534B2 (en) Nonaqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids
JP7135040B2 (en) Positive electrode active material, manufacturing method thereof, and lithium ion secondary battery
EP4328188A1 (en) Particles convertible to lithium transition metal composite oxide and method for producing the same
JP7275092B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery comprising said positive electrode active material
JP7191071B2 (en) Positive electrode active material and secondary battery comprising the positive electrode active material
US11646420B2 (en) Positive electrode material of secondary battery, and secondary battery
JP2022090425A (en) Method for manufacturing cathode active material used for lithium ion secondary battery
JP2022065791A (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and usage thereof
JP2022065793A (en) Positive electrode active material and secondary battery provided with positive electrode active material
JP2014026990A (en) Lithium ion secondary battery
KR20230173030A (en) Positive electrode and nonaqueous electrolyte secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150