JPH0824043B2 - Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material

Info

Publication number
JPH0824043B2
JPH0824043B2 JP63291161A JP29116188A JPH0824043B2 JP H0824043 B2 JPH0824043 B2 JP H0824043B2 JP 63291161 A JP63291161 A JP 63291161A JP 29116188 A JP29116188 A JP 29116188A JP H0824043 B2 JPH0824043 B2 JP H0824043B2
Authority
JP
Japan
Prior art keywords
mno
limn
lithium
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63291161A
Other languages
Japanese (ja)
Other versions
JPH02139860A (en
Inventor
徹 松井
純一 山浦
▲吉▼徳 豊口
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63291161A priority Critical patent/JPH0824043B2/en
Publication of JPH02139860A publication Critical patent/JPH02139860A/en
Publication of JPH0824043B2 publication Critical patent/JPH0824043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特に、その正極の改
良に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a positive electrode thereof.

従来の技術 リチウムまたはリチウム合金を負極とする非水電解質
二次電池の正極活物質については、これまで、Ti,V,Cr,
Mo等の層状もしくはトンネル構造を有する酸化物及びカ
ルコゲン化合物が知られている。これらの構造を有する
化合物では、電池の充放電により、リチウムイオンが化
合物の層もしくはトンネル内へ出入りする。このため、
化合物自体の結晶格子は単に膨張,収縮するのみで、結
晶構造が著しく破壊されることがないため、二次電池用
正極活物質に適する。
2. Description of the Related Art Conventional positive electrode active materials for non-aqueous electrolyte secondary batteries that use lithium or a lithium alloy as a negative electrode have hitherto been known as Ti, V, Cr,
Layered or tunnel oxides such as Mo and chalcogen compounds are known. In the compounds having these structures, lithium ions move in and out of the compound layer or tunnel as the battery is charged and discharged. For this reason,
Since the crystal lattice of the compound itself simply expands and contracts and the crystal structure is not significantly destroyed, it is suitable as a positive electrode active material for secondary batteries.

ところで、MnO2は、高い電圧,大きい放電容量、すな
わち、高エネルギー密度を有する正極活物質として非水
電解質一次電池に適用され、小型電子機器用電源をはじ
めとし広く利用されている。
By the way, MnO 2 is applied to a non-aqueous electrolyte primary battery as a positive electrode active material having a high voltage and a large discharge capacity, that is, a high energy density, and is widely used as a power source for small electronic devices.

MnO2はルチル型の結晶構造であり、上述のトンネル構
造を有する。電池の放電にともない、リチウムイオンが
このトンネル内に侵入,移動し、いわゆる挿入反応が起
きる。この放電過程では、MnO2の結晶格子は膨張するが
結晶構造そのものの破壊はない。したがって、、放電過
程でMnO2内に侵入したリチウムイオンはMnO2内を容易に
移動できる状態にある。にもかかわらず、充電により、
リチウムイオンをMnO2内からとり出すことが困難であ
る。これは、放電にともなうMnO2粒子自体の電子伝導性
の低下と、充電の際のMnO2粒子の収縮によるMnO2粒子と
カーボンブラック等の導電剤粒子の分離による集電不良
である。特に、MnO2粒子と導電剤粒子の分離は、放電過
程で生成したLiXMnO2が絶縁体に近いため、充電過程で
のリチウムイオンの放出を一層困難にする。したがっ
て、MnO2を二次電池に用いた場合、充放電サイクルによ
る充放電容量を減少が著しく、寿命が短いため、MnO2
二次電池用正極活物質には不向きである。
MnO 2 has a rutile type crystal structure and has the above-mentioned tunnel structure. As the battery discharges, lithium ions enter and move into this tunnel, causing a so-called insertion reaction. In this discharge process, the crystal lattice of MnO 2 expands, but the crystal structure itself is not destroyed. Therefore, the lithium ions that have penetrated into MnO 2 during the discharge process can easily move within MnO 2 . Nevertheless, due to charging,
It is difficult to extract lithium ions from MnO 2 . This is a decrease in electron conductivity of MnO 2 particles themselves due to the discharge, a current collecting failure due to separation of the conductive material particles 2 such as particles of carbon black MnO due to shrinkage of the MnO 2 particles during charging. In particular, the separation of MnO 2 particles and conductive agent particles makes it more difficult to release lithium ions during the charging process because Li X MnO 2 generated during the discharging process is close to an insulator. Therefore, when MnO 2 is used in a secondary battery, the charging / discharging capacity is significantly reduced by the charging / discharging cycle and the life is short, so that MnO 2 is not suitable for a positive electrode active material for a secondary battery.

以上のようなMnO2の充放電サイクルでの容量減少を防
止するためMnO2にあらかじめLiを添加,加熱し、充放電
過程での結晶格子の膨張,収縮の度合がMnO2に比べ小さ
い、スピネル型の結晶構造を有するLiMn2O4を正極の活
物質に用いることが提案されており、特に、放電容量の
点から、低温で加熱することにより得たLiMn2O4が好ま
しいとされている(英国公開公報GB2196785A)。この低
温でのLiMn2O4の製造法は概ね次のようである。Li2CO3
とMnO2、混合し、430℃〜520℃の温度範囲で加熱する
が、または、LiIとMnO2の混合物を300℃で加熱後、有機
溶媒で洗浄することによりLiMn2O4を得る。
In order to prevent the above capacity decrease of MnO 2 during charge / discharge cycles, Li is added to MnO 2 in advance and heated, and the degree of expansion and contraction of the crystal lattice during charge / discharge is smaller than that of MnO 2. It has been proposed to use LiMn 2 O 4 having a positive-type crystal structure as the positive electrode active material, and in particular, LiMn 2 O 4 obtained by heating at a low temperature is preferable from the viewpoint of discharge capacity. (UK publication GB2196785A). The manufacturing method of LiMn 2 O 4 at this low temperature is roughly as follows. Li 2 CO 3
And MnO 2 are mixed and heated in a temperature range of 430 ° C. to 520 ° C. Alternatively, a mixture of LiI and MnO 2 is heated at 300 ° C. and then washed with an organic solvent to obtain LiMn 2 O 4 .

発明が解決しようとする課題 しかし、このような製造法によって得たLiMn2O4を正
極活物質として用い、リチウムまたはリチウム合金を負
極に用いた電池を組み立て、充放電サイクルをくり返し
た場合、リチウム負極と腐食が著しく、サイクル寿命が
短いという問題点があった。これは次の理由による。
However, when LiMn 2 O 4 obtained by such a manufacturing method is used as a positive electrode active material, a battery using lithium or a lithium alloy as a negative electrode is assembled, and a charge / discharge cycle is repeated, lithium is obtained. There was a problem that the negative electrode was significantly corroded and the cycle life was short. This is for the following reason.

