JP2004047437A - Positive electrode activator for nonaqueous electrolyte secondary battery, and manufacturing method of the same - Google Patents

Positive electrode activator for nonaqueous electrolyte secondary battery, and manufacturing method of the same Download PDF

Info

Publication number
JP2004047437A
JP2004047437A JP2003127017A JP2003127017A JP2004047437A JP 2004047437 A JP2004047437 A JP 2004047437A JP 2003127017 A JP2003127017 A JP 2003127017A JP 2003127017 A JP2003127017 A JP 2003127017A JP 2004047437 A JP2004047437 A JP 2004047437A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003127017A
Other languages
Japanese (ja)
Other versions
JP3637344B2 (en
Inventor
Shinji Arimoto
有元 真司
Takahiro Okuyama
奥山 高弘
Masatoshi Nagayama
永山 雅敏
Koji Yoshizawa
芳澤 浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003127017A priority Critical patent/JP3637344B2/en
Publication of JP2004047437A publication Critical patent/JP2004047437A/en
Application granted granted Critical
Publication of JP3637344B2 publication Critical patent/JP3637344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode activator for a nonaqueous electrolyte secondary battery, wherein cycle life property and thermal stability of the positive electrode activator are improved to the utmost without reducing tap density of the positive electrode activator. <P>SOLUTION: The positive electrode activator for the nonaqueous electrolyte secondary battery is composed of complex oxide grains containing Li and Co, the complex oxide further containing element M<SP>1</SP>and element M<SP>2</SP>. The element M<SP>1</SP>is at least one chosen from Mg, Cu, and Zn. The element M<SP>2</SP>is at least one chosen from Al, Ca, Ba, Sr, Y, and Zr. The element M<SP>1</SP>is uniformly distributed in the above particles. The element M<SP>2</SP>is distributed more on a surface part than inside the particles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用正極活物質およびその製造方法に関する。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源を担う小型・軽量で、高エネルギー密度を有する二次電池への要望も高まっている。このような観点から、非水電解質二次電池、特に、高電圧・高エネルギー密度を有するリチウム二次電池への期待は大きく、その開発が急がれている。
【0003】
近年、リチウム含有複合酸化物を正極活物質として含み、炭素材料を負極材料として含む電池が、高エネルギー密度のリチウム二次電池として注目を集めている。リチウム含有複合酸化物としてはLiCoOが実用化されている。さらなる高容量を目指して、LiNiOを実用化する試みも盛んであるが、LiNiOは熱安定性が低いという問題を有しており、その実現には困難が多い。
【0004】
これらの正極活物質は、充放電を行うことにより、膨張と収縮を繰り返す。この際、正極活物質には格子歪や結晶構造の破壊および粒子の割れが発生し、放電容量は低下する。そこで、これを防ぐために、コバルトの一部を他の元素で置換することにより、結晶格子の安定化を図り、サイクル寿命特性を改善する努力がなされている。
【0005】
例えば、特許文献1や特許文献2は、リチウム化合物と、酸化コバルトと、添加元素の化合物とを、混合し、焼成することで、コバルトの一部を添加元素と置換した正極活物質を提案している。これらの提案によれば、ある程度まではサイクル寿命特性を向上することができる。添加元素には、Alなどのサイクル寿命特性を向上させる効果を有する元素と、Mgなどの正極活物質の熱安定性を向上させる効果を有する元素が採用されている。
【0006】
【特許文献1】
特開昭63−121258号公報
【特許文献2】
特開2001−319652号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような従来の方法では、固相同士の反応であるため、添加元素が正極活物質の表層部に偏析する傾向がある。熱安定性を向上させる効果を有する元素が表層部に偏析すると、熱安定性の向上効果が小さくなり、所望の電池特性が得られない。そこで、共沈法により、予め添加元素を含むコバルト化合物を調製し、このコバルト化合物とリチウム化合物を焼成することも考えられる。しかし、共沈法により、Alなどを含むコバルト化合物を調製すると、そのタップ密度が著しく小さくなってしまう。その結果、正極活物質のタップ密度も小さくなり、電池の容量が小さくなるという問題がある。
【0008】
【課題を解決するための手段】
本発明は、上記を鑑みたものであり、正極活物質のタップ密度を減少させずに、非水電解質二次電池のサイクル寿命特性とその正極活物質の熱安定性の両方を最大限に向上させることを目的とする。
【0009】
本発明は、LiとCoとを含む複合酸化物の粒子からなり、前記複合酸化物は、さらに元素Mおよび元素Mを含んでおり、元素Mは、Mg、CuおよびZnよりなる群から選ばれた少なくとも1種であり、元素Mは、Al、Ca、Ba、Sr、YおよびZrよりなる群から選ばれた少なくとも1種であり、元素Mは、前記粒子中に均一に分布しており、元素Mは、前記粒子の内部よりも表層部に多く分布している非水電解質二次電池用正極活物質に関する。
【0010】
ここで、完全に均一に元素Mが前記粒子中に分布している必要はない。粒子の内部における元素Mの分布と、粒子の表層部における元素Mの分布とが実質的に同程度であればよい。一方、元素Mは、活物質のタップ密度の減少を防ぐ観点から、前記粒子の表層部に多く分布している必要がある。具体的には、前記粒子の表層部(粒子半径をrとするとき、表面から0.3r以内の領域)には、中心部(粒子半径をrとするとき、中心から0.3r以内の領域)の1.2倍以上の濃度で元素Mが分布していることが好ましい。
【0011】
なお、粒子半径rには、活物質を構成する粒子全体の平均粒径の1/2の値を用いる。ここで、平均粒径は、電子顕微鏡観察による計数法により測定したFeret径を用いた。
また、粒子の表面から0.3r以内および中心から0.3r以内の領域における元素濃度は、例えば以下の方法で測定可能である。
【0012】
まず、活物質をペレット状に成形し、ペレットの表面から0.3rの深さまでの領域をスパッタリングして、その領域に含まれる元素の組成を決定する。その後、スパッタリングを続け、ペレットの表面から0.7rの深さから1rの深さまでの領域に含まれる元素の組成を決定する。こうして得られた組成から、所定元素の濃度もしくは濃度比を算出することができる。元素の組成は、二次イオン質量分析(SIMS)、飛行時間型質量分析(TOF−SIMS)、X線光電子分析(ESCA)、オージェ分光分析、X線マイクロ分析(EPMA)などにより決定することができる。
【0013】
前記複合酸化物に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rは、0.5%以上8%以下であり、前記合計モル数に占めるMのモル数の割合Rは、0.05%以上2%以下であることが好ましい。
割合Rは、割合R以下であることが好ましい。
【0014】
前記粒子の平均粒子径は、1μm以上20μm以下であることが好ましい。
前記粒子の比表面積は、0.2m/g以上1.2m/g以下であることが好ましい。
【0015】
本発明は、また、(1)Mg、CuおよびZnよりなる群から選ばれた少なくとも1種の元素MとCoとを含み、元素MとCoとが均一に分布している化合物Xを調製する工程A、(2)Al、Ca、Ba、Sr、YおよびZrよりなる群から選ばれた少なくとも1種の元素Mを含む化合物Yと、化合物Xと、リチウム化合物とを、混合し、得られた混合物を加熱することにより、LiとCoとMとMとを含む複合酸化物を得る工程B、を有する非水電解質二次電池用正極活物質の製造方法に関する。
【0016】
前記方法において、前記混合物に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rは、0.5%以上8%以下であり、前記合計モル数に占めるMのモル数の割合Rは、0.05%以上2%以下であることが好ましい。また、割合Rは、割合R以下であることが好ましい。
【0017】
前記工程Bは、前記混合物を800℃以上1050℃以下で加熱する工程からなることが好ましい。
前記工程Bは、また、ロータリーキルンを用いて、600℃以上750℃以下で前記混合物を予備加熱し、前記予備加熱に続いて前記混合物を800℃以上1050℃以下で加熱する工程からなることが好ましい。
【0018】
前記リチウム化合物の平均粒子径は、2〜15μmであることが好ましい。
化合物Xの平均粒子径は、1〜20μmであることが好ましい。
化合物Yの平均粒子径は、1〜15μmであることが好ましい。
化合物Xは、四酸化三コバルトからなることが好ましい。
【0019】
工程Aは、特に、元素MをCoと共沈することにより、化合物XとしてM含有酸化コバルトを調製する工程であり、工程Bは、化合物Yと、M含有コバルト酸化物と、リチウム化合物とを、混合し、得られた混合物を加熱することにより、LiとCoとMとMとを含む複合酸化物を得る工程であることが好ましい。
【0020】
工程Aで元素MをCoと共沈してM含有コバルト酸化物を得る場合、M含有コバルト酸化物中には、元素MとCoとが均一に分布している。また、工程Bで、このようなM含有コバルト酸化物を化合物Xに用いて、LiとCoとMとMとを含む複合酸化物を得る場合、LiとCoとMとMとを含む複合酸化物の粒子において、元素Mは内部よりも表層部に多く分布する。
【0021】
【発明の実施の形態】
まず、本発明の正極活物質の製造方法について説明する。
(1)工程A
工程Aでは、Mg、CuおよびZnよりなる群から選ばれた少なくとも1種の元素MとCoとを含み、元素MとCoとが均一に分布している化合物Xを調製する。化合物Xには、例えばMを含む水酸化コバルト、Mを含む酸化コバルト、Mを含む炭酸コバルトなどが適する。Mを含む酸化物は、空気中で安定であり、コスト的に最も有利な四酸化三コバルト(Co)からなることが好ましいが、一酸化一コバルト(CoO)、三酸化二コバルト(Co)等からなるものでもよい。
【0022】
化合物Xの調製方法は、特に限定されないが、Co塩とMの塩とを溶解させた水溶液にアルカリ水溶液を注いで水酸化物を沈殿させる共沈法が好ましい。そこで、次に共沈法について説明する。
【0023】
共沈法では以下の原材料を用いることができる。
まず、Co塩には、硫酸コバルト、硝酸コバルトなどを用いることができる。これらは単独で用いてもよく、組み合わせて用いてもよい。これらのうちでは、特に硫酸コバルトが好ましい。
【0024】
の塩には、硫酸塩、硝酸塩、炭酸塩などを用いることができる。例えば、Mgの塩としては、硫酸マグネシウム、硝酸マグネシウム、水酸化マグネシウム、塩基性炭酸マグネシウム、塩化マグネシウム、フッ化マグネシウム、酢酸マグネシウム、蓚酸マグネシウム、硫化マグネシウムなどを用いることができる。また、Cuの塩としては、硫酸銅、硝酸銅、炭酸銅、酢酸銅、蓚酸銅、塩化銅、硫化銅などを用いることができる。また、Znの塩としては、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛、塩化亜鉛、フッ化亜鉛、硫化亜鉛などを用いることができる。これらは単独で用いてもよく、組み合わせて用いてもよい。
【0025】
Co塩とMの塩とを溶解させた水溶液におけるCo塩の濃度は、例えば0.5〜2mol/Lであり、Mの塩の濃度は、例えば0.01〜0.32mol/Lである。
【0026】
また、前記溶液に注ぐアルカリ水溶液のアルカリ濃度は、例えば10〜50重量%である。アルカリ水溶液に溶解させるアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができる。
