JP2005255433A - Lithium transition metal oxide for lithium battery - Google Patents

Lithium transition metal oxide for lithium battery Download PDF

Info

Publication number
JP2005255433A
JP2005255433A JP2004067096A JP2004067096A JP2005255433A JP 2005255433 A JP2005255433 A JP 2005255433A JP 2004067096 A JP2004067096 A JP 2004067096A JP 2004067096 A JP2004067096 A JP 2004067096A JP 2005255433 A JP2005255433 A JP 2005255433A
Authority
JP
Japan
Prior art keywords
lithium
transition metal
positive electrode
metal oxide
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067096A
Other languages
Japanese (ja)
Other versions
JP4900888B2 (en
Inventor
Janko Marinov Todorov
ヤンコ マリノフ トドロフ
Kenji Suzuoka
健司 鈴岡
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004067096A priority Critical patent/JP4900888B2/en
Publication of JP2005255433A publication Critical patent/JP2005255433A/en
Application granted granted Critical
Publication of JP4900888B2 publication Critical patent/JP4900888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium transition metal oxide having a layer structure and exhibiting more excellent cycle characteristic. <P>SOLUTION: The lithium transition metal oxide has the layer structure expressed by a composition formula Li<SB>1+X</SB>MO<SB>2</SB>, wherein M in the composition formula is composed of a transition metal containing Mn, Co and Ni in the atomic ratio of nearly 1:1:1, (x) being 0.01-0.5. When the lithium transition metal oxide is used as a positive active substance for a lithium battery, the ratio of change ä100-(z/y×100)} (%) of the lattice volume (z)(Å<SP>3</SP>) measured after charged up to 220 mAh/g charging capacity to the lattice volume (y)(Å<SP>3</SP>) before charged is ≤3.0% to stabilize the lattice volume, so that the lithium battery excellent in the cycle characteristic is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池などのリチウム電池の正極活物質として用いるリチウム遷移金属酸化物、特にサイクル特性に優れたリチウム電池を実現できるリチウム遷移金属酸化物に関する。 The present invention relates to a lithium transition metal oxide used as a positive electrode active material of a lithium battery such as a lithium primary battery, a lithium secondary battery, a lithium ion secondary battery, or a lithium polymer battery, particularly a lithium battery that can realize a lithium battery having excellent cycle characteristics. It relates to a transition metal oxide.

リチウム電池、特にリチウム二次電池は、単位電気量当たりの重量が小さく、それでいてエネルギー密度が高いため、ビデオカメラ、ノート型パソコン、携帯電話機などの携帯型電子機器や電気自動車などに搭載する駆動用電源として急速に普及しつつある。   Lithium batteries, especially lithium secondary batteries, are low in weight per unit of electricity and yet have high energy density, so they are used for driving in portable electronic devices such as video cameras, notebook computers, mobile phones, and electric vehicles. It is rapidly spreading as a power source.

リチウム二次電池の高いエネルギー密度は主に正極材料の電位に起因しており、この種の正極活物質としては、スピネル構造をもつリチウムマンガン酸化物(LiMn24)のほか、層状構造をもつLiCoO2、LiNiO2、LiMnO2など、リチウム複合酸化物(LiMxy)が知られている。
現在市販されているリチウム二次電池の大半は、正極活物質として4Vの高電圧を有するLiCoO2であるが、Coが極めて高価であるためLiCoO2の代替材料として、例えば同様の層構造を有するリチウム複合酸化物(LiMxy)の研究開発が盛んに進められている。
The high energy density of the lithium secondary battery is mainly due to the potential of the positive electrode material. This type of positive electrode active material includes a spinel-structure lithium manganese oxide (LiMn 2 O 4 ) and a layered structure. Lithium composite oxides (LiM x O y ) such as LiCoO 2 , LiNiO 2 and LiMnO 2 are known.
Most of the lithium secondary batteries currently on the market are LiCoO 2 having a high voltage of 4 V as a positive electrode active material. However, since Co is very expensive, it has a similar layer structure as an alternative material for LiCoO 2 , for example. Research and development of lithium composite oxide (LiM x O y ) has been actively promoted.

例えば、特許文献1は、マンガンとニッケルの混合水溶液中にアルカリ溶液を加えてマンガンとニッケルを共沈させ、水酸化リチウムを加え、ついで焼成することによって式:LiNixMn1-xO2(式中、0.7≦x≦0.95)で示される活物質を得る方法を開示している。
また、特許文献2は、式:LiNix1-x2(式中、MはCo、Mn、Cr、Fe、VおよびAlの少なくとも一種、1>x≧0.5)で示される組成を有する好ましい粒子状活物質を開示し、NiおよびMnを含む活物質としてx=0.15のものを示している。
また、特許文献3は、共沈合成法で合成された式:Liy-x1Ni1-xx2(式中、MはCo、Al、Mg、Fe、MgまたはMn、0<x2≦0.5、0≦x1<0.2、x=x1+x2、0.9≦y≦1.3)で示される活物質を提案している。
特許文献4は、3種の遷移金属を含む酸化物の結晶粒子からなり、前記結晶粒子の結晶構造が層構造であり、前記酸化物を構成する酸素原子の配列が立方最密充填である、Li[Lix(APQR1-x]O2(式中、A、BおよびCはそれぞれ異なる3種の遷移金属元素、−0.1≦x≦0.3、0.2≦P≦0.4、0.2≦Q≦0.4、0.2≦R≦0.4)で表される正極活物質を開示している。
特開平8−171910号 特開平9−129230号 特開平10−69910号 特開2003−17052号
For example, in Patent Document 1, an alkaline solution is added to a mixed aqueous solution of manganese and nickel to co-precipitate manganese and nickel, lithium hydroxide is added, and then calcined to obtain the formula: LiNixMn1-xO2 A method for obtaining an active material represented by 7 ≦ x ≦ 0.95) is disclosed.
Patent Document 2 discloses a composition represented by the formula: LiNi x M 1-x O 2 (wherein M is at least one of Co, Mn, Cr, Fe, V, and Al, 1> x ≧ 0.5). A preferred particulate active material having an x is disclosed, and x = 0.15 is shown as the active material containing Ni and Mn.
Patent Document 3 discloses a formula synthesized by a coprecipitation synthesis method: Li y -x1 Ni 1 -x M x O 2 (wherein M is Co, Al, Mg, Fe, Mg or Mn, 0 <x2 ≦ 0.5, 0 ≦ x1 <0.2, x = x1 + x2, 0.9 ≦ y ≦ 1.3).
Patent Document 4 is composed of oxide crystal particles containing three kinds of transition metals, the crystal structure of the crystal particles is a layered structure, and the arrangement of oxygen atoms constituting the oxide is cubic close-packed, Li [Li x ( AP B Q C R ) 1-x ] O 2 (wherein A, B and C are three different transition metal elements, −0.1 ≦ x ≦ 0.3, 0. 2 ≦ P ≦ 0.4, 0.2 ≦ Q ≦ 0.4, 0.2 ≦ R ≦ 0.4).
JP-A-8-171910 JP-A-9-129230 JP-A-10-69910 JP 2003-17052 A

近年、携帯情報電子機器などの高性能化に伴い、サイクル特性が強く求められるようになり、従来のものより一層優れたサイクル特性を実現できる正極活物質の開発が強く求められている。
そこで本発明は、層構造を有するリチウム遷移金属酸化物において、より一層優れたサイクル特性を実現できる正極活物質を開発せんとするものである。
In recent years, with improvement in performance of portable information electronic devices and the like, cycle characteristics have been strongly demanded, and development of a positive electrode active material capable of realizing cycle characteristics even better than conventional ones is strongly demanded.
Therefore, the present invention is to develop a positive electrode active material capable of realizing even more excellent cycle characteristics in a lithium transition metal oxide having a layer structure.