Li2CO3とMnO2を混合,加熱してLiMn2O4を得る場合、L
i2CO3の融点は618℃であるため、Li2CO3がMnO2と十分に
反応できる状態になるためにはこの融点近傍まで加熱す
る必要がある。しかし、MnO2はこのような温度ではβ型
の構造に移転するか、または、Liとの反応が著しく不活
性なMn2O3に変化する。β型のMnO2はLiがMnO2内に拡散
可能なトンネル構造を有するが、Liは十分にMnO2内に取
り込むことができない。これは、β型MnO2を正極活物質
に用いる非水電解質一次電池の充電容量が極端に小さい
ということからもうかがえる。したがって、Li2CO3とMn
O2からLiMn2O4を調製する場合、MnO2粒子表面に過剰なL
iが堆積した電気化学的に不活性なLi2MnO3が形成される
一方、Li2CO3粒子とMnO2粒子が接触していなかったMnO2
粒子表面上は依然としてMnO2として残る。すなわち、Li
2CO3とMnO2の反応では、同一粒子上にLi2MnO3とMnO2
混在したものが生成しやすい。Li2MnO3やMnO2は電解質
中に含まれる微量の水分により若干溶出するため、リチ
ウムまたはリチウム合金負極に到達し、この結果、負極
表面上でリチウム・マンガン酸化物が形成されることに
より、リチウム負極が腐食するため、サイクル寿命が短
くなるのである。さらに、MnO2は上述したように、充放
電サイクルでの容量減少がが大きいことから、Li2CO3
MnO2の反応によって得たLiMn2O4を用いても、なお、充
放電容量の減少が見られる。このような、同一粒子上に
LiMn2O4とMnO2が混在したLiMn2O4の生成を回避するため
には、英国公開公報GB2196785Aの実施例1に開示されて
いるように、Li/Mn原子比を、LiMn2O4の組成より与えら
れる値、すなわち、0.5よりも十分大きい0.7の比率でLi
2CO3とMnO2を混合する必要がある。この理由は明らかで
はないが、Li2CO3をMnO2に比べ過剰に加えることで、加
熱時のLiのMnO2内への拡散をMnO2粒子表面全体から行う
ことになり、LiMn2O4の形成が容易になると考えられ
る。しかし、材料調製のコスト面から見て、余分の試薬
を使用することは不利であり、材料の組成式に従う試薬
量またはその近傍で、材料調製を行うことが最も望まし
い。
When Li 2 CO 3 and MnO 2 are mixed and heated to obtain LiMn 2 O 4 , L
Since the melting point of i 2 CO 3 is 618 ° C., it is necessary to heat the Li 2 CO 3 to near this melting point so that Li 2 CO 3 can sufficiently react with MnO 2 . However, MnO 2 is transferred to β-type structure at such temperature, or Mn 2 O 3 is converted into Mn 2 O 3 which is significantly inactive in the reaction with Li. β-type MnO 2 has a tunnel structure in which Li can diffuse into MnO 2 , but Li cannot be sufficiently incorporated into MnO 2 . This can be seen from the fact that the charge capacity of the non-aqueous electrolyte primary battery using β-type MnO 2 as the positive electrode active material is extremely small. Therefore, Li 2 CO 3 and Mn
When preparing LiMn 2 O 4 from O 2 , excess L on the surface of MnO 2 particles
Electrochemically inactive Li 2 MnO 3 deposited with i was formed, while Li 2 CO 3 particles and MnO 2 particles were not in contact MnO 2
MnO 2 still remains on the particle surface. That is, Li
In the reaction of 2 CO 3 and MnO 2, a mixture of Li 2 MnO 3 and MnO 2 on the same particle is easily generated. Li 2 MnO 3 and MnO 2 are slightly eluted by a trace amount of water contained in the electrolyte, and thus reach the lithium or lithium alloy negative electrode, and as a result, lithium manganese oxide is formed on the negative electrode surface. Corrosion of the lithium negative electrode shortens the cycle life. Furthermore, MnO 2, as described above, since the volume reduction in the charge-discharge cycle is large, and Li 2 CO 3
Even when LiMn 2 O 4 obtained by the reaction of MnO 2 is used, the charge and discharge capacity is still decreased. On the same particle like this
To avoid the formation of LiMn 2 O 4 that LiMn 2 O 4 and MnO 2 are mixed, as disclosed in Example 1 of British patent publication GB2196785A, the Li / Mn atomic ratio, LiMn 2 O 4 The value given by the composition of i.e.
2 It is necessary to mix CO 3 and MnO 2 . The reason for this is not clear, but by adding Li 2 CO 3 in excess compared to MnO 2 , diffusion of Li into MnO 2 during heating is carried out from the entire surface of the MnO 2 particles, and LiMn 2 O 4 It is thought that the formation of However, it is disadvantageous to use an extra reagent from the viewpoint of material preparation cost, and it is most desirable to prepare the material at or near the amount of the reagent according to the composition formula of the material.

本発明はこのような従来の欠点を除去するものであ
り、Li2MnO3やMnO2の混在が少なく、充放電サイクルを
くり返しても容量減少が小さいLiMn2O4を正極活物質に
用いることで信頼性の高い非水電解質二次電池を提供
し、さらに、このように非水電解質二次電池の正極活物
質としてすぐれた特性を示すLiMn2O4の製造法について
も提供することを目的とする。
The present invention eliminates such conventional drawbacks, using less Li 2 MnO 3 or MnO 2 mixed, LiMn 2 O 4 with a small capacity reduction even after repeated charge and discharge cycles is used for the positive electrode active material. And a highly reliable non-aqueous electrolyte secondary battery, and a method for producing LiMn 2 O 4 , which exhibits excellent characteristics as a positive electrode active material for non-aqueous electrolyte secondary batteries. And

課題を解決するための手段 本発明の非水電解質二次電池は、正極活物質に結晶格
子定数aが8.22Å以下のLiMn2O4を用いることを特徴と
する。さらに、このLiMn2O4を得るため、本発明の製造
法は、リチウム酸化物,リチウム水酸化物、または、リ
チウム・マンガン酸化物と、γ型のMnO2と、必要に応じ
て、水を混練し、加熱することを特徴とし、さらに、特
性を向上するため、生成LiMn2O4をPH4以上の酸性溶液相
中で洗浄することを特徴とする。
Means for Solving the Problems The non-aqueous electrolyte secondary battery of the present invention is characterized by using LiMn 2 O 4 having a crystal lattice constant a of 8.22 Å or less for the positive electrode active material. Furthermore, in order to obtain this LiMn 2 O 4 , the production method of the present invention uses lithium oxide, lithium hydroxide, or lithium manganese oxide, γ-type MnO 2 and, if necessary, water. It is characterized by kneading and heating, and further, in order to improve the characteristics, the produced LiMn 2 O 4 is washed in an acidic solution phase of PH 4 or more.

作用 本発明の結晶格子定数aが8.22Å以下のLiMn2O4を正
極活物質として用い、充放電によってリチウムイオンを
結晶格子内に出入りさせた場合、ASTMカード(35−78
2)に記載される結晶格子定数aが8.24762ÅのLiMn2O4
に比べ、結晶格子が収縮、すなわち、単位胞が小さくな
っているため、膨張,収縮の度合が小さい。したがっ
て、充放電過程での、カーボンブラック等の導電剤粒子
とLiMn2O4粒子との分離が小さく、極板内での集電は良
好に保たれることになり、充放電サイクルをくり返して
も充放電容量の減少は少ない。
Action When LiMn 2 O 4 having a crystal lattice constant a of 8.22Å or less of the present invention is used as a positive electrode active material and lithium ions are allowed to enter and leave the crystal lattice by charge / discharge, an ASTM card (35-78
2) LiMn 2 O 4 having a crystal lattice constant a of 8.24762Å
Compared with, the crystal lattice is contracted, that is, the unit cell is smaller, so the degree of expansion and contraction is small. Therefore, the separation of the conductive agent particles such as carbon black and the LiMn 2 O 4 particles during the charging / discharging process is small, and the current collection in the electrode plate is maintained well, and the charging / discharging cycle is repeated. However, the decrease in charge / discharge capacity is small.