【0027】
Co塩とMの塩とを溶解させた水溶液およびアルカリ水溶液の温度は、いずれも特に限定されないが、例えば20〜60℃である。
Co塩とMの塩とを溶解させた水溶液に、その水溶液のpHがCoとMが共沈するpH(一般的にはpH8以上)に制御されるように、アルカリ水溶液を連続的に滴下すると、コバルトとMの共沈物である水酸化物が得られる。この水酸化物を、濾過、水洗、乾燥後、酸素含有雰囲気中で焼成すると、化合物Xとしての酸化物が得られる。
【0028】
(2)工程B
工程Bでは、まず、Al、Ca、Ba、Sr、YおよびZrよりなる群から選ばれた少なくとも1種の元素Mを含む化合物Yと、化合物Xと、リチウム化合物とを、混合する。その際、混合物に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rは、0.5%以上8%以下、さらには0.5%以上5%以下とし、前記合計モル数に占めるMのモル数の割合Rは、0.05%以上2%以下、さらには0.05%以上1%以下とすることが好ましい。
【0029】
前記合計モル数に占めるMのモル数の割合Rが0.5%未満では、正極活物質の熱安定性がほとんど向上せず、8%をこえると、正極活物質の容量が不充分になる。また、前記合計モル数に占めるMのモル数の割合Rが、0.05%未満では、電池のサイクル寿命特性がほとんど向上ぜず、2%をこえると、正極活物質の容量が不充分になる。
ただし、割合Rは、割合R以下であることが好ましい。割合Rが、割合Rをこえると、放電容量の低下が大きくなる。
【0030】
元素Mを含む化合物Yには、例えばMの水酸化物、Mの酸化物、Mの炭酸塩、Mの硝酸塩などが適する。例えば、Alを含む化合物としては、水酸化アルミニウム、酸化アルミニウム、硝酸アルミニウム、フッ化アルミニウム、硫酸アルミニウムなどを用いることができる。また、Caを含む化合物としては、水酸化カルシウム、酸化カルシウムなどを用いることができる。また、Baを含む化合物としては、水酸化バリウム、酸化バリウムなどを用いることができる。また、Srを含む化合物としては、水酸化ストロンチウム、酸化ストロンチウムなどを用いることができる。また、Yを含む化合物としては、水酸化イットリウム、酸化イットリウムなどを用いることができる。また、Zrを含む化合物としては、硝酸ジルコニウム、水酸化ジルコニウム、酸化ジルコニウム、炭酸ジルコニウム、硫酸ジルコニウムなどを用いることができる。
【0031】
リチウム化合物には、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸化リチウムなどを用いることができる。なかでも炭酸リチウムおよび水酸化リチウムが、環境面とコスト面で最も有利である。
【0032】
前記リチウム化合物の平均粒子径は、2〜15μm、さらには4〜10μmであることが好ましい。リチウム化合物の平均粒子径が2μm未満では、得られるLiとCoとMとMとを含む複合酸化物の密度が低下し、電池容量が低くなる。一方、リチウム化合物の平均粒子径が15μmをこえると、粒子が大きすぎて、化合物X、Yとの反応性が低下したり、反応が不均一に進行したりする。
【0033】
また、化合物Xの平均粒子径は、1〜20μm、さらには4〜10μmであることが好ましい。化合物Xの平均粒子径が1μm未満では、得られるLiとCoとMとMとを含む複合酸化物の密度が低下し、電池容量が低くなる。一方、化合物Xの平均粒子径が20μmをこえると、LiとCoとMとMとを含む複合酸化物の粒子径が大きくなりすぎ、それを用いた電池の高負荷特性が低下する。
【0034】
また、化合物Yの平均粒子径は、1〜15μm、さらには1〜10μmであることが好ましい。化合物Yの平均粒子径が1μm未満でも、15μmをこえても、化合物Xおよびリチウム化合物との均一な混合状態が得られず、比較的不均一な活物質が生成する。
【0035】
次いで、得られた混合物を加熱することにより、LiとCoとMとMとを含む複合酸化物を調製する。
工程Bでは、前記混合物を800℃以上1050℃以下、さらには900℃以上1050℃以下で加熱することが好ましい。加熱温度が800℃未満では、LiとCoとMとMとを含む複合酸化物の結晶性が低くなり、それを用いた電池に充分な放電容量が得られない。一方、加熱温度が1050℃をこえると、LiとCoとMとMとを含む複合酸化物の比表面積が低くなり、それを用いた電池の高負荷特性が低くなる。
【0036】
また、前記混合物を800℃以上1050℃以下で加熱する前に、ロータリーキルンを用いて、600℃以上750℃以下で前記混合物を予備加熱することが好ましい。このような2段階の焼成法によれば、結晶性の高い活物質が得られるとともに、未反応物の残留を低減することができる。なお、ロータリーキルンは、混合物を流動させながら加熱することが可能であり、原材料同士の接触回数を増加させることができるため、反応性を向上させることができる。
【0037】
以上のような方法によれば、LiとCoとを含む複合酸化物の粒子からなり、元素Mおよび元素Mを含んでおり、Mは、前記粒子中に均一に分布しており、Mは、前記粒子の内部よりも表層部に多く分布している正極活物質を得ることができる。
【0038】
本発明の正極活物質の平均粒子径は、1〜20μm、さらには4〜10μmであることが好ましい。正極活物質の平均粒子径が1μm未満では、活物質の密度が低いため、それを用いた電池の容量が低くなり、20μmをこえると、電池の高負荷特性が低下する。
【0039】
また、本発明の正極活物質の比表面積は、0.2〜1.2m/gであることが好ましい。正極活物質の比表面積が0.2m/g未満では、それを用いた電池の高負荷特性が低くなり、1.2m/gをこえると、非水電解質と正極活物質との接触面積が大きくなることから、正極でのガス発生量が多くなる。
【0040】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。なお、以下の実施例では角型電池を作製したが、電池の形状はこれに限られない。本発明は、コイン型、ボタン型、シート型、積層型、円筒型または偏平型の電池や、電気自動車等に用いる大型電池にも適用できる。
【0041】
《実施例1》
正極活物質に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rおよび前記合計モル数に占めるMのモル数の割合Rとして、表1に示す値を有する正極活物質を調製し、これを用いて実施例の電池A1〜A6および比較例の電池B1〜B4を作製した。ここでは、MとしてMg、MとしてAlを採用した。
【0042】
【表1】

Figure 2004047437
【0043】
(i)正極の作製
電池A1〜A6に用いる正極活物質は、以下に述べる共沈法を採用して調製した。
工程A
硫酸コバルトおよび硫酸マグネシウムを溶解させた金属塩水溶液を調製した。前記金属塩水溶液における硫酸コバルトの濃度は1mol/Lとし、硫酸マグネシウムの濃度は表1に従って適宜調整した。攪拌下にある前記金属塩水溶液を50℃に維持し、その中に、水酸化ナトリウムを30重量%含む水溶液をpH12になるように滴下して、マグネシウム含有水酸化コバルトを沈殿させた。水酸化コバルトの沈殿を濾過して水洗し、空気中で乾燥させ、次いで400℃で5時間焼成し、マグネシウム含有酸化コバルトを得た。
【0044】
工程B
得られたマグネシウム含有酸化コバルトと、水酸化アルミニウムと、炭酸リチウムとを、表1に従って、所定のモル比で混合した。Li:(Co+Mg+Al)は、モル比で1:1とした。この混合物をロータリーキルンに入れ、空気雰囲気中で650℃で10時間予備加熱した。次いで、予備加熱後の混合物を電気炉内で950℃まで2時間で昇温し、950℃で10時間焼成することにより、正極活物質を合成した。
【0045】
電池B1〜B4に用いる正極活物質は、共沈法を採用せずに調製した。
濃度1mol/Lの硫酸コバルト水溶液を調製した。攪拌下にある前記硫酸コバルト水溶液を50℃に維持し、その中に、水酸化ナトリウムを30重量%含む水溶液をpH12になるように滴下して、水酸化コバルトを沈殿させた。水酸化コバルトの沈殿を濾過して水洗し、空気中で乾燥させ、次いで400℃で5時間焼成し、酸化コバルトを得た。
【0046】
得られた酸化コバルトと、硝酸マグネシウムと、水酸化アルミニウムと、炭酸リチウムとを、表1に従って、所定のモル比で混合した。Li:(Co+Mg+Al)は、モル比で1:1とした。この混合物をロータリーキルンに入れ、空気雰囲気中で650℃で10時間予備加熱した。次いで、予備加熱後の混合物を電気炉内で950℃まで2時間で昇温し、950℃で10時間焼成することにより、正極活物質を合成した。
【0047】
電池A3および電池B2に用いる正極活物質中のAlおよびMgの分布状態を、二次イオン質量分析(SIMS)、飛行時間型質量分析(TOF−SIMS)、X線光電子分析(ESCA)、オージェ分光分析およびX線マイクロ分析(EPMA)により調べた。
【0048】
[正極活物質粒子断面の分析]
測定用の試料は、各活物質を、エポキシ樹脂と混合し、硬化させたのち、硬化物を切断、研磨して調製した。この試料を、上記分析法で面分析して、粒子の表層部と中心部の元素分布および濃度分布を測定した。
【0049】
[正極活物質粒子表面からの深さ方向の分析]
粒子表面からの深さ方向の分析には、スパッタリングを採用した。また、特に粒子表面の分析は、TOF−SIMS測定を中心に行った。
その結果、電池A3に用いる正極活物質中では、活物質粒子の表層部(粒子半径をrとするとき、表面から0.3r以内の領域)に、中心部(粒子半径をrとするとき、中心から0.3r以内の領域)の約2倍の濃度でAlが分布していることがわかった。一方、Mgは、活物質粒子中に均質に分布していた。
【0050】
また、電池B2に用いる正極活物質中では、活物質粒子の表層部(粒子半径をrとするとき、表面から0.3r以内の領域)に、中心部(粒子半径をrとするとき、中心から0.3r以内の領域)の約2倍の濃度でAl、約1.5倍の濃度でMgが分布していることがわかった。すなわち、AlとMgの両者が、活物質粒子の表層部に偏在していた。
【0051】
100重量部の所定の正極活物質に、導電材として3重量部のアセチレンブラックと、結着剤として7重量部のポリ四フッ化エチレンと、カルボキシメチルセルロースを1重量%含む水溶液100重量部とを加え、撹拌・混合し、ペースト状の正極合剤を得た。この正極合剤を、集電体となる厚さ20μmのアルミニウム箔の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、正極を得た。
【0052】
(ii)負極の作製
平均粒子径が約20μmになるように粉砕・分級した100重量部の鱗片状黒鉛に、結着剤としてスチレン/ブタジエンゴムを3重量部と、カルボキシメチルセルロースを1重量%含む水溶液100重量部とを加え、撹拌・混合し、ペースト状の負極合剤を得た。この負極合剤を、集電体となる厚さ15μmの銅箔の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、負極を得た。
【0053】
(iii)電池の組み立て
所定の正極と、上記負極を用いて、角型非水電解質二次電池(幅34mm、高さ50mm)を組み立てた。図1に、本実施例で作製した角型電池の一部を切り欠いた斜視図を示す。
【0054】
上記電池は以下のようにして組み立てた。まず、所定の正極と上記負極とを、厚さ25μmの微多孔性ポリエチレン樹脂製セパレータを介して巻回して、極板群1を構成した。正極と負極には、それぞれアルミニウム製正極リード2およびニッケル製負極リード3を溶接した。極板群1の上部にポリエチレン樹脂製の絶縁リング(図示しない)を装着し、アルミニウム製電池ケース4内に収容した。正極リード2の他端は、アルミニウム製封口板5にスポット溶接した。また、負極リード3の他端は、封口板5の中心部にあるニッケル製負極端子6の下部にスポット溶接した。電池ケース4の開口端部と封口板5の周縁部とをレーザ溶接してから、封口板に設けてある注入口から所定量の非水電解液を注液した。最後に注入口をアルミニウム製の封栓7で塞ぎ、レーザー溶接で密封して電池を完成させた。
【0055】
非水電解質には、エチレンカーボネートとエチルメチルカーボネートとの体積比1:3の混合溶媒に、1.0mol/Lの濃度でLiPFを溶解したものを用いた。
【0056】
(iv)電池の評価
[放電容量]
環境温度20℃で、各電池の充放電サイクルを繰り返した。前記充放電サイクルにおいて、充電は、最大電流値600mAで、充電終止電位4.2Vの定電流放電を行い、電位が4.2Vに到達してからは2時間の定電圧充電を行った。また、放電は、電流値600mAで、放電終止電位3.0Vの定電流放電を行った。1サイクル目の正極活物質1gあたりの放電容量を表1に示す。
【0057】
また、Mgの割合Rと1サイクル目の放電容量との関係を図2に示す。
図2に示されるように、電池A1〜A6は、Mgの割合の増加に伴う容量低下が小さいが、電池B1〜B4は、容量低下が大きくなっている。このような結果は、電池B1〜B4では、Mgが正極活物質の表層部に偏在しており、また、未反応のMg化合物が残存しやすいことに基づくものと考えられる。
【0058】
[容量維持率]
上記充放電サイクルにおいて、100サイクル目の放電容量の、1サイクル目の放電容量に対する割合を、容量維持率として百分率(%)で求めた。結果を表1に示す。
また、割合Rと100サイクル目の容量維持率との関係を図3に示す。
【0059】
図3に示されるように、電池A1〜A6および電池B1〜B4は、共に正極活物質に含まれるMgの割合の増加に伴い、容量維持率が向上している。このような結果は、Mgにより、正極活物質の結晶構造が安定化されていることに基づくものと考えられる。また、電池A1〜A6の方が、電池B1〜B4よりも良好な結果を示していることから、電池A1〜A6では、正極活物質内にMgが均一に存在しているため、Mgの添加効果が効率よく得られていることがわかる。
【0060】
[発熱温度]
