JP6822067B2 - Electrolyzed manganese dioxide and its uses - Google Patents

Electrolyzed manganese dioxide and its uses Download PDF

Info

Publication number
JP6822067B2
JP6822067B2 JP2016213805A JP2016213805A JP6822067B2 JP 6822067 B2 JP6822067 B2 JP 6822067B2 JP 2016213805 A JP2016213805 A JP 2016213805A JP 2016213805 A JP2016213805 A JP 2016213805A JP 6822067 B2 JP6822067 B2 JP 6822067B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
particle size
electrolytic manganese
electrolytic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016213805A
Other languages
Japanese (ja)
Other versions
JP2018070421A (en
Inventor
三浦 比呂志
比呂志 三浦
和正 末次
和正 末次
孝之 庄司
孝之 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016213805A priority Critical patent/JP6822067B2/en
Publication of JP2018070421A publication Critical patent/JP2018070421A/en
Application granted granted Critical
Publication of JP6822067B2 publication Critical patent/JP6822067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電解二酸化マンガン及びそれの用途に関するものであり、より詳しくは、例えば、マンガン乾電池、特にアルカリマンガン乾電池において、正極活物質として使用される電解二酸化マンガン及びそれの用途に関する。 The present invention relates to electrolytic manganese dioxide and its uses, and more particularly to electrolytic manganese dioxide used as a positive electrode active material in manganese dry batteries, particularly alkaline manganese dry batteries, and its uses.

二酸化マンガンは、例えば、マンガン乾電池、特にアルカリマンガン乾電池の正極活物質として知られており、保存性に優れ、かつ安価であるという利点を有する。特に、二酸化マンガンを正極活物質として用いるアルカリマンガン乾電池は、ローレート放電からハイレート放電まで幅広い放電レートでの特性に優れていることから、電子カメラ、携帯用テープレコーダー、携帯情報機器、さらにはゲーム機や玩具にまで幅広く使用され、近年急速にその需要が伸びてきている。そのため、アルカリマンガン乾電池は何れの放電レートにおいても、より長い放電時間が求められ、より多くの活物質と電解液を電池内部に充填することでアルカリマンガン乾電池の放電容量の増加が図られている。 Manganese dioxide is known as, for example, a positive electrode active material for manganese dry batteries, particularly alkaline manganese dry batteries, and has the advantages of excellent storage stability and low cost. In particular, alkaline manganese dry batteries that use manganese dioxide as the positive electrode active material have excellent characteristics at a wide range of discharge rates from low-rate discharge to high-rate discharge, so they are electronic cameras, portable tape recorders, portable information devices, and even game machines. It is widely used in mobile phones and toys, and its demand has been increasing rapidly in recent years. Therefore, alkaline manganese dry batteries are required to have a longer discharge time at any discharge rate, and the discharge capacity of alkaline manganese dry batteries is increased by filling the inside of the battery with more active material and electrolytic solution. ..

その一方で、電池のサイズは規格により定められているため、規格化された容積に、より多くの活物質等を高密度に充填することが求められる。電池を作製する際に、二酸化マンガンはグラファイトなどの導電剤と共に混合、圧縮、成型され、正極活物質の成型体として乾電池内に導入される。そのため高密度な正極活物質の成型体を得るためには高い充填性を有する二酸化マンガンが求められてきた。 On the other hand, since the size of the battery is determined by the standard, it is required to fill the standardized volume with more active materials at high density. When manufacturing a battery, manganese dioxide is mixed, compressed, and molded together with a conductive agent such as graphite, and introduced into the dry battery as a molded body of a positive electrode active material. Therefore, manganese dioxide having a high filling property has been required in order to obtain a molded body of a high-density positive electrode active material.

これまで、電解二酸化マンガンの充填性を高める技術として、粒子内部の密度を高めた二酸化マンガンとして、例えば、リチウム二次電池用正極活物質の原料用ではあるが、易粉砕性と共に粒子密度の高い電解二酸化マンガンが提案されている(特許文献1)。また、大粒径の黒鉛との組合せで平均粒径が30μm以上70μm以下の範囲の二酸化マンガンが正極合剤の特性を高めることが提案されている(特許文献2)。上記の様に二酸化マンガン粒子の内部密度を高める方法や、導電剤との組合せで充填性を向上させる技術が提案されてきた。 So far, as a technique for improving the filling property of electrolytic manganese dioxide, manganese dioxide having an increased density inside particles, for example, for a raw material of a positive electrode active material for a lithium secondary battery, has high particle density as well as easy pulverization. Electrolyzed manganese dioxide has been proposed (Patent Document 1). Further, it has been proposed that manganese dioxide having an average particle size of 30 μm or more and 70 μm or less enhances the characteristics of the positive electrode mixture in combination with graphite having a large particle size (Patent Document 2). As described above, a method for increasing the internal density of manganese dioxide particles and a technique for improving the filling property in combination with a conductive agent have been proposed.

しかしながら、上記特徴を有する二酸化マンガンも、二酸化マンガン粒子の充填性が十分ではないため、正極合剤としての充填性が満足すべきものに達していなかった。そのため、より充填性の高い二酸化マンガンが望まれていた。 However, even with manganese dioxide having the above characteristics, the filling property of the manganese dioxide particles is not sufficient, so that the filling property as a positive electrode mixture has not reached a satisfactory level. Therefore, manganese dioxide having a higher filling property has been desired.