上記の結晶格子定数aが8.22Å以下で、しかも、LiMn
2O4やMnO2の混在の少ないLiMn2O4を得るため、リチウム
酸化物等とγ型のMnO2と、必要に応じて、水を混練して
加熱する。例えば、LiOHの場合、LiOHの融点はLi2CO3
比べ445℃と著しく低温であり、MnO2がリチウム拡散が
困難なβ型に移転する前に、LiOHとMnO2は容易に反応す
ることができる。ここで、LiOHは加熱により溶解するこ
と、さらに、MnO2内に含まれる少量の水分が加熱時、Mn
O2内より放出され、LiOHを溶かすことにより、MnO2粒子
はLiOHによってその表面のほとんどを覆われることにな
り、LiOHとMnO2の反応は均一に進む。したがって、Li2M
n2O4やMnO2の混在の少ないLiMn2O4が生成する。Li2OやL
i3MnO4等のリチウム・マンガン酸化物は、融点が高くMn
O2と反応しにくいが、これらは溶解度は小さいものの水
に溶解するためMnO2との混練時に水を加えることによ
り、MnO2との反応を均一に行わせることができ、Li2MnO
3やMnO2の混在の少ないLiMn2O4を得ることができる。Li
OHの場合にも、MnO2と混練時、水を加えるとさらに均一
な反応を行わせることが可能である。
The above crystal lattice constant a is 8.22Å or less, and LiMn
In order to obtain LiMn 2 O 4 in which 2 O 4 and MnO 2 are less mixed, lithium oxide and the like, γ-type MnO 2 and, if necessary, water are kneaded and heated. For example, in the case of LiOH, the melting point of LiOH is remarkably low as 445 ° C. compared with Li 2 CO 3, before the MnO 2 is transferred to the hard β-type lithium diffusion, LiOH and MnO 2 be readily react You can Here, LiOH is dissolved by heating, and further, when a small amount of water contained in MnO 2 is heated, Mn
By being released from O 2 and dissolving LiOH, the MnO 2 particles are covered with most of the surface by LiOH, and the reaction between LiOH and MnO 2 proceeds uniformly. Therefore, Li 2 M
LiMn 2 O 4 containing less n 2 O 4 and MnO 2 is produced. Li 2 O and L
Lithium-manganese oxides such as i 3 MnO 4 have a high melting point and Mn
O 2 and hardly react, but they by adding water during kneading with MnO 2 to dissolve in water things solubility is small, it is possible to perform uniform reaction with MnO 2, Li 2 MnO
It is possible to obtain LiMn 2 O 4 in which 3 and MnO 2 are less mixed. Li
Even in the case of OH, it is possible to carry out a more uniform reaction by adding water during kneading with MnO 2 .

ここで、MnO2にγ型の構造を有するMnO2を用いると、
γ型MnO2はリチウム拡散のためのトンネル径が大きく、
リチウム化合物と反応した場合、リチウムはMnO2粒子内
部まで十分に拡散することができ、粒子表面には過剰の
Liが堆積せず、LiMnO3が形成されにくい。したがって均
一はLiMn2O4が生成する。
Here, when MnO 2 having a γ-type structure is used for MnO 2 ,
γ-type MnO 2 has a large tunnel diameter for lithium diffusion,
When reacted with a lithium compound, lithium can diffuse sufficiently to the inside of the MnO 2 particles, and an excessive amount of lithium is present on the surface of the particles.
Li is not deposited and LiMnO 3 is hard to be formed. Therefore, LiMn 2 O 4 is uniformly formed.

以上のような、リチウム化合物とMnO2との反応で、結
晶格子定数aが通常の8.24762Åより収縮したLiMn2O4
生成する理由は明らかではないが、リチウム化合物とMn
O2との反応を低温で進めるため、上記で述べたように、
反応途中で、粒子表面にLiMn2O3と結晶構造の似たLi2Mn
O3が形成されやすく、加熱を続けてもこの影響が残るた
めと考えられる。実際、上記の反応を430℃以下で行う
と、反応生物はLiMn2O4が生成し、さらに、510℃を超え
る温度で加熱すると、結晶格子定数aが8.22Åより大き
いLiMn2O4が生成する。
It is not clear why the reaction between the lithium compound and MnO 2 produces LiMn 2 O 4 having a crystal lattice constant a which is smaller than the usual 8.24762 Å, but the reaction between the lithium compound and MnO 2 is not clear.
In order to proceed the reaction with O 2 at low temperature, as described above,
During the reaction, Li 2 Mn with a crystal structure similar to that of LiMn 2 O 3 was formed on the particle surface.
It is considered that O 3 is easily formed and this effect remains even if heating is continued. In fact, when the above reaction is carried out at 430 ° C. or lower, the reaction product produces LiMn 2 O 4 , and when heated at a temperature higher than 510 ° C., LiMn 2 O 4 having a crystal lattice constant a larger than 8.22 Å is produced. To do.

さらに、生成したLiMn2O4を酸性溶液相中で洗浄する
ことにより、LiMn2O4粒子表面に一部形成したLi2MnO3
未反応残留物のLiOH等のリチウム化合物を除去すること
ができ、リチウムまたはリチウム合金負極の腐食を防ぐ
ことになるため、電池のサイクル寿命が延びる。この酸
性溶液相中での洗浄は、溶液相のpHが4以上であること
が好ましい。溶液相のpHが4未満であると、LiMn2O4
子中のLi+と溶液中のH3O+の交換反応が起きるため、こ
のようにして得たLiMn2O4を用いて電池を構成しても、
交換反応によってLiMn2O4粒子内に入ったH2Oがリチウム
またはリチウム合金負極を腐食する。したがって、電池
のサイクル寿命は短くなる。
Furthermore, by washing the formed LiMn 2 O 4 in an acidic solution phase, it is possible to remove lithium compounds such as Li 2 MnO 3 partially formed on the surface of the LiMn 2 O 4 particles and unreacted residual LiOH. Therefore, the lithium or lithium alloy negative electrode is prevented from corroding, so that the cycle life of the battery is extended. For the washing in the acidic solution phase, the pH of the solution phase is preferably 4 or more. When the pH of the solution phase is less than 4, an exchange reaction between Li + in the LiMn 2 O 4 particles and H 3 O + in the solution occurs, so a battery is prepared using LiMn 2 O 4 thus obtained. Even if you configure
H 2 O contained in the LiMn 2 O 4 particles by the exchange reaction corrodes the lithium or lithium alloy negative electrode. Therefore, the cycle life of the battery is shortened.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

実施例1 本発明のLiMn2O4を次のようにして作製した。Example 1 LiMn 2 O 4 of the present invention was produced as follows.