上記充放電サイクルにおいて、3サイクル充放電終了後に、環境温度20℃で、最大電流値600mA、終止電圧4.4Vで定電流充電を行い、4.4Vに到達してからは2時間の定電圧充電を行った。充電終了後、電池を分解し、正極より正極合剤を取り出し、そのうちの2mgをSUS PANに入れ、熱安定性の指標を与えるDSC測定を行った。測定は、RIGAKU Thermo Plus(理学電機製)を用い、室温から400℃まで10℃/分で空気雰囲気で行った。測定で観測された第1発熱温度を表1に示す。
【0061】
また、割合Rと第1発熱温度との関係を図4に示す。
図4に示されるように、電池A1〜A6および電池B1〜B4は、共に正極活物質に含まれるMgの割合の増加に伴い、熱安定性が向上している。このような結果は、Mgにより、充電状態の正極活物質の結晶構造が安定化されていることに基づくものと考えられる。また、電池A1〜A6の方が、電池B1〜B4よりも良好な結果を示していることから、電池A1〜A6では、正極活物質内にMgが均一に存在しているため、Mgの添加効果が少量で効率よく得られていることがわかる。
【0062】
《実施例2》
正極活物質に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rおよび前記合計モル数に占めるMのモル数の割合Rとして、表2に示す値を有する正極活物質を調製し、これを用いて実施例の電池A7〜A12および比較例の電池B5〜B8を作製した。ここでは、MとしてMg、MとしてAlを採用した。
【0063】
【表2】
Figure 2004047437
【0064】
(i)正極の作製
電池A7〜A12に用いる正極活物質は、Mgの割合Rを2%に固定し、Alの割合Rを変化させたこと以外、実施例1と同様に合成した。
電池B5〜B8に用いる正極活物質は、以下に述べる共沈法を採用して調製した。
【0065】
硫酸コバルト、硫酸マグネシウムおよび硫酸アルミニウムを溶解させた金属塩水溶液を調製した。前記金属塩水溶液における硫酸コバルトの濃度は1mol/Lとし、硫酸マグネシウムおよび硫酸アルミニウムの濃度は表2に従って適宜調整した。攪拌下にある前記金属塩水溶液を50℃に維持し、その中に、水酸化ナトリウムを30重量%含む水溶液をpH12になるように滴下して、マグネシウム/アルミニウム含有水酸化コバルトを沈殿させた。この水酸化コバルトの沈殿を濾過して水洗し、空気中で乾燥させ、次いで400℃で5時間焼成し、マグネシウム/アルミニウム含有酸化コバルトを得た。得られたマグネシウム/アルミニウム含有酸化コバルトを用い、水酸化アルミニウムを用いなかったこと以外、実施例1と同様に正極活物質を合成した。
【0066】
電池A9および電池B6に用いる正極活物質中のAlおよびMgの分布状態を、実施例1と同様にして、二次イオン質量分析(SIMS)、飛行時間型質量分析(TOF−SIMS)、X線光電子分析(ESCA)、オージェ分光分析およびX線マイクロ分析(EPMA)により調べた。
【0067】
その結果、電池A9に用いる正極活物質中では、活物質粒子の表層部(粒子半径をrとするとき、表面から0.3r以内の領域)に、中心部(粒子半径をrとするとき、中心から0.3r以内の領域)の約3倍の濃度でAlが分布していることがわかった。一方、Mgは、活物質粒子中に均質に分布していた。
【0068】
また、電池B6に用いる正極活物質中では、MgとAlの両者が、活物質粒子中に均質に分布していた。すなわち、電池B6に用いる正極活物質中には、Alが活物質粒子の内部により多く取り込まれていた。
所定の正極を用いて、実施例1と同様の角型非水電解質二次電池を作製し、実施例1と同様に評価した。結果を表2に示す。
【0069】
また、Alの割合Rと1サイクル目の放電容量との関係を図5に示す。
また、Alの割合Rと100サイクル目の容量維持率との関係を図6に示す。
また、Alの割合Rと第1発熱温度との関係を図7に示す。
また、Alの割合Rとタップ密度との関係を図8に示す。
【0070】
図5に示されるように、電池A7〜A12よりも電池B5〜B8の方が、正極活物質に含まれるAlの割合の増加に伴う容量減少が大きいことがわかる。このような結果は、電池B5〜B8の正極活物質は、Co、MgおよびAlを同時に共沈させて調製されているため、調製時に取り込んだ硫酸イオンが合成後の活物質に残り、容量低下を引き起こしたことを示している。
【0071】
また、図6、7に示されるように、電池A7〜A12および電池B5〜B8は、共に正極活物質に含まれるAlの割合の増加に伴い、容量維持率と熱安定性が向上している。
【0072】
また、図8に示されるように、電池A7〜A12では、正極活物質に含まれるAlの割合を増加させても、タップ密度がほとんど変化していないのに対し、電池B5〜B8では、正極活物質に含まれるAlの割合の増加に伴うタップ密度の減少が大きい。このような結果は、電池B5〜B8の正極活物質には、硫酸イオンが取り込まれ、粒子が膨張したことに基づくものと考えられる。
【0073】
《実施例3》
正極活物質に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rおよび前記合計モル数に占めるMのモル数の割合Rとして、表3に示す値を有する正極活物質を調製し、これを用いて実施例の電池A13〜A17および比較例の電池B9〜B13を作製した。ここでは、MとしてMgを採用し、MとしてCa、Ba、Sr、YまたはZrを採用した。
【0074】
【表3】
Figure 2004047437
【0075】
(i)正極の作製
電池A13〜A17に用いる正極活物質は、Mgの割合Rを2%に固定し、工程Bにおいて、水酸化アルミニウムの代わりに水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化イットリウムまたは硝酸ジルコニウムを用いるとともに、Ca、Ba、Sr、YまたはZrの割合Rを0.5%に固定したこと以外、実施例の電池A1と同様に合成した。
【0076】
電池B9〜B13に用いる正極活物質は、Mgの割合Rを2%に固定し、水酸化アルミニウムの代わりに水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化イットリウムまたは硝酸ジルコニウムを用いるとともに、Ca、Ba、Sr、YまたはZrの割合Rを0.5%に固定したこと以外、比較例の電池B1と同様に合成した。
【0077】
所定の正極を用いて、実施例1と同様の角型非水電解質二次電池を作製し、実施例1と同様に評価した。結果を表3に示す。
表3に示すように、実施例1と同様に、電池A13〜A17の方が、電池B9〜B13よりも、容量が大きく、容量維持率が高く、熱安定性も優れている。このような結果は、電池B9〜B13では、Mgが正極活物質の表層部に偏在しており、また、未反応のMg化合物が残存しやすいのに対し、電池A13〜B17では、Mgが正極活物質に均一に分布していることに基づくものと考えられる。また、Al、Ca、Ba、Sr、YおよびZrのいずれを用いても、同様の傾向が見られることがわかる。
【0078】
《実施例4》
正極活物質に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rおよび前記合計モル数に占めるMのモル数の割合Rとして、表4に示す値を有する正極活物質を調製し、これを用いて実施例の電池A18〜A19および比較例の電池B14〜B15を作製した。ここでは、MとしてCuまたはZnを採用し、MとしてAlを採用した。
【0079】
【表4】
Figure 2004047437
【0080】
電池A18〜A19に用いる正極活物質は、工程Aにおいて、硫酸マグネシウムの代わりに硫酸銅または硫酸亜鉛を用いたこと以外、実施例の電池A3と同様に合成した。
電池B14〜B15に用いる正極活物質は、硝酸マグネシウムの代わりに硝酸銅または硝酸亜鉛を用いたこと以外、比較例の電池B2と同様に合成した。
【0081】
所定の正極を用いて、実施例1と同様の角型非水電解質二次電池を作製し、実施例1と同様に評価した。結果を表4に示す。
表4に示すように、実施例1と同様に、電池A18〜A19の方が、電池B14〜B15よりも、容量が大きく、容量維持率が高く、熱安定性も優れている。このような結果は、電池B14〜B15では、CuまたはZnが正極活物質の表層部に偏在しており、また、未反応のCuまたはZn化合物が残存しやすいのに対し、電池A18〜B19では、CuまたはZnが正極活物質に均一に分布していることに基づくものと考えられる。
また、Mg、CuおよびZnのいずれを用いても、同様の傾向が見られることがわかる。
【0082】
《実施例5》
正極活物質に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rおよび前記合計モル数に占めるMのモル数の割合Rとして、表5に示す値を有する正極活物質を調製し、これを用いて実施例の電池A20〜A21および比較例の電池B16〜B17を作製した。ここでは、MとしてMg、MとしてAlを採用した。
【0083】
【表5】
Figure 2004047437
【0084】
電池A20に用いる正極活物質は、工程Aにおいて、Mg含有酸化コバルトの代わりに、共沈法で得たMg含有水酸化コバルトをそのまま用いたこと以外、実施例の電池A3と同様に合成した。
また、電池A21に用いる正極活物質は、Mg含有酸化コバルトの代わりに、Mgを均一に固溶させた炭酸コバルトを用いたこと以外、実施例の電池A3と同様に合成した。
【0085】
電池B16に用いる正極活物質は、酸化コバルトの代わりに、水酸化コバルトを用いたこと以外、比較例の電池B2と同様に合成した。
また、電池B17に用いる正極活物質は、酸化コバルトの代わりに、炭酸コバルトを用いたこと以外、比較例の電池B2と同様に合成した。
所定の正極を用いて、実施例1と同様の角型非水電解質二次電池を作製し、実施例1と同様に評価した。結果を表5に示す。
【0086】
表5に示すように、実施例1と同様に、電池A20〜A21の方が、電池B16〜B17よりも、容量が大きく、容量維持率が高く、熱安定性も優れている。このような結果は、電池B16〜B17では、Mgが正極活物質の表層部に偏在しており、また、未反応のMg化合物が残存しやすいのに対し、電池A20〜A21では、Mgが正極活物質に均一に分布していることに基づくものと考えられる。
また、Mg含有炭酸コバルトやMg含有水酸化コバルトを、Mg含有酸化コバルトの代わりに用いても、実施例1と同様の傾向が見られることがわかる。
【0087】
【発明の効果】
以上のように、本発明によれば、正極活物質のタップ密度を減少させずに、非水電解質二次電池のサイクル寿命特性とその正極活物質の熱安定性の両方を最大限に向上させることができる。
【図面の簡単な説明】
【図1】本発明の角型電池の一部を切り欠いた斜視図である。
【図2】実施例1にかかる正極活物質中のMgの割合Rと1サイクル目の放電容量との関係を示す図である。
【図3】実施例1にかかる正極活物質中のMgの割合Rと100サイクル目の容量維持率との関係を示す図である。
【図4】実施例1にかかる正極活物質中のMgの割合Rと発熱温度との関係を示す図である。
【図5】実施例2にかかる正極活物質中のAlの割合Rと1サイクル目の放電容量との関係を示す図である。
【図6】実施例2にかかる正極活物質中のAlの割合Rと100サイクル目の容量維持率との関係を示す図である。
【図7】実施例2にかかる正極活物質中のAlの割合Rと第1発熱温度との関係を示す図である。
【図8】実施例2にかかる正極活物質中のAlの割合Rとタップ密度との関係を示す図である。
【符号の説明】
1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 封栓[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same.
[0002]
[Prior art]
In recent years, portable and cordless consumer electronic devices have been rapidly advanced, and there has been an increasing demand for small, lightweight, high-energy-density secondary batteries that serve as driving power supplies for these devices. From such a viewpoint, non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries having a high voltage and a high energy density, are highly expected, and their development is urgent.
[0003]
In recent years, batteries including a lithium-containing composite oxide as a positive electrode active material and a carbon material as a negative electrode material have attracted attention as a high energy density lithium secondary battery. LiCoO is used as the lithium-containing composite oxide. 2 Has been put to practical use. Aiming for even higher capacity, LiNiO 2 Attempts have been made to commercialize LiNiO 2 Have a problem of low thermal stability, and there are many difficulties in achieving them.
[0004]