特開2013−177293号公報Japanese Unexamined Patent Publication No. 2013-177293 特開2009−224077号公報Japanese Unexamined Patent Publication No. 2009-224077

本発明の目的は、マンガン乾電池、特にアルカリマンガン乾電池の正極活物質として使用される、充填性の高い電解二酸化マンガンであって、従来とは粒度分布が異なる充填性の高い電解二酸化マンガン及びそれの用途を提供するものである。 An object of the present invention is a highly filling electrolytic manganese dioxide used as a positive electrode active material for a manganese dry battery, particularly an alkaline manganese dry battery, which has a different particle size distribution from the conventional one and has a highly filling electrolytic manganese dioxide. It provides a use.

本発明者らは、マンガン乾電池、特にアルカリマンガン乾電池の正極活物質として使用される電解二酸化マンガンについて鋭意検討を重ねた結果、特定の粒度分布を有する電解二酸化マンガンの充填性が優れることを見出し、本発明を完成するに至った。すなわち、本発明は、ロジン・ラムラー分布で表示した粒度分布における均等数が1.00以上1.95以下で、かつ粒度特性値が30μm以上70μm以下であることを特徴する電解二酸化マンガンである。 As a result of diligent studies on electrolytic manganese dioxide used as a positive electrode active material for manganese dry batteries, especially alkaline manganese dry batteries, the present inventors have found that electrolytic manganese dioxide having a specific particle size distribution is excellent in filling property. The present invention has been completed. That is, the present invention is electrolytic manganese dioxide characterized in that the uniform number in the particle size distribution represented by the rosin-ramler distribution is 1.00 or more and 1.95 or less, and the particle size characteristic value is 30 μm or more and 70 μm or less.

以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明の電解二酸化マンガンは、ロジン・ラムラー分布で表示した粒度分布の均等数が1.00以上1.95以下で、かつ粒度特性値が30μm以上70μm以下である。ここに、ロジン・ラムラー(Rosin−Rammler)分布とは、粉砕粒子の粒度分布を表す関数であり、以下の式(1)で表される。 The electrolytic manganese dioxide of the present invention has a uniform number of particle size distributions displayed in the rosin-ramler distribution of 1.00 or more and 1.95 or less, and a particle size characteristic value of 30 μm or more and 70 μm or less. Here, the rosin-rammler distribution is a function representing the particle size distribution of the pulverized particles, and is represented by the following equation (1).

R(D)=exp[−(D/De)] (1)
式(1)において、Dは粒子径、R(D)は粒子径Dにおけるふるい上体積分率、Deは粒度特性値、nは均等数を示す。
R (D) = exp [-(D / De) n ] (1)
In the formula (1), D is the particle size, R (D) is the sieve upper volume fraction at the particle size D, De is the particle size characteristic value, and n is an equal number.

均等数nは粒度分布の広がりを表す係数で、nが小さいほど分布幅が広くなる。また、粒度特性値DeはR(D)が0.368における粒子径である。 The equal number n is a coefficient representing the spread of the particle size distribution, and the smaller n is, the wider the distribution width is. The particle size characteristic value De is the particle size when R (D) is 0.368.

また、ふるい上体積分率R(D)は式(2)から求める。式(2)のふるい下体積分率F(D)は粒度分布測定で求められる体積累積分布のことを指す。 Further, the sieve upper volume fraction R (D) is obtained from the equation (2). The sieve lower volume fraction F (D) of the formula (2) refers to the volume cumulative distribution obtained by the particle size distribution measurement.

R(D)=1−F(D) (2)
実際には測定した体積累積分布(ふるい下体積分率F(D))の値を用いて、式(1)(2)から均等数nおよび粒度特性値Deを求める。
R (D) = 1-F (D) (2)
Actually, the equal number n and the particle size characteristic value De are obtained from the equations (1) and (2) using the measured volume cumulative distribution (sieving volume fraction F (D)).

ロジン・ラムラー分布で表示した粒度分布の均等数が1.00未満であると分布幅が広くなりすぎて、粒子の流動性が低下し移送が困難であり、1.95を超えると粒度分布幅が狭くなりすぎて粒子充填の際に大きな粒子の間に充填される小さい粒子が不足して低充填性である。粒度特性値が30μm未満であると粒子全体を小さくするために高コストな粉砕が必要であり、70μmを超えると粒子全体が大きくなりすぎて低充填性である。より充填性の優れた電解二酸化マンガンとなるため、均等数が1.00以上1.40以下であることが好ましく、粒度特性値が30μm以上60μm以下であることが好ましい。 If the equal number of the particle size distribution displayed by the Rosin-Ramler distribution is less than 1.00, the distribution width becomes too wide, the fluidity of the particles decreases, and transfer is difficult. If it exceeds 1.95, the particle size distribution width Is too narrow and there are not enough small particles to be filled between the large particles during particle packing, resulting in low filling properties. If the particle size characteristic value is less than 30 μm, high-cost pulverization is required to reduce the size of the entire particle, and if it exceeds 70 μm, the entire particle becomes too large and the filling property is low. The uniform number is preferably 1.00 or more and 1.40 or less, and the particle size characteristic value is preferably 30 μm or more and 60 μm or less in order to obtain electrolytic manganese dioxide having more excellent filling property.