本発明は、組成式Li1+xMO2で表される層構造を有するリチウム遷移金属酸化物であって、当該組成式中のMが、Mn、Co及びNiをほぼ1:1:1の原子比で含む遷移金属からなり、かつxの値が0.01〜0.5であることを特徴とするリチウム遷移金属酸化物を提案する。 The present invention is a lithium transition metal oxide having a layer structure represented by the composition formula Li 1 + x MO 2 , wherein M in the composition formula is approximately 1: 1: 1 of Mn, Co, and Ni. A lithium transition metal oxide comprising a transition metal contained in an atomic ratio and having a value of x of 0.01 to 0.5 is proposed.

本発明のリチウム遷移金属酸化物は、リチウム電池の正極活物質として用いた場合、XRD測定によって測定される充電前の格子体積y(Å3)に対して、充電容量220mAh/gまで充電した後に測定される格子体積z(Å3)の変化率{100−(z/y×100)}(%)が3.0%以下となる特徴を示す。 When the lithium transition metal oxide of the present invention is used as a positive electrode active material of a lithium battery, after charging to a charge capacity of 220 mAh / g with respect to a lattice volume y (Å 3 ) before charging measured by XRD measurement. The characteristic is that the rate of change {100− (z / y × 100)} (%) of the measured lattice volume z (Å 3 ) is 3.0% or less.

従来、組成式LiMO2(MはMn:Co:Ni=1:1:1からなる遷移金属)で表される層構造を有するリチウム遷移金属酸化物について、これを正極活物質に用いてリチウム電池を構成し、充電途中の正極を抜き出してXRD測定を行い、得られた格子定数から求めた格子体積を充電容量に対してプロットすると、180mAh/g付近で大きく格子体積が減少することが報告されている(N.Yabuuchi,T.Ohzuku,Journal of Power Sources.119-121(2003)171-174)。
これに対し、本発明のリチウム遷移金属酸化物、すなわちLi比率を高めてLi/M=1.01〜1.5としたものは、Li/M=1のリチウム遷移金属酸化物に比べて、充電途中の格子体積の変化が顕著に小さく、しかも充放電容量250mAh/g程度まで格子体積の著しい減少が見られないことことが判明した。
したがって、本発明のリチウム遷移金属酸化物は、通常の充放電容量域でのサイクル特性が優れているばかりか、充放電容量250mAh/g程度まで構造安定性を維持できるため、充放電容量250mAh/gの領域まで使用する新たな用途に用いるリチウム電池用の正極活物質として利用することができる。
Conventionally, a lithium transition metal oxide having a layer structure represented by a composition formula LiMO 2 (M is a transition metal composed of Mn: Co: Ni = 1: 1: 1) is used as a positive electrode active material, and a lithium battery. When the XRD measurement is performed by extracting the positive electrode in the middle of charging and plotting the lattice volume obtained from the obtained lattice constant against the charging capacity, it is reported that the lattice volume greatly decreases in the vicinity of 180 mAh / g. (N. Yabuuchi, T. Ohzuku, Journal of Power Sources. 119-121 (2003) 171-174).
On the other hand, the lithium transition metal oxide of the present invention, that is, the Li ratio increased to Li / M = 1.01 to 1.5, compared to the Li / M = 1 lithium transition metal oxide, It was found that the change in the lattice volume during charging was remarkably small, and that the lattice volume was not significantly reduced to a charge / discharge capacity of about 250 mAh / g.
Therefore, the lithium transition metal oxide of the present invention not only has excellent cycle characteristics in a normal charge / discharge capacity region, but also can maintain structural stability up to a charge / discharge capacity of about 250 mAh / g. It can be used as a positive electrode active material for a lithium battery used in new applications that use up to the region of g.

なお、本発明において「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する。
また、本発明が特定する数値範囲の上限値及び下限値は、特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の範囲に含まる意を包含する。
In the present invention, the term “lithium battery” includes all batteries containing lithium or lithium ions in the battery, such as lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, and lithium polymer batteries.
Further, the upper and lower limits of the numerical range specified by the present invention are within the scope of the present invention as long as they have the same operational effects as those within the numerical range, even when slightly deviating from the specified numerical range. Includes intent to include.

本発明のリチウム遷移金属酸化物は、組成式Li1+xMO2で表される層構造を有するリチウム遷移金属酸化物であって、当該組成式中のMが、Mn、Co及びNiをほぼ1:1:1の原子比で含む遷移金属からなり、かつxの値が0.01〜0.5であることを特徴とするリチウム遷移金属酸化物、すなわち、組成式Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2(x=0.01〜0.5)で表される層構造を有するリチウム遷移金属酸化物である。 The lithium transition metal oxide of the present invention is a lithium transition metal oxide having a layer structure represented by a composition formula Li 1 + x MO 2 , wherein M in the composition formula is substantially composed of Mn, Co, and Ni. A lithium transition metal oxide comprising a transition metal having an atomic ratio of 1: 1: 1 and having a value of x of 0.01 to 0.5, that is, a composition formula Li 1 + x (Mn (1-x) / 3 Co (1-x) / 3 Ni (1-x) / 3) O 2 ( lithium transition metal oxide having a layered structure represented by x = 0.01 to 0.5) It is.

本発明のリチウム遷移金属酸化物は、遷移金属に対するLiの比率、すなわちLi/Mが定比組成よりも大きく、中でも1.01〜1.50、特に好ましくは1.03〜1.30である組成を特徴とする。   In the lithium transition metal oxide of the present invention, the ratio of Li to the transition metal, that is, Li / M is larger than the stoichiometric composition, among which 1.01 to 1.50, particularly preferably 1.03 to 1.30. Characterized by composition.

また、遷移金属Mは、Mn、Co及びNiの3元素を含み、Mn、Co及びNiをほぼ1:1:1の原子比で含むことを特徴とする。
なお、現段階では、Ni、Co及びMnをほぼ1:1:1の比率で含むリチウム遷移金属酸化物についての知見しか得られていないが、Ni、Co及びMnの比率が1:1:1から多少ずれても同様の結果が得られるものと考えられるから、Ni、Co及びMnの比率が10%ずれているリチウム遷移金属酸化物であっても、同様の効果が得られるものと考えられる。
The transition metal M includes three elements of Mn, Co, and Ni, and includes Mn, Co, and Ni at an atomic ratio of approximately 1: 1: 1.
At the present stage, only knowledge about lithium transition metal oxides containing Ni, Co and Mn at a ratio of approximately 1: 1: 1 has been obtained, but the ratio of Ni, Co and Mn is 1: 1: 1. Since it is considered that the same result can be obtained even if it deviates slightly from the above, it is considered that the same effect can be obtained even with a lithium transition metal oxide in which the ratio of Ni, Co and Mn deviates by 10%. .

本発明のリチウム遷移金属酸化物は、充放電後の格子体積変化率が顕著に小さいという特徴を備えている。すなわち、本発明のリチウム遷移金属酸化物をリチウム電池の正極活物質として用いた場合、XRD測定によって測定される充電前の格子体積y(Å3)に対して、充電容量220mAh/gまで充電した後に測定される格子体積z(Å3)の変化率|100−(z/y×100)|(%)が3.0%以下、好ましくは2.5%以下を示す特徴がある。なお、格子体積測定における詳しい条件は下記に示す。
充放電中の格子体積変化率がこのように小さいことから、本発明のリチウム遷移金属酸化物は、リチウム電池の正極活物質として用いた場合、構造安定性が特に優れ、サイクル特性が顕著に優れたリチウム電池を実現できる。
The lithium transition metal oxide of the present invention has a feature that the rate of change of the lattice volume after charging and discharging is remarkably small. That is, when the lithium transition metal oxide of the present invention was used as the positive electrode active material of a lithium battery, the battery was charged to a charge capacity of 220 mAh / g with respect to the lattice volume y (Å 3 ) before charging measured by XRD measurement. The rate of change | 100− (z / y × 100) | (%) of the lattice volume z (Å 3 ) measured later is 3.0% or less, preferably 2.5% or less. Detailed conditions in the lattice volume measurement are shown below.
Since the rate of change of the lattice volume during charge / discharge is thus small, the lithium transition metal oxide of the present invention is particularly excellent in structural stability and remarkably excellent in cycle characteristics when used as a positive electrode active material of a lithium battery. Lithium battery can be realized.

また、本発明のリチウム遷移金属酸化物は、充放電容量を250mAh/g程度まで高めても格子体積の著しい減少が見られないため、過充電領域までの構造安定性にも優れており、このような領域まで使用する新たな用途の電池用正極活物質として特に優れている。   Further, the lithium transition metal oxide of the present invention is excellent in structural stability up to the overcharge region because no significant decrease in the lattice volume is observed even when the charge / discharge capacity is increased to about 250 mAh / g. It is particularly excellent as a positive electrode active material for batteries for new applications to be used up to such a region.

(製造方法)
本発明のリチウム遷移金属酸化物の製造方法は特に限定されるものではない。例えば公知の製造方法(例えば特開2003−17052の[0022]〜[0030]に記載された方法)によって製造することができる。例えばリチウム塩化合物、ニッケル塩化合物、コバルト塩化合物及びマンガン塩化合物を所定比率で乾式混合して焼成する方法、金属塩と場合によってはLi塩を湿式で混合分散したスラリーをスプレードライヤーなどで乾燥して焼成する方法、特開2003-181639で示されているような連続式に湿式合成し、これを乾燥後焼成する方法、ニッケルイオン、コバルトイオン及びマンガンイオンを含む混合水溶液中にキレート剤を加えてこれらの遷移金属を共沈させ、この共沈で得られた遷移金属塩化合物とリチウム塩化合物とを混合して焼成する方法など、従来公知の方法で本発明のリチウム遷移金属酸化物を製造することができると考えられるが、中でも共沈法を利用して製造するのが好ましい。
(Production method)
The method for producing the lithium transition metal oxide of the present invention is not particularly limited. For example, it can be produced by a known production method (for example, the method described in [0022] to [0030] of JP-A No. 2003-17052). For example, a method in which a lithium salt compound, a nickel salt compound, a cobalt salt compound, and a manganese salt compound are dry-mixed at a predetermined ratio and fired, and a slurry in which a metal salt and optionally Li salt are mixed and dispersed in a wet manner is dried with a spray dryer or the like. A method of firing, a continuous wet synthesis method as disclosed in JP-A-2003-181639, a method of firing after drying, a chelating agent added to a mixed aqueous solution containing nickel ions, cobalt ions and manganese ions The lithium transition metal oxide of the present invention is produced by a conventionally known method such as a method of co-precipitation of these transition metals and mixing and firing the transition metal salt compound obtained by the coprecipitation and the lithium salt compound. However, it is preferable to use a coprecipitation method.

共沈法とは、水溶液中で中和反応を利用して複数元素を同時に沈殿させて複合酸化物を得る方法であり、本発明のリチウム遷移金属酸化物の製造においては、例えば、ニッケルイオン、コバルトイオン及びマンガンイオンを所定量含む混合水溶液中にキレート剤とアルカリ溶液とを混合し、この混合溶液のpHを所定範囲に調整することによってニッケルイオン、コバルトイオン及びマンガンイオンを共沈させて遷移金属塩化合物を得、得られた遷移金属塩化合物とリチウム塩化合物とを混合して所定の条件下で焼成するようにすればよい。
以下、共沈法を利用した製造方法についてさらに詳細に説明する。
The coprecipitation method is a method of obtaining a composite oxide by simultaneously precipitating multiple elements in an aqueous solution using a neutralization reaction. In the production of the lithium transition metal oxide of the present invention, for example, nickel ions, Mixing a chelating agent and an alkaline solution in a mixed aqueous solution containing a predetermined amount of cobalt ions and manganese ions, and adjusting the pH of the mixed solution to a predetermined range causes co-precipitation of nickel ions, cobalt ions, and manganese ions to make a transition. What is necessary is just to obtain a metal salt compound, mix the obtained transition metal salt compound and lithium salt compound, and fire it under predetermined conditions.
Hereinafter, the manufacturing method using the coprecipitation method will be described in more detail.

先ず、マンガン、ニッケル及びコバルトの原子比が実質的に1:1:1となる遷移金属塩化合物を得るため、マンガン、ニッケル及びコバルトの原子比が実質的に1:1:1となるように秤量したマンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物を水に添加し、キレート剤溶液(錯化剤)を加え、アルカリ溶液を加えてこの反応溶液のpHを調整しながら反応させ、ニッケルイオン、コバルトイオン及びマンガンイオンを共沈させて遷移金属塩化合物粒子を得る。   First, in order to obtain a transition metal salt compound in which the atomic ratio of manganese, nickel and cobalt is substantially 1: 1: 1, the atomic ratio of manganese, nickel and cobalt is substantially 1: 1: 1. Weighed manganese salt compound, nickel salt compound and cobalt salt compound are added to water, chelating agent solution (complexing agent) is added, alkali solution is added and reacted while adjusting pH of this reaction solution, nickel ions, Cobalt ions and manganese ions are coprecipitated to obtain transition metal salt compound particles.

この際、マンガン塩化合物の種類を特に限定するものではなく、例えば硫酸マンガン、硝酸マンガン、塩化マンガンなどを用いることができ、中でも硫酸マンガン水和物が好ましい。
また、ニッケル塩化合物の種類も特に制限はなく、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケルなどを用いることができ、中でも硫酸ニッケル水和物が好ましい。
コバルト塩化合物の種類も特に制限はなく、例えば硫酸コバルト、硝酸コバルト、塩化コバルトなどを用いることができ、中でも硫酸コバルト水和物が好ましい。
In this case, the type of the manganese salt compound is not particularly limited, and for example, manganese sulfate, manganese nitrate, manganese chloride, and the like can be used, and manganese sulfate hydrate is particularly preferable.
The kind of the nickel salt compound is not particularly limited, and for example, nickel sulfate, nickel nitrate, nickel chloride and the like can be used. Among these, nickel sulfate hydrate is preferable.
The type of the cobalt salt compound is not particularly limited, and for example, cobalt sulfate, cobalt nitrate, cobalt chloride and the like can be used, and among these, cobalt sulfate hydrate is preferable.

キレート剤の溶液としては、例えばアンモニウムイオン供給体(塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、アンモニア水、アンモニアガスなど)、ヒドラジン、グリシン、グルタミン酸、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸などのアミノカルボン酸またはそれらの塩、シュウ酸・リンゴ酸・クエン酸・サリチル酸などのオキシカルボン酸またはそれらの塩が挙げられ、中でもアンモニア水溶液が好ましい。   Examples of the chelating agent solution include ammonium ion suppliers (ammonium chloride, ammonium carbonate, ammonium fluoride, ammonium sulfate, ammonium nitrate, ammonia water, ammonia gas, etc.), hydrazine, glycine, glutamic acid, ethylenediaminetetraacetic acid, nitritotriacetic acid, uracil. Examples thereof include aminocarboxylic acids such as diacetic acid or salts thereof, and oxycarboxylic acids such as oxalic acid, malic acid, citric acid, and salicylic acid, or salts thereof. Among them, an aqueous ammonia solution is preferable.

アルカリ溶液としては、例えばアルカリ金属水酸化物、例えば水酸化リチウム 、水酸化ナトリウム、水酸化カリウムが挙げられ、中でも水酸化ナトリウム水溶液が好ましい。   Examples of the alkali solution include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide. Among these, an aqueous sodium hydroxide solution is preferable.

反応溶液(母液)のpHは、10.0〜13.0、特に10.5〜12.5の範囲に調整するのが好ましい。pH10.0を下回ると溶液中のNiイオンが沈殿しづらくなり、結果として沈殿物中の金属イオン量の組成ずれを起こし易くなる。逆にpH13.0を上回ると沈殿物が微粒となり、洗浄・回収操作が著しく困難になる。   The pH of the reaction solution (mother liquor) is preferably adjusted to a range of 10.0 to 13.0, particularly 10.5 to 12.5. When the pH is less than 10.0, Ni ions in the solution are difficult to precipitate, and as a result, the composition deviation of the amount of metal ions in the precipitate is likely to occur. On the other hand, when the pH is higher than 13.0, the precipitate becomes fine particles, and cleaning and recovery operations become extremely difficult.

次に、このようにして得られた遷移金属塩化合物を乾燥後、リチウム塩化合物と所定比率で混合し、焼成する。   Next, the transition metal salt compound thus obtained is dried, mixed with a lithium salt compound at a predetermined ratio, and fired.

リチウム塩化合物としては、例えば水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)、硝酸リチウム(LiNO3)、LiOH・H2O、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。 Examples of the lithium salt compound include lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), LiOH · H 2 O, lithium oxide (Li 2 O), other fatty acid lithium and lithium halogen. And the like. Of these, lithium hydroxide salts, carbonates and nitrates are preferred.

リチウム塩化合物と遷移金属塩化合物とのモル比は、遷移金属元素合計モル数に対するLiのモル数比率(Li/M)において、1.01〜1.50、特に好ましくは1.03〜1.30となるように調整する。この際、Li/Mが1.01を下回ると、本発明が規定する格子体積変化率より大きくなり、期待するサイクル特性が得られなくなる。その一方、Li/Mが1.5を上回ると、充分な放電容量を得られないばかりか、層構造物質以外の不純物相が出現し著しい電池性能の低下を招く可能性がある。   The molar ratio of the lithium salt compound to the transition metal salt compound is 1.01 to 1.50, particularly preferably 1.03 to 1.0.1 in terms of the molar ratio of Li to the total number of transition metal elements (Li / M). Adjust to 30. At this time, if Li / M is less than 1.01, it becomes larger than the lattice volume change rate defined by the present invention, and the expected cycle characteristics cannot be obtained. On the other hand, when Li / M exceeds 1.5, not only a sufficient discharge capacity cannot be obtained, but also an impurity phase other than the layer structure material may appear, leading to a significant decrease in battery performance.

リチウム塩化合物と遷移金属塩化合物との混合は、均一に混合できれば、その方法を特に限定するものではない。例えばミキサー等の公知の混合機を用いて各原料を同時又は適当な順序で加えて乾式で攪拌混合すればよい。
また、必要に応じて、焼成前に、混合した原料を所定の大きさに造粒するようにしてもよい。造粒方法は、湿式でも乾式でもよく、押し出し造粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加圧成型造粒、或いはロール等を用いたフレーク造粒でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。乾燥方法としては、噴霧熱乾燥、熱風乾燥、真空乾燥、フリーズドライなどの公知の乾燥方法によって乾燥させればよい。
The method of mixing the lithium salt compound and the transition metal salt compound is not particularly limited as long as it can be uniformly mixed. For example, using a known mixer such as a mixer, the respective raw materials may be added simultaneously or in an appropriate order, followed by dry stirring and mixing.
If necessary, the mixed raw materials may be granulated to a predetermined size before firing. The granulation method may be wet or dry, and may be extrusion granulation, rolling granulation, fluid granulation, mixed granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. . However, when wet granulation is performed, it is necessary to sufficiently dry before firing. As a drying method, it may be dried by a known drying method such as spray heat drying, hot air drying, vacuum drying or freeze drying.

焼成は、大気雰囲気中で行うのが好ましく、800℃以上、好ましくは850℃〜1000℃で、1時間〜30時間、好ましくは5時間〜25時間保持するように焼成する。なお、ここでの焼成温度は焼成炉内の品温を意味する。
焼成炉としては、ロータリーキルン或いは静置炉等を用いることができる。
焼成雰囲気は、大気雰囲気下のほか、酸化性雰囲気を採用することも可能である。
また、焼成に続いて特定の温度でアニーリング(熱処理)するようにしてもよい。
Firing is preferably performed in an air atmosphere, and is performed at 800 ° C. or higher, preferably 850 ° C. to 1000 ° C. for 1 hour to 30 hours, preferably 5 hours to 25 hours. Here, the firing temperature means the product temperature in the firing furnace.
As the baking furnace, a rotary kiln or a stationary furnace can be used.
The firing atmosphere may be an atmospheric atmosphere or an oxidizing atmosphere.
Further, annealing (heat treatment) may be performed at a specific temperature following firing.

このように焼成すると、組成式Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2(x=0.01〜0.5)で表され、遷移金属としてNi、Co、Mnをほぼ1:1:1の比率で含む層構造を有するリチウム遷移金属酸化物粉体を得ることができる。 When fired in this way, the composition formula Li 1 + x (Mn (1-x) / 3 Co (1-x) / 3 Ni (1-x) / 3 ) O 2 (x = 0.01 to 0.5 And a transition metal oxide powder having a layer structure containing Ni, Co, and Mn as transition metals in a ratio of approximately 1: 1: 1 can be obtained.

以上のように焼成して得られたリチウム遷移金属酸化物粉体は、必要に応じて解砕・分級した後、リチウム電池の正極活物質として有効に利用することができる。例えば、リチウム遷移金属酸化物と、カーボンブラック等からなる導電材と、テフロン(登録商標)バインダー等からなる結着剤とを混合して正極合剤を製造することができる。
そしてそのような正極合剤を正極に用い、負極にはリチウムまたはカーボン等のリチウムを吸蔵、脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF6)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム電池を構成することができる。
The lithium transition metal oxide powder obtained by firing as described above can be effectively used as a positive electrode active material of a lithium battery after being crushed and classified as necessary. For example, a positive electrode mixture can be produced by mixing a lithium transition metal oxide, a conductive material made of carbon black or the like, and a binder made of Teflon (registered trademark) binder or the like.
Such a positive electrode mixture is used for the positive electrode, a material that can occlude and desorb lithium such as lithium or carbon is used for the negative electrode, and a lithium salt such as lithium hexafluorophosphate (LiPF6) is used for the non-aqueous electrolyte. A lithium battery can be formed using a material dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate.

このように構成したリチウム電池は、例えばノート型パソコン、携帯電話、コードレスフォン子機、ビデオムービー、液晶テレビ、電気シェーバー、携帯ラジオ、ヘッドホンステレオ、バックアップ電源、メモリーカード等の電子機器、ペースメーカー、補聴器等の医療機器、電気自動車搭載用の駆動電源に使用することができる。中でも、優れたサイクル特性が要求される携帯電話機、PDA(携帯情報端末)やノート型パソコンなどの各種携帯型コンピュータ、電気自動車(ハイブリッド自動車を含む)、電力貯蔵用電源などの駆動用電源として特に有効である。   Lithium batteries configured in this way are, for example, notebook computers, mobile phones, cordless phones, video movies, LCD TVs, electric shavers, portable radios, headphone stereos, backup power supplies, memory cards, and other electronic devices, pacemakers, hearing aids It can be used as a drive power source for medical equipment such as electric vehicles. Among them, mobile phones that require excellent cycle characteristics, portable computers such as PDAs (personal digital assistants) and notebook computers, electric vehicles (including hybrid vehicles), and power sources for power storage, etc. It is valid.

次に、実際に製造した実施例及び比較例に基づいて、本発明について更に説明するが、本発明が以下に示す実施例に限定されるものではない。   Next, the present invention will be further described based on actually produced examples and comparative examples, but the present invention is not limited to the examples shown below.

(電池評価の方法)
Li電池評価は以下の方法で行った。
正極活物質10.4gとアセチレンブッラク(電気化学工業社製)0.86gおよびNMP(N-メチルピロリドン)中にPVdF(ダイキン工業社製)10wt%溶解した液8.6gを正確に計り取り、そこにNMPを10.8g加え十分に混合し、ペーストを作成した。このペーストを集電体であるアルミ箔上にのせ150μmのギャップに調整したアプリケーターで塗膜化し、120℃で120min乾燥した後、50μmのギャップに調整したロールプレスで厚密した。その後Φ13mmに打ち抜き正極とした。電池作成直前に120℃で12hr以上乾燥し水分を十分に除去し電池に組み込んだ。また予めΦ13mmのアルミ箔の重さの平均を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求め、また正極活物質とアセチレンブラックおよびPVdFの混合割合から正極活物質の含有量を求めた。負極はΦ16mm×厚さ0.6mmの金属Liとし、これらの材料を使用して図1に示す2032型コイン電池を作製した。
(Method of battery evaluation)
Li battery evaluation was performed by the following method.
Accurately weighed 10.6 g of the positive electrode active material, 0.86 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and 8.6 g of a solution of 10 wt% PVdF (manufactured by Daikin Kogyo Co., Ltd.) in NMP (N-methylpyrrolidone) There, 10.8 g of NMP was added and mixed well to prepare a paste. This paste was placed on an aluminum foil as a current collector and formed into a coating film with an applicator adjusted to a gap of 150 μm, dried at 120 ° C. for 120 minutes, and then thickened with a roll press adjusted to a gap of 50 μm. Thereafter, a positive electrode was punched into Φ13 mm. Immediately before the battery was made, it was dried at 120 ° C. for 12 hours or more to remove water sufficiently and incorporated into the battery. In addition, the average weight of the aluminum foil having a diameter of 13 mm is obtained in advance, the weight of the positive electrode mixture is obtained by subtracting the weight of the aluminum foil from the weight of the positive electrode, and from the mixing ratio of the positive electrode active material, acetylene black and PVdF. The content of the positive electrode active material was determined. The negative electrode was made of metal Li having a diameter of 16 mm and a thickness of 0.6 mm, and these materials were used to produce a 2032 type coin battery shown in FIG.

図1のコイン電池は、耐有機電解液性のステンレンス鋼製の正極ケース11の内側に、同じくステンレス鋼製の集電体13がスポット溶接されている。この集電体13の上面には前記正極合材からなる正極15が圧着されている。この正極15の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ16が配置されている。前記正極ケースの22の開口部には、下方に金属Liからなる負極14を接合した封口板12がポリプロピレン製のガスケット17をはさんで配置され、これにより電池は密封されている。前記封口板12は負極端子をかね、正極ケースと同様ステンレス製である。
電池の直径は20mm、電池の総高は3.2mmとした。電解液は、エチレンカーボネートと1,3-ジメトキシカーボネートを等体積混合したものを溶媒とし、これに溶質としてLiPF6を1moL/L溶解させたものを用いた。
In the coin battery of FIG. 1, a current collector 13 made of stainless steel is spot-welded inside a positive electrode case 11 made of stainless steel having organic electrolyte resistance. A positive electrode 15 made of the positive electrode mixture is pressure-bonded to the upper surface of the current collector 13. On the upper surface of the positive electrode 15, a separator 16 made of a microporous polypropylene resin impregnated with an electrolytic solution is disposed. In the opening of the positive electrode case 22, a sealing plate 12 having a negative electrode 14 made of metal Li bonded below is disposed with a gasket 17 made of polypropylene interposed therebetween, thereby sealing the battery. The sealing plate 12 serves as a negative electrode terminal and is made of stainless steel like the positive electrode case.
The battery diameter was 20 mm, and the total battery height was 3.2 mm. The electrolytic solution used was a mixture of ethylene carbonate and 1,3-dimethoxy carbonate in an equal volume, with 1 mol / L of LiPF 6 dissolved as a solute in the solvent.

