JP2016033848A - Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof Download PDF

Info

Publication number
JP2016033848A
JP2016033848A JP2012287875A JP2012287875A JP2016033848A JP 2016033848 A JP2016033848 A JP 2016033848A JP 2012287875 A JP2012287875 A JP 2012287875A JP 2012287875 A JP2012287875 A JP 2012287875A JP 2016033848 A JP2016033848 A JP 2016033848A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012287875A
Other languages
Japanese (ja)
Inventor
昌洋 木下
Masahiro Kinoshita
昌洋 木下
竜一 夏井
Ryuichi Natsui
竜一 夏井
名倉 健祐
Kensuke Nagura
健祐 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sanyo Electric Co Ltd
Original Assignee
Panasonic Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sanyo Electric Co Ltd filed Critical Panasonic Corp
Priority to JP2012287875A priority Critical patent/JP2016033848A/en
Priority to PCT/JP2013/007270 priority patent/WO2014103211A1/en
Publication of JP2016033848A publication Critical patent/JP2016033848A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery high in capacity and superior in charge and discharge cycle characteristics.SOLUTION: A positive electrode active material is in the form of particles and to be used for a nonaqueous electrolyte secondary battery. The positive electrode active material comprises: a LiMnO-LiMOsolid solution (M represents at least one selected from Co, Ni, Fe, Al, Mg, Ti, Cr, Zr, W, B, Nb, Sr, La, Ce, Sm and Mo); and a Ni-containing oxide. The ratio of Ni to Mn (Ni/Mn) on the particle surface is higher than that in the particle.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

特許文献1では、リチウム二次電池の高容量化及び低抵抗化を目的として、LiaMnxNiyCoz2(0<a≦1.2,0≦x≦1,0≦y≦1,0≦z≦1,x+y+z=1)で表される層状複合酸化物の一次粒子が凝集した二次粒子を有し、該二次粒子の外周部のCo含有率を内部のCo含有率よりも高くした正極活物質が開示されている。 In Patent Document 1, Li a Mn x Ni y Co z O 2 (0 <a ≦ 1.2, 0 ≦ x ≦ 1, 0 ≦ y ≦) for the purpose of increasing the capacity and reducing the resistance of a lithium secondary battery. The secondary particles in which the primary particles of the layered composite oxide represented by 1,0 ≦ z ≦ 1, x + y + z = 1) are aggregated, and the Co content in the outer peripheral portion of the secondary particles is defined as the internal Co content. A higher positive electrode active material is disclosed.

特許文献2,3では、複合酸化物粒子の少なくとも一部に設けられ、少なくともLi、Niを含む酸化物よりなる被覆層と、特定の金属元素を含む表面層とを備えた正極活物質が開示されている。   Patent Documents 2 and 3 disclose a positive electrode active material that is provided on at least a part of the composite oxide particles and includes a coating layer made of an oxide containing at least Li and Ni, and a surface layer containing a specific metal element. Has been.

特開2007−317585号公報JP 2007-317585 A 特開2007−242284号公報JP 2007-242284 A 特開2007−242318号公報JP 2007-242318 A

ところで、Li2MnO3−LiMO2固溶体を正極活物質に用いた場合は、エネルギー密度の向上が期待されるが、充電時に正極が高電位にさらされることで活物質表面における電解液の酸化と金属イオン(特にMnイオン)の還元が起こり易い。このため、Li2MnO3ドメイン中のMnイオンの価数が低下して、LiイオンサイトへのMnイオンの移動によるディスオーダーが発生し、電池性能の劣化を引き起こす一因となる。 By the way, when Li 2 MnO 3 —LiMO 2 solid solution is used as the positive electrode active material, an improvement in energy density is expected. However, when the positive electrode is exposed to a high potential during charging, the oxidation of the electrolyte on the active material surface Reduction of metal ions (especially Mn ions) is likely to occur. For this reason, the valence of Mn ions in the Li 2 MnO 3 domain is lowered, and disorder occurs due to the movement of Mn ions to the Li ion site, which causes deterioration of battery performance.

なお、かかる電池性能劣化の対策として、種々の酸化物、フッ化物、リン化物等による表面保護層の形成が提案されているが、これら保護層はLiイオンの吸蔵機能を有しておらず、エネルギー密度の低下や表面抵抗上昇の一因となる。   In addition, as a countermeasure for such battery performance deterioration, formation of a surface protective layer with various oxides, fluorides, phosphides, etc. has been proposed, but these protective layers do not have a Li ion storage function, This contributes to a decrease in energy density and an increase in surface resistance.

本発明に係る非水電解質二次電池用正極活物質は、Li2MnO3−LiMO2固溶体(MはNi、Co、Fe、Al、Mg、Ti、Cr、Zr、W、B、Nb、Sr、La、Ce、Sm、Moから選択される少なくとも1つ)と、Ni含有酸化物とを含み、粒子表面におけるNiとMnの比率(Ni/Mn)が、粒子内部におけるNi/Mnよりも高いことを特徴とする。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a Li 2 MnO 3 —LiMO 2 solid solution (M is Ni, Co, Fe, Al, Mg, Ti, Cr, Zr, W, B, Nb, Sr). , La, Ce, Sm, Mo) and a Ni-containing oxide, and the ratio of Ni to Mn (Ni / Mn) on the particle surface is higher than Ni / Mn inside the particle It is characterized by that.

本発明に係る非水電解質二次電池は、上記非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備えることを特徴とする。   A non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode including the positive electrode active material for a non-aqueous electrolyte secondary battery, a negative electrode, and a non-aqueous electrolyte.

本発明に係る正極活物質によれば、高容量で、充放電サイクル特性に優れた非水電解質二次電池を提供することができる。   The positive electrode active material according to the present invention can provide a non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle characteristics.

本発明の実施形態の一例である正極活物質粒子を示す図である。It is a figure which shows the positive electrode active material particle which is an example of embodiment of this invention. 本発明の実施形態の一例である正極活物質粒子を示す図である。It is a figure which shows the positive electrode active material particle which is an example of embodiment of this invention. 本発明の実施形態の一例である正極活物質粒子を示す図である。It is a figure which shows the positive electrode active material particle which is an example of embodiment of this invention.

以下、本発明の実施形態について詳細に説明する。
実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
Hereinafter, embodiments of the present invention will be described in detail.
The drawings referred to in the description of the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.

本発明の実施形態の一例である非水電解質二次電池は、粒子状の正極活物質(以下、「正極活物質粒子」という)を含む正極と、負極と、非水溶媒を含む非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池は、例えば、正極及び負極がセパレータを介して巻回されてなる電極体と、非水電解質とが外装体に収容された構造を有する。   A nonaqueous electrolyte secondary battery which is an example of an embodiment of the present invention includes a positive electrode including a particulate positive electrode active material (hereinafter referred to as “positive electrode active material particles”), a negative electrode, and a nonaqueous electrolyte including a nonaqueous solvent. With. A separator is preferably provided between the positive electrode and the negative electrode. The nonaqueous electrolyte secondary battery has, for example, a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator and a nonaqueous electrolyte are accommodated in an exterior body.