上記の特徴を有する電解二酸化マンガンが優れた充填性を有する理由は以下のように推測される。 The reason why electrolytic manganese dioxide having the above characteristics has excellent filling property is presumed as follows.

通常、粒子が一定容積内に充填される場合、理想的な球状粒子でかつ均一粒径の場合は、粒子間の空隙のため、例えば、六方細密充填では粒子の充填率は74%となる。実際の粒子の場合は、大きな粒子の間に小さな粒子が充填されることで充填率が大きくなるが、粒子の形骸が一定ではなく、粒子のサイズにも幅があるため、充填性に優れる粒度分布は粉体により著しく異なる。そのため、電解二酸化マンガンの場合、均等数が1.00以上1.95以下、かつ粒度特性値が30μm以上70μm以下を満たすことで、大きな粒子の粒子間をより小さな粒子で効率的に充填可能となり、優れた充填性となると推測される。 Normally, when the particles are packed within a certain volume, in the case of ideal spherical particles and a uniform particle size, the filling rate of the particles is 74% in, for example, hexagonal fine packing due to the voids between the particles. In the case of actual particles, the filling rate is increased by filling small particles between large particles, but the particle size is excellent because the skeleton of the particles is not constant and the size of the particles varies. The distribution varies significantly depending on the powder. Therefore, in the case of electrolytic manganese dioxide, by satisfying the uniform number of 1.00 or more and 1.95 or less and the particle size characteristic value of 30 μm or more and 70 μm or less, it becomes possible to efficiently fill the space between large particles with smaller particles. , It is presumed that the filling property will be excellent.

本発明の電解二酸化マンガンは、BET比表面積は10m/g以上40m/g以下であることが好ましく、20m/g以上30m/g以下であることがより好ましい。BET比表面積を上記範囲とすることで、粒子内部がより高密度で充填性の高い電解二酸化マンガンとすることができる。 The electrolytic manganese dioxide of the present invention preferably has a BET specific surface area of 10 m 2 / g or more and 40 m 2 / g or less, and more preferably 20 m 2 / g or more and 30 m 2 / g or less. By setting the BET specific surface area within the above range, electrolytic manganese dioxide having a higher density inside the particles and higher filling property can be obtained.

本発明の電解二酸化マンガンは、結晶性についてはCuKα線を光源とするXRD測定による(110)面の半値幅が1.8°以上2.2°未満が好ましく、1.9°以上2.1°以下がより好ましい。(110)面の半価幅を上記の範囲とすることで、放電反応の際の[H]拡散に適した電解二酸化マンガンとすることができる。 Regarding the crystallinity of the electrolytic manganese dioxide of the present invention, the half width of the (110) plane measured by XRD using CuKα ray as a light source is preferably 1.8 ° or more and less than 2.2 °, and 1.9 ° or more and 2.1. More preferably ° or less. By setting the half-value width of the (110) plane to the above range, electrolytic manganese dioxide suitable for [H + ] diffusion during a discharge reaction can be obtained.

本発明の電解二酸化マンガンは、アルカリ電位については270mV以上310mV未満であることが好ましく、290mV以上310mV未満であることがより好ましい。アルカリ電位を上記の範囲とすることで、アルカリマンガン乾電池の正極材料に用いた場合、電池の放電電圧が上昇し、使用可能な放電電圧下限までの放電時間を長くすることができる。 The electrolytic manganese dioxide of the present invention preferably has an alkaline potential of 270 mV or more and less than 310 mV, and more preferably 290 mV or more and less than 310 mV. By setting the alkaline potential in the above range, when used as a positive material for an alkaline manganese dry battery, the discharge voltage of the battery rises, and the discharge time to the lower limit of the usable discharge voltage can be lengthened.

本発明の電解二酸化マンガンは、マイクロビッカース硬度が400HV(JIS Z 2244)以上の硬度を有する原料を粉砕可能で、20kW以上150kW以下のミルモーターを有するローラーミルで粉砕することによって製造することができ、コストや耐久性に優れ、工業的な使用に適している。ローラーミルとしては、例えば、遠心式ローラーミル、竪型のロッシェミル等が挙げられる。 The electrolytic manganese dioxide of the present invention can be produced by pulverizing a raw material having a micro Vickers hardness of 400 HV (JIS Z 2244) or more with a roller mill having a mill motor of 20 kW or more and 150 kW or less. , Excellent in cost and durability, suitable for industrial use. Examples of the roller mill include a centrifugal roller mill and a vertical roche mill.