LiOH・H2O 12.066gとγ型MnO2 50.000gをボールミル
で混合した後、H2O 20mlを加えペースト状にし、470℃
で5時間加熱した。さらに、この生成物を粉砕し、再び
H2O 20mlを加えペースト状にした後、470℃で加熱し
た。この化合物の粉末X線回折は図1のように得られ、
この化合物は、容易にLiMn2O4であると同定でき、Li2Mn
O3やMnO2の混在は認められない。このようにして得たLi
Mn2O4のX線回折指数(111)の面間隔は4.731Åであ
り、LiMn2O4は立方晶系であることから、結晶の格子定
数aは次式により (h,k,lは面指数,dは面指数(hkl)の面間隔)8.194Å
と計算される。
After mixing LiOH ・ H 2 O 12.066g and γ-type MnO 2 50.000g in a ball mill, add H 2 O 20ml to make a paste and 470 ℃
Heated for 5 hours. Furthermore, this product is crushed and again
After adding 20 ml of H 2 O to form a paste, the mixture was heated at 470 ° C. The powder X-ray diffraction of this compound was obtained as in FIG.
This compound can be easily identified as LiMn 2 O 4 , and Li 2 Mn
O 3 and MnO 2 are not mixed. Li obtained in this way
Since the lattice spacing of the X-ray diffraction index (111) of Mn 2 O 4 is 4.731Å and LiMn 2 O 4 is a cubic system, the lattice constant a of the crystal is calculated by the following equation. (H, k, l is the surface index, d is the surface spacing of the surface index (hkl)) 8.194Å
Is calculated.

このLiMn2O4を正極活物質として、第3図に示すよう
な扁平型電池を組み立て充放電試験を行った。以下、第
3図に基づき説明する。
Using this LiMn 2 O 4 as a positive electrode active material, a flat battery as shown in FIG. 3 was assembled and a charge / discharge test was conducted. Hereinafter, description will be given with reference to FIG.

LiMn2O4,導電剤であるカーボンブラック、及び、結着
剤である四沸化エチレン樹脂粉末を重量比で、70対20対
10の割合で混合した。この混合物50mgをチタンエキスパ
ンドメタルから成る正極集電体1をスポット溶接した電
池ケース2内に成型,圧着し、正極3とした。正極板の
直径は14.3mmである。負極4には、厚さ0.35mmのリチウ
ムシートを用い、ステンレスメッシュから成る負極集電
体5をスポット溶接した封口板6に加圧圧着した。電解
液には、プロピレンカーボネートとジメトキシエタンを
等体積の割合で混合したものに、1モル/の割合でLi
ClO4を溶解したものを用いた。また、セパレータ7には
ポリプロピレン不織布を用いた。又電池ケース2と封口
板6の外周部はガスケット8で封止した。このようにし
て構成した本発明の電池をAとする。
LiMn 2 O 4 , carbon black which is a conductive agent, and tetraboride ethylene resin powder which is a binder in a weight ratio of 70:20
Mixed at a ratio of 10. 50 mg of this mixture was molded into a battery case 2 in which a positive electrode current collector 1 made of titanium expanded metal was spot-welded and pressure-bonded to obtain a positive electrode 3. The diameter of the positive electrode plate is 14.3 mm. A lithium sheet having a thickness of 0.35 mm was used as the negative electrode 4, and the negative electrode current collector 5 made of stainless mesh was spot-welded and pressure-bonded to the sealing plate 6. For the electrolyte, a mixture of propylene carbonate and dimethoxyethane in an equal volume ratio was added to the electrolyte at a ratio of 1 mol / Li.
It was prepared by dissolving the ClO 4. A polypropylene nonwoven fabric was used for the separator 7. The outer peripheral portions of the battery case 2 and the sealing plate 6 were sealed with a gasket 8. The battery of the present invention thus constructed is designated as A.

次に比較例として、Li2CO3とMnO2を原料としてLiMn2O
4を作製した。Li2CO3 10.624gとγ型MnO2 50.000gをボ
ールミルで混合した後、470℃で5時間加熱した。この
化合物の粉末X線回折は図2のように得られ、この化合
物は、LiMn2O4の他に、Li2MnO3,MnO2が混在している。
このようにして得たLiMn2O4を正極活物質として、上記
で述べた扁平型電池を同様に構成した。この比較例の電
池をBとする。
Next, as a comparative example, LiMn 2 O using Li 2 CO 3 and MnO 2 as raw materials
4 was produced. Li 2 CO 3 ( 10.624 g) and γ-type MnO 2 ( 50.000 g) were mixed in a ball mill and then heated at 470 ° C. for 5 hours. The powder X-ray diffraction of this compound is obtained as shown in FIG. 2, and this compound contains Li 2 MnO 3 and MnO 2 in addition to LiMn 2 O 4 .
The LiMn 2 O 4 thus obtained was used as the positive electrode active material, and the flat battery described above was similarly constructed. The battery of this comparative example is designated as B.

以上のように構成した本発明の電池Aと比較例の電池
Bにおいて、0.8mAと定電流,放電下限電圧2.0V,充電上
限電圧3.8Vの条件で充放電試験を行った。
The battery A of the present invention and the battery B of the comparative example configured as described above were subjected to a charge / discharge test under the conditions of 0.8 mA and a constant current, a discharge lower limit voltage of 2.0 V and a charge upper limit voltage of 3.8 V.

第4図は、本発明の電池Aと比較例の電池Bの各充放
電サイクルの放電容量をプロットした図である。第4図
により、比較例の電池Bでは、本発明の電池Aに比べ
て、各サイクルでの放電容量が少なく、充放電サイクル
での放電容量の減少の度合も大きいことがわかる。これ
は、比較例の電池Bに用いたLiMn2O4では電気化学的に
不活性なLi2MnO3が含まれるため放電容量が少なくな
り、また、充放電サイクルでの放電容量減少の度合が大
きいMnO2が混在するためである。さらに、比較例の電池
Bにおいて、サイクル寿命が約130サイクルと短いの
は、混在するLi2MnO3,MnO2が電解液中に含まれる微量の
水分によって溶出し、リチウム負極を腐食するためであ
る。以上のような比較例の電池Bの特性に比べ、本発明
の電池Aは、放電容量,各サイクルでの容量減少の度
合,サイクル寿命のいずれにおいても優れることがわか
る。
FIG. 4 is a diagram in which the discharge capacities of the battery A of the present invention and the battery B of the comparative example are plotted in each charge / discharge cycle. It can be seen from FIG. 4 that the battery B of the comparative example has a smaller discharge capacity in each cycle and a greater degree of decrease in the discharge capacity in the charge / discharge cycle than the battery A of the present invention. This is because the LiMn 2 O 4 used in the battery B of the comparative example contains electrochemically inactive Li 2 MnO 3 and thus has a small discharge capacity, and the discharge capacity decreases in the charge / discharge cycle. This is because large MnO 2 is mixed. Furthermore, the battery B of the comparative example has a short cycle life of about 130 cycles because the mixed Li 2 MnO 3 and MnO 2 are eluted by a small amount of water contained in the electrolytic solution and corrode the lithium negative electrode. is there. As compared with the characteristics of the battery B of the comparative example as described above, it is understood that the battery A of the present invention is excellent in discharge capacity, degree of capacity decrease in each cycle, and cycle life.

実施例2 実施例1で本発明のLiMn2O4を得る過程で、種々の結
晶形態のMnO2を用いたほかは、扁平型電池の構成,充放
電試験条件は同様にして行った。
Example 2 In the process of obtaining LiMn 2 O 4 of the present invention in Example 1, the configuration and charge / discharge test conditions of the flat battery were the same, except that MnO 2 of various crystal forms was used.