充放電条件は下記の通りとした。
充放電電圧範囲は3.0〜4.3Vとした。但し、充電中の格子体積を測定する際の充電電圧範囲はこの限りではない。正極中の正極活物質の含有量から0.2Cの充放電レートになるよう電流値を算出して電流を通じた。これらの条件のもと、充放電を繰り返して初期放電容量に対するサイクル維持率を算出した。測定温度は25℃とした。
The charge / discharge conditions were as follows.
The charge / discharge voltage range was 3.0 to 4.3V. However, the charging voltage range when measuring the lattice volume during charging is not limited to this. A current value was calculated from the content of the positive electrode active material in the positive electrode so that the charge / discharge rate was 0.2 C, and the current was passed. Under these conditions, charge / discharge was repeated to calculate the cycle maintenance ratio relative to the initial discharge capacity. The measurement temperature was 25 ° C.

(格子体積の測定方法)
XRD測定は、RINT2100(株式会社リガク製)で行い、格子体積を得るための格子定数は、粉末XRDの精密測定を行い、六方晶であることを確認してから、(003)(101)(104)(105)(107)(113)の6つの面指数よりa軸長、c軸長を求めた。
充電前の正極電極の格子体積は次のように測定した。上述のようにLi電池を組み、上記充放電条件で3サイクルの充放電を行い、放電で終了した正極をコインセルから取り出してDEC中でよく洗浄しXRD測定を行い、充電前の格子体積を前述の要領で格子定数を求めて算出した。
充電時の正極電極の格子体積は次のようにして測定した。上述のようにLi電池を組み3サイクルの充放電を行い、4サイクル目の充電の際に所定の充電容量を充電した後、正極をコインセルから取り出してDEC中でよく洗浄し、XRD測定を行って前述の要領で格子定数を求め、格子体積を算出した。
(Measurement method of lattice volume)
XRD measurement was performed with RINT2100 (manufactured by Rigaku Corporation), and the lattice constant for obtaining the lattice volume was determined by performing precise measurement of powder XRD and confirming that it was hexagonal (003) (101) ( 104), (105), (107), and (113), the a-axis length and the c-axis length were obtained from the six surface indices.
The lattice volume of the positive electrode before charging was measured as follows. As described above, the Li battery is assembled and charged / discharged for 3 cycles under the above charging / discharging conditions. The positive electrode terminated by discharging is taken out of the coin cell, thoroughly washed in DEC, and subjected to XRD measurement. The lattice constant was calculated and calculated as described above.
The lattice volume of the positive electrode during charging was measured as follows. As described above, the Li battery is assembled and charged and discharged for 3 cycles. After charging the specified charge capacity during the 4th cycle, the positive electrode is taken out of the coin cell and thoroughly washed in DEC, and XRD measurement is performed. Then, the lattice constant was obtained as described above, and the lattice volume was calculated.

(実施例1)
攪拌機付きの10Lの密閉容器(オイルジャケット付き)に市水を2.5L量入れ、硫酸マンガン・5水和物(柳島製薬社製)588g、硫酸コバルト・6水和物(関西触媒社製)703gおよび硫酸ニッケル・6水和物(三井金属社製)762gを溶解し、4Lになるよう水を加え調整した。その中に25wt%のアンモニア水(アガタ薬品工業社製)300mLを加え、この溶液を攪拌しながら6moL/Lの苛性ソーダ水溶液を加え、pH計を用いてpH11.5に調整した。浴温は45℃に保ち12時間攪拌した。攪拌後の沈殿物を上澄みの導電率が1mS以下となるまでデカンテーション洗浄を繰り返し、その後反応溶液をろ過により固液分離し、固形物を120℃で10hr乾燥し、金属水酸化物原料(上記「遷移金属塩化合物」に相当)を得た。
この金属水酸化物原料の金属元素のみのモル数をAモルとし、炭酸リチウム中のLi元素のモル数Bが、B/A=1.03となるように金属水酸化物原料と炭酸リチウム(SQM社製)を計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で900℃20時間焼成し、正極活物質を得た。
(Example 1)
2.5L of city water is put in a 10L sealed container (with oil jacket) with a stirrer, 588g of manganese sulfate pentahydrate (manufactured by Yanagishima Pharmaceutical), cobalt sulfate hexahydrate (manufactured by Kansai Catalysts) 703 g and 762 g of nickel sulfate hexahydrate (manufactured by Mitsui Kinzoku Co., Ltd.) were dissolved, and water was added to adjust to 4 L. To this, 300 mL of 25 wt% aqueous ammonia (manufactured by Agata Pharmaceutical Co., Ltd.) was added, and 6 mol / L aqueous sodium hydroxide solution was added while stirring this solution, and the pH was adjusted to 11.5 using a pH meter. The bath temperature was kept at 45 ° C. and stirred for 12 hours. The precipitate after stirring is repeatedly decanted and washed until the conductivity of the supernatant becomes 1 mS or less, and then the reaction solution is solid-liquid separated by filtration, and the solid is dried at 120 ° C. for 10 hours to obtain a metal hydroxide raw material (above Corresponding to “transition metal salt compound”).
The number of moles of only the metal element of the metal hydroxide raw material is A mole, and the number of moles of Li element in the lithium carbonate is B / A = 1.03 so that B / A = 1.03. SQM) was weighed and mixed well with a ball mill to obtain a raw material mixed powder, and this raw material mixed powder was fired in the atmosphere at 900 ° C. for 20 hours to obtain a positive electrode active material.

得られた正極活物質について、充電前の格子体積と充電中の格子体積とを上述した方法で求め、格子体積変化率を算出し、その結果を表1に示した。また、サイクル特性の結果を図4に示した。   With respect to the obtained positive electrode active material, the lattice volume before charging and the lattice volume during charging were determined by the method described above, the lattice volume change rate was calculated, and the results are shown in Table 1. The results of the cycle characteristics are shown in FIG.

(実施例2)
実施例1と同じ金属水酸化物原料と炭酸リチウムをB/A=1.10となるように計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で900℃20時間焼成し、正極活物質を得た。
得られた正極活物質について、充電前の格子体積と充電中の格子体積とを上述した方法で求め、格子体積変化率を算出し、その結果を表1に示した。また、サイクル特性の結果を図4に示した。
(Example 2)
The same metal hydroxide raw material and lithium carbonate as in Example 1 were weighed so that B / A = 1.10, and thoroughly mixed with a ball mill to obtain a raw material mixed powder. C. for 20 hours to obtain a positive electrode active material.
With respect to the obtained positive electrode active material, the lattice volume before charging and the lattice volume during charging were determined by the method described above, the lattice volume change rate was calculated, and the results are shown in Table 1. The results of the cycle characteristics are shown in FIG.