また、ローラーミルで粉砕した電解二酸化マンガンに、粒径がより小さい電解二酸化マンガンを混合することにより、所望の均等数、粒度特性値とすることもできる。粒径がより小さい二酸化マンガンの混合量はローラーミルで粉砕した電解二酸化マンガンの重量を上回らない量を混合し、トータルの重量%で10重量%以上40重量%以下が好ましい。混合の方法は乾式での混合がコスト的に好ましく、湿式での混合は混合スラリーのpHを2.5以上6.5以下とすることで、1μm以下の微粒子をより大きい粒子の表面に凝集させ、微粒子による作業性の低下が改善されるため、より好ましい。また、均等数、粒度特性値は粉砕後の分級により調整してもよく、乾式での気流分級や湿式での分散分級により調整することもできる。 Further, by mixing electrolytic manganese dioxide having a smaller particle size with electrolytic manganese dioxide pulverized by a roller mill, a desired equal number and particle size characteristic value can be obtained. The mixing amount of manganese dioxide having a smaller particle size is preferably 10% by weight or more and 40% by weight or less in total weight% by mixing an amount not exceeding the weight of electrolytic manganese dioxide crushed by a roller mill. As a mixing method, dry mixing is preferable in terms of cost, and wet mixing is performed by setting the pH of the mixed slurry to 2.5 or more and 6.5 or less so that fine particles of 1 μm or less are aggregated on the surface of larger particles. , It is more preferable because the decrease in workability due to fine particles is improved. Further, the uniform number and the particle size characteristic value may be adjusted by the classification after pulverization, or may be adjusted by the air flow classification in the dry method or the dispersion classification in the wet method.

電解電流密度は、0.2A/dm以上0.7A/dm未満とすることができる。生産性とBET比表面積、結晶性、アルカリ電位の観点から、電解電流密度は0.29A/dm以上0.45A/dm以下であることが好ましく、0.29A/dm以上0.40A/dm以下であることがより好ましい。 The electrolytic current density can be 0.2 A / dm 2 or more and less than 0.7 A / dm 2 . From the viewpoint of productivity, BET specific surface area, crystallinity, and alkaline potential, the electrolytic current density is preferably 0.29 A / dm 2 or more and 0.45 A / dm 2 or less, and 0.29 A / dm 2 or more and 0.40 A. More preferably, it is / dm 2 or less.

電解温度は、電流効率を維持することで製造効率を維持し、電解液の蒸発を抑制して、加熱コストの増加を防止するため、90℃以上99℃以下で行うことが好ましい。電解温度は電流効率と加熱コストの観点から、93℃以上97℃以下がより好ましく、95℃以上97℃未満がさらに好ましい。 The electrolysis temperature is preferably 90 ° C. or higher and 99 ° C. or lower in order to maintain the production efficiency by maintaining the current efficiency, suppress the evaporation of the electrolytic solution, and prevent an increase in the heating cost. From the viewpoint of current efficiency and heating cost, the electrolysis temperature is more preferably 93 ° C. or higher and 97 ° C. or lower, and further preferably 95 ° C. or higher and lower than 97 ° C.

電解槽内の電解液には硫酸−硫酸マンガン混合溶液を使用する。なお、ここでいう硫酸濃度とは、硫酸マンガンの硫酸イオンは除いた値である。電解液中の硫酸は、硫酸濃度として制御され、電解期間中の硫酸濃度を一定にすることができるし、電解期間中に硫酸濃度を任意に変えることもでき、特に、電解終了時の硫酸濃度を電解開始時の硫酸濃度よりも高く制御することができる。この場合の電解期間中又は電解開始時の硫酸濃度としては、25g/L以上40g/L以下が好ましく、28g/L以上38g/L以下がより好ましい。また、電解終了時の硫酸濃度としては、32g/L以上55g/L以下が好ましく、40g/Lを超え45g/L以下がより好ましい。このように硫酸濃度を任意に変えることにより、前半に比較的低濃度の硫酸濃度で電解することで、電極基材への腐食ダメージを軽減し結晶性が高く高充填性の二酸化マンガンを得やすく、後半に比較的高濃度の硫酸濃度で電解することにより、既に電解二酸化マンガン析出層に覆われているため電極基材がより腐食ダメージを受け難く、さらに前半の特徴に加え更に電位が高まり、放電特性に優れた電解二酸化マンガンが得られ易くなる。また、電解開始から電解終了まで電解中の硫酸濃度を徐々に変化させるのではなく、電解の前半と後半で硫酸濃度を切替えることが好ましい。前半の電解と、後半の電解の比率に制限はないが、例えば低硫酸濃度と高硫酸濃度での電解時間の比が1:9〜9:1、特に3:7〜7:3の範囲が好ましい。 A sulfuric acid-manganese sulfate mixed solution is used as the electrolytic solution in the electrolytic cell. The sulfuric acid concentration referred to here is a value excluding the sulfate ion of manganese sulfate. Sulfuric acid in the electrolytic solution is controlled as the sulfuric acid concentration, the sulfuric acid concentration can be kept constant during the electrolytic period, and the sulfuric acid concentration can be arbitrarily changed during the electrolytic period. In particular, the sulfuric acid concentration at the end of the electrolysis. Can be controlled to be higher than the sulfuric acid concentration at the start of electrolysis. In this case, the sulfuric acid concentration during the electrolysis period or at the start of electrolysis is preferably 25 g / L or more and 40 g / L or less, and more preferably 28 g / L or more and 38 g / L or less. The sulfuric acid concentration at the end of electrolysis is preferably 32 g / L or more and 55 g / L or less, and more preferably 40 g / L or more and 45 g / L or less. By arbitrarily changing the sulfuric acid concentration in this way, electrolysis at a relatively low sulfuric acid concentration in the first half reduces corrosion damage to the electrode substrate, making it easier to obtain highly crystalline and highly fillable manganese dioxide. By electrolyzing with a relatively high concentration of sulfuric acid in the latter half, the electrode base material is less susceptible to corrosion damage because it is already covered with the electrolytic manganese dioxide precipitation layer, and in addition to the features of the first half, the potential is further increased. Electrolyzed manganese dioxide having excellent discharge characteristics can be easily obtained. Further, it is preferable to switch the sulfuric acid concentration between the first half and the second half of the electrolysis, instead of gradually changing the sulfuric acid concentration during the electrolysis from the start of the electrolysis to the end of the electrolysis. There is no limit to the ratio of electrolysis in the first half to electrolysis in the second half, but for example, the ratio of electrolysis time at low sulfuric acid concentration to high sulfuric acid concentration is 1: 9 to 9: 1, especially in the range of 3: 7 to 7: 3. preferable.