表1は、種々の結晶形態のMnO2を用いてLiMn2O4を作
製した場合の、10サイクル目での放電容量、及びγ型Mn
O2を用いて作製したLiMn2O4の放電容量を100とした時の
容量比率を記載したものである。表1より、Liとの反応
の活性度が小さいα型やβ型のMnO2を用いて作製したLi
Mn2O4では放電容量が少ないことがわかる。δ型のMnO2
を用いて作製したLiMn2O4において放電容量が少ないの
は、加熱によってδ型MnO2は容易に活性度の小さいβ型
MnO2に転移するためと考えられる。以上のことから、リ
チウム化合物とMnO2を反応させLiMn2O4を得る場合、MnO
2の結晶形態はγ型が特に優れることがわかる。
Table 1 shows the discharge capacities at the 10th cycle and the γ-type Mn when LiMn 2 O 4 was prepared using MnO 2 having various crystal forms.
This is a description of the capacity ratio when the discharge capacity of LiMn 2 O 4 produced using O 2 is 100. From Table 1, Li prepared by using α-type or β-type MnO 2 which has low activity of reaction with Li
It can be seen that Mn 2 O 4 has a small discharge capacity. δ type MnO 2
The low discharge capacity of LiMn 2 O 4 prepared by using is because δ-type MnO 2 is easily activated by β-type with low activity.
It is thought that this is due to the transition to MnO 2 . From the above, when LiMn 2 O 4 is obtained by reacting a lithium compound with MnO 2 , MnO
It can be seen that the crystal form of 2 is particularly excellent in γ type.

実施例3 実施例1で本発明のLiMn2O4を得る過程で、LiOH・H2O
とMnO2の混合比率を変えたほかは、扁平型電池の構成,
充放電条件は同様にして行った。
Example 3 In the process of obtaining LiMn 2 O 4 of the present invention in Example 1, LiOH.H 2 O
In addition to changing the mixing ratio of MnO 2 and MnO 2 ,
Charge and discharge conditions were the same.

第5図は、Li/Mn原子比(LiOH・H2OとMnO2の混合比
率)に対する生成物の10サイクル目での放電容量、及
び、Li/Mn原子比に対する電池のサイクル劣化率をプロ
ットした図である。また、各Li/Mn原子比における生成
物のX線回折分析結果も示した。ここで、サイクル劣化
率は次式によって計算した。
Figure 5 plots the discharge capacity of the product at the 10th cycle against the Li / Mn atomic ratio (mixing ratio of LiOH.H 2 O and MnO 2 ), and the cycle deterioration rate of the battery against the Li / Mn atomic ratio. FIG. The results of X-ray diffraction analysis of the product at each Li / Mn atomic ratio are also shown. Here, the cycle deterioration rate was calculated by the following equation.

第5図より、Li/Mn原子比が3/7未満のときは、放電容
量が大きいものの、サイクル劣化率が極めて悪くなる。
これは、サイクル劣化率の大きいMnO2が混在するためで
ある。さらに、第5図より、Li/Mn原子比が4/6を超える
と、サイクル劣化率は小さく良好であるが、放電容量が
著しく減少する。以上のことから、放電容量が大きく、
サイクル劣化率が小さい領域は、MnO2やLi2MnO3が混在
しない領域であり、Li/Mn原子比では3/7〜4/6である。
ここで、4/6(=0.667)という値は、Li2CO3とMnO2では
Li/Mn原子比が0.7でLi2MnO3やMnO2の混在が認められな
いLiMn2O4が生成する(英国公開公報GB21967854A及び本
出願明細書中の実施例1における比較例参照)のに対し
て、5%もLi/Mn原子比が小さく、また、3/7(=0.42
9)という値はLiMn2O4の組成より与えられるLi/Mn原子
比=0.5よりも14%小さい。すなわち、本発明のLiMn2O4
の製造法を用いれば、従来より少ないLi/Mn原子比のリ
チウム化合物/MnO2混合比で、しかも、低温でLiMn2O4
作製することができるという特徴がある。
From FIG. 5, when the Li / Mn atomic ratio is less than 3/7, the discharge capacity is large, but the cycle deterioration rate is extremely poor.
This is because MnO 2 having a large cycle deterioration rate is mixed. Furthermore, from FIG. 5, when the Li / Mn atomic ratio exceeds 4/6, the cycle deterioration rate is small and good, but the discharge capacity is remarkably reduced. From the above, the discharge capacity is large,
The region where the cycle deterioration rate is small is a region where MnO 2 and Li 2 MnO 3 are not mixed, and the Li / Mn atomic ratio is 3/7 to 4/6.
Here, the value 4/6 (= 0.667) is the value for Li 2 CO 3 and MnO 2 .
LiMn 2 O 4 having a Li / Mn atomic ratio of 0.7 and no mixture of Li 2 MnO 3 and MnO 2 is observed (see British Patent Publication GB21967854A and Comparative Example in Example 1 of the present application specification). On the other hand, the Li / Mn atomic ratio was as small as 5%, and it was 3/7 (= 0.42).
The value 9) is 14% smaller than the Li / Mn atomic ratio = 0.5 given by the composition of LiMn 2 O 4 . That is, the LiMn 2 O 4 of the present invention
The use of the manufacturing method of 1 is characterized in that LiMn 2 O 4 can be manufactured at a low temperature and a lithium compound / MnO 2 mixture ratio with a smaller Li / Mn atomic ratio than before.

実施例4 実施例1で本発明のLiMn2O4を得る過程で、加熱温度
を変化させたほかは、扁平型電池の構成,充放電試験条
件は同様にして行った。
Example 4 Except that the heating temperature was changed in the process of obtaining LiMn 2 O 4 of the present invention in Example 1, the configuration of the flat type battery and the charging / discharging test conditions were the same.

第6図は、加熱温度を変化させて得られたLiMn2O4
おいて、加熱温度に対する結晶格子定数a、及び、加熱
温度に対するサイクル劣化率をプロットした図である。
ここで、結晶格子定数aは、X線回折指数(111)の面
間隔から式(1)を用いて算出し、サイクル劣化率は式
(2)によって計算した。
FIG. 6 is a diagram in which the crystal lattice constant a with respect to the heating temperature and the cycle deterioration rate with respect to the heating temperature in LiMn 2 O 4 obtained by changing the heating temperature are plotted.
Here, the crystal lattice constant a was calculated from the plane spacing of the X-ray diffraction index (111) using equation (1), and the cycle deterioration rate was calculated using equation (2).

第6図より、加熱温度に対する結晶格子定数aは、加
熱温度が510℃を超えると急激に増加し、一定値8.248Å
になる。これに対応して、サイクル劣化率も著しく増加
する。この理由は、加熱温度が510℃を超える範囲で得
たLiMn2O4では、充放電過程での結晶格子の膨張,収縮
の度合が大きく、導電剤であるカーボンブラック粒子と
の分離による集電不良のため、サイクル劣化率が大きい
のである。第6図より、サイクル劣化率が十分に小さい
ためには、結晶格子定数aが8.22Å以下でなければなら
ないことがわかる。一方、加熱温度が430℃以下の領域
では、結晶格子定数aが8.22Åよりも十分に小さいにも
かかわらず、サイクル劣化率は上昇している。これは、
この温度領域では、LiOH・H2OとMnO2の反応が速やかに
進まず、LiMn2O4のほかに、Li2MnO3,MnO2が混在するよ
うになるからである。
From Fig. 6, the crystal lattice constant a with respect to the heating temperature increases rapidly when the heating temperature exceeds 510 ° C and reaches a constant value of 8.248Å
become. Correspondingly, the cycle deterioration rate also increases significantly. The reason for this is that LiMn 2 O 4 obtained at a heating temperature in excess of 510 ° C has a large degree of expansion and contraction of the crystal lattice during the charge / discharge process, and the current is collected by separation from carbon black particles, which are the conductive agent. Because of the defect, the cycle deterioration rate is large. It can be seen from FIG. 6 that the crystal lattice constant a must be 8.22Å or less in order for the cycle deterioration rate to be sufficiently small. On the other hand, in the region where the heating temperature is 430 ° C. or lower, the cycle deterioration rate increases even though the crystal lattice constant a is sufficiently smaller than 8.22Å. this is,
This is because in this temperature range, the reaction between LiOH.H 2 O and MnO 2 does not proceed rapidly, and Li 2 MnO 3 and MnO 2 are mixed in addition to LiMn 2 O 4 .