These positive electrode active materials repeat expansion and contraction by being charged and discharged. At this time, lattice distortion, destruction of the crystal structure, and cracking of the particles occur in the positive electrode active material, and the discharge capacity decreases. In order to prevent this, efforts have been made to stabilize the crystal lattice by replacing part of cobalt with another element, and to improve the cycle life characteristics.
[0005]
For example, Patent Literature 1 and Patent Literature 2 propose a positive electrode active material in which a lithium compound, cobalt oxide, and a compound of an additional element are mixed and fired to partially replace cobalt with the additional element. ing. According to these proposals, the cycle life characteristics can be improved to some extent. As the added element, an element having an effect of improving the cycle life characteristics such as Al and an element having an effect of improving the thermal stability of the positive electrode active material such as Mg are employed.
[0006]
[Patent Document 1]
JP-A-63-112258
[Patent Document 2]
JP 2001-319652 A
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional methods, since the reaction is between solid phases, the additive element tends to segregate in the surface layer of the positive electrode active material. When the element having the effect of improving the thermal stability is segregated in the surface layer, the effect of improving the thermal stability is reduced, and desired battery characteristics cannot be obtained. Therefore, it is also conceivable to prepare a cobalt compound containing an additional element in advance by a coprecipitation method and calcine the cobalt compound and the lithium compound. However, when a cobalt compound containing Al or the like is prepared by the coprecipitation method, the tap density becomes extremely small. As a result, there is a problem that the tap density of the positive electrode active material is reduced, and the capacity of the battery is reduced.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above, and without reducing the tap density of the positive electrode active material, maximizes both the cycle life characteristics of the nonaqueous electrolyte secondary battery and the thermal stability of the positive electrode active material. The purpose is to let them.
[0009]
The present invention comprises particles of a composite oxide containing Li and Co, and the composite oxide further comprises an element M 1 And element M 2 And the element M 1 Is at least one selected from the group consisting of Mg, Cu and Zn, and the element M 2 Is at least one selected from the group consisting of Al, Ca, Ba, Sr, Y and Zr; 1 Is uniformly distributed in the particles, and the element M 2 Relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, which is distributed more on the surface layer than inside the particles.
[0010]
Here, the element M 1 Need not be distributed in the particles. Element M inside the particle 1 Distribution and the element M in the surface layer of the particles 1 Should be substantially the same. On the other hand, the element M 2 From the viewpoint of preventing a decrease in tap density of the active material, it is necessary that a large amount be distributed in the surface layer of the particles. Specifically, in the surface layer portion of the particles (region within 0.3 r from the surface when the particle radius is r), a central portion (region within 0.3 r from the center when the particle radius is r) is provided. ) At a concentration of 1.2 times or more 2 Are preferably distributed.
[0011]
Note that, as the particle radius r, a value that is の of the average particle diameter of all the particles constituting the active material is used. Here, the Feret diameter measured by a counting method based on observation with an electron microscope was used as the average particle diameter.
The element concentration in a region within 0.3 r from the surface of the particle and within 0.3 r from the center can be measured, for example, by the following method.
[0012]
First, an active material is formed into a pellet shape, and a region from the surface of the pellet to a depth of 0.3 r is sputtered to determine the composition of elements contained in the region. Thereafter, sputtering is continued to determine the composition of the elements contained in the region from the depth of 0.7 r to the depth of 1 r from the surface of the pellet. From the composition thus obtained, the concentration or concentration ratio of the predetermined element can be calculated. Elemental composition can be determined by secondary ion mass spectrometry (SIMS), time-of-flight mass spectrometry (TOF-SIMS), X-ray photoelectron analysis (ESCA), Auger spectroscopy, X-ray micro analysis (EPMA), etc. it can.
[0013]
Li, Co, M contained in the composite oxide 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 Is 0.5% or more and 8% or less, and M accounts for the total number of moles. 2 Of the number of moles of R 2 Is preferably 0.05% or more and 2% or less.
Ratio R 2 Is the ratio R 1 The following is preferred.
[0014]
The average particle size of the particles is preferably 1 μm or more and 20 μm or less.
The specific surface area of the particles is 0.2 m 2 / G or more 1.2m 2 / G or less.
[0015]
The present invention also provides (1) at least one element M selected from the group consisting of Mg, Cu and Zn. 1 And Co and the element M 1 A for preparing compound X in which Al and Co are uniformly distributed, (2) at least one element M selected from the group consisting of Al, Ca, Ba, Sr, Y and Zr 2 Are mixed with each other, and the resulting mixture is heated to obtain Li, Co, and M. 1 And M 2 And a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a step B of obtaining a composite oxide containing:
[0016]
In the above method, Li, Co, M contained in the mixture may be used. 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 Is 0.5% or more and 8% or less, and M accounts for the total number of moles. 2 Of the number of moles of R 2 Is preferably 0.05% or more and 2% or less. Also, the ratio R 2 Is the ratio R 1 The following is preferred.
[0017]
Preferably, the step B comprises a step of heating the mixture at a temperature of 800 ° C. or more and 1050 ° C. or less.
It is preferable that the step B further includes a step of preheating the mixture at 600 ° C to 750 ° C using a rotary kiln, and heating the mixture at 800 ° C to 1050 ° C following the preheating. .
[0018]
The lithium compound preferably has an average particle size of 2 to 15 μm.
The compound X preferably has an average particle size of 1 to 20 μm.
The compound Y preferably has an average particle size of 1 to 15 μm.
Compound X preferably comprises tricobalt tetroxide.
[0019]
Step A comprises, in particular, the element M 1 Is coprecipitated with Co to give M as compound X 1 Step B is a step of preparing a cobalt oxide containing the compound Y. 1 By mixing the cobalt oxide and the lithium compound, and heating the resulting mixture, Li, Co and M 1 And M 2 And a step of obtaining a composite oxide containing the following.
[0020]
Element M in step A 1 Co-precipitated with Co 1 When obtaining a cobalt oxide containing 1 In the contained cobalt oxide, the element M 1 And Co are uniformly distributed. In step B, such M 1 Li, Co, M 1 And M 2 When obtaining a composite oxide containing: Li, Co and M 1 And M 2 In the composite oxide particles containing 2 Are more distributed in the surface layer than in the interior.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a method for producing a positive electrode active material of the present invention will be described.
(1) Step A
In step A, at least one element M selected from the group consisting of Mg, Cu, and Zn 1 And Co and the element M 1 A compound X in which and Co are uniformly distributed is prepared. Compound X includes, for example, M 1 Cobalt hydroxide containing M 1 Cobalt oxide containing M 1 Is suitable. M 1 Is stable in air and is the most cost-effective tricobalt tetroxide (Co). 3 O 4 ), But preferably comprises monocobalt monoxide (CoO), dicobalt trioxide (CoO) 2 O 3 ) May be used.
[0022]
The method for preparing the compound X is not particularly limited, but the Co salt and M 1 A coprecipitation method in which an aqueous alkali solution is poured into an aqueous solution in which a salt of the above is dissolved to precipitate a hydroxide is preferable. Therefore, the coprecipitation method will be described next.
[0023]
The following raw materials can be used in the coprecipitation method.
First, as the Co salt, cobalt sulfate, cobalt nitrate, or the like can be used. These may be used alone or in combination. Of these, cobalt sulfate is particularly preferred.
[0024]
M 1 As the salt, sulfate, nitrate, carbonate and the like can be used. For example, as a salt of Mg, magnesium sulfate, magnesium nitrate, magnesium hydroxide, basic magnesium carbonate, magnesium chloride, magnesium fluoride, magnesium acetate, magnesium oxalate, magnesium sulfide and the like can be used. In addition, as the Cu salt, copper sulfate, copper nitrate, copper carbonate, copper acetate, copper oxalate, copper chloride, copper sulfide, or the like can be used. As the salt of Zn, zinc sulfate, zinc nitrate, zinc acetate, zinc chloride, zinc fluoride, zinc sulfide, and the like can be used. These may be used alone or in combination.
[0025]
Co salt and M 1 The concentration of the Co salt in the aqueous solution in which the salt is dissolved is, for example, 0.5 to 2 mol / L. 1 Is, for example, 0.01 to 0.32 mol / L.
[0026]
The alkali concentration of the aqueous alkali solution poured into the solution is, for example, 10 to 50% by weight. As the alkali to be dissolved in the alkali aqueous solution, sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
[0027]
Co salt and M 1 The temperature of the aqueous solution in which the salt is dissolved and the temperature of the alkaline aqueous solution are not particularly limited, and are, for example, 20 to 60 ° C.
Co salt and M 1 The pH of the aqueous solution in which the salt of 1 When the aqueous alkaline solution is continuously dropped so that the pH is controlled to a value at which coprecipitation co-precipitates (generally pH 8 or more), cobalt and M 1 The hydroxide which is a coprecipitate of is obtained. The hydroxide is filtered, washed with water, dried, and then calcined in an oxygen-containing atmosphere to obtain an oxide as compound X.
[0028]
(2) Step B
In step B, first, at least one element M selected from the group consisting of Al, Ca, Ba, Sr, Y, and Zr 2 , A compound X, and a lithium compound. At this time, Li, Co, M contained in the mixture 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 Is not less than 0.5% and not more than 8%, more preferably not less than 0.5% and not more than 5%. 2 Of the number of moles of R 2 Is preferably 0.05% or more and 2% or less, more preferably 0.05% or more and 1% or less.
[0029]
M in the total number of moles 1 Of the number of moles of R 1 If it is less than 0.5%, the thermal stability of the positive electrode active material is hardly improved, and if it exceeds 8%, the capacity of the positive electrode active material becomes insufficient. Further, M in the total number of moles 2 Of the number of moles of R 2 However, if it is less than 0.05%, the cycle life characteristics of the battery hardly improve, and if it exceeds 2%, the capacity of the positive electrode active material becomes insufficient.
Where the ratio R 2 Is the ratio R 1 The following is preferred. Ratio R 2 Is the ratio R 1 When the ratio exceeds the above, the decrease in the discharge capacity becomes large.
[0030]
Element M 2 Include, for example, M 2 Hydroxide of M 2 Oxide of M 2 Carbonate, M 2 Suitable are nitrates and the like. For example, as the compound containing Al, aluminum hydroxide, aluminum oxide, aluminum nitrate, aluminum fluoride, aluminum sulfate, or the like can be used. Further, as the compound containing Ca, calcium hydroxide, calcium oxide, or the like can be used. Further, as the compound containing Ba, barium hydroxide, barium oxide, or the like can be used. Further, as the compound containing Sr, strontium hydroxide, strontium oxide, or the like can be used. Further, as the compound containing Y, yttrium hydroxide, yttrium oxide, or the like can be used. Further, as the compound containing Zr, zirconium nitrate, zirconium hydroxide, zirconium oxide, zirconium carbonate, zirconium sulfate, or the like can be used.
[0031]
As the lithium compound, lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide, or the like can be used. Among them, lithium carbonate and lithium hydroxide are most advantageous in terms of environment and cost.
[0032]
The lithium compound preferably has an average particle size of 2 to 15 μm, more preferably 4 to 10 μm. When the average particle diameter of the lithium compound is less than 2 μm, the obtained Li, Co and M 1 And M 2 And the density of the composite oxide containing the same decreases, and the battery capacity decreases. On the other hand, when the average particle diameter of the lithium compound exceeds 15 μm, the particles are too large, and the reactivity with the compounds X and Y decreases, or the reaction proceeds unevenly.
[0033]
The average particle size of compound X is preferably 1 to 20 μm, more preferably 4 to 10 μm. When the average particle size of the compound X is less than 1 μm, the obtained Li, Co and M 1 And M 2 And the density of the composite oxide containing the same decreases, and the battery capacity decreases. On the other hand, when the average particle diameter of the compound X exceeds 20 μm, Li, Co and M 1 And M 2 The particle size of the composite oxide containing the particles becomes too large, and the high load characteristics of a battery using the composite oxide deteriorate.
[0034]
The average particle size of the compound Y is preferably 1 to 15 μm, more preferably 1 to 10 μm. If the average particle diameter of the compound Y is less than 1 μm or more than 15 μm, a uniform mixed state with the compound X and the lithium compound cannot be obtained, and a relatively non-uniform active material is generated.
[0035]
The resulting mixture is then heated to produce Li, Co and M 1 And M 2 A composite oxide containing:
In the step B, the mixture is preferably heated at 800 ° C. or higher and 1050 ° C. or lower, more preferably 900 ° C. or higher and 1050 ° C. or lower. If the heating temperature is lower than 800 ° C., Li, Co and M 1 And M 2 , The crystallinity of the composite oxide containing is low, and a battery using the same cannot have a sufficient discharge capacity. On the other hand, when the heating temperature exceeds 1050 ° C., Li, Co and M 1 And M 2 , The specific surface area of the composite oxide containing the same decreases, and the high load characteristics of a battery using the composite oxide decrease.
[0036]
Further, it is preferable to preheat the mixture at 600 ° C to 750 ° C using a rotary kiln before heating the mixture at 800 ° C to 1050 ° C. According to such a two-stage firing method, an active material having high crystallinity can be obtained, and the residue of unreacted substances can be reduced. Note that the rotary kiln can be heated while the mixture is flowing, and the number of times of contact between the raw materials can be increased, so that the reactivity can be improved.
[0037]
According to the method as described above, it is composed of composite oxide particles containing Li and Co, and the element M 1 And element M 2 And M 1 Are uniformly distributed in the particles, and M 2 Can obtain a positive electrode active material distributed more in the surface layer than in the inside of the particles.
[0038]
The average particle diameter of the positive electrode active material of the present invention is preferably 1 to 20 μm, more preferably 4 to 10 μm. When the average particle diameter of the positive electrode active material is less than 1 μm, the density of the active material is low, so that the capacity of the battery using the active material is low. When the average particle size exceeds 20 μm, the high load characteristics of the battery are reduced.
[0039]
The specific surface area of the positive electrode active material of the present invention is 0.2 to 1.2 m. 2 / G. Specific surface area of positive electrode active material is 0.2m 2 / G is less than 1.2 m / g, the high load characteristics of the battery using the 2 If it exceeds / g, the contact area between the non-aqueous electrolyte and the positive electrode active material increases, so that the amount of gas generated at the positive electrode increases.
[0040]
【Example】
Hereinafter, the present invention will be specifically described based on examples. In the following examples, a rectangular battery was manufactured, but the shape of the battery is not limited to this. The present invention is also applicable to coin-type, button-type, sheet-type, stacked-type, cylindrical-type or flat-type batteries, and large-sized batteries used for electric vehicles and the like.
[0041]
<< Example 1 >>
Li, Co, M contained in the positive electrode active material 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 And M in the total number of moles 2 Of the number of moles of R 2 The positive electrode active materials having the values shown in Table 1 were prepared, and the batteries were used to produce batteries A1 to A6 of Examples and batteries B1 to B4 of Comparative Examples. Here, M 1 As Mg, M 2 Was adopted as Al.