(実施例3)
実施例1と同じ金属水酸化物原料と炭酸リチウムをB/A=1.20となるように計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で900℃20時間焼成し、正極活物質を得た。
得られた正極活物質について、充電前の格子体積と充電中の格子体積とを上述した方法で求め、格子体積変化率を算出し、その結果を表1に示した。また、サイクル特性の結果を図4に示した。
(Example 3)
The same metal hydroxide raw material and lithium carbonate as in Example 1 were weighed so that B / A = 1.20 and thoroughly mixed with a ball mill to obtain a raw material mixed powder. C. for 20 hours to obtain a positive electrode active material.
With respect to the obtained positive electrode active material, the lattice volume before charging and the lattice volume during charging were determined by the method described above, the lattice volume change rate was calculated, and the results are shown in Table 1. The results of the cycle characteristics are shown in FIG.

さらに図2には、充電中の格子体積を小刻みに測定してプロットした。また、図3は、4サイクル目の充電を270mAh/gまで行った時の充電曲線である。充電容量220mAh/g時の充電電圧は約4.6Vであり、この充電電圧においても格子体積の変化率が小さいことは耐過充電性に優れた正極活物質であることを示している。   Further, in FIG. 2, the lattice volume during charging was measured in small increments and plotted. Moreover, FIG. 3 is a charge curve when charge of the 4th cycle is performed to 270 mAh / g. The charging voltage at a charging capacity of 220 mAh / g is about 4.6 V. Even at this charging voltage, a small change rate of the lattice volume indicates that the positive electrode active material has excellent overcharge resistance.

(実施例4)
実施例1と同じ金属水酸化物原料と炭酸リチウムをB/A=1.30となるように計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で900℃20時間焼成し、正極活物質を得た。
得られた正極活物質について、充電前の格子体積と充電中の格子体積とを上述した方法で求め、格子体積変化率を算出し、その結果を表1に示した。また、サイクル特性の結果を図4に示した。
Example 4
The same metal hydroxide raw material and lithium carbonate as in Example 1 were weighed so that B / A = 1.30, and thoroughly mixed with a ball mill to obtain a raw material mixed powder. C. for 20 hours to obtain a positive electrode active material.
With respect to the obtained positive electrode active material, the lattice volume before charging and the lattice volume during charging were determined by the method described above, the lattice volume change rate was calculated, and the results are shown in Table 1. The results of the cycle characteristics are shown in FIG.

(比較例1)
実施例1と同じ金属水酸化物原料と炭酸リチウムをB/A=1.00となるように計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で900℃20時間焼成し、正極活物質を得た。
得られた正極活物質について、充電前の格子体積と充電中の格子体積とを上述した方法で求め、格子体積変化率を算出し、その結果を表1に示した。また、サイクル特性の結果を図4に示した。
(Comparative Example 1)
The same metal hydroxide raw material and lithium carbonate as in Example 1 were weighed so that B / A = 1.00, and thoroughly mixed with a ball mill to obtain a raw material mixed powder. C. for 20 hours to obtain a positive electrode active material.
With respect to the obtained positive electrode active material, the lattice volume before charging and the lattice volume during charging were determined by the method described above, the lattice volume change rate was calculated, and the results are shown in Table 1. The results of the cycle characteristics are shown in FIG.

図2には、充電中の格子体積を小刻みに測定してプロットした。実施例3のものと比較して比較例1の格子体積の変化は著しく、格子体積の変化率を小さくすること、すなわち、充電時の正極活物質の構造を安定化させるためにはB/Aの比、言い換えれば組成式組成式Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2において、リチウム過剰量xの値を厳密に制御することが重要である。 In FIG. 2, the lattice volume during charging was measured in small increments and plotted. Compared with Example 3, the change in the lattice volume of Comparative Example 1 is significant, and in order to reduce the rate of change of the lattice volume, that is, to stabilize the structure of the positive electrode active material during charging, B / A In other words, in the composition formula Li 1 + x (Mn (1-x) / 3 Co (1-x) / 3 Ni (1-x) / 3 ) O 2 , It is important to strictly control.

Figure 2005255433
Figure 2005255433

電池評価のために作製した2032型コイン電池の構成を示す断面図である。It is sectional drawing which shows the structure of the 2032 type coin battery produced for battery evaluation. 実施例3及び比較例1で得られた正極活物質について、充電容量に対する格子体積の変化を比較したグラフである。It is the graph which compared the change of the lattice volume with respect to charge capacity about the positive electrode active material obtained in Example 3 and Comparative Example 1. 実施例3で得られた正極活物質について、4サイクル目の充電曲線、すなわち充電容量に対する電圧の変化を示したグラフである。It is the graph which showed the change of the voltage with respect to the charge curve of the 4th cycle about the positive electrode active material obtained in Example 3, ie, charge capacity. 実施例1〜4及び比較例1で得られた各正極活物質について、サイクル数とサイクル維持率との関係を示したグラフである。It is the graph which showed the relationship between the cycle number and cycle maintenance factor about each positive electrode active material obtained in Examples 1-4 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

11 正極ケース
12 封口板
13 集電体
15 正極
16 セパレータ
14 負極
17 ガスケット
DESCRIPTION OF SYMBOLS 11 Positive electrode case 12 Sealing plate 13 Current collector 15 Positive electrode 16 Separator 14 Negative electrode 17 Gasket

Claims (8)

組成式Li1+xMO2で表される層構造を有するリチウム遷移金属酸化物であって、
当該組成式中のMは、Mn、Co及びNiをほぼ1:1:1の原子比で含む遷移金属からなり、かつxの値が0.01〜0.5であることを特徴とするリチウム遷移金属酸化物。
A lithium transition metal oxide having a layer structure represented by a composition formula Li 1 + x MO 2 ,
M in the composition formula is composed of a transition metal containing Mn, Co and Ni at an atomic ratio of approximately 1: 1: 1, and the value of x is 0.01 to 0.5. Transition metal oxide.
請求項1に記載のリチウム遷移金属酸化物を用いたリチウム電池用正極活物質であって、
XRD測定によって測定される充電前の格子体積y(Å3)に対して、充電容量220mAh/gまで充電した後に測定される格子体積z(Å3)の変化率{100−(z/y×100)}(%)が3.0%以下であることを特徴とするリチウム電池用正極活物質。
A positive electrode active material for a lithium battery using the lithium transition metal oxide according to claim 1,
Change rate of lattice volume z (Å 3 ) measured after charging to a charging capacity of 220 mAh / g with respect to lattice volume y (Å 3 ) before charging measured by XRD measurement {100− (z / y × 100)} (%) is 3.0% or less, The positive electrode active material for lithium batteries characterized by the above-mentioned.
請求項2に記載の正極活物質を用いたリチウム電池用電極。   The electrode for lithium batteries using the positive electrode active material of Claim 2. 請求項3に記載のリチウム電池用電極を正極として用いたリチウム電池。   The lithium battery using the electrode for lithium batteries of Claim 3 as a positive electrode. 請求項4に記載のリチウム電池を駆動用電源として用いた携帯電話機。   A mobile phone using the lithium battery according to claim 4 as a driving power source. 請求項4に記載のリチウム電池を駆動用電源として用いた携帯型コンピュータ。   A portable computer using the lithium battery according to claim 4 as a driving power source. 請求項4に記載のリチウム電池を駆動用電源として用いた電気自動車。   An electric vehicle using the lithium battery according to claim 4 as a driving power source. 請求項4に記載のリチウム電池を駆動用電源として用いた電力貯蔵用電源。

A power storage power source using the lithium battery according to claim 4 as a driving power source.

JP2004067096A 2004-03-10 2004-03-10 Lithium transition metal oxides for lithium batteries Expired - Lifetime JP4900888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067096A JP4900888B2 (en) 2004-03-10 2004-03-10 Lithium transition metal oxides for lithium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067096A JP4900888B2 (en) 2004-03-10 2004-03-10 Lithium transition metal oxides for lithium batteries

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011187141A Division JP2012017255A (en) 2011-08-30 2011-08-30 Lithium transition metal oxide for lithium battery

Publications (2)

Publication Number Publication Date
JP2005255433A true JP2005255433A (en) 2005-09-22
JP4900888B2 JP4900888B2 (en) 2012-03-21

Family

ID=35081532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067096A Expired - Lifetime JP4900888B2 (en) 2004-03-10 2004-03-10 Lithium transition metal oxides for lithium batteries

Country Status (1)

Country Link
JP (1) JP4900888B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452488C (en) * 2005-10-28 2009-01-14 比亚迪股份有限公司 Preparation method of ternary compound potassium ion battery plus plate material
JP2009037740A (en) * 2007-07-31 2009-02-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009176669A (en) * 2008-01-28 2009-08-06 Sharp Corp Positive electrode active material, positive electrode, and nonaqueous secondary battery
WO2009128289A1 (en) * 2008-04-17 2009-10-22 日鉱金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for rechargeable battery, and lithium ion battery
JP2012123968A (en) * 2010-12-07 2012-06-28 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2012204311A (en) * 2011-03-28 2012-10-22 Tokyo Institute Of Technology Lithium-rich ternary compound, and method for manufacturing the same
JP2013157109A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Lithium secondary battery and manufacturing method therefor
JP2013546126A (en) * 2010-10-20 2013-12-26 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Method for the preparation of a high voltage nanocomposite cathode (4.9V) for lithium ion batteries
CN105244495A (en) * 2015-10-08 2016-01-13 昆明理工大学 Preparation method for composite hydroxide nanosheet
WO2016084346A1 (en) * 2014-11-28 2016-06-02 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US11018339B2 (en) 2016-03-30 2021-05-25 Basf Toda Battery Materials Llc Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2024050654A1 (en) * 2022-09-05 2024-03-14 宁德时代新能源科技股份有限公司 Positive electrode active material precursor, positive electrode active material, preparation method and secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307094A (en) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd Lithium secondary battery positive electrode active material and lithium secondary battery
JP2002151076A (en) * 2000-11-14 2002-05-24 Japan Storage Battery Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004022239A (en) * 2002-06-13 2004-01-22 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2005053764A (en) * 2003-08-07 2005-03-03 Nikko Materials Co Ltd Lithium-nickel-manganese-cobalt multiple oxide and lithium-ion secondary battery using the same as positive electrode active material
JP2005251717A (en) * 2003-05-13 2005-09-15 Mitsubishi Chemicals Corp Layered lithium-nickel-based compound oxide powder for lithium secondary cell positive electrode material and its manufacturing method, positive electrode for lithium secondary cell and lithium secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307094A (en) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd Lithium secondary battery positive electrode active material and lithium secondary battery
JP2002151076A (en) * 2000-11-14 2002-05-24 Japan Storage Battery Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2002078105A1 (en) * 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004022239A (en) * 2002-06-13 2004-01-22 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2005251717A (en) * 2003-05-13 2005-09-15 Mitsubishi Chemicals Corp Layered lithium-nickel-based compound oxide powder for lithium secondary cell positive electrode material and its manufacturing method, positive electrode for lithium secondary cell and lithium secondary cell
JP2005053764A (en) * 2003-08-07 2005-03-03 Nikko Materials Co Ltd Lithium-nickel-manganese-cobalt multiple oxide and lithium-ion secondary battery using the same as positive electrode active material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452488C (en) * 2005-10-28 2009-01-14 比亚迪股份有限公司 Preparation method of ternary compound potassium ion battery plus plate material
JP2009037740A (en) * 2007-07-31 2009-02-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009176669A (en) * 2008-01-28 2009-08-06 Sharp Corp Positive electrode active material, positive electrode, and nonaqueous secondary battery
US9059465B2 (en) 2008-04-17 2015-06-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for secondary battery, and lithium ion battery
CN102007626A (en) * 2008-04-17 2011-04-06 日矿金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for rechargeable battery, and lithium ion battery
WO2009128289A1 (en) * 2008-04-17 2009-10-22 日鉱金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for rechargeable battery, and lithium ion battery
JP2013546126A (en) * 2010-10-20 2013-12-26 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Method for the preparation of a high voltage nanocomposite cathode (4.9V) for lithium ion batteries
JP2012123968A (en) * 2010-12-07 2012-06-28 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2012204311A (en) * 2011-03-28 2012-10-22 Tokyo Institute Of Technology Lithium-rich ternary compound, and method for manufacturing the same
JP2013157109A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Lithium secondary battery and manufacturing method therefor
WO2016084346A1 (en) * 2014-11-28 2016-06-02 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10319986B2 (en) 2014-11-28 2019-06-11 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
CN105244495A (en) * 2015-10-08 2016-01-13 昆明理工大学 Preparation method for composite hydroxide nanosheet
US11018339B2 (en) 2016-03-30 2021-05-25 Basf Toda Battery Materials Llc Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2024050654A1 (en) * 2022-09-05 2024-03-14 宁德时代新能源科技股份有限公司 Positive electrode active material precursor, positive electrode active material, preparation method and secondary battery

Also Published As

Publication number Publication date
JP4900888B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP3983745B2 (en) Lithium transition metal oxides for lithium batteries
JP4592931B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP2003059490A (en) Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
KR20120098591A (en) Process for production of positive electrode material for lithium ion secondary battery
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
CN111771302B (en) Positive electrode active material of lithium secondary battery, preparation method of positive electrode active material and lithium secondary battery
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
JP2012033389A (en) Cathode active material and manufacturing method thereof, and lithium ion secondary battery
JP2003242978A (en) Non-aqueous secondary battery
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
WO2013125798A1 (en) Method for manufacturing cathode active material for lithium secondary battery
JP2014067508A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
KR100874539B1 (en) Spinel-type composite solid oxide, a manufacturing method thereof, and a lithium secondary battery comprising the same as an anode
JP2001185145A (en) Method of manufacturing positive electrode material for lithium secondary battery
JP2014167873A (en) Negative electrode active material for lithium ion secondary battery, process of manufacturing the same, and lithium ion secondary battery
JP2000264638A (en) Production of lithium manganese compound oxide for anode active substance of lithium secondary battery
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP5819786B2 (en) Lithium cuprate positive electrode material, method for producing the positive electrode material, and lithium secondary battery containing the positive electrode material as a positive electrode active material
JP2005302601A (en) Negative electrode active material for battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4900888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250