以上のように、結晶格子定数aは8.22Å以下で、Li2M
n2O4やMnO2の混在しないLiMn2O4を得るためには、加熱
温度を430℃〜510℃の間に設定することが望ましい。
As described above, the crystal lattice constant a is 8.22Å or less, and Li 2 M
In order to obtain LiMn 2 O 4 in which n 2 O 4 and MnO 2 are not mixed, it is desirable to set the heating temperature between 430 ° C and 510 ° C.

実施例5 実施例1で本発明のLiMn2O4を得る過程で、リチウム
化合物を、Li2O,LiOH,LiOH・H2O,Li3MnO4,Li2MnO3,LiMn
O2より少なくとも1種選択し、単独または混合物として
用いるほかは、扁平型電池の構成,充放電試験条件は同
様にして行った。
Example 5 In the process of obtaining LiMn 2 O 4 of the present invention in Example 1, a lithium compound was added to Li 2 O, LiOH, LiOH.H 2 O, Li 3 MnO 4 , Li 2 MnO 3 , LiMn.
Except that at least one kind was selected from O 2 and used alone or as a mixture, the flat battery configuration and charge / discharge test conditions were the same.

表2は、各種のリチウム化合物または混合物と、γ型
MnO2を用いて、結晶格子定数aが8.22Å以下で、Li2MnO
3やMnO2の混在の少ないLiMn2O4を作製する条件を記載し
たものであり、さらに、作製したLiMn2O4を使用した電
池の充放電サイクル寿命(放電容量が初期容量の半分と
なったときのサイクル数)を記載した。
Table 2 shows various lithium compounds or mixtures and γ type
Using MnO 2 , the crystal lattice constant a is 8.22Å or less, and Li 2 MnO
3 describes the conditions for producing LiMn 2 O 4 with a small mixture of MnO 2 and MnO 2 , and the charge and discharge cycle life of the battery using the produced LiMn 2 O 4 (the discharge capacity is half of the initial capacity). The number of cycles) was described.

表2より、リチウム化合物がリチウム酸化物またはリ
チウム水酸化物の場合には、リチウム化合物とMnO2の混
合比はLi/Mn原子比で3/7〜4/6、加熱温度範囲は430℃〜
510℃であることがわかる。リチウム化合物に、リチウ
ム・マンガン酸化物が含まれる場合、Li/Mn原子比の上
限は3.5/6.5とリチウム酸化物または水酸化物に比べや
や低くなり、また、加熱温度は下限が概ね460℃と高く
なる。この理由は、リチウム・マンガン酸化物では、リ
チウム酸化物または水酸化物に比べ、Liを放出しにくい
ためである。さらに、リチウム・マンガン酸化物を用い
て作製した電池のサイクル寿命がやや短くなっているの
は、X線回折分析では認められない程度のLi2MnO3をは
じめとするリチウム・マンガン酸化物が残留しており、
電解液中に含まれる微量の水分によって溶出し、リチウ
ム負極を腐食するためと考えられる。
From Table 2, when the lithium compound is a lithium oxide or a lithium hydroxide, the mixing ratio of the lithium compound and MnO 2 is 3/7 to 4/6 in terms of Li / Mn atomic ratio, and the heating temperature range is 430 ° C to
You can see that it is 510 ℃. When the lithium compound contains lithium-manganese oxide, the upper limit of Li / Mn atomic ratio is 3.5 / 6.5, which is slightly lower than that of lithium oxide or hydroxide, and the heating temperature has a lower limit of about 460 ° C. Get higher The reason for this is that lithium-manganese oxide is less likely to release Li than lithium oxide or hydroxide. Furthermore, the cycle life of the battery made using lithium manganese oxide is slightly shorter because the amount of lithium manganese oxide such as Li 2 MnO 3 that is not recognized by X-ray diffraction analysis remains. And
It is considered that this is because the trace amount of water contained in the electrolytic solution elutes and corrodes the lithium negative electrode.

なお、表2の条件で得られたLiMn2O4において、X線
回折指数(311)の回折ピークの半値幅は、FeKα線換算
でいずれも1.1゜未満であって、英国公開公報GB2196785
Aに開示されたLiMn2O4より結晶性が高く、電解液中の水
分による溶出が困難であり、したがってリチウム負極の
腐食が少ないので、充放電サイクル寿命が長くなるとい
う利点がある。
In addition, in LiMn 2 O 4 obtained under the conditions of Table 2, the full width at half maximum of the diffraction peak of the X-ray diffraction index (311) was less than 1.1 ° in terms of FeKα line, and the publication was GB2196785.
The crystallinity is higher than that of LiMn 2 O 4 disclosed in A, it is difficult to elute with water in the electrolytic solution, and therefore, the lithium negative electrode is less corroded, which has the advantage of prolonging the charge / discharge cycle life.

実施例6 リチウム化合物とγ型MnO2を混合する過程で、水の添
加の有無のほかに、実施例1と同様にしてLiMn2O4の作
製,扁平型電池の構成,充放電試験を行った。
Example 6 In the process of mixing a lithium compound and γ-type MnO 2 , in the same manner as in Example 1, except that water was not added, LiMn 2 O 4 was produced, a flat battery configuration, and a charge / discharge test were performed. It was

表3において、リチウム化合物とγ型MnO2の混合比
は、Li/Mn原子比でいずれも1/2であり、加熱温度は470
℃である。
In Table 3, the mixing ratio of the lithium compound and γ-type MnO 2 is 1/2 in terms of Li / Mn atomic ratio, and the heating temperature is 470
° C.

表3より、いずれのリチウム化合物を用いても、γ型
MnO2との混練時にH2Oを添加する方が、添加しない場合
に比べ放電容量が5〜10%程度増加しており、特に、リ
チウム・マンガン酸化物,リチウム酸化物において顕著
であることがわかる。この理由は、混練時に添加したH2
Oによって、溶解度は小さいものの、これらのリチウム
・マンガン酸化物は溶出し、MnO2粒子を覆うことになる
ため、均一にLiMn2O4が生成し、電気化学的に不活性なL
i2MnO3が混在しなくなるからである。
From Table 3, no matter which lithium compound is used,
When H 2 O is added during kneading with MnO 2 , the discharge capacity is increased by about 5 to 10% compared to the case where it is not added, and it is particularly remarkable in lithium manganese oxide and lithium oxide. Recognize. The reason for this is that the H 2 added during kneading
Although lithium has a low solubility due to O, these lithium manganese oxides elute and cover the MnO 2 particles, so that LiMn 2 O 4 is uniformly generated and electrochemically inactive L
This is because i 2 MnO 3 is not mixed.