電解槽に供給される補給硫酸マンガン液中のマンガンイオン濃度に限定はないが、例えば、25〜60g/Lが例示できる。 The concentration of manganese ions in the supplemented manganese sulfate solution supplied to the electrolytic cell is not limited, and for example, 25 to 60 g / L can be exemplified.

本発明の電解二酸化マンガンの製造は、硫酸−硫酸マンガン混合溶液中にマンガン酸化物粒子を連続的に混合する、所謂、懸濁電解法により行うこともできる。 The electrolytic manganese dioxide produced by the present invention can also be produced by a so-called suspension electrolysis method in which manganese oxide particles are continuously mixed in a sulfuric acid-manganese sulfate mixed solution.

本発明の電解二酸化マンガンの製造は、1回の電解で充分な電着量を得るため、18日以上とすることが好ましい。電解日数は生産性との兼ね合いから、18日以上40日以下が好ましく、19日以上35日以下がより好ましい。 The production of the electrolytic manganese dioxide of the present invention is preferably 18 days or more in order to obtain a sufficient electrodeposition amount by one electrolysis. From the viewpoint of productivity, the number of electrolysis days is preferably 18 days or more and 40 days or less, and more preferably 19 days or more and 35 days or less.

本発明の電解二酸化マンガンをアルカリマンガン乾電池の正極活物質として使用する方法には特に制限はなく、周知の方法で添加物と混合して正極合剤として用いることができる。例えば、電解二酸化マンガンに導電性を付与するためのカーボン、電解液等を加えた混合粉末を調製し、円盤状またはリング状に加圧成型した粉末成型体として電池正極とすることができる。 The method of using the electrolytic manganese dioxide of the present invention as the positive electrode active material of the alkaline manganese dry battery is not particularly limited, and can be mixed with an additive and used as a positive electrode mixture by a well-known method. For example, a mixed powder prepared by adding carbon, an electrolytic solution, or the like for imparting conductivity to electrolytic manganese dioxide can be used as a battery positive electrode as a powder molded body pressure-molded into a disk shape or a ring shape.

本発明の電解二酸化マンガンは、充填性に優れるものである。 The electrolytic manganese dioxide of the present invention has excellent filling property.

以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

<電解二酸化マンガンの粒度分布の測定方法>
電化二酸化マンガン0.03gを粒度分布測定装置(MICROTRAC HRA、日機装製)に投入し、溶媒に水を使用し、非球形近似で体積累積分布(ふるい下体積分率F(D))の測定を行った。
<Measuring method of particle size distribution of electrolytic manganese dioxide>
0.03 g of electrified manganese dioxide was put into a particle size distribution measuring device (MICROTRAC HRA, manufactured by Nikkiso Co., Ltd.), and water was used as a solvent to measure the volume cumulative distribution (sieving volume fraction F (D)) by non-spherical approximation. went.

この体積累積分布を元に式(1)、(2)から均等数と粒度特性値を求めた。 Based on this volume cumulative distribution, the equal number and the particle size characteristic value were obtained from the equations (1) and (2).

<電解二酸化マンガンの充填密度の測定>
電解二酸化マンガンの充填密度は、所定重量の電解二酸化マンガンを円柱状の金型に投入し、ピストンにより1ton/cmで加圧し、3秒間保持した。その後加圧成型した電解二酸化マンガンの成型体を取出し、高さと面積から体積を求め、重量と体積から充填密度を求め、比較例1の測定結果を100%とし、それに対する相対値で求めた。
<Measurement of packing density of electrolytic manganese dioxide>
The packing density of the electrolytic manganese dioxide was such that a predetermined weight of the electrolytic manganese dioxide was put into a cylindrical mold, pressurized at 1 ton / cm 2 by a piston, and held for 3 seconds. After that, the molded body of electrolytic manganese dioxide molded under pressure was taken out, the volume was obtained from the height and area, the packing density was obtained from the weight and volume, and the measurement result of Comparative Example 1 was set to 100%, and the relative value was obtained.

<BET比表面積の測定>
電解二酸化マンガンのBET比表面積は、BET1点法の窒素吸着により測定した。測定装置にはガス吸着式比表面積測定装置(フローソーブIII,島津製作所製)を用いた。測定に先立ち、150℃で1時間加熱することで電解二酸化マンガンを脱気処理した。
<Measurement of BET specific surface area>
The BET specific surface area of electrolytic manganese dioxide was measured by nitrogen adsorption by the BET 1-point method. A gas adsorption type specific surface area measuring device (Flow Sorb III, manufactured by Shimadzu Corporation) was used as the measuring device. Prior to the measurement, electrolytic manganese dioxide was degassed by heating at 150 ° C. for 1 hour.

<XRD測定による(110)面の半値幅(半価全幅:FWHM)の測定>
電解二酸化マンガンの2θが22±1°付近の回折線の半値幅(半価全幅:FWHM)は、X線回折装置(商品名:MXP−3,マックサイエンス製)を使用して測定した。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、および測定範囲は2θとして5°〜80°の範囲で測定した。
<Measurement of half width (full width at half maximum: FWHM) of (110) plane by XRD measurement>
The full width at half maximum (full width at half maximum: FWHM) of the diffraction line in which 2θ of electrolytic manganese dioxide was around 22 ± 1 ° was measured using an X-ray diffractometer (trade name: MXP-3, manufactured by MacScience). CuKα ray (λ = 1.5405Å) is used as the radiation source, the measurement mode is step scan, the scan condition is 0.04 ° per second, the measurement time is 3 seconds, and the measurement range is 2θ, which is in the range of 5 ° to 80 °. Measured in.

<電解二酸化マンガンのアルカリ電位の測定>
電解二酸化マンガンのアルカリ電位は、40重量%KOH水溶液中で次のように測定した。
<Measurement of alkaline potential of electrolytic manganese dioxide>
The alkaline potential of electrolytic manganese dioxide was measured in a 40 wt% KOH aqueous solution as follows.

電解二酸化マンガン3gに導電剤としてカーボンを0.9g加えて混合粉体とし、この混合粉体に40重量%KOH水溶液4mlを加え、電解二酸化マンガンとカーボンとKOH水溶液の混合物スラリーとした。この混合物スラリーの電位を水銀/酸化水銀参照電極を基準として、電解二酸化マンガンのアルカリ電位を測定した。 0.9 g of carbon as a conductive agent was added to 3 g of electrolytic manganese dioxide to prepare a mixed powder, and 4 ml of a 40 wt% KOH aqueous solution was added to the mixed powder to prepare a mixture slurry of electrolytic manganese dioxide, carbon and a KOH aqueous solution. The alkali potential of electrolytic manganese dioxide was measured with reference to the mercury / mercury oxide reference electrode for the potential of this mixture slurry.

実施例1
電解槽にマンガンイオン濃度45g/Lの補給硫酸マンガン液を供給し、電流密度0.34A/dm、電解槽の温度を97℃に保ちながら、電解初期と電解後半の硫酸濃度を35g/L、52g/Lとなるように調整し、前半の硫酸濃度で18日、後半の硫酸濃度で6日、計24日間電解を行った。電解槽は、加温装置を有し、陽極としてチタン板、陰極として黒鉛板をそれぞれ向かい合うように懸垂せしめたものを用いた。
Example 1
A supplemental manganese sulfate solution having a manganese ion concentration of 45 g / L was supplied to the electrolytic cell, and the sulfuric acid concentration at the initial stage of electrolysis and the latter half of electrolysis was 35 g / L while maintaining the current density of 0.34 A / dm 2 and the temperature of the electrolytic cell at 97 ° C. , 52 g / L was adjusted, and electrolysis was performed for a total of 24 days, with the sulfuric acid concentration in the first half being 18 days and the sulfuric acid concentration in the latter half being 6 days. The electrolytic cell had a heating device, and used a titanium plate as an anode and a graphite plate as a cathode suspended so as to face each other.

電解後、電着した板状の電解二酸化マンガンを純水にて洗浄後、マイクロビッカース硬度が400HV(JIS Z 2244)の硬度を有する原料を粉砕可能で、37kWのミルモーターを有するローラーミル(栗本式ローラーミル 42型、栗本鐵工所製)で均等数が1.84、粒度特性値が50μmになるように粉砕して電解二酸化マンガンの粉砕物を得た。次に、この電解二酸化マンガンの粉砕物を20重量%水酸化ナトリウム水溶液で中和処理を行い、次に、電解二酸化マンガンの水洗、ろ過分離、乾燥を行い、電解二酸化マンガンを得た。 After electrolysis, the electrodeposited plate-shaped electrolytic manganese dioxide is washed with pure water, and then a raw material having a Micro Vickers hardness of 400 HV (JIS Z 2244) can be crushed. A roller mill (Kurimoto) having a 37 kW mill motor. A crushed product of electrolytic manganese dioxide was obtained by crushing the type roller mill 42 type (manufactured by Kurimoto, Ltd.) so that the uniform number was 1.84 and the particle size characteristic value was 50 μm. Next, the pulverized product of electrolytic manganese dioxide was neutralized with a 20 wt% aqueous sodium hydroxide solution, and then the electrolytic manganese dioxide was washed with water, separated by filtration, and dried to obtain electrolytic manganese dioxide.

得られた電解二酸化マンガンの粒度分布、物性および充填密度を表1に示した。 The particle size distribution, physical properties and packing density of the obtained electrolytic manganese dioxide are shown in Table 1.