[0042]
[Table 1]
Figure 2004047437
[0043]
(I) Preparation of positive electrode
The positive electrode active materials used for the batteries A1 to A6 were prepared by using a coprecipitation method described below.
Step A
A metal salt aqueous solution in which cobalt sulfate and magnesium sulfate were dissolved was prepared. The concentration of cobalt sulfate in the aqueous metal salt solution was 1 mol / L, and the concentration of magnesium sulfate was appropriately adjusted according to Table 1. The aqueous solution of the metal salt under stirring was maintained at 50 ° C., and an aqueous solution containing 30% by weight of sodium hydroxide was added dropwise thereto so as to have a pH of 12, thereby precipitating magnesium-containing cobalt hydroxide. The precipitate of cobalt hydroxide was filtered, washed with water, dried in air, and calcined at 400 ° C. for 5 hours to obtain magnesium-containing cobalt oxide.
[0044]
Step B
The obtained magnesium-containing cobalt oxide, aluminum hydroxide, and lithium carbonate were mixed at a predetermined molar ratio according to Table 1. The molar ratio of Li: (Co + Mg + Al) was 1: 1. The mixture was placed in a rotary kiln and preheated at 650 ° C. for 10 hours in an air atmosphere. Next, the temperature of the mixture after preheating was raised to 950 ° C. in an electric furnace in 2 hours, and calcined at 950 ° C. for 10 hours to synthesize a positive electrode active material.
[0045]
The positive electrode active materials used for the batteries B1 to B4 were prepared without using the coprecipitation method.
An aqueous solution of cobalt sulfate having a concentration of 1 mol / L was prepared. The aqueous solution of cobalt sulfate under stirring was maintained at 50 ° C., and an aqueous solution containing 30% by weight of sodium hydroxide was dropped into the aqueous solution so as to have a pH of 12, whereby cobalt hydroxide was precipitated. The precipitate of cobalt hydroxide was filtered, washed with water, dried in air, and calcined at 400 ° C. for 5 hours to obtain cobalt oxide.
[0046]
According to Table 1, the obtained cobalt oxide, magnesium nitrate, aluminum hydroxide, and lithium carbonate were mixed at a predetermined molar ratio. The molar ratio of Li: (Co + Mg + Al) was 1: 1. The mixture was placed in a rotary kiln and preheated at 650 ° C. for 10 hours in an air atmosphere. Next, the temperature of the mixture after preheating was raised to 950 ° C. in an electric furnace in 2 hours, and calcined at 950 ° C. for 10 hours to synthesize a positive electrode active material.
[0047]
The distribution states of Al and Mg in the positive electrode active material used for the battery A3 and the battery B2 were measured by secondary ion mass spectrometry (SIMS), time-of-flight mass spectrometry (TOF-SIMS), X-ray photoelectron analysis (ESCA), and Auger spectroscopy. Analysis and X-ray micro analysis (EPMA).
[0048]
[Analysis of positive electrode active material particle cross section]
A sample for measurement was prepared by mixing each active material with an epoxy resin, curing the mixture, cutting and polishing the cured product. This sample was subjected to surface analysis by the above-described analysis method, and the element distribution and the concentration distribution in the surface layer portion and the central portion of the particles were measured.
[0049]
[Analysis in the depth direction from the surface of the positive electrode active material particles]
For the analysis in the depth direction from the particle surface, sputtering was employed. In particular, the analysis of the particle surface was mainly performed by TOF-SIMS measurement.
As a result, in the positive electrode active material used for the battery A3, the center portion (when the particle radius is r) is located at the surface layer of the active material particles (when the particle radius is r, an area within 0.3 r from the surface). It was found that Al was distributed at a concentration approximately twice as large as that of the region within 0.3 r from the center. On the other hand, Mg was homogeneously distributed in the active material particles.
[0050]
In the positive electrode active material used for the battery B2, the center portion (when the particle radius is r, the center is located at the surface layer of the active material particles (a region within 0.3 r from the surface when the particle radius is r)). It was found that Al was distributed at a concentration approximately twice as large as that in the region within 0.3 r from the above, and Mg was distributed at a concentration approximately 1.5 times as large. That is, both Al and Mg were localized in the surface layer of the active material particles.
[0051]
To 100 parts by weight of a predetermined positive electrode active material, 3 parts by weight of acetylene black as a conductive material, 7 parts by weight of polytetrafluoroethylene as a binder, and 100 parts by weight of an aqueous solution containing 1% by weight of carboxymethylcellulose were added. In addition, the mixture was stirred and mixed to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both sides of a 20 μm-thick aluminum foil serving as a current collector, dried, rolled, and cut into a predetermined size to obtain a positive electrode.
[0052]
(Ii) Preparation of negative electrode
100 parts by weight of flaky graphite pulverized and classified so that the average particle diameter becomes about 20 μm, 3 parts by weight of styrene / butadiene rubber as a binder, and 100 parts by weight of an aqueous solution containing 1% by weight of carboxymethyl cellulose. The mixture was stirred and mixed to obtain a paste-like negative electrode mixture. This negative electrode mixture was applied to both surfaces of a 15 μm-thick copper foil serving as a current collector, dried, rolled, and cut into a predetermined size to obtain a negative electrode.
[0053]
(Iii) Battery assembly
A prismatic nonaqueous electrolyte secondary battery (width 34 mm, height 50 mm) was assembled using the predetermined positive electrode and the above negative electrode. FIG. 1 is a perspective view in which a part of the prismatic battery manufactured in this example is cut away.
[0054]
The battery was assembled as follows. First, a predetermined positive electrode and the above-mentioned negative electrode were wound around a 25 μm-thick microporous polyethylene resin separator to form an electrode group 1. An aluminum positive electrode lead 2 and a nickel negative electrode lead 3 were welded to the positive electrode and the negative electrode, respectively. An insulating ring (not shown) made of polyethylene resin was attached to the upper part of the electrode plate group 1 and housed in an aluminum battery case 4. The other end of the positive electrode lead 2 was spot-welded to the aluminum sealing plate 5. The other end of the negative electrode lead 3 was spot-welded to the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5. After laser welding the open end of the battery case 4 and the peripheral edge of the sealing plate 5, a predetermined amount of a non-aqueous electrolyte was injected from an injection port provided in the sealing plate. Finally, the injection port was closed with an aluminum stopper 7 and sealed by laser welding to complete the battery.
[0055]
The non-aqueous electrolyte was prepared by adding LiPF at a concentration of 1.0 mol / L to a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3. 6 Was used.
[0056]
(Iv) Battery evaluation
[Discharge capacity]
The charge / discharge cycle of each battery was repeated at an ambient temperature of 20 ° C. In the charge / discharge cycle, the charge was performed at a constant current of a maximum current value of 600 mA and a charge termination potential of 4.2 V, and after the potential reached 4.2 V, a constant voltage charge of 2 hours was performed. The discharge was a constant current discharge at a current value of 600 mA and a discharge end potential of 3.0 V. Table 1 shows the discharge capacity per 1 g of the positive electrode active material in the first cycle.
[0057]
Also, the ratio R of Mg 1 FIG. 2 shows the relationship between and the discharge capacity in the first cycle.
As shown in FIG. 2, the batteries A1 to A6 have a small decrease in capacity with an increase in the proportion of Mg, but the batteries B1 to B4 have a large decrease in capacity. It is considered that such a result is based on the fact that in the batteries B1 to B4, Mg is unevenly distributed in the surface layer portion of the positive electrode active material, and the unreacted Mg compound tends to remain.
[0058]
[Capacity maintenance rate]
In the charge / discharge cycle, the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle was determined as a capacity retention rate in percentage (%). Table 1 shows the results.
Also, the ratio R 1 FIG. 3 shows the relationship between the ratio and the capacity maintenance ratio at the 100th cycle.
[0059]
As shown in FIG. 3, in each of the batteries A1 to A6 and the batteries B1 to B4, the capacity retention ratio is improved as the ratio of Mg contained in the positive electrode active material is increased. It is considered that such a result is based on the fact that the crystal structure of the positive electrode active material is stabilized by Mg. Also, since the batteries A1 to A6 showed better results than the batteries B1 to B4, in the batteries A1 to A6, Mg was uniformly present in the positive electrode active material. It can be seen that the effect is obtained efficiently.
[0060]
[Exothermic temperature]
In the above-mentioned charge / discharge cycle, after the completion of the three-cycle charge / discharge, constant current charging is performed at an ambient temperature of 20 ° C., a maximum current value of 600 mA, and a final voltage of 4.4 V, and a constant voltage of 2 hours after reaching 4.4 V. Charged. After the charging was completed, the battery was disassembled, the positive electrode mixture was taken out from the positive electrode, 2 mg of the mixture was placed in a SUS PAN, and a DSC measurement giving an index of thermal stability was performed. The measurement was performed using a RIGAKU Thermo Plus (manufactured by Rigaku Corporation) in an air atmosphere from room temperature to 400 ° C. at 10 ° C./min. Table 1 shows the first exothermic temperatures observed in the measurement.
[0061]
Also, the ratio R 1 FIG. 4 shows the relationship between the temperature and the first heat generation temperature.
As shown in FIG. 4, in each of the batteries A1 to A6 and the batteries B1 to B4, the thermal stability is improved with an increase in the ratio of Mg contained in the positive electrode active material. It is considered that such a result is based on the fact that the crystal structure of the charged positive electrode active material is stabilized by Mg. Also, since the batteries A1 to A6 showed better results than the batteries B1 to B4, in the batteries A1 to A6, Mg was uniformly present in the positive electrode active material. It can be seen that the effect is efficiently obtained with a small amount.
[0062]
<< Example 2 >>
Li, Co, M contained in the positive electrode active material 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 And M in the total number of moles 2 Of the number of moles of R 2 The positive electrode active materials having the values shown in Table 2 were prepared, and the batteries were used to produce batteries A7 to A12 of Examples and batteries B5 to B8 of Comparative Examples. Here, M 1 As Mg, M 2 Was adopted as Al.
[0063]
[Table 2]
Figure 2004047437
[0064]
(I) Preparation of positive electrode
The positive electrode active material used for the batteries A7 to A12 is the proportion R of Mg. 1 Is fixed to 2%, and the ratio R of Al 2 Was synthesized in the same manner as in Example 1 except that was changed.
The positive electrode active materials used for the batteries B5 to B8 were prepared by using a coprecipitation method described below.