実施例7 実施例6と同様に、種々のリチウム化合物とγ型MnO2
とH2Oを混練し、加熱してLiMn2O4を得た。このようにし
て得たLiMn2O4 30.000gをイオン交換水400ml中に投入,
撹拌し、4NH2SO4溶液を溶液相中のpHが約5に落ち着く
まで滴下した。次に、この酸性LiMn2O4溶液を過し、
洗浄後の廃液のpHが6〜7になるまでLiMn2O4をくり返
しイオン交換水で洗浄した。電池の構成及び充放電試験
は実施例1と同様にして行った。
Example 7 Similar to Example 6, various lithium compounds and γ-type MnO 2
And H 2 O were kneaded and heated to obtain LiMn 2 O 4 . 30.000 g of LiMn 2 O 4 thus obtained was added to 400 ml of deionized water,
With stirring, 4NH 2 SO 4 solution was added dropwise until the pH in the solution phase settled to about 5. Then pass this acidic LiMn 2 O 4 solution,
LiMn 2 O 4 was repeatedly washed with ion-exchanged water until the pH of the waste liquid after washing became 6 to 7. The configuration of the battery and the charge / discharge test were performed in the same manner as in Example 1.

表4は、各リチウム化合物から得たLiMn2O4の酸性溶
液処理前後における10サイクル目の放電容量を記載した
ものである。これより、酸性溶液で処理したLiMn2O
4は、処理前のLiMn2O4に比べ放電容量が増加しており、
約5.7mAhの一定値になっている。これは、リチウム化合
物とMnO2の加熱によって得たLiMn2O4中には、X線回折
分析では認められない程度の少量のLi2MnO23やLiOH等の
リチウム化合物が残留しており、酸処理によって除去さ
れるためである。また、表4には記載していないが、酸
性溶液で処理したLiMn2O4にはLi2MnO3が残留していない
ため、全般に、電池のサイクル寿命が処理しないLiMn2O
4に比べ延びるという効果があった。
Table 4 shows the discharge capacities of LiMn 2 O 4 obtained from each lithium compound at the 10th cycle before and after the acidic solution treatment. From this, LiMn 2 O treated with acidic solution
4, the discharge capacity compared to LiMn 2 O 4 before processing is increasing,
It is a constant value of about 5.7mAh. This is because in LiMn 2 O 4 obtained by heating a lithium compound and MnO 2 , a small amount of a lithium compound such as Li 2 MnO 23 and LiOH, which cannot be recognized by X-ray diffraction analysis, remains and This is because it is removed by the processing. Although not shown in Table 4, since the LiMn 2 O 4 was treated with an acid solution is not residual Li 2 MnO 3, in general, LiMn 2 O cycle life of the battery is not processed
It had the effect of being longer than 4 .

第7図は、リチウム化合物としてLiOH・H2Oを用いたL
iMn2O4を処理する酸性溶液相中のpHに対して電池のサイ
クル寿命、及び、処理して得られたリチウム・マンガン
酸化物中の水分量をプロットした図である。ここで、酸
性溶液で処理した後のLiMn2O4をリチウム・マンガン酸
化物と記した理由は、pHの低い酸性溶液相中で処理した
LiMn2O4は、LiMn2O4粒子内からLiが放出されており、単
純な組成式で表わせないためである。
Figure 7 shows L using LiOH · H 2 O as the lithium compound.
FIG. 4 is a diagram in which the cycle life of the battery and the amount of water in the lithium-manganese oxide obtained by the treatment are plotted against the pH in the acidic solution phase in which iMn 2 O 4 is treated. Here, the reason why LiMn 2 O 4 after being treated with an acidic solution is described as lithium-manganese oxide is that it was treated in an acidic solution phase having a low pH.
This is because LiMn 2 O 4 has Li released from inside the LiMn 2 O 4 particles and cannot be represented by a simple composition formula.

第7図から、酸性溶液相中のpHが4未満では電池のサ
イクル寿命は短いことがわかる。これは、第7図より明
らかなように、pHが4未満では処理して得られたりチウ
ム・マンガン酸化物中の水分量が急激に増加し、この水
分がリチウム負極を腐食するためである。以上のことか
ら、LiMn2O4を処理する酸性溶液相中のpHは4以上でな
ければならない。
From FIG. 7, it can be seen that the cycle life of the battery is short when the pH in the acidic solution phase is less than 4. This is because, as is clear from FIG. 7, when the pH is less than 4, the amount of water contained in the obtained titanium / manganese oxide increases rapidly, and this water corrodes the lithium negative electrode. From the above, the pH in the acidic solution phase for treating LiMn 2 O 4 must be 4 or more.

なお、第7図では、リチウム化合物としてLiOH・H2O
を用いたLiMn2O4について述べたが、他のリチウム化合
物を用いて得られたLiMn2O4においても同様な結果であ
った。さらに、本実施例では、酸としてH2SO4を使用し
たが、他の酸、例えば、HCl,H2NO3,CH3COOH等を用いて
も同様な効果を得る。
In addition, in FIG. 7, LiOH.H 2 O is used as the lithium compound.
Although LiMn 2 O 4 using is described, similar results were obtained for LiMn 2 O 4 obtained using other lithium compounds. Further, although H 2 SO 4 was used as the acid in this example, the same effect can be obtained by using other acids such as HCl, H 2 NO 3 , CH 3 COOH and the like.