Figure 0006822067
実施例2
ローラーミルで均等数が1.78、粒度特性値が62μmになるように粉砕したこと以外は実施例1と同じ方法で製造を行い、電解二酸化マンガンを得た。
Figure 0006822067
Example 2
Electrolyzed manganese dioxide was obtained by the same method as in Example 1 except that the mixture was pulverized with a roller mill so that the uniform number was 1.78 and the particle size characteristic value was 62 μm.

得られた電解二酸化マンガンの粒度分布、物性および充填密度を表1に示した。 The particle size distribution, physical properties and packing density of the obtained electrolytic manganese dioxide are shown in Table 1.

実施例3
実施例1の粉砕において、ローラーミル内の粉砕粒子の滞在時間を長くして粉砕し、実施例1より粒径の小さい電解二酸化マンガンの粉末を得た。
Example 3
In the pulverization of Example 1, the pulverized particles in the roller mill were pulverized by increasing the residence time to obtain an electrolytic manganese dioxide powder having a smaller particle size than that of Example 1.

この電解二酸化マンガンの粉末20重量%を、実施例1の電解二酸化マンガンの粉末80重量%に添加して乾式混合を行い、電解二酸化マンガンを得た。 20% by weight of this electrolytic manganese dioxide powder was added to 80% by weight of the electrolytic manganese dioxide powder of Example 1 and dry-mixed to obtain electrolytic manganese dioxide.

得られた電解二酸化マンガンの粒度分布、物性および充填密度を表1に示した。 The particle size distribution, physical properties and packing density of the obtained electrolytic manganese dioxide are shown in Table 1.

実施例4
電解槽にマンガンイオン濃度34g/Lの補給硫酸マンガン液を供給し、電流密度0.70A/dm、電解槽の温度を96℃に保ちながら、電解中の硫酸濃度25g/Lを切替え無しで13日間電解を行った。電解槽は、加温装置を有し、陽極としてチタン板、陰極として黒鉛板をそれぞれ向かい合うように懸垂せしめたものを用いた。
Example 4
A supplemented manganese sulfate solution having a manganese ion concentration of 34 g / L was supplied to the electrolytic cell, and the current density was 0.70 A / dm 2 , and the temperature of the electrolytic cell was maintained at 96 ° C., and the sulfuric acid concentration during electrolysis was 25 g / L without switching. Electrolysis was performed for 13 days. The electrolytic cell had a heating device, and used a titanium plate as an anode and a graphite plate as a cathode suspended so as to face each other.

電解後、ローラーミルで均等数が1.70、粒度特性値が51μmになるように粉砕したこと以外は実施例1と同じ方法で製造を行い、電解二酸化マンガンを得た。 After electrolysis, electrolytic manganese dioxide was obtained by the same method as in Example 1 except that the mixture was pulverized with a roller mill so that the uniform number was 1.70 and the particle size characteristic value was 51 μm.

得られた電解二酸化マンガンの粒度分布、物性および充填密度を表1に示した。 The particle size distribution, physical properties and packing density of the obtained electrolytic manganese dioxide are shown in Table 1.

比較例1
ローラーミルで均等数が1.96、粒度特性値が38μmになるように粉砕したこと以外は実施例1と同じ方法で製造を行い、電解二酸化マンガンを得た。
Comparative Example 1
Electrolyzed manganese dioxide was obtained by the same method as in Example 1 except that the mixture was pulverized with a roller mill so that the uniform number was 1.96 and the particle size characteristic value was 38 μm.

得られた電解二酸化マンガンの粒度分布、物性および充填密度を表1に示した。 The particle size distribution, physical properties and packing density of the obtained electrolytic manganese dioxide are shown in Table 1.

比較例2
実施例4と同じ方法で電解を行った。
Comparative Example 2
Electrolysis was performed in the same manner as in Example 4.

電解後、電着した板状の電解二酸化マンガンを純水にて洗浄後、ボールミル(セラミックポッドミルBP−1、アズワン製)で均等数が2.20、粒度特性値が26μmになるように粉砕して電解二酸化マンガンの粉砕物を得た。次に、この電解二酸化マンガンの粉砕物を20重量%水酸化ナトリウム水溶液で中和処理を行い、次に、電解二酸化マンガンの水洗、ろ過分離、乾燥を行い、電解二酸化マンガンを得た。 After electrolysis, the electrodeposited plate-shaped electrolytic manganese dioxide is washed with pure water and then crushed with a ball mill (ceramic pod mill BP-1, manufactured by AS ONE) so that the uniform number is 2.20 and the particle size characteristic value is 26 μm. A pulverized product of electrolytic manganese dioxide was obtained. Next, the pulverized product of electrolytic manganese dioxide was neutralized with a 20 wt% aqueous sodium hydroxide solution, and then the electrolytic manganese dioxide was washed with water, separated by filtration, and dried to obtain electrolytic manganese dioxide.

得られた電解二酸化マンガンの粒度分布、物性および充填密度を表1に示した。 The particle size distribution, physical properties and packing density of the obtained electrolytic manganese dioxide are shown in Table 1.