[0065]
A metal salt aqueous solution in which cobalt sulfate, magnesium sulfate and aluminum sulfate were dissolved was prepared. The concentration of cobalt sulfate in the aqueous metal salt solution was 1 mol / L, and the concentrations of magnesium sulfate and aluminum sulfate were appropriately adjusted according to Table 2. The aqueous solution of the metal salt under stirring was maintained at 50 ° C., and an aqueous solution containing 30% by weight of sodium hydroxide was added dropwise thereto so as to have a pH of 12, thereby precipitating magnesium / aluminum-containing cobalt hydroxide. The precipitate of cobalt hydroxide was filtered, washed with water, dried in air, and calcined at 400 ° C. for 5 hours to obtain a magnesium / aluminum-containing cobalt oxide. A positive electrode active material was synthesized in the same manner as in Example 1 except that the obtained magnesium / aluminum-containing cobalt oxide was not used and aluminum hydroxide was not used.
[0066]
The distribution states of Al and Mg in the positive electrode active material used for the battery A9 and the battery B6 were set in the same manner as in Example 1 for secondary ion mass spectrometry (SIMS), time-of-flight mass spectrometry (TOF-SIMS), and X-ray. It was examined by photoelectron analysis (ESCA), Auger spectroscopy and X-ray micro analysis (EPMA).
[0067]
As a result, in the positive electrode active material used for the battery A9, in the surface layer of the active material particles (when the particle radius is r, an area within 0.3 r from the surface), the center portion (when the particle radius is r), It was found that Al was distributed at a concentration approximately three times as large as that in the region within 0.3 r from the center. On the other hand, Mg was homogeneously distributed in the active material particles.
[0068]
In the positive electrode active material used for the battery B6, both Mg and Al were homogeneously distributed in the active material particles. That is, in the positive electrode active material used for the battery B6, more Al was taken into the active material particles.
Using the predetermined positive electrode, a prismatic nonaqueous electrolyte secondary battery similar to that in Example 1 was produced, and evaluated in the same manner as in Example 1. Table 2 shows the results.
[0069]
Also, the ratio R of Al 2 FIG. 5 shows the relationship between and the discharge capacity in the first cycle.
Also, the ratio R of Al 2 FIG. 6 shows the relationship between the ratio and the capacity retention ratio at the 100th cycle.
Also, the ratio R of Al 2 FIG. 7 shows the relationship between the temperature and the first heat generation temperature.
Also, the ratio R of Al 2 FIG. 8 shows a relationship between the tap density and the tap density.
[0070]
As shown in FIG. 5, it can be seen that the batteries B <b> 5 to B <b> 8 have a larger capacity decrease with an increase in the ratio of Al contained in the positive electrode active material than the batteries A <b> 7 to A <b> 12. These results indicate that since the positive electrode active materials of the batteries B5 to B8 were prepared by co-precipitating Co, Mg and Al, the sulfate ions taken in during the preparation remained in the active material after the synthesis and the capacity was reduced. Indicates that the
[0071]
In addition, as shown in FIGS. 6 and 7, in each of the batteries A7 to A12 and the batteries B5 to B8, the capacity retention ratio and the thermal stability are improved with an increase in the ratio of Al contained in the positive electrode active material. .
[0072]
Further, as shown in FIG. 8, in batteries A7 to A12, the tap density hardly changed even when the proportion of Al contained in the positive electrode active material was increased, whereas in batteries B5 to B8, The decrease in tap density with the increase in the percentage of Al contained in the active material is large. It is considered that such a result is based on the fact that sulfate ions were taken into the positive electrode active materials of the batteries B5 to B8 and the particles expanded.
[0073]
<< Example 3 >>
Li, Co, M contained in the positive electrode active material 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 And M in the total number of moles 2 Of the number of moles of R 2 The positive electrode active materials having the values shown in Table 3 were prepared, and the batteries were used to fabricate batteries A13 to A17 of Examples and batteries B9 to B13 of Comparative Examples. Here, M 1 Mg is adopted as 2 Used was Ca, Ba, Sr, Y or Zr.
[0074]
[Table 3]
Figure 2004047437
[0075]
(I) Preparation of positive electrode
The positive electrode active material used for the batteries A13 to A17 has a Mg ratio R 1 Is fixed to 2%, and in step B, calcium hydroxide, barium hydroxide, strontium hydroxide, yttrium hydroxide or zirconium nitrate is used in place of aluminum hydroxide, and the ratio of Ca, Ba, Sr, Y or Zr is used. R 2 Was fixed to 0.5% in the same manner as in the battery A1 of Example.
[0076]
The positive electrode active material used in the batteries B9 to B13 is a Mg ratio R 1 Is fixed at 2%, calcium hydroxide, barium hydroxide, strontium hydroxide, yttrium hydroxide or zirconium nitrate is used instead of aluminum hydroxide, and the ratio R of Ca, Ba, Sr, Y or Zr is used. 2 Was fixed to 0.5%, and synthesized in the same manner as the battery B1 of the comparative example.
[0077]
Using the predetermined positive electrode, a prismatic nonaqueous electrolyte secondary battery similar to that in Example 1 was produced, and evaluated in the same manner as in Example 1. Table 3 shows the results.
As shown in Table 3, as in Example 1, the batteries A13 to A17 have a larger capacity, a higher capacity retention rate, and a better thermal stability than the batteries B9 to B13. These results indicate that in batteries B9 to B13, Mg is unevenly distributed in the surface layer of the positive electrode active material and unreacted Mg compound tends to remain, whereas in batteries A13 to B17, Mg This is considered to be due to uniform distribution in the active material. Further, it can be seen that the same tendency is observed when any of Al, Ca, Ba, Sr, Y and Zr is used.
[0078]
<< Example 4 >>
Li, Co, M contained in the positive electrode active material 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 And M in the total number of moles 2 Of the number of moles of R 2 The positive electrode active materials having the values shown in Table 4 were prepared, and were used to produce batteries A18 to A19 of the example and batteries B14 to B15 of the comparative example. Here, M 1 Cu or Zn is adopted as 2 Was adopted as Al.
[0079]
[Table 4]
Figure 2004047437
[0080]
The positive electrode active material used for the batteries A18 to A19 was synthesized in the same manner as the battery A3 of the example, except that in step A, copper sulfate or zinc sulfate was used instead of magnesium sulfate.
The positive electrode active materials used for the batteries B14 to B15 were synthesized in the same manner as the battery B2 of the comparative example, except that copper nitrate or zinc nitrate was used instead of magnesium nitrate.
[0081]
Using the predetermined positive electrode, a prismatic nonaqueous electrolyte secondary battery similar to that in Example 1 was produced, and evaluated in the same manner as in Example 1. Table 4 shows the results.
As shown in Table 4, similarly to Example 1, the batteries A18 to A19 had larger capacities, a higher capacity retention ratio, and better thermal stability than the batteries B14 to B15. Such a result indicates that in batteries B14 to B15, Cu or Zn is unevenly distributed in the surface layer of the positive electrode active material, and unreacted Cu or Zn compounds are likely to remain, whereas in batteries A18 to B19, , Cu or Zn are considered to be based on the fact that Cu, Zn are uniformly distributed in the positive electrode active material.
Further, it can be seen that the same tendency is observed when any of Mg, Cu and Zn is used.
[0082]
<< Example 5 >>
Li, Co, M contained in the positive electrode active material 1 And M 2 In the total number of moles of 1 Of the number of moles of R 1 And M in the total number of moles 2 Of the number of moles of R 2 The positive electrode active materials having the values shown in Table 5 were prepared, and were used to produce batteries A20 to A21 of the example and batteries B16 to B17 of the comparative example. Here, M 1 As Mg, M 2 Was adopted as Al.
[0083]
[Table 5]
Figure 2004047437
[0084]
The positive electrode active material used for the battery A20 was synthesized in the same manner as the battery A3 of the example, except that in step A, the Mg-containing cobalt hydroxide obtained by the coprecipitation method was used as it was instead of the Mg-containing cobalt oxide.
The positive electrode active material used for the battery A21 was synthesized in the same manner as the battery A3 of the example, except that instead of Mg-containing cobalt oxide, cobalt carbonate in which Mg was uniformly dissolved was used.
[0085]
The positive electrode active material used for the battery B16 was synthesized in the same manner as the battery B2 of the comparative example, except that cobalt hydroxide was used instead of cobalt oxide.
The positive electrode active material used for the battery B17 was synthesized in the same manner as the battery B2 of the comparative example, except that cobalt carbonate was used instead of cobalt oxide.
Using the predetermined positive electrode, a prismatic nonaqueous electrolyte secondary battery similar to that in Example 1 was produced, and evaluated in the same manner as in Example 1. Table 5 shows the results.
[0086]
As shown in Table 5, as in Example 1, the batteries A20 to A21 have a larger capacity, a higher capacity retention ratio, and have better thermal stability than the batteries B16 to B17. These results indicate that in the batteries B16 to B17, Mg is unevenly distributed in the surface layer of the positive electrode active material, and unreacted Mg compound tends to remain, whereas in the batteries A20 to A21, the Mg is positive. This is considered to be due to uniform distribution in the active material.
Further, it can be seen that the same tendency as in Example 1 is observed even when Mg-containing cobalt carbonate or Mg-containing cobalt hydroxide is used instead of Mg-containing cobalt oxide.
[0087]
【The invention's effect】
As described above, according to the present invention, it is possible to maximize both the cycle life characteristics of a nonaqueous electrolyte secondary battery and the thermal stability of the positive electrode active material without reducing the tap density of the positive electrode active material. be able to.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view of a prismatic battery of the present invention.
FIG. 2 shows a ratio R of Mg in the positive electrode active material according to Example 1. 1 FIG. 5 is a diagram showing a relationship between the discharge capacity and the first cycle discharge capacity.
FIG. 3 shows a ratio R of Mg in the positive electrode active material according to Example 1. 1 FIG. 10 is a diagram showing a relationship between the capacity maintenance rate at the 100th cycle.
FIG. 4 shows a ratio R of Mg in the positive electrode active material according to Example 1. 1 FIG. 3 is a diagram showing a relationship between the temperature and the heat generation temperature.
FIG. 5 shows a ratio R of Al in the positive electrode active material according to Example 2. 2 FIG. 5 is a diagram showing a relationship between the discharge capacity and the first cycle discharge capacity.
FIG. 6 shows a ratio R of Al in the positive electrode active material according to Example 2. 2 FIG. 10 is a diagram showing a relationship between the capacity maintenance rate at the 100th cycle.