〔正極〕
正極は、例えば、金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、導電性を有する薄膜体、特にアルミニウムなどの正極の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルム等を用いることが好適である。正極活物質層は、正極活物質粒子の他に、導電材及び結着剤を含むことが好適である。
[Positive electrode]
The positive electrode includes, for example, a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector. As the positive electrode current collector, it is preferable to use a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, a film having a metal surface layer such as aluminum, and the like. The positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material particles.

正極活物質粒子は、Li2MnO3−LiMO2固溶体(Mは、Ni、Co、Fe、Al、Mg、Ti、Cr、Zr、W、B、Nb、Sr、La、Ce、Sm、Moから選択される少なくとも1つ)と、Ni含有酸化物とを含む。Mは、Ni及びCoの少なくとも一方を含むことが好ましく、Ni及びCo、又はNiのみであることが特に好ましい。Ni含有酸化物は、Niの他に、Liを含有を含有することが好ましく、Ni、Liに加えてCo及びMnの少なくとも一方を含有することがより好ましい。 The positive electrode active material particles are Li 2 MnO 3 —LiMO 2 solid solution (M is Ni, Co, Fe, Al, Mg, Ti, Cr, Zr, W, B, Nb, Sr, La, Ce, Sm, Mo. At least one selected) and a Ni-containing oxide. M preferably contains at least one of Ni and Co, and particularly preferably Ni and Co, or only Ni. The Ni-containing oxide preferably contains Li in addition to Ni, and more preferably contains at least one of Co and Mn in addition to Ni and Li.

さらに、上記Li2MnO3−LiMO2固溶体は、組成式LiαMnxNiy* (1-x-y)β(1.1<α<1.5、0.4≦x≦1.0、0<y≦0.6、1.9≦β≦2.0、M*はCo、Fe、Al、Mg、Ti、Cr、Zr、W、B、Nb、Sr、La、Ce、Sm、Moから選択される少なくとも1つ)で表されるものが好適である。 Furthermore, the Li 2 MnO 3 —LiMO 2 solid solution has a composition formula of Li α Mn x Ni y M * (1-xy) O β (1.1 <α <1.5, 0.4 ≦ x ≦ 1.0 , 0 <y ≦ 0.6, 1.9 ≦ β ≦ 2.0, M * is Co, Fe, Al, Mg, Ti, Cr, Zr, W, B, Nb, Sr, La, Ce, Sm, Those represented by at least one selected from Mo) are preferred.

上記Li2MnO3−LiMO2固溶体の結晶構造(主構造)は、六方晶系(空間群R−3m)である。また、Li2MnO3−LiMO2固溶体は、Mn−Li層内のMnイオンがLiイオンと共存しているだけでなく、六角網目構造を形成するように規則配列している。かかるMnイオンとLiイオンの六角網目規則配列に起因して、Li2MnO3−LiMO2固溶体の粉末X線回折パターンには、2θ=20〜25°付近に超格子構造に由来するピークが観測される。換言すると、結晶構造が六方晶系(空間群R−3m)であり、粉末X線回折パターンの2θ=20〜25°付近に超格子構造に由来するピークが観察される化合物は、Li2MnO3−LiMO2固溶体である。 The crystal structure (main structure) of the Li 2 MnO 3 —LiMO 2 solid solution is a hexagonal system (space group R-3m). The Li 2 MnO 3 —LiMO 2 solid solution is regularly arranged so that not only the Mn ions in the Mn—Li layer coexist with the Li ions but also form a hexagonal network structure. Due to the hexagonal network regular arrangement of Mn ions and Li ions, a peak derived from the superlattice structure is observed around 2θ = 20-25 ° in the powder X-ray diffraction pattern of the Li 2 MnO 3 —LiMO 2 solid solution. Is done. In other words, a compound having a crystal structure of hexagonal system (space group R-3m) and a peak derived from the superlattice structure in the vicinity of 2θ = 20 to 25 ° of the powder X-ray diffraction pattern is Li 2 MnO. 3- LiMO 2 solid solution.

なお、正極活物質は、本発明の目的を損なわない範囲で、上記Li2MnO3−LiMO2固溶体以外の他の金属酸化物等を混合物や固溶体の形で含んでいてもよい。但し、正極活物質において上記Li2MnO3−LiMO2固溶体は、正極活物質を構成する化合物の総体積に対して50体積%を超えることが好ましく、70体積%以上がより好ましく、90体積%以上が特に好ましい。 The positive electrode active material may contain a metal oxide other than the Li 2 MnO 3 —LiMO 2 solid solution in the form of a mixture or a solid solution as long as the object of the present invention is not impaired. However, the Li 2 MnO 3 —LiMO 2 solid solution in the positive electrode active material preferably exceeds 50% by volume, more preferably 70% by volume or more, and 90% by volume with respect to the total volume of the compounds constituting the positive electrode active material. The above is particularly preferable.

正極活物質粒子の体積平均粒子径は、例えば1〜30μmであり、好ましくは2〜15μm、より好ましくは3〜10μmである。ここで、体積平均粒子径(以下、「Dv50」とする)とは、粒子径分布において体積積算値が50%となる粒子径を意味する。正極活物質粒子のDv50は、水を分散媒として、レーザー回折散乱式測定装置(例えば、HORIBA製「LA-750」)を用いて測定することができる。   The volume average particle diameter of the positive electrode active material particles is, for example, 1 to 30 μm, preferably 2 to 15 μm, more preferably 3 to 10 μm. Here, the volume average particle diameter (hereinafter referred to as “Dv50”) means a particle diameter at which the volume integrated value is 50% in the particle diameter distribution. The Dv50 of the positive electrode active material particles can be measured using a laser diffraction scattering measurement apparatus (for example, “LA-750” manufactured by HORIBA) using water as a dispersion medium.

正極活物質粒子は、粒子表面におけるNiとMnの比率(Ni/Mn)が、粒子内部におけるNi/Mnよりも高いことを特徴とする。これにより、充電時に正極が高電位にさらされた場合であっても活物質表面における電解液の酸化と金属イオン、特にMnイオンの還元を抑制することができる。粒子表面におけるNi/Mnは、粒子内部におけるNi/Mnの2倍以上であることが好ましく、3倍以上がより好ましく、5倍以上が特に好ましく、9倍以上が最も好ましい。正極活物質粒子は、粒子表面にMnを有さない、又は粒子内部にNiを有さないものであってもよく、サイクル特性向上の観点において、かかる倍率の上限値は特に限定されない。   The positive electrode active material particles are characterized in that the ratio of Ni to Mn (Ni / Mn) on the particle surface is higher than Ni / Mn inside the particles. Thereby, even when the positive electrode is exposed to a high potential during charging, it is possible to suppress oxidation of the electrolytic solution and reduction of metal ions, particularly Mn ions, on the active material surface. Ni / Mn on the particle surface is preferably 2 times or more of Ni / Mn inside the particle, more preferably 3 times or more, particularly preferably 5 times or more, and most preferably 9 times or more. The positive electrode active material particles may have no Mn on the particle surface or Ni inside the particles, and the upper limit of the magnification is not particularly limited in terms of improving cycle characteristics.