発明の効果 以上のように、本発明の非水電解質二次電池は、結晶
格子定数aが8.22Å以下のLiMn2O4を正極活物質として
用いるため、充放電サイクルでの容量減少の小さい信頼
性の高い非水電解質二次電池が得られる。また、本発明
のLiMn2O4の製造法により、Li2MnO3やMnO2の存在が少な
いLiMn2O4を得、リチウム負極の腐食が抑制され、電池
のサイクル寿命が長くなるLiMn2O4が得られる。
EFFECTS OF THE INVENTION As described above, since the non-aqueous electrolyte secondary battery of the present invention uses LiMn 2 O 4 having a crystal lattice constant a of 8.22Å or less as the positive electrode active material, it has a small capacity decrease during charge / discharge cycles and is reliable. A non-aqueous electrolyte secondary battery having high properties is obtained. Further, by the process of the LiMn 2 O 4 of the present invention, to obtain a Li 2 MnO 3 and LiMn 2 O 4 there is little MnO 2, is suppressed corrosion of the lithium negative electrode, LiMn 2 O cycle life of the battery is prolonged You get 4 .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における正極活物質であるLi
Mn2O4のX線回折図、第2図は比較例における正極活物
質であるLi2MnO3及びMnO2の混在したLiMn2O4のX線回折
図、第3図は本発明の一実施例及び比較例に用いた扁平
型電池の断面図、第4図は本発明の電池A及び比較例の
電池Bにおける各サイクルでの放電容量をプロットした
図、第5図はLi/Mn原子比(リチウム化合物/MnO2混合
比)に対して放電容量及びサイクル劣化率をプロットし
た図、第6図はリチウム化合物・MnO2混合物の加熱温度
に対する生成LiMn2O4の結晶格子定数a及びサイクル劣
化率をプロットした図、第7図はLiMn2O4処理溶液相中
のpHに対して電池のサイクル寿命及びリチウム・マンガ
ン酸化物中の水分量をプロットした図である。 1……正極集電体、2……電池ケース、3……正極、4
……負極、5……負極集電体、6……封口板、7……セ
パレータ、8……ガスケット。
FIG. 1 shows the positive electrode active material Li in one embodiment of the present invention.
An X-ray diffraction diagram of Mn 2 O 4 , FIG. 2 is an X-ray diffraction diagram of LiMn 2 O 4 mixed with Li 2 MnO 3 and MnO 2 which are positive electrode active materials in a comparative example, and FIG. Sectional views of the flat type batteries used in Examples and Comparative Examples, FIG. 4 is a diagram in which the discharge capacity in each cycle of Battery A of the present invention and Battery B of Comparative Example is plotted, and FIG. 5 is Li / Mn atom. Fig. 6 is a graph plotting the discharge capacity and cycle deterioration rate against the ratio (lithium compound / MnO 2 mixture ratio). Fig. 6 shows the crystal lattice constant a and cycle of the formed LiMn 2 O 4 versus the heating temperature of the lithium compound / MnO 2 mixture. FIG. 7 is a diagram in which the deterioration rate is plotted, and FIG. 7 is a diagram in which the cycle life of the battery and the amount of water in the lithium-manganese oxide are plotted against the pH in the LiMn 2 O 4 treatment solution phase. 1 ... Positive electrode current collector, 2 ... Battery case, 3 ... Positive electrode, 4
…… Negative electrode, 5 …… Negative electrode current collector, 6 …… Seal plate, 7 …… Separator, 8 …… Gasket.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極、リチウムイオン伝導性の非水電解
質、およびリチウムを活物質とする負極を構成要素とす
る電池であって、前記正極は、結晶の格子定数aが8.22
Å以下のLiMn2O4を活物質とすることを特徴とする非水
電解質二次電池。
1. A battery comprising a positive electrode, a lithium ion conductive non-aqueous electrolyte, and a negative electrode containing lithium as an active material, the positive electrode having a crystal lattice constant a of 8.22.
Å A non-aqueous electrolyte secondary battery comprising the following LiMn 2 O 4 as an active material.
【請求項2】Li2O,LiOH,LaOH・H2O,Li3MnO4,Li2MnO3
よびLiMnO2よりなる群から選択される少なくとも1種の
リチウム化合物と、γ型MnO2とをLi/Mn原子比で3/7〜4/
6の割合で混合し、430℃〜510℃の温度で加熱すること
により、結晶の格子定数aが8.22Å以下であるLiMn2O4
を得ることを特徴とする非水電解質二次電池用正極活物
質の製造法。
2. At least one lithium compound selected from the group consisting of Li 2 O, LiOH, LaOH.H 2 O, Li 3 MnO 4 , Li 2 MnO 3 and LiMnO 2 and γ-type MnO 2 . Li / Mn atomic ratio 3 / 7-4 /
LiMn 2 O 4 having a crystal lattice constant a of 8.22Å or less by mixing at a ratio of 6 and heating at a temperature of 430 ° C to 510 ° C.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises:
【請求項3】リチウム化合物とγ型MnO4に、さらに水を
混練し、加熱することを特徴とする特許請求の範囲第2
項記載の非水電解質二次電池用正極活物質の製造法。
3. The lithium compound and γ-type MnO 4 are further kneaded with water and heated.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the item.
【請求項4】さらに、生成LiMn2O4をpH4以上の酸性溶液
相中で処理する工程を有する特許請求の範囲第2又は第
3項記載の非水電解質二次電池用正極活物質の製造法。
4. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2 or 3, further comprising a step of treating the produced LiMn 2 O 4 in an acidic solution phase having a pH of 4 or more. Law.
JP63291161A 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material Expired - Fee Related JPH0824043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291161A JPH0824043B2 (en) 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291161A JPH0824043B2 (en) 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material

Publications (2)

Publication Number Publication Date
JPH02139860A JPH02139860A (en) 1990-05-29
JPH0824043B2 true JPH0824043B2 (en) 1996-03-06

Family

ID=17765235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291161A Expired - Fee Related JPH0824043B2 (en) 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material

Country Status (1)

Country Link
JP (1) JPH0824043B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115137A1 (en) 2014-09-12 2016-03-17 Jtekt Corporation Plant and method for producing an electricity storage material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
DE4122475A1 (en) * 1991-07-06 1993-01-07 Basf Ag AMINOMETHYLENCYANESSIGESTER
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
JP3364968B2 (en) * 1992-09-01 2003-01-08 株式会社デンソー Battery
JP3487441B2 (en) * 1993-09-22 2004-01-19 株式会社デンソー Method for producing active material for lithium secondary battery
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
JP3487438B2 (en) * 1993-09-22 2004-01-19 株式会社デンソー Negative electrode for lithium secondary battery
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
DE69701063T2 (en) * 1996-06-27 2000-07-13 Honjo Chem Kk Process for the production of lithium manganese oxide with spinel structure
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
EP1049187A3 (en) * 1999-04-27 2004-04-28 Hitachi, Ltd. Lithium secondary battery
JP5226917B2 (en) * 2000-01-21 2013-07-03 昭和電工株式会社 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP4197225B2 (en) * 2001-10-12 2008-12-17 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2007053110A (en) * 2006-10-26 2007-03-01 Hitachi Maxell Ltd Small button secondary battery
JP5120919B2 (en) * 2007-02-15 2013-01-16 独立行政法人産業技術総合研究所 Active material for lithium battery, method for producing the same, and lithium battery using the active material
JP5919942B2 (en) * 2011-06-02 2016-05-18 日産自動車株式会社 Positive electrode active material, electrode manufacturing method, and electrode
JP6014821B2 (en) * 2012-06-07 2016-10-26 国立研究開発法人産業技術総合研究所 Lithium manganese composite oxide and carbon composite thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274059A (en) * 1987-05-01 1988-11-11 Sony Corp Nonaqueous electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274059A (en) * 1987-05-01 1988-11-11 Sony Corp Nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115137A1 (en) 2014-09-12 2016-03-17 Jtekt Corporation Plant and method for producing an electricity storage material

Also Published As

Publication number Publication date
JPH02139860A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
Ein‐Eli et al. LiNi x Cu0. 5− x Mn1. 5 O 4 Spinel Electrodes, Superior High‐Potential Cathode Materials for Li Batteries: I. Electrochemical and Structural Studies
US7771877B2 (en) Electrode active material powder with size dependent composition and method to prepare the same
JPH0824043B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material
CN101821878B (en) Positive electrode active material, method for production thereof, and electrochemical device
JP4403244B2 (en) Method for producing positive electrode material for lithium battery, and lithium battery
JP4185191B2 (en) Method for producing spinel type lithium manganate
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
EP1492177B1 (en) Positive electrode active material and use thereof
CN103947019A (en) Negative electrode active material, electrical storage device, and method for producing negative electrode active material
JPH0821382B2 (en) Non-aqueous electrolyte secondary battery
JP2004047437A (en) Positive electrode activator for nonaqueous electrolyte secondary battery, and manufacturing method of the same
Torardi et al. High lithium capacity MxV2O5Ay· nH2O for rechargeable batteries
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2001332258A (en) Composite oxide material for electrode, its manufacturing method and cell therewith
KR20010052669A (en) Method for preparing lithium manganate having spinel structure
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
JP4060904B2 (en) Method for producing lithium cobalt composite oxide
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
CN114864894A (en) High-pressure-resistant coating-layer-modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
KR19990048820A (en) LixMyMn-₂-yO₄ powder, a cathode active material for lithium secondary battery, and its manufacturing method
JP3499181B2 (en) Method for producing spinel type lithium manganate
JPH0367464A (en) Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese
JP2000133265A (en) Positive active material of lithium secondary battery and manufacture of same
JPH10241681A (en) Positive electrode active material for lithium secondary battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees