JP2012204311A - Lithium-rich ternary compound, and method for manufacturing the same - Google Patents

Lithium-rich ternary compound, and method for manufacturing the same Download PDF

Info

Publication number
JP2012204311A
JP2012204311A JP2011070817A JP2011070817A JP2012204311A JP 2012204311 A JP2012204311 A JP 2012204311A JP 2011070817 A JP2011070817 A JP 2011070817A JP 2011070817 A JP2011070817 A JP 2011070817A JP 2012204311 A JP2012204311 A JP 2012204311A
Authority
JP
Japan
Prior art keywords
lithium
ternary compound
rich ternary
rich
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011070817A
Other languages
Japanese (ja)
Other versions
JP5648807B2 (en
Inventor
Ryoji Sugano
了次 菅野
Masaaki Hirayama
雅章 平山
Genki Kobayashi
玄器 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2011070817A priority Critical patent/JP5648807B2/en
Publication of JP2012204311A publication Critical patent/JP2012204311A/en
Application granted granted Critical
Publication of JP5648807B2 publication Critical patent/JP5648807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the charge/discharge capacity and the safety of a lithium ion secondary battery dramatically by using a new lithium-rich ternary compound.SOLUTION: The lithium-rich ternary compound is represented by the general formula: LiMnCoNiO, where 0.4≤x≤1.0, 0<j<1, 0<k<1, and 0<L<1.

Description

本発明は、リチウム過剰三元系化合物およびその製造方法、ならびにその化合物を正極活物質として用いたリチウムイオン二次電池に関する。   The present invention relates to a lithium-rich ternary compound, a method for producing the same, and a lithium ion secondary battery using the compound as a positive electrode active material.

従来、長時間、経済的に使用できる電池として、再充電可能な二次電池の研究が継続して行なわれており、特にリチウムイオン電池は、高出力、高エネルギー密度などの利点を有しており、リチウムイオンを可逆的に脱挿入可能な活物質を有する正極と負極と、非水電解質とから構成されるのが通常である。   Conventionally, as a battery that can be used economically for a long time, research on a rechargeable secondary battery has been continuously conducted. In particular, a lithium ion battery has advantages such as high output and high energy density. In general, the positive electrode and the negative electrode each have an active material capable of reversibly removing and inserting lithium ions, and a non-aqueous electrolyte.

このリチウムイオン電池の正極活物質としては、種々の材料が提案されており、リチウム複合酸化物等も知られている。このなかで、リチウム三元系酸化物も種々検討され,Li過剰にした場合(x=1.2)において、高い容量が発現されることが見出されている(たとえば、特許文献1)。しかしながら、もっとLiが過剰(x≧1.4)となる物質群については、合成が困難なことから報告されていない。   Various materials have been proposed as the positive electrode active material of this lithium ion battery, and lithium composite oxides and the like are also known. Among these, various lithium ternary oxides have been studied, and it has been found that when Li is excessive (x = 1.2), a high capacity is expressed (for example, Patent Document 1). However, the substance group in which Li is excessive (x ≧ 1.4) has not been reported because it is difficult to synthesize.

特開2010−232038号公報JP 2010-2332038 A

新規なリチウム過剰三元系化合物を用いることにより、リチウムイオン二次電池の充放電容量および安全性を飛躍的に向上させる。   By using a novel lithium-excess ternary compound, the charge / discharge capacity and safety of the lithium ion secondary battery are dramatically improved.

本発明は、上記の課題を解決するために、以下の発明を提供する。   In order to solve the above problems, the present invention provides the following inventions.

(1)一般式 Li1+XMnCoNi(ここで、0.4≦x≦1.0; 0<j<1; 0<k<1; および0<L<1である。)で示されるリチウム過剰三元系化合物。
(2)xが0.5≦x≦0.7である上記(1)に記載のリチウム過剰三元系化合物。
(3)リチウム過剰三元系化合物のa軸方向の格子定数aに対するc軸方向の格子定数cの比c/aが、4.97以下であり、xの増加とともに低下傾向を示す上記(1)または(2)に記載のリチウム過剰三元系化合物。
(4)比c/aが、4.97〜4.92である上記(3)に記載のリチウム過剰三元系化合物。
(5)リチウム過剰三元系化合物の単位格子体積Vが101〜106Åである上記(1)〜(4)のいずれかに記載のリチウム過剰三元系化合物。
(6)上記(1)〜(5)のいずれかに記載のリチウム過剰三元系化合物の出発原料を混合し、ついで得られる原料混合物を700℃〜1600℃の温度で、大気圧〜4GPaの圧力下に加熱することを特徴とするリチウム過剰三元系化合物の製造方法。
(7)温度が800℃〜1100℃であり、圧力が1〜4GPaである請求項6に記載のリチウム過剰三元系化合物の製造方法。
(8)上記(1)〜(5)のいずれかに記載のリチウム過剰三元系化合物を含有する正極活物質。
(9)上記(8)に記載の正極活物質を有する正極を用いてなるリチウムイオン二次電池。
(1) General formula Li 1 + X Mn j Co k Ni L O 2 (where 0.4 ≦ x ≦ 1.0; 0 <j <1; 0 <k <1; and 0 <L <1. Lithium-rich ternary compound represented by
(2) The lithium-rich ternary compound according to (1), wherein x is 0.5 ≦ x ≦ 0.7.
(3) The ratio c / a of the lattice constant c in the c-axis direction to the lattice constant a in the a-axis direction of the lithium-excess ternary compound is 4.97 or less, and the above-mentioned (1 Or a lithium-rich ternary compound according to (2).
(4) The lithium-rich ternary compound according to (3) above, wherein the ratio c / a is 4.97 to 4.92.
(5) The lithium-rich ternary compound according to any one of the above (1) to (4), wherein the unit cell volume V of the lithium-rich ternary compound is 101 to 106 3 .
(6) The starting material of the lithium-excess ternary compound according to any one of (1) to (5) above is mixed, and then the resulting raw material mixture is heated to 700 ° C to 1600 ° C and at atmospheric pressure to 4 GPa. A method for producing a lithium-rich ternary compound, characterized by heating under pressure.
(7) The method for producing a lithium-rich ternary compound according to claim 6, wherein the temperature is 800 ° C. to 1100 ° C. and the pressure is 1 to 4 GPa.
(8) A positive electrode active material containing the lithium-excess ternary compound according to any one of (1) to (5) above.
(9) A lithium ion secondary battery using a positive electrode having the positive electrode active material according to (8).

本発明によれば、新規なリチウム過剰三元系化合物を用いることにより、リチウムイオン二次電池の容量,安全性を飛躍的に向上させ得る。   According to the present invention, the capacity and safety of a lithium ion secondary battery can be drastically improved by using a novel lithium-excess ternary compound.

本発明のリチウム過剰三元系化合物のX線回折スペクトル。The X-ray-diffraction spectrum of the lithium excess ternary compound of this invention. 本発明のリチウム過剰三元系化合物のX線回折スペクトルから求めた格子パラメータ(格子定数a;格子定数c;単位格子体積V;および格子定数aに対する格子定数cの比c/a)。Lattice parameters (lattice constant a; lattice constant c; unit cell volume V; and ratio c / a of lattice constant c to lattice constant a) obtained from the X-ray diffraction spectrum of the lithium-rich ternary compound of the present invention. 本発明のリチウム過剰三元系化合物の充放電曲線。The charging / discharging curve of the lithium excess ternary compound of this invention.

本発明のリチウム過剰三元系化合物は、一般式 Li1+XMnCoNi(ここで、0.4≦x≦1.0; 0<j<1; 0<k<1; および0<L<1である。)で示される。xは、充放電容量の点からは、好適には、0.5≦x≦0.7である。j、kおよびLは、好適には、Mn、Co、Niのそれぞれの価数が4価、3価、2価を取るように選択される。 The lithium-rich ternary compound of the present invention has the general formula Li 1 + X Mn j Co k Ni L O 2 (where 0.4 ≦ x ≦ 1.0; 0 <j <1; 0 <k <1; and 0 <L <1). From the viewpoint of charge / discharge capacity, x preferably satisfies 0.5 ≦ x ≦ 0.7. j, k, and L are preferably selected such that each valence of Mn, Co, and Ni is tetravalent, trivalent, or bivalent.

本発明のリチウム過剰三元系化合物のa軸方向の格子定数aに対するc軸方向の格子定数cの比c/aは、図2に示すように4.97以下であり、xの増加とともに低下傾向を示す。たとえば、比c/aは、xが0.4〜0.8と増加するとともに、4.97から4.92に低下する。また、単位格子体積Vは101Åから106Åに上昇する。このように、従来のリチウム過剰三元系化合物と比較して、過剰リチウムによりa軸に対するc軸方向の格子定数が小さくなり、かつ全体の格子体積は大きな構造を有する。 The ratio c / a of the lattice constant c in the c-axis direction to the lattice constant a in the a-axis direction of the lithium-rich ternary compound of the present invention is 4.97 or less as shown in FIG. Show the trend. For example, the ratio c / a decreases from 4.97 to 4.92 as x increases from 0.4 to 0.8. Further, the unit cell volume V increases from 101A 3 to 106Å 3. Thus, as compared with the conventional lithium-excess ternary compound, the excess lithium reduces the lattice constant in the c-axis direction relative to the a-axis, and the entire lattice volume has a large structure.

リチウム過剰三元系化合物のBET比表面積は、正極活物質として使用した場合にリチウムの拡散を速やかにし、大電流下でも十分な容量を得るために0.5m2/g以上であるのが好適であり、この観点から粒径が比較的小さくなるように調節される。 The BET specific surface area of the lithium-excess ternary compound is preferably 0.5 m 2 / g or more in order to quickly diffuse lithium when used as a positive electrode active material and to obtain a sufficient capacity even under a large current. From this point of view, the particle size is adjusted to be relatively small.

本発明のリチウム過剰三元系化合物は、好適にはリチウム過剰三元系化合物の出発原料を混合し、ついで得られる原料混合物を700℃〜1600℃の温度で、大気圧〜4GPaの圧力下に加熱することにより製造される。加熱後に、常圧Ar中において,精製のためにメタノール等で洗浄するのが好適である。   The lithium-excess ternary compound of the present invention is preferably prepared by mixing the starting materials of the lithium-excess ternary compound, and then the resulting raw material mixture at a temperature of 700 ° C. to 1600 ° C. and a pressure of atmospheric pressure to 4 GPa. Manufactured by heating. It is preferable to wash with methanol or the like for purification in atmospheric pressure Ar after heating.

温度が700℃よりも低いと、目的物を得ることができず、一方1600℃よりも高いと、過度の粒成長や異なる結晶構造への転移が生じるおそれがある。温度は好ましくは800℃〜1100℃であり、圧力は好ましくは1〜4GPaである。   If the temperature is lower than 700 ° C., the target product cannot be obtained. On the other hand, if the temperature is higher than 1600 ° C., excessive grain growth or transition to a different crystal structure may occur. The temperature is preferably 800 ° C. to 1100 ° C., and the pressure is preferably 1 to 4 GPa.

出発原料は特に制限されないが、硝酸塩、炭酸塩、シュウ酸塩、酸化物等用いられる。たとえば、具体的には、Li源としては炭酸リチウム(Li2CO3)、Mn源としては炭酸マンガン(MnCO3)、Co源としてはシュウ酸コバルト(CoC24・2H2O)、Ni源としては酸化ニッケル(NiO)等、を所定比で均一に混合して出発原料とするが好適である。これらの出発原料は、金、白金等のカプセル内に封入して用いるのが好適である。 The starting material is not particularly limited, but nitrates, carbonates, oxalates, oxides and the like are used. For example, specifically, lithium carbonate (Li 2 CO 3 ) is used as the Li source, manganese carbonate (MnCO 3 ) is used as the Mn source, cobalt oxalate (CoC 2 O 4 .2H 2 O) is used as the Co source, Ni As a source, nickel oxide (NiO) or the like is preferably uniformly mixed at a predetermined ratio to obtain a starting material. These starting materials are preferably encapsulated in a capsule of gold, platinum or the like.

本発明のリチウム過剰三元系化合物は、上記の高圧下での製造方法に限定されず、蒸着、スパッタ、または常圧下の加熱、等によることもできるが、上記の方法が、リチウムの蒸発による損失を抑制して、リチウム過剰三元系化合物のLi比を制御するのに最も好適である。   The lithium-excess ternary compound of the present invention is not limited to the above-described production method under high pressure, and can be by vapor deposition, sputtering, heating under normal pressure, or the like. It is most suitable for suppressing the loss and controlling the Li ratio of the lithium-rich ternary compound.

本発明のリチウム過剰三元系化合物は正極活物質として好適であり、特にリチウムイオン二次電池にこの正極活物質を有する正極を用いるのが好ましい。リチウムイオン二次電池は、リチウムイオンを可逆的に脱挿入可能な活物質を有する正極と負極と、非水電解質とから構成される。たとえば、このようなリチウムイオン二次電池は、負極、負極を収容する負極缶、正極、正極を収容する正極缶、正極と負極との間に配置されたセパレータおよび絶縁ガスケットとを備え、負極缶および正極缶内には非水電解液が充填されてなる。負極は、負極集電体上に、負極活物質を含有する負極活物質層が形成されてなり、負極集電体としては、たとえばニッケル箔、銅箔等が用いられる。負極活物質としては、リチウムをドープ/脱ドープ可能なものを用い、具体的には、金属リチウム、リチウム合金、リチウムがドープされた導電性高分子もしくは層状化合物等が用いられる。負極活物質層に含有される結合剤としては、この分野で公知の樹脂材料等を用いることができる。正極は、アルミニウム箔等の正極集電体上に、本発明のリチウム過剰三元系化合物を正極活物質として含有する正極活物質層が形成されてなる。正極活物質層に含有される結合剤としては、樹脂材料等を用いることができる。   The lithium-excess ternary compound of the present invention is suitable as a positive electrode active material, and it is particularly preferable to use a positive electrode having this positive electrode active material for a lithium ion secondary battery. A lithium ion secondary battery is composed of a positive electrode and a negative electrode having an active material capable of reversibly removing and inserting lithium ions, and a nonaqueous electrolyte. For example, such a lithium ion secondary battery includes a negative electrode, a negative electrode can containing a negative electrode, a positive electrode, a positive electrode can containing a positive electrode, a separator disposed between the positive electrode and the negative electrode, and an insulating gasket. The positive electrode can is filled with a non-aqueous electrolyte. The negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector, and as the negative electrode current collector, for example, nickel foil, copper foil or the like is used. As the negative electrode active material, a material that can be doped / undoped with lithium is used, and specifically, metallic lithium, a lithium alloy, a conductive polymer doped with lithium, a layered compound, or the like is used. As the binder contained in the negative electrode active material layer, a resin material or the like known in this field can be used. The positive electrode is formed by forming a positive electrode active material layer containing the lithium-rich ternary compound of the present invention as a positive electrode active material on a positive electrode current collector such as an aluminum foil. As the binder contained in the positive electrode active material layer, a resin material or the like can be used.

セパレータは、正極と負極とを離間させるものであり、たとえばポリプロピレンなどの高分子フィルムが用いられ、セパレータの厚みはたとえば50μm以下が好ましい。   The separator separates the positive electrode and the negative electrode. For example, a polymer film such as polypropylene is used, and the thickness of the separator is preferably 50 μm or less, for example.

絶縁ガスケットは、負極缶に組み込まれ一体化されている。この絶縁ガスケットは、負極缶及び正極缶内に充填された非水電解液の漏出を防止するためのものである。   The insulating gasket is integrated into the negative electrode can. This insulating gasket is for preventing leakage of the nonaqueous electrolyte filled in the negative electrode can and the positive electrode can.

非水電解液としては、非プロトン性非水溶媒に電解質を溶解させた溶液を用いる。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチルラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、2−メチルテトラヒドロフラン、3−メチル1,3−ジオキソラン、プロピオン酸メチル、酪酸メチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等を使用することができるが、特に、電圧安定性の点からは、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類を使用することが好ましい。また、このような非水溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。   As the non-aqueous electrolyte, a solution in which an electrolyte is dissolved in an aprotic non-aqueous solvent is used. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyllactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, and 3-methyl1. , 3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, etc. can be used, especially from the viewpoint of voltage stability, cyclic carbonates such as propylene carbonate and vinylene carbonate. It is preferable to use chain carbonates such as dimethyl carbonate, diethyl carbonate, and dipropyl carbonate. Moreover, such a non-aqueous solvent may be used individually by 1 type, and may be used in mixture of 2 or more types.

また、非水溶媒に溶解させる電解質としては、例えば、LiPF6、LiClO4、LiAsF6、LiBF4、LiCF3SO3、LiN(CF3SO22等のリチウム塩を使用することができる。これらのリチウム塩の中でも、LiPF6、LiBF4を使用することが好ましい。 As the electrolyte dissolved in the non-aqueous solvent, for example, lithium salts such as LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used. Among these lithium salts, it is preferable to use LiPF 6 or LiBF 4 .

これらのリチウムイオン電池の組み立て自体は常法によることができ、その形状も円筒型、角型、コイン型、ボタン型等、特に限定されない。   The assembly itself of these lithium ion batteries can be performed by a conventional method, and the shape thereof is not particularly limited, such as a cylindrical shape, a square shape, a coin shape, a button shape or the like.

実施例1
本発明で行った高圧合成法によるLi過剰三元系化合物Li1+xMnCoNiOの合成は次のプロセスのとおり行った。
Example 1
The synthesis of Li-rich ternary compound Li 1 + x Mn j Co k Ni L O 2 by the high-pressure synthesis method carried out in the present invention was carried out according to the following process.

原料混合物をアルゴンで満たされたグローブボックス内で目的とする組成で混合し,金カプセルに封入した。原料混合物は、酸化リチウム(Li2O)、酸化マンガン(Mn2O)、酸化コバルト(CoO)および酸化ニッケル(NiO)を、x:j:k:Lが所定比となるように均一に混合して得た。 The raw material mixture was mixed with the desired composition in a glove box filled with argon and sealed in a gold capsule. In the raw material mixture, lithium oxide (Li 2 O), manganese oxide (Mn 2 O), cobalt oxide (CoO) and nickel oxide (NiO) are uniformly mixed so that x: j: k: L is a predetermined ratio. I got it.

キュービックアンビル型高圧装置を用いて,原料が封入された金カプセルを1GPaの圧力下に950℃で加熱した。その後、アルゴンで満たされたグローブボックス内で、メタノールで洗浄して、Li過剰三元系化合物を得た。X線回折測定から得られる回折スペクトルを比較した結果,Li過剰量に従って,Li1+xMnCNiOの格子が膨張したことから,Liが構造内に過剰に存在していることを確認した。x=0.2の試料で観測されるX線回折スペクトルでは構造内の不規則配列に由来した回折反射が観測されず,過剰Liの存在により異なる構造を有していた。 Using a cubic anvil-type high-pressure device, the gold capsule filled with the raw material was heated at 950 ° C under a pressure of 1 GPa. Thereafter, it was washed with methanol in a glove box filled with argon to obtain a Li-excess ternary compound. As a result of comparison of diffraction spectra obtained from X-ray diffraction measurement, the Li 1 + x Mn j C k Ni L O 2 lattice expanded in accordance with the excess of Li, so that Li is excessively present in the structure. It was confirmed. In the X-ray diffraction spectrum observed in the sample with x = 0.2, no diffraction reflection derived from the irregular arrangement in the structure was observed, and it had a different structure due to the presence of excess Li.

図1は、 Li過剰三元系化合物のX線回折スペクトルを示す。Li量増大とともに各反射ピークが低角度側に現れることから、格子が増大していく様子が現れており,Liが過剰に格子内に導入されていることが確認できた。   FIG. 1 shows an X-ray diffraction spectrum of a Li-rich ternary compound. Since each reflection peak appears on the low angle side as the amount of Li increases, it appears that the lattice is increasing, and it was confirmed that Li was introduced excessively into the lattice.

図2は、本発明のリチウム過剰三元系化合物のX線回折スペクトルから求めた格子パラメータ(格子定数a;格子定数c;単位格子体積V;および格子定数aに対する格子定数cの比c/a)を示す。格子定数aが直線的でないことが特徴であった。格子定数aおよび格子定数cとxとの関係が示されている。単位格子体積V(Å)も格子定数a(=b)および格子定数cから算出され(=ac)、表示された。さらに、c/a値がxの増加とともに4.97(x=0.4)から減少することがわかるが、一般にc/a値が4.90程度で立方晶と言われることから,菱面体晶(六方晶)から立方晶に近い相へ転移している可能性がある。一般に電気化学反応性として、菱面体晶(六方晶)層状岩塩型構造はリチウムの拡散に適しており、立方晶構造では電気化学反応場における安定性に優れている。本発明のリチウム過剰三元系化合物では、c/a値で表わされる菱面体晶と立方晶の割合を制御することができる。 FIG. 2 shows lattice parameters (lattice constant a; lattice constant c; unit lattice volume V; and ratio c / a of lattice constant c to lattice constant a) obtained from the X-ray diffraction spectrum of the lithium-rich ternary compound of the present invention. ). The lattice constant a is not linear. The relationship between the lattice constant a and the lattice constant c and x is shown. The unit cell volume V (Å 3 ) was also calculated from the cell constant a (= b) and the cell constant c (= a 2 c) and displayed. Furthermore, although it can be seen that the c / a value decreases from 4.97 (x = 0.4) as x increases, it is generally called a cubic crystal with a c / a value of about 4.90. There is a possibility of transition from a hexagonal crystal to a phase close to a cubic crystal. In general, rhombohedral (hexagonal) layered rock salt structure is suitable for lithium diffusion as electrochemical reactivity, and cubic structure has excellent stability in electrochemical reaction field. In the lithium-excess ternary compound of the present invention, the ratio of rhombohedral and cubic crystals represented by c / a value can be controlled.

対極Li金属,有機電解液を用いたコインセルを作製し25°Cで充放電特性を評価した結果,200 mAh g-1を超える高い放電容量を示し,さらに充放電反応の可逆性が高いことが明らかになった。
すなわち、図3のLi1+xMn0.3Co0.2Ni0.3O2の充放電曲線に示されるように、200 mAh/gを超える放電容量が得られた。この組成比(Mn0.3Co0.2Ni0.3)においては、立方晶が多いx=0.8は容量が小さかった。x=0.5, 0.6とx=0.7では,初回の充電曲線の形状が異なり,x=0.7では異なる結晶構造に変化していると考えられる。
As a result of producing a coin cell using a counter electrode Li metal and an organic electrolyte and evaluating the charge / discharge characteristics at 25 ° C, it showed a high discharge capacity exceeding 200 mAh g -1 and a high reversibility of the charge / discharge reaction. It was revealed.
That is, as shown in the charge / discharge curve of Li 1 + x Mn 0.3 Co 0.2 Ni 0.3 O 2 in FIG. 3, a discharge capacity exceeding 200 mAh / g was obtained. In this composition ratio (Mn 0.3 Co 0.2 Ni 0.3 ), x = 0.8, which has many cubic crystals, had a small capacity. When x = 0.5, 0.6 and x = 0.7, the shape of the initial charge curve is different, and when x = 0.7, it is considered that the crystal structure changes to a different one.

以上のように、本発明のLi過剰三元系化合物のリチウムイオン電池用電極としての性能を対極Li,有機電解液をとしたセルで評価した結果,200 mAh g-1を超える高い放電容量を示し,さらに充放電反応の可逆性が高いことが明らかになった。この材料を用いることで,高容量,高安全性を有する次世代リチウムイオン電池開発の実現可能性が高まると考えられる。 As described above, the performance of the Li-excess ternary compound of the present invention as an electrode for a lithium ion battery was evaluated in a cell using a counter electrode Li and an organic electrolyte. As a result, a high discharge capacity exceeding 200 mAh g -1 was obtained. In addition, the reversibility of the charge / discharge reaction was revealed to be high. The use of this material will increase the feasibility of developing next-generation lithium-ion batteries with high capacity and high safety.

Claims (9)

一般式 Li1+XMnCoNi(ここで、0.4≦x≦1.0; 0<j<1; 0<k<1; および0<L<1である。)で示されるリチウム過剰三元系化合物。 The general formula Li 1 + X Mn j Co k Ni L O 2 (where 0.4 ≦ x ≦ 1.0; 0 <j <1; 0 <k <1; and 0 <L <1). Lithium-rich ternary compound. xが0.5≦x≦0.7である請求項1に記載のリチウム過剰三元系化合物。   The lithium-rich ternary compound according to claim 1, wherein x is 0.5 ≦ x ≦ 0.7. リチウム過剰三元系化合物のa軸方向の格子定数aに対するc軸方向の格子定数cの比c/aが、4.97以下であり、xの増加とともに低下傾向を示す請求項1または2に記載のリチウム過剰三元系化合物。   The ratio c / a of the lattice constant c in the c-axis direction to the lattice constant a in the a-axis direction of the lithium-rich ternary compound is 4.97 or less, and shows a decreasing tendency as x increases. The lithium-rich ternary compound described. 比c/aが、4.97〜4.92である請求項3に記載のリチウム過剰三元系化合物。   The lithium-rich ternary compound according to claim 3, wherein the ratio c / a is 4.97 to 4.92. リチウム過剰三元系化合物の単位格子体積Vが101〜106Åである請求項1〜4のいずれか1項に記載のリチウム過剰三元系化合物。 Lithium-rich ternary lithium-rich ternary compound according to any one of the unit cell volume V compound according to claim 1 to 4 is 101~106Å 3. 請求項1〜5のいずれかに1項に記載のリチウム過剰三元系化合物の出発原料を混合し、ついで得られる原料混合物を700℃〜1600℃の温度で、大気圧〜4GPaの圧力下に加熱することを特徴とするリチウム過剰三元系化合物の製造方法。   The starting material of the lithium-excess ternary compound according to any one of claims 1 to 5 is mixed, and then the resulting raw material mixture is heated at a temperature of 700 ° C to 1600 ° C and a pressure of atmospheric pressure to 4 GPa. A method for producing a lithium-rich ternary compound characterized by heating. 温度が800℃〜1100℃であり、圧力が1〜4GPaである請求項6に記載のリチウム過剰三元系化合物の製造方法。   The method for producing a lithium-rich ternary compound according to claim 6, wherein the temperature is 800 ° C to 1100 ° C and the pressure is 1 to 4 GPa. 請求項1〜5のいずれか1項に記載のリチウム過剰三元系化合物を含有する正極活物質。   The positive electrode active material containing the lithium excess ternary compound of any one of Claims 1-5. 請求項8に記載の正極活物質を有する正極を用いてなるリチウムイオン二次電池。   The lithium ion secondary battery which uses the positive electrode which has a positive electrode active material of Claim 8.
JP2011070817A 2011-03-28 2011-03-28 Lithium-rich ternary compound and method for producing the same Active JP5648807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070817A JP5648807B2 (en) 2011-03-28 2011-03-28 Lithium-rich ternary compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070817A JP5648807B2 (en) 2011-03-28 2011-03-28 Lithium-rich ternary compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012204311A true JP2012204311A (en) 2012-10-22
JP5648807B2 JP5648807B2 (en) 2015-01-07

Family

ID=47185062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070817A Active JP5648807B2 (en) 2011-03-28 2011-03-28 Lithium-rich ternary compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP5648807B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135792A (en) * 2014-01-20 2015-07-27 株式会社Kri Positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN107611402A (en) * 2017-09-13 2018-01-19 天津理工大学 Compound lithium-rich positive electrode and preparation method thereof
US11757085B2 (en) 2019-07-18 2023-09-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450276B (en) * 2016-10-14 2019-09-24 中国科学院宁波材料技术与工程研究所 Lithium ion cell electrode modified material, preparation method and lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255433A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide for lithium battery
JP2007073487A (en) * 2005-08-11 2007-03-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255433A (en) * 2004-03-10 2005-09-22 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide for lithium battery
JP2007073487A (en) * 2005-08-11 2007-03-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135792A (en) * 2014-01-20 2015-07-27 株式会社Kri Positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN107611402A (en) * 2017-09-13 2018-01-19 天津理工大学 Compound lithium-rich positive electrode and preparation method thereof
CN107611402B (en) * 2017-09-13 2020-01-14 天津理工大学 Composite lithium-rich layered cathode material and preparation method thereof
US11757085B2 (en) 2019-07-18 2023-09-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5648807B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
EP2980893B1 (en) Active material for nonaqueous electrolyte energy storage elements
JP4742866B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
US9972835B2 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP5495300B2 (en) Lithium ion secondary battery
JP4853608B2 (en) Lithium secondary battery
JP2009004316A (en) Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2010033924A (en) Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP2007200646A (en) Lithium secondary battery
JP5663567B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5379086B2 (en) Electrode assembly and lithium secondary battery including the same
JP6607188B2 (en) Positive electrode and secondary battery using the same
JP6660599B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2023524021A (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery including the same
JP5648807B2 (en) Lithium-rich ternary compound and method for producing the same
JP2003203631A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
KR102296218B1 (en) A positive electrode active material for lithium secondary battery, method of preparing the positive electrode active material, and lithium secondary battery including the positive electrode active material
JP5600904B2 (en) Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery
EP2104162B1 (en) Lithium-manganese-tin oxide cathode active material and lithium secondary cell using the same
JP7258372B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
CN106558694B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN110168787A (en) Lithium ion secondary battery cathode material, lithium ion secondary battery cathode and lithium ion secondary battery
JP2006092820A (en) Cathode active material for nonaqueous electrolyte secondary battery, cathode, and the nonaqueous electrolyte secondary battery
KR101676687B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
EP1249881A2 (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same
EP4318667A1 (en) Positive electrode active material, method for preparing same, and lithium secondary battery including positive electrode comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R150 Certificate of patent or registration of utility model

Ref document number: 5648807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250