図1に、実施形態の一例である正極活物質粒子の断面を示す。図1では、説明の便宜上、正極活物質粒子の具体的な形態を図示せず、極めて簡略化したものとしている。   In FIG. 1, the cross section of the positive electrode active material particle which is an example of embodiment is shown. In FIG. 1, for convenience of explanation, a specific form of the positive electrode active material particles is not illustrated, and is extremely simplified.

正極活物質粒子は、上記Li2MnO3−LiMO2固溶体から構成される母材粒子1と、母材粒子1の表面に形成された、上記Ni含有酸化物から構成される被覆層2とを有することが好適である。即ち、母材粒子1が正極活物質粒子の粒子内部を構成し、被覆層2が正極活物質粒子の粒子表面を構成している。そして、被覆層2のNi/Mnは、母材粒子1のNi/Mnよりも高い。具体的には、被覆層2のNi/Mnは、母材粒子1のNi/Mnの2倍以上であることが好ましく、3倍以上がより好ましく、5倍以上が特に好ましく、9倍以上が最も好ましい。 The positive electrode active material particles include a base material particle 1 composed of the Li 2 MnO 3 —LiMO 2 solid solution and a coating layer 2 composed of the Ni-containing oxide formed on the surface of the base material particle 1. It is suitable to have. That is, the base material particle 1 constitutes the inside of the positive electrode active material particle, and the coating layer 2 constitutes the particle surface of the positive electrode active material particle. And Ni / Mn of the coating layer 2 is higher than Ni / Mn of the base material particle 1. Specifically, Ni / Mn of the coating layer 2 is preferably 2 times or more of Ni / Mn of the base material particle 1, more preferably 3 times or more, particularly preferably 5 times or more, and more than 9 times. Most preferred.

被覆層2の最大厚みは、好ましくは10〜500nm、より好ましくは50〜400nm、特に好ましくは80〜300nmである。被覆層2は、母材粒子1の表面の略全域を覆って形成されることが好適であり、その厚みは層の全域に亘って略同等であることが好適である。即ち、被覆層2の平均厚みは、好ましくは10〜500nm、より好ましくは50〜400nm、特に好ましくは80〜300nmである。被覆層2の厚みは、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)を用いた断面観察により計測することができる。平均厚みは、任意の10点で計測した厚みの平均値とされる。   The maximum thickness of the coating layer 2 is preferably 10 to 500 nm, more preferably 50 to 400 nm, and particularly preferably 80 to 300 nm. The covering layer 2 is preferably formed so as to cover substantially the entire surface of the base material particle 1, and the thickness thereof is preferably substantially equal over the entire region of the layer. That is, the average thickness of the coating layer 2 is preferably 10 to 500 nm, more preferably 50 to 400 nm, and particularly preferably 80 to 300 nm. The thickness of the coating layer 2 can be measured by cross-sectional observation using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). The average thickness is an average value of thicknesses measured at arbitrary 10 points.

なお、母材粒子1のDv50は、例えば1〜30μmであり、好ましくは2〜15μm、より好ましくは3〜10μmである。正極活物質粒子から母材粒子1のDv50を求める場合は、正極活物質粒子のDv50を測定し、当該Dv50から被覆層2の平均厚みを差し引いて求めることができる。   In addition, Dv50 of the base material particle | grains 1 is 1-30 micrometers, for example, Preferably it is 2-15 micrometers, More preferably, it is 3-10 micrometers. When obtaining the Dv50 of the base material particle 1 from the positive electrode active material particles, it can be obtained by measuring the Dv50 of the positive electrode active material particles and subtracting the average thickness of the coating layer 2 from the Dv50.

図2は、実施形態の一例である正極活物質粒子の表面の一部を切除して、粒子表面及び粒子内部の様子を示している。   FIG. 2 shows a state of the particle surface and the inside of the particle by cutting away a part of the surface of the positive electrode active material particle as an example of the embodiment.

図2に示す正極活物質粒子では、多数の一次粒子3が集合して母材粒子1が形成されている。一次粒子3は、上記Li2MnO3−LiMO2固溶体から構成されることが好適である。母材粒子1は、例えば上記Li2MnO3−LiMO2固溶体の原料を混合・焼成して得られる一次粒子3が互いに固着して形成される。 In the positive electrode active material particles shown in FIG. 2, a large number of primary particles 3 are aggregated to form base material particles 1. The primary particles 3 are preferably composed of the Li 2 MnO 3 —LiMO 2 solid solution. The base material particle 1 is formed by, for example, primary particles 3 obtained by mixing and firing the raw materials of the Li 2 MnO 3 —LiMO 2 solid solution fixed to each other.

また、図2に示す正極活物質粒子では、母材粒子1よりも小さな粒子である被覆粒子4により被覆層2が形成されている。被覆粒子4は、母材粒子1を構成する一次粒子3よりも小さいことが好適であり、母材粒子1に固着される前において、Dv50が10〜200nm、好ましくは10〜150nm、より好ましくは10〜100nmである。   In the positive electrode active material particles shown in FIG. 2, the coating layer 2 is formed by the coating particles 4 that are smaller than the base material particles 1. The coated particle 4 is preferably smaller than the primary particle 3 constituting the base material particle 1, and before adhering to the base material particle 1, the Dv50 is 10 to 200 nm, preferably 10 to 150 nm, more preferably. 10-100 nm.

被覆粒子4は、Niを含有するリチウム含有金属酸化物から構成される。かかる酸化物の組成は、そのNi/Mnが母材粒子1のNi/Mnよりも高いものであれば特に限定されないが、Li、Niの他に、Co及びMnの少なくも一方を含有することが好適である。被覆粒子4は、例えばLiNixM21-x2(M2はCo、Mnの少なくとも一つを含む)や母材粒子1よりもNi含有率を高くした上記Li2MnO3−LiMO2固溶体から構成される。 The coated particle 4 is composed of a lithium-containing metal oxide containing Ni. The composition of the oxide is not particularly limited as long as the Ni / Mn is higher than the Ni / Mn of the base material particle 1, but contains at least one of Co and Mn in addition to Li and Ni. Is preferred. The coated particle 4 is made of, for example, LiNi x M2 1-x O 2 (M2 contains at least one of Co and Mn) or the above Li 2 MnO 3 —LiMO 2 solid solution having a higher Ni content than the base material particle 1. Composed.

図2に示す正極活物質粒子は、例えば母材粒子1の表面に被覆粒子4を固着させることで作製できる。被覆粒子4は、母材粒子1の表面の略全域を覆い、複数個が積層されて80〜300nm程度の被覆層2を形成する。   The positive electrode active material particles shown in FIG. 2 can be produced, for example, by fixing the covering particles 4 to the surfaces of the base material particles 1. The covering particles 4 cover substantially the entire surface of the base particle 1 and a plurality of the covering particles 4 are laminated to form the covering layer 2 having a thickness of about 80 to 300 nm.

母材粒子1の表面に被覆粒子4を固着させる方法としては、母材粒子1と被覆粒子4とを乾式混合する方法が好適である。かかる乾式混合は、市販の乾式混合装置を用いて行うことができる。混合時の温度は、特に限定されず、例えば室温(25℃)に設定される。好適な乾式混合装置の例としては、Retsch社製の「遊星ボールミル」、奈良機械製作所社製の「ハイブリダイゼーションシステム」、ホソカワミクロン社製の「ナノキュラ」、「ノビルタ」、「メカノフュージョン」などが挙げられる。なお、水、エタノールなどを溶媒とする湿式混合によっても母材粒子1の表面に被覆粒子4を固着させることができる。   As a method of fixing the covering particles 4 to the surface of the base material particles 1, a method of dry mixing the base material particles 1 and the covering particles 4 is suitable. Such dry mixing can be performed using a commercially available dry mixing apparatus. The temperature at the time of mixing is not specifically limited, For example, it sets to room temperature (25 degreeC). Examples of suitable dry mixing devices include “Planet Ball Mill” manufactured by Retsch, “Hybridization System” manufactured by Nara Machinery Co., Ltd., “Nanocula”, “Nobilta”, “Mechanofusion” manufactured by Hosokawa Micron. It is done. The coated particles 4 can be fixed to the surface of the base material particles 1 by wet mixing using water, ethanol or the like as a solvent.

母材粒子1と被覆粒子4の乾式混合により、被覆粒子4形状が略残らず、母材粒子1の表面に緻密な被覆層2を形成することもできる。例えば、粒子径の小さな被覆粒子4を用いて大きな機械的エネルギーを与えることにより、母材粒子1と被覆粒子4が、また被覆粒子4同士が強固に結合して被覆粒子4の粒子界面が残らない緻密な被覆層2を形成することができる。   By the dry mixing of the base material particle 1 and the covering particle 4, the shape of the covering particle 4 is not substantially left, and the dense covering layer 2 can be formed on the surface of the base material particle 1. For example, by applying large mechanical energy using the coated particle 4 having a small particle diameter, the base material particle 1 and the coated particle 4 and the coated particles 4 are firmly bonded to each other, and the particle interface of the coated particle 4 remains. A dense coating layer 2 can be formed.

図3は、実施形態の一例である正極活物質粒子の一部を断面図として示している。断面にはドットハッチングを付して、ドット密度が高いほどNi含有率が高いことを示す。   FIG. 3 shows a part of the positive electrode active material particles as an example of the embodiment as a cross-sectional view. The cross section is marked with dot hatching, and the higher the dot density, the higher the Ni content.

図3に示す正極活物質粒子は、粒子内部から粒子表面に近づくほど、Ni/Mnが段階的に高くなった粒子である。図3に示す例では、粒子の中心にNi/Mnが最も低い層L3が形成され、層L3の外側に層L3よりもNi/Mnが高い層L2、そして粒子の最表面にNi/Mnが最も高い層L1が形成されている。かかる正極活物質粒子は、例えばNi含有率の異なる化合物粒子を複数準備して順次乾式混合することにより作製できる。また、正極活物質粒子の表面は、本発明の目的を損なわない範囲で酸化アルミニウム(Al23)等の酸化物、リン酸化合物、ホウ酸化合物等の無機化合物の微粒子で覆われていてもよい。 The positive electrode active material particles shown in FIG. 3 are particles in which Ni / Mn increases stepwise as the particle surface approaches the particle surface. In the example shown in FIG. 3, Ni / Mn is the lowest layer L 3 is formed in the center of the particle, the layer L 2 is greater Ni / Mn than layer L 3 in the outer layer L 3, and the outermost surface of the particles A layer L 1 having the highest Ni / Mn is formed. Such positive electrode active material particles can be prepared, for example, by preparing a plurality of compound particles having different Ni contents and sequentially dry-mixing them. The surface of the positive electrode active material particles is covered with fine particles of an oxide such as aluminum oxide (Al 2 O 3 ), an inorganic compound such as a phosphoric acid compound, and a boric acid compound as long as the object of the present invention is not impaired. Also good.

上記導電材は、正極活物質層の電気伝導性を高めるために用いられる。導電材には、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が挙げられる。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。導電材の含有量は、正極活物質層の総質量に対して0質量%以上30質量%以下が好ましく、0質量%以上20質量%以下がより好ましく、0質量%以上10質量%以下が特に好ましい。   The conductive material is used to increase the electrical conductivity of the positive electrode active material layer. Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more. The content of the conductive material is preferably 0% by mass to 30% by mass with respect to the total mass of the positive electrode active material layer, more preferably 0% by mass to 20% by mass, and particularly preferably 0% by mass to 10% by mass. preferable.

上記結着剤は、正極活物質粒子及び導電材間の良好な接触状態を維持し、かつ正極集電体表面に対する正極活物質粒子等の結着性を高めるために用いられる。結着剤には、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ポリビニルアセテート、ポリメタクリレート、ポリアクリレート、ポリアクリロニトリル、ポリビニルアルコール、又はこれらの2種以上の混合物等が用いられる。結着剤は、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド等の増粘剤と併用されてもよい。結着剤の含有量は、正極活物質層の総質量に対して0質量%以上30質量%以下が好ましく、0質量%以上20質量%以下がより好ましく、0質量%以上10質量%以下が特に好ましい。   The binder is used to maintain a good contact state between the positive electrode active material particles and the conductive material and to increase the binding properties of the positive electrode active material particles and the like to the surface of the positive electrode current collector. As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, or a mixture of two or more thereof are used. The binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide. The content of the binder is preferably 0% by mass to 30% by mass, more preferably 0% by mass to 20% by mass, and more preferably 0% by mass to 10% by mass with respect to the total mass of the positive electrode active material layer. Particularly preferred.

上記構成を備えた正極の満充電状態での正極電位は、4.0V(vs.Li/Li+)以上の高電位とすることができる。正極の充電終止電位は、高容量化の観点から、4.5V(vs.Li/Li+)以上が好ましく、4.6V(vs.Li/Li+)以上がより好ましい。正極の充電終止電位の上限は、特に限定されないが、非水電解質の分解抑制等の観点から、5.0V(vs.Li/Li+)以下が好ましい。 The positive electrode potential in a fully charged state of the positive electrode having the above structure can be set to a high potential of 4.0 V (vs. Li / Li + ) or higher. The charge termination potential of the positive electrode is preferably 4.5 V (vs. Li / Li + ) or more, more preferably 4.6 V (vs. Li / Li + ) or more, from the viewpoint of increasing the capacity. The upper limit of the charge termination potential of the positive electrode is not particularly limited, but is preferably 5.0 V (vs. Li / Li + ) or less from the viewpoint of suppressing decomposition of the nonaqueous electrolyte.

〔負極〕
負極は、例えば、金属箔等の負極集電体と、負極集電体上に形成された負極活物質層とを備える。負極集電体には、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルム等を用いることが好適である。負極活物質層は、リチウムイオンを吸蔵・脱離可能な負極活物質の他に、結着剤を含むことが好適である。結着剤としては、正極の場合と同様にPTFE等を用いることもできるが、スチレン−ブタジエン共重合体又はこの変性体等を用いることが好ましい。結着剤は、CMC等の増粘剤と併用されてもよい。
[Negative electrode]
The negative electrode includes, for example, a negative electrode current collector such as a metal foil, and a negative electrode active material layer formed on the negative electrode current collector. As the negative electrode current collector, it is preferable to use a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, a film having a metal surface layer such as copper, or the like. The negative electrode active material layer preferably contains a binder in addition to the negative electrode active material capable of inserting and extracting lithium ions. As the binder, PTFE or the like can be used as in the case of the positive electrode, but it is preferable to use a styrene-butadiene copolymer or a modified body thereof. The binder may be used in combination with a thickener such as CMC.

上記負極活物質には、天然黒鉛、人造黒鉛、リチウム、珪素、炭素、錫、ゲルマニウム、アルミニウム、鉛、インジウム、ガリウム、リチウム合金、予めリチウムを吸蔵させた炭素並びに珪素、及びこれらの合金並びに混合物等を用いることができる。   Examples of the negative electrode active material include natural graphite, artificial graphite, lithium, silicon, carbon, tin, germanium, aluminum, lead, indium, gallium, lithium alloy, carbon and silicon in which lithium is previously occluded, and alloys and mixtures thereof. Etc. can be used.

〔非水電解質〕
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えば、エステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒として、各種溶媒の水素をフッ素等のハロゲン原子で置換したハロゲン置換体を用いてもよい。例えば、フッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、又はこれらの混合溶媒を使用できる。
[Non-aqueous electrolyte]
The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. The nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like. As the non-aqueous solvent, for example, esters, ethers, nitriles, amides, a mixed solvent of two or more thereof, and the like can be used. As the non-aqueous solvent, halogen-substituted products obtained by substituting hydrogen in various solvents with halogen atoms such as fluorine may be used. For example, a fluorinated cyclic carbonate, a fluorinated chain carbonate, or a mixed solvent thereof can be used.

上記エステル類の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン等のカルボン酸エステル類などが挙げられる。   Examples of the esters include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, Examples thereof include carboxylic acid esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone.

上記エーテル類の例としては、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,3−ジオキサン、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等の環状エーテル、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。   Examples of the ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl Ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, tri Examples thereof include chain ethers such as ethylene glycol dimethyl ether and tetraethylene glycol dimethyl.

上記ニトリル類の例としては、アセトニトリル等、上記アミド類の例としては、ジメチルホルムアミド等が挙げられる。   Examples of the nitriles include acetonitrile, and examples of the amides include dimethylformamide.

上記電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiCF3SO3、LiN(FSO22、LiN(C12l+1SO2)(Cm2m+1SO2)(l,mは1以上の整数)、LiC(CP2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(p,q,rは1以上の整数)、Li[B(C24)2](ビス(オキサレート)ホウ酸リチウム(LiBOB))、Li[B(C24)F2] 、Li[P(C24)F4]、Li[P(C24)22]、及びこれらの2種以上の混合物等が挙げられる。 The electrolyte salt is preferably a lithium salt. Examples of lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2) (l, m is an integer of 1 or more), LiC (C P F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) (p, q, r Is an integer of 1 or more), Li [B (C 2 O 4 ) 2 ] (bis (oxalate) lithium borate (LiBOB)), Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], Li [P (C 2 O 4 ) 2 F 2 ], and a mixture of two or more thereof.

〔セパレータ〕
セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィンが好適である。
[Separator]
As the separator, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric. As the material of the separator, polyolefin such as polyethylene and polypropylene is suitable.

以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these Examples.

<実施例1>
[母材粒子A1の作製]
硫酸ニッケル(NiSO4)、硫酸マンガン(MnSO4)をモル重量比1:3となるように水溶液中で混合し、共沈させることで前駆体物質である(Ni,Mn)(OH)2を得た。その後、この前駆体物質と水酸化リチウム一水和物(LiOH・H2O)をモル重量比1:1.5となるように混合し、この混合物を850℃で12時間焼成することによって、正極活物質の母材粒子A1を得た。
<Example 1>
[Preparation of base material particle A1]
Nickel sulfate (NiSO 4 ) and manganese sulfate (MnSO 4 ) are mixed in an aqueous solution so as to have a molar weight ratio of 1: 3, and coprecipitated to obtain (Ni, Mn) (OH) 2 as a precursor substance. Obtained. Thereafter, the precursor material and lithium hydroxide monohydrate (LiOH.H 2 O) were mixed at a molar weight ratio of 1: 1.5, and the mixture was calcined at 850 ° C. for 12 hours. Base material particles A1 of the positive electrode active material were obtained.

母材粒子A1を構成するリチウム含有遷移金属酸化物の結晶構造を、粉末X線回折法(リガク社製、粉末XRD測定装置RINT2200(線源Cu−Kα)を使用。以下同様。)により解析した。その結果、母材粒子A1を構成するリチウム含有遷移金属酸化物の結晶構造(主構造)は、六方晶(空間群R−3m)であった。また、2θ=20〜25°付近に超格子構造に由来するピークが観測された。 The crystal structure of the lithium-containing transition metal oxide constituting the base particles A1, the powder X-ray diffraction method (manufactured by Rigaku Corporation, using a powder XRD measuring apparatus RINT2200 (source Cu-K alpha). Forth.) Analysis did. As a result, the crystal structure (main structure) of the lithium-containing transition metal oxide composing the base material particle A1 was a hexagonal crystal (space group R-3m). In addition, a peak derived from the superlattice structure was observed in the vicinity of 2θ = 20 to 25 °.

母材粒子A1を構成するリチウム含有遷移金属酸化物の組成を、ICP発光分析(Thermo Fisher Scientific社製、ICP発光分光分析装置iCAP6300を使用。以下同様。)により解析した。その結果、母材粒子A1を構成するリチウム含有遷移金属酸化物の組成は、Li1.2Mn0.6Ni0.22であった。 The composition of the lithium-containing transition metal oxide constituting the base material particle A1 was analyzed by ICP emission analysis (Thermo Fisher Scientific, ICP emission spectroscopic analyzer iCAP6300 was used. The same applies hereinafter). As a result, the composition of the lithium-containing transition metal oxide constituting the base material particle A1 was Li 1.2 Mn 0.6 Ni 0.2 O 2 .

母材粒子A1は、多数の一次粒子が互いに固着して形成された球状の二次粒子であり、Dv50は約7μmであった。Dv50は、レーザー回折散乱式測定装置(HORIBA製、LA-750)を用いて測定した。   The base material particle A1 was a spherical secondary particle formed by adhering a large number of primary particles to each other, and Dv50 was about 7 μm. Dv50 was measured using a laser diffraction / scattering type measurement apparatus (manufactured by HORIBA, LA-750).

[被覆粒子B1の作製]
NiSO4、MnSO4をモル重量比1:1となるように水溶液中で混合して共沈させることで得た(Ni,Mn)(OH)2と、LiOH・H2Oをモル重量比1:1となるように混合した。この混合物を850℃で12時間焼成した後、遊星型ボールミル(Retsch社製、PM400)を用いてDv50が100nm以下となるまで粉砕することによって、正極活物質の被覆層を構成する被覆粒子B1を得た。
[Preparation of coated particle B1]
NiSO 4 and MnSO 4 were mixed in an aqueous solution so as to have a molar weight ratio of 1: 1 and coprecipitated, and (Ni, Mn) (OH) 2 and LiOH · H 2 O had a molar weight ratio of 1 : 1 to mix. The mixture was fired at 850 ° C. for 12 hours, and then crushed using a planetary ball mill (manufactured by Retsch, PM400) until Dv50 was 100 nm or less, whereby the coated particles B1 constituting the coating layer of the positive electrode active material were obtained. Obtained.

被覆粒子B1を構成するリチウム含有遷移金属酸化物の組成を、ICP発光分析により解析した。その結果、被覆粒子B1を構成するリチウム含有遷移金属酸化物の組成は、LiMn0.5Ni0.52であった。 The composition of the lithium-containing transition metal oxide constituting the coated particle B1 was analyzed by ICP emission analysis. As a result, the composition of the lithium-containing transition metal oxide constituting the coated particle B1 was LiMn 0.5 Ni 0.5 O 2 .

[正極活物質粒子C1の作製]
母材粒子A1と被覆粒子B1を乾式混合して正極活物質粒子C1を作製した。乾式混合工程の詳細は下記の通りである。
装置;転動型ボールミル(Retsch社製)
温度条件;25℃
混合時間;12時間
[Preparation of Positive Electrode Active Material Particle C1]
The base material particle A1 and the covering particle B1 were dry mixed to produce the positive electrode active material particle C1. Details of the dry mixing step are as follows.
Apparatus: Rolling ball mill (manufactured by Retsch)
Temperature condition: 25 ° C
Mixing time: 12 hours

SEMによる表面観察の結果、正極活物質粒子C1の表面は、多数の被覆粒子B1からなる被覆層で覆われており、母材粒子A1の表面の露出は確認できなかった。TEMによる正極活物質粒子C1の断面観察の結果、被覆層の平均厚みは約150nmであった。平均厚みは、任意の10点で計測した厚みの平均値とした。
正極活物質粒子C1の粒子表面(母材粒子A1)と粒子内部(被覆粒子B1)とのNi/Mnは以下の通りである。
粒子表面のNi/Mn=1.00
粒子内部のNi/Mn=0.33
(粒子表面のNi/Mn)/(粒子内部のNi/Mn)=約3
As a result of surface observation by SEM, the surface of the positive electrode active material particle C1 was covered with a coating layer composed of a large number of coating particles B1, and the exposure of the surface of the base material particle A1 could not be confirmed. As a result of cross-sectional observation of the positive electrode active material particles C1 by TEM, the average thickness of the coating layer was about 150 nm. The average thickness was an average value of thicknesses measured at arbitrary 10 points.
Ni / Mn of the particle surface (base material particle A1) of the positive electrode active material particle C1 and the inside of the particle (coating particle B1) is as follows.
Particle surface Ni / Mn = 1.00
Ni / Mn inside the particle = 0.33
(Ni / Mn on particle surface) / (Ni / Mn inside particle) = about 3

[試験セルD1の作製]
以下の手順により、図3に示す試験セルD1を作製した。
まず初めに、正極活物質粒子C1を正極活物質、アセチレンブラックを導電材、ポリフッ化ビニリデンを結着剤として、正極活物質、導電材、結着剤の質量比が80:10:10となるように混合し、N−メチル−2−ピロリドンを用いてスラリー化した。次に、このスラリーを正極集電体であるアルミニウム箔集電体上に塗布し、110℃で真空乾燥して作用極(正極)を作製した。
[Production of Test Cell D1]
The test cell D1 shown in FIG. 3 was produced by the following procedure.
First, using the positive electrode active material particles C1 as the positive electrode active material, acetylene black as the conductive material, and polyvinylidene fluoride as the binder, the mass ratio of the positive electrode active material, the conductive material, and the binder is 80:10:10. And slurried with N-methyl-2-pyrrolidone. Next, this slurry was applied on an aluminum foil current collector as a positive electrode current collector, and vacuum dried at 110 ° C. to produce a working electrode (positive electrode).

露点−50℃以下のドライエアー下で、上記作用極、対極(負極)、セパレータ、非水電解質、及びこれらを収容する外装体を用いて、非水電解質二次電池である試験セルD1を作製した。各構成要素の詳細は、以下の通りである。
対極;リチウム金属
セパレータ;ポリエチレン製セパレータ
非水電解質;エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)と を体積比が1:1となるように混合して非水溶媒を得た。当該非水溶媒に、電解質塩 として六フッ化リン酸リチウム(LiPF6)を1.0mol/lの濃度になるよう に溶解させて非水電解質を作製した。
A test cell D1 which is a non-aqueous electrolyte secondary battery is produced using the working electrode, the counter electrode (negative electrode), the separator, the non-aqueous electrolyte, and an exterior body that accommodates them under dry air with a dew point of −50 ° C. or less. did. Details of each component are as follows.
Counter electrode; Lithium metal separator; Polyethylene separator Nonaqueous electrolyte; Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1 to obtain a nonaqueous solvent. A nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in the nonaqueous solvent so as to have a concentration of 1.0 mol / l.

<実施例2>
被覆粒子B1の代わりに、組成がLiNi0.5Co0.2Mn0.32(Ni/Mn=1.67)である被覆粒子B2を用いた以外は、実施例1と同様にして正極活物質粒子C2及び試験セルD2を作製した。
<Example 2>
In the same manner as in Example 1, except that the coated particle B2 having a composition of LiNi 0.5 Co 0.2 Mn 0.3 O 2 (Ni / Mn = 1.67) was used instead of the coated particle B1, positive electrode active material particles C2 and Test cell D2 was produced.

<実施例3>
被覆粒子B1の代わりに、空間群Fd−3mに属し、組成がLiNi1.5Mn0.52(Ni/Mn=3)である被覆粒子B3を用いた以外は、実施例1と同様にして正極活物質粒子C3及び試験セルD3を作製した。
<Example 3>
In the same manner as in Example 1, except that the coated particle B3 belonging to the space group Fd-3m and having the composition LiNi 1.5 Mn 0.5 O 2 (Ni / Mn = 3) was used instead of the coated particle B1, the positive electrode active Material particles C3 and test cell D3 were prepared.

<実施例4>
被覆粒子B1の代わりに、組成がLiNi0.8Co0.22(Mnを含有せず)である被覆粒子B4を用いた以外は、実施例1と同様にして正極活物質粒子C4及び試験セルD4を作製した。
<Example 4>
Cathode active material particles C4 and test cells D4 were prepared in the same manner as in Example 1 except that coated particles B4 having a composition of LiNi 0.8 Co 0.2 O 2 (not containing Mn) were used instead of the coated particles B1. Produced.

<比較例1>
被覆層を形成しない以外は、実施例1と同様にして正極活物質粒子Y1(=母材粒子A1)及び試験セルZ1を作製した。
<Comparative Example 1>
A positive electrode active material particle Y1 (= base material particle A1) and a test cell Z1 were produced in the same manner as in Example 1 except that the coating layer was not formed.

<比較例2>
被覆粒子B1の代わりに、組成がLiNi0.1Co0.3Mn0.62(Ni/Mn=0.167)である被覆粒子X2を用いた以外は、実施例1と同様にして正極活物質粒子Y2及び試験セルZ2を作製した。
<Comparative Example 2>
In the same manner as in Example 1, except that the coated particle X2 having a composition of LiNi 0.1 Co 0.3 Mn 0.6 O 2 (Ni / Mn = 0.167) was used instead of the coated particle B1, positive electrode active material particles Y2 and Test cell Z2 was produced.

[サイクル特性の評価]
作製した非水電解質二次電池を、電池電圧が4.7Vに達するまで充電(0.2C)した後、電池電圧が2.0Vに達するまで放電(0.2C)することにより、電池の充放電容量(mAh)を測定した。なお、電池電圧4.7Vは、正極電位4.6V(vs.Li/Li+)に相当する。その後、上記充放電を繰り返し行い、充放電を繰り返すサイクル特性として、15サイクル後の放電容量を、1サイクル目の放電容量で除した値に100をかけて、容量維持率を評価した。
[Evaluation of cycle characteristics]
The prepared nonaqueous electrolyte secondary battery was charged (0.2 C) until the battery voltage reached 4.7 V, and then discharged (0.2 C) until the battery voltage reached 2.0 V, thereby charging the battery. The discharge capacity (mAh) was measured. The battery voltage 4.7V corresponds to a positive electrode potential 4.6V (vs. Li / Li + ). Thereafter, the above charge / discharge was repeated, and as the cycle characteristics for repeating charge / discharge, the capacity retention rate was evaluated by multiplying 100 by the value obtained by dividing the discharge capacity after 15 cycles by the discharge capacity at the first cycle.

表1に、実施例1〜4の試験セルD1〜D4、比較例1,2の試験セルZ1,Z2について、15サイクル後の容量維持率を示す。   Table 1 shows capacity retention rates after 15 cycles for test cells D1 to D4 of Examples 1 to 4 and test cells Z1 and Z2 of Comparative Examples 1 and 2.

Figure 2016033848
※母材粒子の組成;(1)Li1.2Mn0.6Ni0.22
※被覆粒子の組成;
(2)LiMn0.5Ni0.52
(3)LiNi0.5Co0.2Mn0.32
(4)LiNi1.5Mn0.52
(5)LiNi0.8Co0.22
(6)LiNi0.1Co0.3Mn0.62
Figure 2016033848
* Base material particle composition; (1) Li 1.2 Mn 0.6 Ni 0.2 O 2
* Composition of coated particles;
(2) LiMn 0.5 Ni 0.5 O 2
(3) LiNi 0.5 Co 0.2 Mn 0.3 O 2
(4) LiNi 1.5 Mn 0.5 O 2
(5) LiNi 0.8 Co 0.2 O 2
(6) LiNi 0.1 Co 0.3 Mn 0.6 O 2

表1より、実施例の試験セルD1〜D4は、比較例の試験セルZ1,Z2と比べて、15サイクル後の容量維持率が高く、サイクル特性に優れることが分かる。実施例の試験セルD1〜D4は、高容量化は期待できるもののサイクル特性に劣ることが知られていたLi2MnO3−LiMO2固溶体型正極活物質を用いた非水電解質二次電池において、課題であったサイクル特性の大幅な改善を実現したものである。 From Table 1, it can be seen that the test cells D1 to D4 of the examples have higher capacity retention ratios after 15 cycles and excellent cycle characteristics than the test cells Z1 and Z2 of the comparative examples. In the non-aqueous electrolyte secondary battery using the Li 2 MnO 3 —LiMO 2 solid solution positive electrode active material, the test cells D1 to D4 of the examples can be expected to have a high capacity but are inferior in cycle characteristics. This is a significant improvement in cycle characteristics, which was a problem.

実施例の試験セルD1〜D4に用いた正極活物質粒子C1〜C4では、粒子表面におけるNi/Mnを粒子内部におけるNi/Mnよりも高くする、具体的には正極活物質粒子の表面にNiリッチな被覆層を形成することにより、Li2MnO3−LiMO2固溶体のMnの還元を抑制することに成功した。これにより、正極が高電位にさらされた場合であっても、良好なサイクル特性が得られたものと考えられる。なお、Niリッチな被覆層は、Liイオンの吸蔵機能を有しているため、エネルギー密度の低下や表面抵抗の上昇といった弊害を生じさせない。 In the positive electrode active material particles C1 to C4 used in the test cells D1 to D4 of the examples, Ni / Mn on the particle surface is made higher than Ni / Mn inside the particle, specifically, Ni on the surface of the positive electrode active material particle By forming a rich coating layer, it succeeded in suppressing the reduction of Mn in the Li 2 MnO 3 —LiMO 2 solid solution. Thereby, it is considered that good cycle characteristics were obtained even when the positive electrode was exposed to a high potential. The Ni-rich coating layer has a Li ion occlusion function, and thus does not cause adverse effects such as a decrease in energy density and an increase in surface resistance.

かかる実施例の顕著な効果は、粒子表面におけるNi/Mnを粒子内部におけるNi/Mnよりも高くした場合にのみ得られ、粒子表面にNiが存在したとしても当該条件を満たさない場合には得られない(比較例2)。   The remarkable effect of this example can be obtained only when Ni / Mn on the particle surface is made higher than Ni / Mn inside the particle, and even when Ni is present on the particle surface, it is obtained when the condition is not satisfied. (Comparative Example 2).

なお、粒子内部におけるNi/Mnに対する粒子表面におけるNi/Mnの倍率が高くなるほどサイクル特性が向上する。サイクル特性向上の観点からいえば、当該倍率は、3倍(実施例1)よりも5倍(実施例2)、5倍よりも9倍以上(実施例3,4)であることが好ましい。   In addition, cycling characteristics improve, so that the magnification of Ni / Mn in the particle | grain surface with respect to Ni / Mn inside a particle | grain becomes high. From the viewpoint of improving cycle characteristics, the magnification is preferably 5 times (Example 2) rather than 3 times (Example 1) and 9 times or more (Examples 3 and 4) than 5 times.

1 母材粒子、2 被覆層、3 一次粒子、4 被覆粒子。   1 base material particle, 2 coating layer, 3 primary particle, 4 coating particle.

Claims (7)

非水電解質二次電池に用いられる粒子状の正極活物質であって、
Li2MnO3−LiMO2固溶体(MはNi、Co、Fe、Al、Mg、Ti、Cr、Zr、W、B、Nb、Sr、La、Ce、Sm、Moから選択される少なくとも1つ)と、
Ni含有酸化物と、
を含み、
粒子表面におけるNiとMnの比率(Ni/Mn)が、前記粒子内部におけるNi/Mnよりも高い非水電解質二次電池用正極活物質。
A particulate positive electrode active material used for a non-aqueous electrolyte secondary battery,
Li 2 MnO 3 —LiMO 2 solid solution (M is at least one selected from Ni, Co, Fe, Al, Mg, Ti, Cr, Zr, W, B, Nb, Sr, La, Ce, Sm, Mo) When,
A Ni-containing oxide;
Including
A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the ratio of Ni to Mn (Ni / Mn) on the particle surface is higher than that of Ni / Mn inside the particle.
請求項1に記載の非水電解質二次電池用正極活物質において、
前記粒子表面におけるNi/Mnは、前記粒子内部におけるNi/Mnの2倍以上である非水電解質二次電池用正極活物質。
The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1,
The positive electrode active material for a non-aqueous electrolyte secondary battery, wherein Ni / Mn on the particle surface is twice or more Ni / Mn inside the particle.
請求項1又は2に記載の非水電解質二次電池用正極活物質において、
前記Li2MnO3−LiMO2固溶体から構成される母材粒子と、
前記母材粒子の表面に形成された、前記Ni含有酸化物から構成される被覆層と、
を有し、
前記被覆層のNi/Mnが、前記母材粒子のNi/Mnよりも高い非水電解質二次電池用正極活物質。
In the positive electrode active material for nonaqueous electrolyte secondary batteries according to claim 1 or 2,
Base material particles composed of the Li 2 MnO 3 —LiMO 2 solid solution,
A coating layer formed of the Ni-containing oxide formed on the surface of the base material particles;
Have
A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein Ni / Mn of the coating layer is higher than Ni / Mn of the base material particles.
請求項1又は3に記載の非水電解質二次電池用正極活物質において、
前記Li2MnO3−LiM12固溶体は、LiαMnxNiy* (1-x-y)β(1.1<α<1.5、0.4≦x≦1.0、0<y≦0.6、1.9≦β≦2.0、M*はCo、Fe、Al、Mg、Ti、Cr、Zr、W、B、Nb、Sr、La、Ce、Sm、Moから選択される少なくとも1つ)で表される非水電解質二次電池用正極活物質。
In the positive electrode active material for nonaqueous electrolyte secondary batteries according to claim 1 or 3,
The Li 2 MnO 3 —LiM 1 O 2 solid solution is Li α Mn x Ni y M * (1-xy) O β (1.1 <α <1.5, 0.4 ≦ x ≦ 1.0, 0 <Y ≦ 0.6, 1.9 ≦ β ≦ 2.0, M * is from Co, Fe, Al, Mg, Ti, Cr, Zr, W, B, Nb, Sr, La, Ce, Sm, Mo A positive electrode active material for a non-aqueous electrolyte secondary battery represented by at least one selected.
請求項3又は4に記載の非水電解質二次電池用正極活物質において、
前記被覆層は、前記母材粒子よりも小さな粒子により形成される非水電解質二次電池用正極活物質。
In the positive electrode active material for nonaqueous electrolyte secondary batteries according to claim 3 or 4,
The coating layer is a positive electrode active material for a non-aqueous electrolyte secondary battery formed of particles smaller than the base material particles.
請求項1〜5のいずれか1項に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質と、を備える非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising: a positive electrode including the positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1; a negative electrode; and a nonaqueous electrolyte. 請求項6に記載の非水電解質二次電池において、
前記正極の充電終止電位は、4.5V以上5.0V以下(vs.Li/Li+)である非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 6,
The non-aqueous electrolyte secondary battery in which a charge end potential of the positive electrode is 4.5 V or more and 5.0 V or less (vs. Li / Li + ).
JP2012287875A 2012-12-28 2012-12-28 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof Pending JP2016033848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012287875A JP2016033848A (en) 2012-12-28 2012-12-28 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
PCT/JP2013/007270 WO2014103211A1 (en) 2012-12-28 2013-12-10 Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287875A JP2016033848A (en) 2012-12-28 2012-12-28 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof

Publications (1)

Publication Number Publication Date
JP2016033848A true JP2016033848A (en) 2016-03-10

Family

ID=51020335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287875A Pending JP2016033848A (en) 2012-12-28 2012-12-28 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof

Country Status (2)

Country Link
JP (1) JP2016033848A (en)
WO (1) WO2014103211A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021108945A1 (en) * 2019-12-02 2021-06-10 宁德时代新能源科技股份有限公司 Positive electrode sheet for rechargeable battery, rechargeable battery, battery module, battery pack, and device
CN114287073A (en) * 2019-08-30 2022-04-05 松下电器产业株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2022090426A (en) * 2020-12-07 2022-06-17 プライムプラネットエナジー&ソリューションズ株式会社 Cathode active material preparation material and utilization of them

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026650A1 (en) * 2016-08-02 2018-02-08 Apple Inc. Coated nickel-based cathode materials and methods of preparation
CN112820868B (en) * 2021-03-01 2022-04-12 合肥国轩高科动力能源有限公司 Coated nickel-cobalt-manganese ternary single crystal material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
JP5505608B2 (en) * 2008-09-10 2014-05-28 戸田工業株式会社 Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2012089249A (en) * 2010-10-15 2012-05-10 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2012094405A (en) * 2010-10-27 2012-05-17 Dainippon Printing Co Ltd Active material for nonaqueous electrolyte secondary battery, positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
KR101689212B1 (en) * 2011-12-07 2016-12-26 삼성에스디아이 주식회사 Positive active material for lithium secondary, method for preparing thereof, and lithium secondary battery containing the same
JP5822708B2 (en) * 2011-12-16 2015-11-24 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5966387B2 (en) * 2012-01-27 2016-08-10 トヨタ自動車株式会社 Lithium secondary battery, method for producing the same, and method for producing the positive electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287073A (en) * 2019-08-30 2022-04-05 松下电器产业株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2021108945A1 (en) * 2019-12-02 2021-06-10 宁德时代新能源科技股份有限公司 Positive electrode sheet for rechargeable battery, rechargeable battery, battery module, battery pack, and device
US11121362B2 (en) 2019-12-02 2021-09-14 Contemporary Amperex Technology Co., Limited Positive electrode sheet for secondary battery, secondary battery, battery module, battery pack, and apparatus
JP2022090426A (en) * 2020-12-07 2022-06-17 プライムプラネットエナジー&ソリューションズ株式会社 Cathode active material preparation material and utilization of them
JP7275094B2 (en) 2020-12-07 2023-05-17 プライムプラネットエナジー&ソリューションズ株式会社 Materials for preparing positive electrode active materials and their uses

Also Published As

Publication number Publication date
WO2014103211A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US10553862B2 (en) Positive electrode active material for secondary battery and secondary battery
US10916768B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11201328B2 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
JP7051312B2 (en) Manufacturing method of positive electrode active material, non-aqueous secondary battery, and positive electrode active material
JP5214202B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2017157548A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2007200862A (en) Nonaqueous electrolyte secondary battery
WO2014155988A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell using same
US20210288320A1 (en) Positive electrode material and secondary battery
JP7233011B2 (en) Positive electrode active material and secondary battery
JP6493406B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery
JP2023506113A (en) Positive electrode active material and electrochemical device
WO2019131234A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2014103211A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using same
JP6854460B2 (en) Non-aqueous electrolyte secondary battery
CN113825725B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP6508049B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing the same
WO2018123526A1 (en) Nonaqueous electrolyte secondary battery
WO2020203420A1 (en) Nonaqueous electrolyte secondary battery
US20230378460A1 (en) Cathode for lithium secondary battery, lithium secondary battery and method of preparing cathode active material for lithium secondary battery
JP2016033887A (en) Nonaqueous electrolyte secondary battery
JPWO2018123671A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2014110122A (en) Nonaqueous electrolytic secondary battery
WO2018123604A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell
WO2014083848A1 (en) Non-aqueous electrolyte secondary battery