FIG. 7 shows a ratio R of Al in the positive electrode active material according to Example 2. 2 FIG. 6 is a diagram showing a relationship between the first heat generation temperature and the first heat generation temperature.
FIG. 8 shows a ratio R of Al in the positive electrode active material according to Example 2. 2 FIG. 4 is a diagram showing a relationship between the tap density and the tap density.
[Explanation of symbols]
1 Electrode group
2 Positive electrode lead
3 Negative electrode lead
4 Battery case
5 sealing plate
6 Negative electrode terminal
7 Sealing

Claims (10)

LiとCoとを含む複合酸化物の粒子からなり、
前記複合酸化物は、さらに元素Mおよび元素Mを含んでおり、
元素Mは、Mg、CuおよびZnよりなる群から選ばれた少なくとも1種であり、
元素Mは、Al、Ca、Ba、Sr、YおよびZrよりなる群から選ばれた少なくとも1種であり、
元素Mは、前記粒子中に均一に分布しており、
元素Mは、前記粒子の内部よりも表層部に多く分布している
非水電解質二次電池用正極活物質。
Consisting of particles of a composite oxide containing Li and Co,
The composite oxide contains further elements M 1 and the element M 2,
The element M 1 is at least one selected from the group consisting of Mg, Cu, and Zn;
Elements M 2 is at least one selected Al, Ca, Ba, Sr, from the group consisting of Y and Zr,
Element M 1 is uniformly distributed in the particles,
Elements M 2, the positive electrode active material for distributed more to have a non-aqueous electrolyte secondary battery in a surface portion than in the interior of the particles.
前記複合酸化物に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rが、0.5%以上8%以下であり、前記合計モル数に占めるMのモル数の割合Rが、0.05%以上2%以下である請求項1記載の非水電解質二次電池用正極活物質。The ratio R 1 of the number of moles of M 1 to the total number of moles of Li, Co, M 1 and M 2 contained in the composite oxide is 0.5% or more and 8% or less, and occupies the total number of moles. M number of moles of the ratio R 2 of 2, the positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein 2% or less than 0.05%. 割合Rが、割合R以下である請求項2記載の非水電解質二次電池用正極活物質。Ratio R 2 is a positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 2, wherein the proportion R 1 or less. 前記粒子の半径をrとするとき、粒子表面から0.3r以内の領域には、粒子中心から0.3r以内の領域の1.2倍以上の濃度で元素Mが分布している請求項1記載の非水電解質二次電池用正極活物質。When the radius of the particle is r, the region within 0.3r from the particle surface, the claims are elements M 2 at a concentration of 1.2 times or more the region within 0.3r from particles center are distributed The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 前記粒子の平均粒子径が、1μm以上20μm以下であり、比表面積が、0.2m/g以上1.2m/g以下である請求項1記載の非水電解質二次電池用正極活物質。 2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the particles have an average particle diameter of 1 μm to 20 μm and a specific surface area of 0.2 m 2 / g to 1.2 m 2 / g. . (1)Mg、CuおよびZnよりなる群から選ばれた少なくとも1種の元素MとCoとを含み、元素MとCoとが均一に分布している化合物Xを調製する工程A、
(2)Al、Ca、Ba、Sr、YおよびZrよりなる群から選ばれた少なくとも1種の元素Mを含む化合物Yと、化合物Xと、リチウム化合物とを、混合し、得られた混合物を加熱することにより、LiとCoとMとMとを含む複合酸化物を得る工程B、
を有する非水電解質二次電池用正極活物質の製造方法。
(1) Step A of preparing a compound X containing at least one element M 1 and Co selected from the group consisting of Mg, Cu and Zn, wherein the elements M 1 and Co are uniformly distributed;
(2) Al, Ca, Ba , Sr, and compound Y containing at least one kind of an element M 2 selected from the group consisting of Y and Zr, a compound X, and a lithium compound are mixed, the resulting mixture To obtain a composite oxide containing Li, Co, M 1 and M 2 by heating
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising:
前記混合物に含まれるLi、Co、MおよびMの合計モル数に占めるMのモル数の割合Rが、0.5%以上8%以下であり、前記合計モル数に占めるMのモル数の割合Rが、0.05%以上2%以下である請求項6記載の非水電解質二次電池用正極活物質の製造方法。The ratio R 1 of the number of moles of M 1 to the total number of moles of Li, Co, M 1 and M 2 contained in the mixture is 0.5% or more and 8% or less, and M 2 occupies the total number of moles. ratio R 2 the method for producing a positive electrode active material for non-aqueous electrolyte secondary battery of claim 6 wherein 2% or less than 0.05% the number of moles of. 割合Rが、割合R以下である請求項7記載の非水電解質二次電池用正極活物質の製造方法。Ratio R 2 is The process of claim 7 positive electrode active material for non-aqueous electrolyte secondary battery, wherein the proportion R 1 or less. 前記工程Bが、前記混合物を800℃以上1050℃以下で加熱する工程からなる請求項6記載の非水電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 6, wherein the step (B) comprises a step of heating the mixture at a temperature of 800C to 1050C. 前記工程Bが、ロータリーキルンを用いて、600℃以上750℃以下で前記混合物を予備加熱し、前記予備加熱に続いて前記混合物を800℃以上1050℃以下で加熱する工程からなる請求項6記載の非水電解質二次電池用正極活物質の製造方法。The method according to claim 6, wherein the step B comprises a step of preheating the mixture at a temperature of 600 to 750 ° C using a rotary kiln, and heating the mixture at a temperature of 800 to 1050 ° C following the preheating. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2003127017A 2002-05-16 2003-05-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Lifetime JP3637344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127017A JP3637344B2 (en) 2002-05-16 2003-05-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002142145 2002-05-16
JP2003127017A JP3637344B2 (en) 2002-05-16 2003-05-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004047437A true JP2004047437A (en) 2004-02-12
JP3637344B2 JP3637344B2 (en) 2005-04-13

Family

ID=31719441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127017A Expired - Lifetime JP3637344B2 (en) 2002-05-16 2003-05-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3637344B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2005129489A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2005243536A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method
JP2006164934A (en) * 2004-11-12 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006286337A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and its charging method
EP1734601A1 (en) * 2004-03-29 2006-12-20 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007103036A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007103037A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007214090A (en) * 2006-02-13 2007-08-23 Sony Corp Positive-electrode active material and nonaqueous secondary battery
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
US7563538B2 (en) 2007-01-23 2009-07-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2009116284A1 (en) * 2008-03-19 2009-09-24 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
US8197968B2 (en) 2006-05-26 2012-06-12 Sony Corporation Cathode active material and battery
CN103490063A (en) * 2013-09-11 2014-01-01 中信国安盟固利电源技术有限公司 Preparation method for modified lithium cobalt oxide capable of being recycled at high cut-off voltage
JP2014120202A (en) * 2012-12-13 2014-06-30 Nichia Chem Ind Ltd Cathode active material for nonaqueous electrolyte secondary battery
CN104167529A (en) * 2014-07-06 2014-11-26 魏斌 A novel LiCo<1-x>Zr<x>O2 battery cathode material and a preparing method thereof
JP2020004713A (en) * 2018-06-27 2020-01-09 株式会社村田製作所 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2005050779A (en) * 2003-02-03 2005-02-24 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7381395B2 (en) 2003-09-30 2008-06-03 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2005129489A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP4518865B2 (en) * 2003-09-30 2010-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2005243536A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method
EP1734601A1 (en) * 2004-03-29 2006-12-20 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7858237B2 (en) 2004-03-29 2010-12-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
EP1734601A4 (en) * 2004-03-29 2010-06-02 Sanyo Electric Co Nonaqueous electrolyte secondary battery
JP4721729B2 (en) * 2004-11-12 2011-07-13 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
JP2006164934A (en) * 2004-11-12 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
JP2006286337A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and its charging method
JP2007103037A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007103036A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007214090A (en) * 2006-02-13 2007-08-23 Sony Corp Positive-electrode active material and nonaqueous secondary battery
US8197968B2 (en) 2006-05-26 2012-06-12 Sony Corporation Cathode active material and battery
US7563538B2 (en) 2007-01-23 2009-07-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2009116284A1 (en) * 2008-03-19 2009-09-24 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2014120202A (en) * 2012-12-13 2014-06-30 Nichia Chem Ind Ltd Cathode active material for nonaqueous electrolyte secondary battery
CN103490063A (en) * 2013-09-11 2014-01-01 中信国安盟固利电源技术有限公司 Preparation method for modified lithium cobalt oxide capable of being recycled at high cut-off voltage
CN104167529A (en) * 2014-07-06 2014-11-26 魏斌 A novel LiCo<1-x>Zr<x>O2 battery cathode material and a preparing method thereof
JP2020004713A (en) * 2018-06-27 2020-01-09 株式会社村田製作所 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP3637344B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US20230216036A1 (en) High-energy cathode active materials for lithium-ion batteries
JP4592931B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP3637344B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2020532842A (en) Positive electrode material containing a spinel-structured lithium manganese-based positive electrode active material, positive electrode, and lithium secondary battery
JP2003100296A (en) Active material for battery and manufacturing method thereof
CN1886343A (en) Solid state synthesis of lithium-nickel-cobalt-manganese mixed metal oxides for use in lithium ion battery cathode material
JP2000223122A (en) Positive electrode active material for lithium secondary battery and its manufacture, positive electrode for lithium secondary battery using the positive electrode active material and its manufacture, and lithium secondary battery using the positive electrode and its manufacture
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2000128539A (en) Lithium transition metal based halogenated oxide and its production and its utilization
JP2005196992A (en) Positive pole material for lithium secondary battery and battery
JP4062169B2 (en) Positive electrode material for lithium secondary battery
WO2021251416A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing said positive electrode active material, and lithium ion secondary battery
JP3503688B2 (en) Lithium secondary battery
JP2008130287A (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
US20150180032A1 (en) Cobalt-stabilized lithium metal oxide electrodes for lithium batteries
JP2005255433A (en) Lithium transition metal oxide for lithium battery
US10790508B2 (en) Cobalt-stabilized lithium metal oxide electrodes for lithium batteries
US7422824B2 (en) Active material of positive electrode for nonaqueous electrolyte secondary battery and process for producing the same
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP4703111B2 (en) Nonaqueous electrolyte secondary battery
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JP2003123750A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2001266871A (en) Manufacturing method of complex oxide for non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

R150 Certificate of patent or registration of utility model

Ref document number: 3637344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150114

Year of fee payment: 10

EXPY Cancellation because of completion of term