表1から実施例1〜4の製造条件で電解二酸化マンガンを製造することにより、比較例1〜2に対して充填性の高い電解二酸化マンガンを得ることができた。さらに、これら実施例1〜4の電解二酸化マンガンは比較例1〜2に対して優れた充填性を示すことがわかった。 By producing electrolytic manganese dioxide under the production conditions of Examples 1 to 4 from Table 1, electrolytic manganese dioxide having a higher filling property than that of Comparative Examples 1 and 2 could be obtained. Furthermore, it was found that the electrolytic manganese dioxide of Examples 1 to 4 exhibited excellent filling property with respect to Comparative Examples 1 and 2.

本発明の電解二酸化マンガンは特異的な粒度分布を有するため、充填性が高く、マンガン乾電池、特にアルカリマンガン乾電池の高密度な正極活物質として使用することができる。 Since the electrolytic manganese dioxide of the present invention has a specific particle size distribution, it has a high filling property and can be used as a high-density positive electrode active material for manganese dry batteries, particularly alkaline manganese dry batteries.

Claims (3)

ロジン・ラムラー分布で表示した粒度分布における均等数が1.00以上1.95以下で、かつ粒度特性値が30μm以上70μm以下であり、BET比表面積が20m /g以上40m /g以下であり、CuKα線を光源とするXRD測定による(110)面の半値幅が1.9°以上2.2°未満であることを特徴する電解二酸化マンガン。 When the uniform number in the particle size distribution displayed by the rosin-ramler distribution is 1.00 or more and 1.95 or less, the particle size characteristic value is 30 μm or more and 70 μm or less, and the BET specific surface area is 20 m 2 / g or more and 40 m 2 / g or less. Electrolyzed manganese dioxide, characterized in that the half width of the (110) plane as measured by XRD using CuKα ray as a light source is 1.9 ° or more and less than 2.2 ° . 請求項1に記載の電解二酸化マンガンを含むことを特徴とする電池用正極活物質。 The positive electrode active material for a battery, which comprises the electrolytic manganese dioxide according to claim 1. 請求項2に記載の電池用正極活物質を含むことを特徴とする電池。 A battery comprising the positive electrode active material for a battery according to claim 2.
JP2016213805A 2016-10-31 2016-10-31 Electrolyzed manganese dioxide and its uses Active JP6822067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016213805A JP6822067B2 (en) 2016-10-31 2016-10-31 Electrolyzed manganese dioxide and its uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213805A JP6822067B2 (en) 2016-10-31 2016-10-31 Electrolyzed manganese dioxide and its uses

Publications (2)

Publication Number Publication Date
JP2018070421A JP2018070421A (en) 2018-05-10
JP6822067B2 true JP6822067B2 (en) 2021-01-27

Family

ID=62112204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213805A Active JP6822067B2 (en) 2016-10-31 2016-10-31 Electrolyzed manganese dioxide and its uses

Country Status (1)

Country Link
JP (1) JP6822067B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170455A (en) * 1981-04-13 1982-10-20 Matsushita Electric Ind Co Ltd Alkaline manganese battery
JPS5857261A (en) * 1981-09-30 1983-04-05 Mitsui Mining & Smelting Co Ltd Positive active mass of dry cell
JP4940503B2 (en) * 2001-03-23 2012-05-30 東ソー株式会社 Electrolytic manganese dioxide powder and method for producing the same
JP4993888B2 (en) * 2004-09-09 2012-08-08 三井金属鉱業株式会社 Manganese oxide powder for cathode active material
JP5678482B2 (en) * 2010-06-01 2015-03-04 東ソー株式会社 Manganese oxide and method for producing the same
JP2013177293A (en) * 2012-02-03 2013-09-09 Tosoh Corp Electrolytic manganese dioxide, method for producing the same, and use thereof
EP3134933B1 (en) * 2014-04-21 2020-10-21 Prince Specialty Products LLC Method of producing electrolytic manganese dioxide with high compact density and electrolytic manganese dioxide produced therefrom

Also Published As

Publication number Publication date
JP2018070421A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP5998510B2 (en) Electrolytic manganese dioxide and method for producing the same, and method for producing lithium manganese composite oxide
US9103044B2 (en) Electrolytic manganese dioxide, and method for its production and its application
US10033038B2 (en) Electrolytic manganese dioxide, method for producing same, and use of same
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP6862766B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
JP4742468B2 (en) Electrolytic manganese dioxide powder and method for producing the same
EP1184919B1 (en) Powder of electrolytic manganese dioxide and process for producing the same
JP7063007B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
US11936040B2 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP6822067B2 (en) Electrolyzed manganese dioxide and its uses
JP4899246B2 (en) Electrolytic manganese dioxide powder and method for producing the same
CN108884577B (en) Electrolytic manganese dioxide, method for producing same, and use thereof
JP4940503B2 (en) Electrolytic manganese dioxide powder and method for producing the same
JP7039927B2 (en) Electrolyzed manganese dioxide and its uses
JP2008210746A (en) Manganese dioxide and battery using the same
JP7451961B2 (en) Electrolytic manganese dioxide, its manufacturing method, and its uses
JP6550729B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
WO2013115335A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
US20220396497A1 (en) Method for producing lithium transition metal composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R151 Written notification of patent or utility model registration

Ref document number: 6822067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151