JP2003203631A - Positive electrode active material and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material and non-aqueous electrolyte secondary battery

Info

Publication number
JP2003203631A
JP2003203631A JP2002001724A JP2002001724A JP2003203631A JP 2003203631 A JP2003203631 A JP 2003203631A JP 2002001724 A JP2002001724 A JP 2002001724A JP 2002001724 A JP2002001724 A JP 2002001724A JP 2003203631 A JP2003203631 A JP 2003203631A
Authority
JP
Japan
Prior art keywords
lithium
transition metal
composite oxide
metal composite
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002001724A
Other languages
Japanese (ja)
Other versions
JP4032744B2 (en
Inventor
Yosuke Hosoya
洋介 細谷
Yoshikatsu Yamamoto
佳克 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002001724A priority Critical patent/JP4032744B2/en
Application filed by Sony Corp filed Critical Sony Corp
Priority to PCT/JP2003/000065 priority patent/WO2003063275A1/en
Priority to CNB2007101012491A priority patent/CN100541880C/en
Priority to CNB038000539A priority patent/CN100359724C/en
Priority to KR1020037011536A priority patent/KR101027764B1/en
Priority to US10/468,900 priority patent/US7763386B2/en
Priority to CNB2007101012504A priority patent/CN100521310C/en
Priority to EP03700481A priority patent/EP1465271A4/en
Publication of JP2003203631A publication Critical patent/JP2003203631A/en
Application granted granted Critical
Publication of JP4032744B2 publication Critical patent/JP4032744B2/en
Priority to US12/222,198 priority patent/US20090029254A1/en
Priority to US15/695,257 priority patent/US20180062171A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a large capacity and improvement in charging and discharging cycle characteristics. <P>SOLUTION: The battery comprises a positive electrode 2 having a positive electrode active material, a negative electrode 3, and a non-aqueous electrolyte, and the positive electrode active material that comprises a mixture of a first lithium transition metal complex oxide containing Ni and Co and made of a laminated structure and a second lithium transition metal complex oxide containing Ni and Mn and made of a laminated structure is used. Thereby, a large capacity and improvement in charging and discharging cycle characteristics are realized. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池に使用する正
極活物質及びこの正極活物質を用いた非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a positive electrode active material used in a battery and a non-aqueous electrolyte secondary battery using the positive electrode active material.

【0002】[0002]

【従来の技術】近年、二次電池の需要は、カメラ一体型
VTR、携帯電話、ラップトップコンピュータ等のポータ
ブル電子機器が多く登場し、急速に拡大している。二次
電池は、これらの電子機器の小型軽量化に伴い、ポータ
ブル電源としてエネルギー密度を向上させることが必要
とされている。二次電池の中でも、リチウムイオン二次
電池は、従来の水系電解液二次電池である鉛電池及びニ
ッケルカドミウム電池と比較して大きなエネルギー密度
が得られるため期待されている。
2. Description of the Related Art In recent years, the demand for secondary batteries has increased
Many portable electronic devices such as VTRs, mobile phones, and laptop computers have appeared and are rapidly expanding. Secondary batteries are required to improve energy density as portable power sources as these electronic devices are made smaller and lighter. Among secondary batteries, lithium-ion secondary batteries are expected because they can obtain a larger energy density than lead-based batteries and nickel-cadmium batteries, which are conventional aqueous electrolyte secondary batteries.

【0003】リチウムイオン二次電池は、正極活物質と
して層状構造からなるリチウム・コバルト複合酸化物、
スピネル構造を有するリチウム・マンガン複合酸化物、
リチウム・ニッケル複合酸化物等が実用化されている。
A lithium-ion secondary battery is a lithium-cobalt composite oxide having a layered structure as a positive electrode active material,
Lithium manganese composite oxide having a spinel structure,
Lithium-nickel composite oxides have been put to practical use.

【0004】リチウム・コバルト複合酸化物は、充電容
量や熱的安定性等の物理的性質とコストのバランスが最
も良く、幅広く利用されている。しかしながら、リチウ
ム・コバルト複合酸化物は、コバルトの採掘量が少ない
ため高価格である。その為、リチウム・コバルト複合酸
化物には、より安価でかつ高容量の代替物質が求められ
ている。スピネル構造のリチウム・マンガン複合酸化物
は、他のコバルト酸化物やニッケル酸化物と比べて充電
容量が低く、高温保存特性も若干悪いといったことがあ
る。
The lithium-cobalt composite oxide has the best balance of physical properties such as charge capacity and thermal stability and cost, and is widely used. However, the lithium-cobalt composite oxide is expensive because the amount of mined cobalt is small. Therefore, a cheaper and higher capacity alternative substance is required for the lithium-cobalt composite oxide. The spinel-structured lithium-manganese composite oxide has a lower charge capacity than other cobalt oxides and nickel oxides, and may have a slightly poor high-temperature storage property.

【0005】リチウム・ニッケル複合酸化物は、原料の
価格や供給安定性の面ではリチウム・コバルト複合酸化
物より優れており期待されている。しかしながら、リチ
ウム・ニッケル複合酸化物は、結晶構造の安定性が低い
ため、充放電容量及びエネルギー密度の低下や高温環境
下での充放電サイクル特性の劣化といった問題がある。
従って、リチウム・ニッケル複合酸化物は、結晶構造の
安定性を図り、充放電容量及びエネルギー密度の低下を
抑制することができれば、上述したように原料の価格や
供給安定性の面で優れているため今後有望な材料であ
る。
The lithium-nickel composite oxide is expected to be superior to the lithium-cobalt composite oxide in terms of raw material price and supply stability. However, since the lithium-nickel composite oxide has a low crystal structure stability, there are problems that the charge / discharge capacity and energy density are lowered and the charge / discharge cycle characteristics are deteriorated in a high temperature environment.
Therefore, the lithium-nickel composite oxide is excellent in terms of raw material price and supply stability, as described above, if the stability of the crystal structure can be achieved and the decrease in charge / discharge capacity and energy density can be suppressed. Therefore, it is a promising material in the future.

【0006】リチウム・ニッケル複合酸化物の結晶構造
の安定化に関しては、異種元素を固溶置換する方法等が
提案されている。また、リチウム・ニッケル複合酸化物
は、安定な結晶構造を形成しているスピネル構造のリチ
ウム・マンガン複合酸化物を混合する方法が提案されて
いる。
Regarding the stabilization of the crystal structure of the lithium-nickel composite oxide, methods such as solid solution substitution of different elements have been proposed. As the lithium-nickel composite oxide, a method of mixing a lithium-manganese composite oxide having a spinel structure forming a stable crystal structure has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近年の
電子機器等の高密度化や集積回路等の高速化、又は携帯
機器等に求められる耐環境性に対応するためには、上述
した固溶置換による安定化よりも、更に安定した結晶構
造を形成する必要がある。また、スピネル構造のリチウ
ム・マンガン複合酸化物は、結晶構造は安定しているが
充電容量が低いため、リチウム・ニッケル複合酸化物の
高容量が活かされず正極の充放電容量を低下させてしま
うといった問題がある。
However, in order to cope with the recent trend toward higher density of electronic devices and the like, speeding up of integrated circuits and the like, and environmental resistance required for portable devices and the like, the solid solution substitution described above is required. It is necessary to form a more stable crystal structure than the stabilization by. In addition, since the spinel structure lithium-manganese composite oxide has a stable crystal structure but a low charge capacity, the high capacity of the lithium-nickel composite oxide is not utilized and the charge / discharge capacity of the positive electrode is reduced. There's a problem.

【0008】従って、本発明は、このような従来の事情
に鑑みて提案されたものであり、正極の充放電容量及び
エネルギー密度の向上、更には常温に限らず高温環境下
においても良好な充放電サイクル特性が得られる正極活
物質及びこの正極活物質を用いた非水電解質電池を提供
することを目的とする。
Therefore, the present invention has been proposed in view of the above conventional circumstances, and improves the charge and discharge capacity and energy density of the positive electrode, and further provides good charging not only at room temperature but also in a high temperature environment. It is an object of the present invention to provide a positive electrode active material capable of obtaining discharge cycle characteristics and a non-aqueous electrolyte battery using the positive electrode active material.

【0009】[0009]

【課題を解決するための手段】上述した目的を達成する
本発明に係る正極活物質は、少なくともNi及びCoを
含有し、層状構造からなる第1の正極材料と、少なくと
もNi及びMnを含有し、層状構造からなる第2の正極
材料との混合物を有することを特徴とする。
A positive electrode active material according to the present invention that achieves the above-mentioned object contains at least Ni and Co, and contains a first positive electrode material having a layered structure and at least Ni and Mn. , And a mixture with a second positive electrode material having a layered structure.

【0010】以上のような正極活物質では、少なくとも
Ni及びCoを含有し、層状構造からなる第1の正極材
料と、少なくともNi及びMnを含有し、層状構造から
なる第2の正極材料とが混合されており、第1の正極材
料は高容量を有し、第2の正極材料は結晶構造が安定で
あることから、充放電容量の高容量化及びエネルギー密
度の向上が図られ、高温環境下においても良好な充放電
サイクル特性が得られる。
In the positive electrode active material as described above, a first positive electrode material containing at least Ni and Co and having a layered structure and a second positive electrode material containing at least Ni and Mn and having a layered structure are provided. Since they are mixed, the first positive electrode material has a high capacity, and the second positive electrode material has a stable crystal structure, so that the charge and discharge capacity can be increased and the energy density can be improved. Good charge / discharge cycle characteristics can be obtained even under the following conditions.

【0011】また、本発明に係る非水電解質二次電池
は、正極集電体上に正極活物質を含有する正極合剤層が
形成されてなる正極と、負極集電体上に負極活物質を含
有する負極合剤層が形成されてなる負極と、非電解質と
を備える。正極活物質には、少なくともNi及びCoを
含有し、層状構造からなる第1の正極材料と、少なくと
もNi及びMnを含有し、層状構造からなる第2の正極
材料とを混合した混合物が含有されていることを特徴と
する。
Further, the non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode formed by forming a positive electrode mixture layer containing a positive electrode active material on a positive electrode current collector, and a negative electrode active material on a negative electrode current collector. And a non-electrolyte. The positive electrode active material contains a mixture of a first positive electrode material containing at least Ni and Co and having a layered structure, and a second positive electrode material containing at least Ni and Mn and having a layered structure. It is characterized by

【0012】この非水電解質二次電池では、少なくとも
Ni及びCoを含有し、層状構造からなる第1の正極材
料と、少なくともNi及びMnを含有し、層状構造から
なる第2の正極材料とを混合した混合物を含有する正極
活物質を用いることによって、第1の正極材料は高容量
であり、第2の正極活物質は結晶構造が安定であること
から、正極の充放電容量の高容量化及びエネルギー密度
の向上が図られ、高温環境下においても良好な充放電サ
イクル特性が得られる。
In this non-aqueous electrolyte secondary battery, a first positive electrode material containing at least Ni and Co and having a layered structure, and a second positive electrode material containing at least Ni and Mn and having a layered structure are provided. By using the positive electrode active material containing the mixed mixture, the first positive electrode material has a high capacity and the second positive electrode active material has a stable crystal structure, so that the charge and discharge capacity of the positive electrode can be increased. Also, the energy density is improved, and good charge / discharge cycle characteristics can be obtained even in a high temperature environment.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態として
示す正極活物質及びこの正極活物質を用いた非水電解質
二次電池について、図面を参照して詳細に説明する。図
1に示すように、非水電解質二次電池1は、帯状の正極
2と、帯状の負極3とがセパレータ4を介して密着状態
で巻回された電極体が、電池缶5の内部に充填されてな
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a positive electrode active material and a non-aqueous electrolyte secondary battery using the positive electrode active material, which are shown as embodiments of the present invention, will be described in detail with reference to the drawings. As shown in FIG. 1, in a non-aqueous electrolyte secondary battery 1, an electrode body in which a strip-shaped positive electrode 2 and a strip-shaped negative electrode 3 are wound in close contact with each other via a separator 4 is provided inside a battery can 5. It is filled.

【0014】正極2は、正極活物質と結合剤と導電剤と
からなる正極合剤を正極集電体上に層状に塗布して形成
される。結合剤には、ポリテトラフルオロエチレン、ポ
リフッ化ビニリデン、ポリエチレン等の熱可塑性樹脂を
用いる。導電剤には、人工黒鉛やカーボンブラック等を
用いる。なお、正極集電体としては、アルミニウム箔等
の金属箔を用いる。
The positive electrode 2 is formed by applying a positive electrode mixture composed of a positive electrode active material, a binder and a conductive agent in a layered manner on a positive electrode current collector. A thermoplastic resin such as polytetrafluoroethylene, polyvinylidene fluoride, or polyethylene is used as the binder. Artificial graphite, carbon black, or the like is used as the conductive agent. A metal foil such as an aluminum foil is used as the positive electrode current collector.

【0015】そして、正極活物質は、第1の正極材料と
第2の正極材料とを混合した混合物を含有する。第1の
正極材料は、層状構造を有し、化学式LiNiCoMO
(但し、Mは、遷移金属、或いは長周期型元素周期表の
2族、3族、4族の元素のうち1種の元素若しくは複数
種からなる化合物であり、x、y、zの範囲は、0.9
0≦x<1.1、0.05≦y≦0.50、0.01≦z
≦0.10である。)で表される第1のリチウム遷移金
属複合酸化物である。化学式LiNiCoMO中のM
は、具体的に第1のリチウム遷移金属複合酸化物の結晶
中で均一に分散できる元素を表しているが、特に好まし
くはFe、Co、Zn、Al、Sn、Cr、V、Ti、
Mg、Gaの中から1種或いは複数種からなる化合物で
ある。
The positive electrode active material contains a mixture of the first positive electrode material and the second positive electrode material. The first positive electrode material has a layered structure and has a chemical formula of LiNiCoMO.
(However, M is a transition metal, or a compound consisting of one or more of the elements of Groups 2, 3, and 4 of the long-period element periodic table, and the range of x, y, and z is , 0.9
0 ≦ x <1.1, 0.05 ≦ y ≦ 0.50, 0.01 ≦ z
≦ 0.10. ) Is a first lithium-transition metal composite oxide. Chemical formula M in LiNiCoMO
Specifically represents an element that can be uniformly dispersed in the crystal of the first lithium-transition metal composite oxide, and particularly preferably Fe, Co, Zn, Al, Sn, Cr, V, Ti,
It is a compound composed of one or more of Mg and Ga.

【0016】第2の正極材料は、層状構造を有し、化学
式LiNiMnM´O(但し、M´は、遷移金属、或い
は長周期型元素周期表の2族、3族、4族の元素のうち
1種若しくは複数種からなる化合物であり、s、t、u
は各々0.90≦s<1.1、0.05≦t≦0.50、
0.01≦u≦0.30である。)で表される第2のリチ
ウム遷移金属複合酸化物である。化学式LiNiMnM
´O中のM´は、具体的に第2のリチウム遷移金属複合
酸化物の結晶中を均一に分散できる元素を表している
が、特に好ましくは、Fe、Co、Zn、Al、Sn、
Cr、V、Ti、Mg、Gaの中から1種或いは複数種
からなる化合物である。
The second positive electrode material has a layered structure and has a chemical formula of LiNiMnM'O (where M'is a transition metal or an element of Group 2, Group 3 or Group 4 of the long-period element periodic table). A compound composed of one or more kinds, and s, t, u
Are 0.90 ≦ s <1.1, 0.05 ≦ t ≦ 0.50,
0.01 ≦ u ≦ 0.30. ) Is a second lithium-transition metal composite oxide represented by Chemical formula LiNiMnM
M'in'O specifically represents an element capable of being uniformly dispersed in the crystal of the second lithium-transition metal composite oxide, and particularly preferably Fe, Co, Zn, Al, Sn,
It is a compound consisting of one or more of Cr, V, Ti, Mg, and Ga.

【0017】第1のリチウム遷移金属複合酸化物及び第
2のリチウム遷移金属複合酸化物の混合比は、正極活物
質全体に対して15重量%以上、85重量%以下含有す
ることが好ましく、更に好ましくは30重量%以上、7
0重量%以下を含有するようにする。正極活物質は、第
1のリチウム遷移金属複合酸化物の混合比が15重量%
未満になると、第2のリチウム遷移金属複合酸化物の混
合比が85%を越え、正極活物質全体に対して低容量の
第2のリチウム遷移複合酸化物の占める割合が多くな
り、第1のリチウム遷移金属複合酸化物の高容量が活か
されず正極活物質の初期容量が低下してしまう。また、
第1のリチウム遷移金属複合酸化物の混合比が85重量
%を越えると、第2のリチウム遷移複合酸化物の混合比
が15%未満となり、正極活物質の結晶構造が不安定と
なるため、充放電を繰り返す度に結晶構造の劣化が進み
高温環境下での充放電サイクル容量維持率が著しく低下
してしまう。
The mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide is preferably 15% by weight or more and 85% by weight or less based on the whole positive electrode active material. Preferably 30% by weight or more, 7
It should be contained in an amount of 0% by weight or less. The positive electrode active material has a mixing ratio of the first lithium-transition metal composite oxide of 15% by weight.
When the ratio is less than 1, the mixing ratio of the second lithium-transition metal composite oxide exceeds 85%, and the proportion of the low-capacity second lithium-transition composite oxide with respect to the whole positive electrode active material increases, and The high capacity of the lithium-transition metal composite oxide is not utilized and the initial capacity of the positive electrode active material decreases. Also,
When the mixing ratio of the first lithium-transition metal composite oxide exceeds 85% by weight, the mixing ratio of the second lithium-transition composite oxide becomes less than 15%, and the crystal structure of the positive electrode active material becomes unstable. Each time charging and discharging are repeated, the crystal structure is deteriorated, and the charge and discharge cycle capacity retention rate in a high temperature environment is significantly reduced.

【0018】この為、正極活物質は、第1のリチウム遷
移金属複合酸化物及び第2のリチウム遷移金属複合酸化
物の各々の混合比を15重量%以上、85重量%の範囲
で混合することによって、充放電容量及び充放電に伴う
結晶構造の変化を互いに第1のリチウム遷移金属複合酸
化物と第2のリチウム遷移金属複合酸化物とが相殺し合
うことにより、結晶構造の変化が小さくなるため充放電
サイクル容量維持率の向上が図られる。
Therefore, the positive electrode active material should be mixed such that the mixing ratio of each of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide is 15% by weight or more and 85% by weight or less. The first lithium transition metal composite oxide and the second lithium transition metal composite oxide cancel each other out the change in the charge / discharge capacity and the crystal structure associated with the charge / discharge, so that the change in the crystal structure becomes small. Therefore, the charge / discharge cycle capacity retention rate can be improved.

【0019】また、正極活物質は、第1のリチウム遷移
金属複合酸化物及び第2のリチウム遷移金属複合酸化物
の平均粒径を30μm以下とすることが好ましく、更に
好ましくは2μm以上、30μm以下である。正極活物質
は、第1のリチウム遷移金属複合酸化物及び第2のリチ
ウム遷移金属複合酸化物の平均粒径を2μm未満にする
と、正極活物質と電解質との接触面積が大きくなるた
め、電解液の分解が進行して高温環境下の特性が低下し
てしまう。逆に、正極活物質は、第1のリチウム遷移金
属複合酸化物及び第2のリチウム遷移金属複合酸化物の
平均粒径が30μmを越えると、第1のリチウム遷移金
属複合酸化物と第2のリチウム遷移金属複合酸化物との
混合が不十分となり、高温環境下での初期容量の低下や
充放電サイクル容量維持率の劣化が起こってしまう。
In the positive electrode active material, the average particle size of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide is preferably 30 μm or less, more preferably 2 μm or more and 30 μm or less. Is. When the average particle diameter of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide is less than 2 μm, the positive electrode active material has a large contact area between the positive electrode active material and the electrolyte. Decomposition progresses and the characteristics under high temperature environment deteriorate. On the contrary, when the average particle diameter of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide exceeds 30 μm, the positive electrode active material contains the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide. Mixing with the lithium-transition metal composite oxide becomes insufficient, and the initial capacity decreases and the charge / discharge cycle capacity retention rate deteriorates in a high temperature environment.

【0020】この為、正極活物質は、第1のリチウム遷
移金属複合酸化物及び第2のリチウム遷移金属複合酸化
物の平均粒径を30μm以下にすることによって、正極
活物質と電解液との接触面積が小さくなり、また、第1
のリチウム遷移金属複合酸化物と第2のリチウム遷移金
属複合酸化物とが十分に混合され、高温環境下での初期
容量の高容量化及び充放電サイクル容量維持率の向上が
図られる。
Therefore, in the positive electrode active material, the average particle diameter of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide is set to 30 μm or less so that the positive electrode active material and the electrolytic solution are separated from each other. The contact area is small and the first
The lithium-transition metal composite oxide described above and the second lithium-transition metal composite oxide are sufficiently mixed, so that the initial capacity can be increased and the charge / discharge cycle capacity retention rate can be improved in a high temperature environment.

【0021】更に、正極活物質は、第1のリチウム遷移
金属複合酸化物中のCoの比率及び第2のリチウム遷移
金属複合酸化物のMnの比率を0.05以上、0.50
以下にすることが好ましい。正極活物質は、Co及びM
nの比率を0.05未満にすることによって、第1のリ
チウム遷移金属複合酸化物及び第2のリチウム遷移金属
複合酸化物の各結晶構造が不安定となり、充放電を繰り
返す度に正極活物質の結晶構造が劣化して充放電サイク
ル特性が低下してしまう。逆に、正極活物質は、Co及
びMnの比率を0.50以上にすることによって、充放
電容量の低下を招く結晶構造を形成するため充放電容量
が低下してしまう。
Further, in the positive electrode active material, the ratio of Co in the first lithium-transition metal composite oxide and the ratio of Mn in the second lithium-transition metal composite oxide are 0.05 or more and 0.50.
The following is preferable. The positive electrode active material is Co or M
By setting the ratio of n to be less than 0.05, each crystal structure of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide becomes unstable, and the positive electrode active material is regenerated every time charging and discharging are repeated. And its charge / discharge cycle characteristics deteriorate. On the contrary, when the ratio of Co and Mn is 0.50 or more, the positive electrode active material forms a crystal structure that causes a decrease in charge / discharge capacity, and thus the charge / discharge capacity is decreased.

【0022】この為、正極活物質は、第1のリチウム遷
移金属複合酸化物中のCoの比率及び第2のリチウム遷
移金属複合酸化物のMnの比率を0.05以上、0.5
0以下にすることによって、結晶構造の劣化が抑制され
充放電サイクル特性の向上が図られ。また、正極活物質
は、Co及びMnの比率を0.05以上、0.50以下
にすることによって、高容量の結晶構造を形成すること
により充放電容量の高容量化が図られる。
Therefore, in the positive electrode active material, the ratio of Co in the first lithium-transition metal composite oxide and the ratio of Mn in the second lithium-transition metal composite oxide are 0.05 or more and 0.5 or more.
By setting it to 0 or less, deterioration of the crystal structure is suppressed and the charge / discharge cycle characteristics are improved. Further, in the positive electrode active material, by setting the ratio of Co and Mn to 0.05 or more and 0.50 or less, a high capacity crystal structure is formed, so that the charge and discharge capacity can be increased.

【0023】第1のリチウム遷移金属複合酸化物及び第
2のリチウム遷移金属複合酸化物は、リチウム、ニッケ
ル、コバルト、マンガン等の炭酸塩を各組成に応じて混
合し、空気雰囲気又は酸素雰囲気中で600〜1100
℃の温度範囲で焼成することにより得られる。なお、出
発原料は、炭酸塩に限定されず、水酸化物、酸化物、硝
酸塩、有機酸塩等からも同様に生成可能である。また、
第1のリチウム遷移金属複合酸化物及び第2のリチウム
遷移金属複合酸化物は、リチウム、ニッケル、コバル
ト、マンガン等を含有する複合水酸化物や複合炭酸塩等
を原料として用いることも可能である。
The first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide are prepared by mixing carbonates such as lithium, nickel, cobalt, manganese, etc. according to their respective compositions and in an air atmosphere or an oxygen atmosphere. At 600-1100
It is obtained by firing in the temperature range of ° C. The starting material is not limited to carbonate, and hydroxide, oxide, nitrate, organic acid salt and the like can be similarly produced. Also,
For the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide, it is possible to use, as a raw material, a composite hydroxide or a composite carbonate containing lithium, nickel, cobalt, manganese, or the like. .

【0024】以上のような正極活物質は、高容量な第1
のリチウム遷移金属複合酸化物と安定な結晶構造を形成
している第2のリチウム遷移金属複合酸化物とを混合し
た混合物からなることにより、充放電容量の高容量化及
び結晶構造の安定化が図られる。従って、正極活物質
は、充放電容量の高容量化、高エネルギー密度化、及び
高温環境下においての充放電サイクル容量維持率の向上
が図られる。また、正極活物質は、第1のリチウム遷移
金属複合酸化物と第2のリチウム遷移金属複合酸化物と
の混合比、平均粒径、及び第1のリチウム遷移金属複合
酸化物中のCo及び第2のリチウム遷移金属複合酸化物
中のMnの比率、或いは第1のリチウム遷移金属複合酸
化物及び第2のリチウム遷移金属複合酸化物中の添加元
素の有無を上述したように規定することによって、より
優れた初期容量及び充放電サイクル容量維持率が得られ
る。
The positive electrode active material as described above has a high capacity
The mixture of the above lithium transition metal composite oxide and the second lithium transition metal composite oxide forming a stable crystal structure enables the charge and discharge capacity to be increased and the crystal structure to be stabilized. Planned. Therefore, the positive electrode active material can have a high charge / discharge capacity, a high energy density, and an improved charge / discharge cycle capacity retention rate in a high temperature environment. Further, the positive electrode active material includes a mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide, an average particle diameter, and Co and the first lithium-transition metal composite oxide. By defining the ratio of Mn in the lithium-transition metal composite oxide of No. 2 or the presence or absence of the additional element in the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide as described above, A better initial capacity and charge / discharge cycle capacity retention rate can be obtained.

【0025】負極3は、負極活物質と結合剤とを含有す
る負極合剤を負極集電体上に塗布して形成される。負極
活物質には、対リチウム金属2.0V以下の電位で電気
化学的にリチウムをドープ・脱ドープできる材料を用い
る。例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱
分解炭素類、コークス類(ピッチコークス、ニードルコ
ークス、石油コークス等)、グラファイト類、ガラス状
炭素類、有機高分子化合物焼成体(フェノール樹脂、フ
ラン樹脂等を適当な温度で焼成し炭素化したもの)、炭
素繊維、活性炭、カーボンブラック類等の炭素質材料を
使用することができる。
The negative electrode 3 is formed by applying a negative electrode mixture containing a negative electrode active material and a binder onto a negative electrode current collector. As the negative electrode active material, a material capable of electrochemically doping and dedoping lithium at a potential of 2.0 V or less with respect to lithium metal is used. For example, non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenolic resin) , A furan resin, etc., which has been carbonized by firing at a suitable temperature), carbon fibers, activated carbon, carbonaceous materials such as carbon blacks.

【0026】また、負極活物質としては、リチウムと合
金を形成可能な金属及びリチウムと合金を形成可能な金
属からなる合金化合物も利用可能である。リチウムと合
金形成可能な金属としては、半導体元素も含めることと
して、例えば、Mg、B、Al、Ga、In、Si、S
n、Pb、Sb、Bi、Cd、Ag、Zn、Hf、Z
r、Yである。更には、酸化ルテニウム、酸化モリブデ
ン、酸化タングステン、酸化チタン、酸化スズ等の比較
的電位が低電位で、リチウムイオンをドープ・脱ドープ
する酸化物やその他の窒化物なども同様に使用可能であ
る。なお、負極集電体としては、銅箔等の金属を用い
る。また、導電剤としては、正極2を作製する際に用い
た導電剤と同様の人工黒鉛やカーボンブラック等を用い
る。
Further, as the negative electrode active material, a metal capable of forming an alloy with lithium and an alloy compound made of a metal capable of forming an alloy with lithium can be used. As the metal capable of forming an alloy with lithium, a semiconductor element may be included, for example, Mg, B, Al, Ga, In, Si, S.
n, Pb, Sb, Bi, Cd, Ag, Zn, Hf, Z
r and Y. Further, oxides such as ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, which have a relatively low potential and dope / de-dope lithium ions, and other nitrides can also be used. . A metal such as copper foil is used as the negative electrode current collector. Further, as the conductive agent, the same artificial graphite, carbon black, or the like as the conductive agent used when producing the positive electrode 2 is used.

【0027】上述した正極2及び負極3の作製方法は、
正極活物質及び負極活物質に結合剤、導電剤等を添加し
溶剤を加えて塗布する方法、正極活物質及び負極活物質
に結合剤等を添加し加熱して塗布する方法、正極活物質
及び負極活物質を単独或いは導電剤、更には結合剤と混
合して成型等の処理を施して成型体電極を作成する方法
等がとられているが、それらに限定されるものではな
い。
The manufacturing method of the positive electrode 2 and the negative electrode 3 described above is as follows.
A method of adding a binder, a conductive agent or the like to a positive electrode active material and a negative electrode active material, and applying a solvent, a method of adding a binder or the like to a positive electrode active material and a negative electrode active material, and applying heat, Although a method of producing a molded body electrode by subjecting the negative electrode active material to a single or mixed with a conductive agent, and further a binder, and subjecting the mixture to a treatment such as molding, etc. are not limited thereto.

【0028】例えば、正極2の作製方法は、第1のリチ
ウム遷移金属複合酸化物と第2のリチウム遷移金属複合
酸化物とを混合して得られた正極活物質に、上述した導
電剤と結合剤とを所定の割合で混合して正極合剤を作製
し、この正極合剤をN−メチル−2−ビロリドン等の有
機溶媒に分散させてスラリー状にする。次に、スラリー
状とした正極合剤を正極集電体上に均一に塗布して正極
合剤層を形成し、乾燥後、成型して正極2が得られる。
For example, in the method for producing the positive electrode 2, the positive electrode active material obtained by mixing the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide is combined with the above-mentioned conductive agent. The agent is mixed at a predetermined ratio to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in an organic solvent such as N-methyl-2-virolidone to form a slurry. Next, the positive electrode mixture in slurry form is uniformly applied onto the positive electrode current collector to form a positive electrode mixture layer, which is dried and then molded to obtain the positive electrode 2.

【0029】また、負極3の作製方法としては、上述し
た負極活物質と結合剤とを所定の割合で混合した負極合
剤をスラリー状とする。次に、スラリー状とした負極合
剤を負極集電体上に均一に塗布して負極合剤層を形成
し、乾燥後、成型して負極3が得られる。なお、上述し
た正極2及び負極3の作製方法において、結合剤の有無
にかかわらず、正極活物質及び負極活物質に熱を加えた
まま加圧成型することにより強度を有した正極2及び負
極3を作製することもできる。
As a method for producing the negative electrode 3, a negative electrode mixture obtained by mixing the above-mentioned negative electrode active material and a binder in a predetermined ratio is made into a slurry. Next, the negative electrode mixture in slurry form is uniformly applied onto the negative electrode current collector to form a negative electrode mixture layer, which is dried and then molded to obtain the negative electrode 3. In the above-described method for producing the positive electrode 2 and the negative electrode 3, the positive electrode 2 and the negative electrode 3 which have strength by pressure molding with heat applied to the positive electrode active material and the negative electrode active material regardless of the presence or absence of the binder. Can also be produced.

【0030】上述した正極2及び負極3を用いた非水電
解質二次電池1の作製方法には、正極2と負極3との間
にセパレータ4を介して巻芯の周囲を捲回する作製方
法、又は正極2と負極3との間にセパレータ4を挟み正
極2及び負極3を積層する積層方法等がある。
The method for producing the non-aqueous electrolyte secondary battery 1 using the positive electrode 2 and the negative electrode 3 described above includes a method of winding the positive electrode 2 and the negative electrode 3 around the winding core with the separator 4 interposed therebetween. Alternatively, there is a stacking method in which the separator 4 is sandwiched between the positive electrode 2 and the negative electrode 3, and the positive electrode 2 and the negative electrode 3 are stacked.

【0031】電解質には、非水溶媒に電解質塩を溶解さ
せた非水電解液、電解質塩を含有させた固体電解質、或
いは非水溶媒と電解質塩とからなる非水電解液をマトリ
ックス高分子に含浸させてゲル状としたゲル状電解質の
いずれも用いることができる。
As the electrolyte, a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, a solid electrolyte containing an electrolyte salt, or a non-aqueous electrolyte solution containing a non-aqueous solvent and an electrolyte salt is used as a matrix polymer. Any gel electrolyte that is impregnated into a gel may be used.

【0032】非水電解液は、有機溶媒と電解質塩とを適
宜組み合わせて調製される。有機溶媒は、非水電解液系
の電池に使用されているものであればいずれも用いるこ
とができる。有機溶媒には、例えば、プロピレンカーボ
ネート、エチレンカーボネート、ビニレンカーボネー
ト、ジエチルカーボネート、ジメチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、γーブチロラクトン、テトラビドロフラン、2−メ
チルテトラヒドロフラン、1,3−ジオキソラン、4メ
チル1,3ジオキソラン、ジエチルエーテル、スルホラ
ン、メチルスルホラン、アセトニトリル、プロピオニト
リル、アニソール、酢酸エステル、酪酸エステル、プロ
ピオン酸エステル等がある。電解質塩には、非水電解液
系の電池に用いられるものであればいずれも用いること
ができ、例えば、LiClO、LiAsF,LiPF、
LiBF、LiB(CH)、CHSOLi、CFSOL
i、LiCl、LiBr等がある。
The non-aqueous electrolytic solution is prepared by appropriately combining an organic solvent and an electrolyte salt. Any organic solvent can be used as long as it is used in a non-aqueous electrolyte system battery. The organic solvent, for example, propylene carbonate, ethylene carbonate, vinylene carbonate, diethyl carbonate, dimethyl carbonate,
1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetravidrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4methyl-1,3dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile , Propionitrile, anisole, acetate, butyrate, propionate and the like. Any electrolyte salt can be used as long as it is used in a non-aqueous electrolyte battery, for example, LiClO, LiAsF, LiPF,
LiBF, LiB (CH), CHSOLi, CFSOL
i, LiCl, LiBr and the like.

【0033】固体電解質には、リチウムイオン導電性を
有する材料であれば無機固体電解質、高分子固体電解質
のいずれも用いられる。無機固体電解質には、例えば窒
化リチウム、よう化リチウム等がある。高分子固体電解
質は、上述した電解質塩を含有する高分子化合物からな
る。高分子化合物には、ポリエチレンオキサイド、図架
橋体などのエーテル系高分子、ポリメタクリレートエス
テル系及びアクリレート系などを単独或いは分子中に共
重合、又は混合して用いることができる。
As the solid electrolyte, either an inorganic solid electrolyte or a polymer solid electrolyte may be used as long as it has lithium ion conductivity. Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide. The polymer solid electrolyte is composed of a polymer compound containing the electrolyte salt described above. As the polymer compound, a polyethylene oxide, an ether polymer such as a cross-linked product, a polymethacrylate ester system and an acrylate system may be used alone or in the molecule by copolymerization or mixture.

【0034】ゲル状電解質のマトリックス高分子には、
上記非水電解液を吸収してゲル化するものであれば種々
の有機高分子を使用できる。マトリックス高分子には、
例えば、ポリビニリデンフルオロライドやポリビニリデ
ンフルオロライド−co−ヘキサフルオロプロピレン等
のフッ素系高分子、ポリエチレンオキサイドや図架橋体
等のエーテル系高分子、又はポリアクリロニトリル等が
ある。特に、ゲル状電解質のマトリックス高分子には、
酸化還元安定性からフッ素系高分子を用いることが望ま
しい。また、ゲル状電解質のマトリックスは、非水電解
液中の電解質塩を含有させることによりイオン導電性が
付与されている。
The matrix polymer of gel electrolyte includes
Various organic polymers can be used as long as they absorb the non-aqueous electrolyte and gelate. Matrix macromolecules include
Examples thereof include fluorine-based polymers such as polyvinylidene fluoride and polyvinylidene fluoride-co-hexafluoropropylene, ether-based polymers such as polyethylene oxide and cross-linked products, and polyacrylonitrile. In particular, for the matrix polymer of gel electrolyte,
It is desirable to use a fluoropolymer because of its redox stability. Further, the gel electrolyte matrix is provided with ionic conductivity by containing an electrolyte salt in the non-aqueous electrolyte solution.

【0035】円筒型の非水電解質二次電池1の作製方法
は、先ず、上述したように作製された正極2と負極3と
を多孔性ポリオレフィンフィルムからなるセパレータ4
を介して多数回巻回して、渦巻き型の電極体を作製す
る。渦巻き型の電極体の上下両面に絶縁板6を配置し
て、ニッケルめっき処理を施した鉄製の電池缶5に収納
する。正極2の集電をとるために、アルミニウム製正極
リード7の一端を正極集電体から導出して、他端を電流
遮断用薄板8に溶接して電池蓋9と電気的に接続する。
また、負極3の集電をとるために、ニッケル負極リード
10の一端を負極集電体から導出して、他端を電池缶5
の底部に溶接する。
In the method for producing the cylindrical non-aqueous electrolyte secondary battery 1, first, the positive electrode 2 and the negative electrode 3 produced as described above are separated by a separator 4 made of a porous polyolefin film.
A large number of windings are carried out through to prepare a spiral type electrode body. Insulating plates 6 are arranged on the upper and lower surfaces of the spirally-wound electrode body and housed in a nickel-plated iron battery can 5. In order to collect the current of the positive electrode 2, one end of the aluminum positive electrode lead 7 is led out from the positive electrode current collector, and the other end is welded to the current blocking thin plate 8 to be electrically connected to the battery lid 9.
Further, in order to collect the current of the negative electrode 3, one end of the nickel negative electrode lead 10 is led out from the negative electrode current collector, and the other end is drawn to the battery can 5.
Weld to the bottom of the.

【0036】次に、上述した電極体が組み込まれた電池
缶5内に、調製した非水電解液を注入後、絶縁封ロガス
ケット11を介して電池缶5をかしめることにより電池
蓋9が固定さる。なお、非水電解質二次電池1におい
て、正極リード7及び負極リード10に接続するセンタ
ーピン12が設けられているとともに、非水電解質二次
電池1内部の圧力が所定の値よりも高くなった場合に、
非水電解質電池1内部の気体を抜くための安全弁13、
及び非水電解質二次電池1内部の温度上昇を防止するた
めのPTC(positive temperture coefficient)素
子14が設けられている。
Next, after pouring the prepared non-aqueous electrolytic solution into the battery can 5 in which the above-mentioned electrode body is incorporated, the battery can 5 is caulked through the insulating sealing gasket 11, so that the battery lid 9 is removed. Fixed In the non-aqueous electrolyte secondary battery 1, a center pin 12 connected to the positive electrode lead 7 and the negative electrode lead 10 was provided, and the pressure inside the non-aqueous electrolyte secondary battery 1 became higher than a predetermined value. In case,
Safety valve 13 for venting the gas inside the non-aqueous electrolyte battery 1,
Also, a PTC (positive temperture coefficient) element 14 for preventing a temperature rise inside the non-aqueous electrolyte secondary battery 1 is provided.

【0037】以上のように構成された非水電解質二次電
池は、正極2を形成する正極活物質に高容量な第1のリ
チウム遷移金属複合酸化物と安定な結晶構造を形成して
いる第2のリチウム遷移金属複合酸化物とを混合した混
合物からなることにより、充放電容量の高容量化及び結
晶構造の安定性が図られる。従って、この非水電解質二
次電池1は、充放電容量の高容量化及び高エネルギー密
度の向上と共に、常温及び高温環境下のおいての充放電
サイクル容量維持率の向上が図られる。
In the non-aqueous electrolyte secondary battery constructed as described above, the positive electrode active material forming the positive electrode 2 forms a stable crystal structure with the high capacity first lithium-transition metal composite oxide. By comprising a mixture of the lithium-transition metal composite oxide of No. 2, the charge / discharge capacity can be increased and the crystal structure can be stabilized. Therefore, the non-aqueous electrolyte secondary battery 1 can have a high charge / discharge capacity and a high energy density, as well as an improved charge / discharge cycle capacity retention rate under normal temperature and high temperature environments.

【0038】また、非水電解質二次電池1の形状は、特
に限定されないため、円筒型、角型、コイン型、ボタン
型、ラミネートシール型等の種々の形状にすることがで
きるが、角形電池の場合に捲回する方式で本発明を適用
すると有効である。その場合には、巻芯の内径を電池製
造の捲回時に使用される楕円形状の芯の中でも、最も曲
率の大きい部分の直径に合わせて作製する。
Further, the shape of the non-aqueous electrolyte secondary battery 1 is not particularly limited, and can be various shapes such as a cylinder type, a square type, a coin type, a button type and a laminate seal type. In this case, it is effective to apply the present invention by a winding method. In that case, the inner diameter of the winding core is made to match the diameter of the portion having the largest curvature among the elliptical cores used at the time of winding for battery production.

【0039】[0039]

【実施例】以下、本発明を適用した正極活物質を用いた
非水電解質二次電池の実施例及び比較例について具体的
に説明する。ここでは、非水電解質二次電池の形状を円
筒型の非水電解質二次電池とした。
EXAMPLES Examples and comparative examples of non-aqueous electrolyte secondary batteries using the positive electrode active material to which the present invention is applied will be specifically described below. Here, the shape of the non-aqueous electrolyte secondary battery is a cylindrical non-aqueous electrolyte secondary battery.

【0040】実施例1 先ず、第1のリチウム遷移金属複合酸化物を次のように
して作製した。第1のリチウム遷移金属複合酸化物の原
料には、市販の水酸化リチウム、一酸化ニッケル、酸化
コバルトを用いた。第1のリチウム遷移金属複合酸化物
は、水酸化リチウム、一酸化ニッケル、酸化コバルトを
次のような配合で混合した。なお、実施例1では、遷移
金属、或いは長周期型元素周期表の2族、3族、4族の
元素のうち1種の元素若しくは複数種からなる化合物と
なる添加物Mを第1のリチウム遷移金属複合酸化物に添
加せずに作製した。従って、第1のリチウム遷移金属複
合酸化物の化学式LiNiCoMOのLi、Ni、C
o、M元素の比x、1−y−z、y、zが、x=1.0
2、1−y−z=0.70、y=0.30、z=0とな
るように配合した。
Example 1 First, the first lithium-transition metal composite oxide was prepared as follows. Commercially available lithium hydroxide, nickel monoxide, and cobalt oxide were used as raw materials for the first lithium-transition metal composite oxide. The first lithium-transition metal composite oxide was prepared by mixing lithium hydroxide, nickel monoxide, and cobalt oxide in the following composition. In addition, in Example 1, an additive M, which is a transition metal, or an element or a compound composed of a plurality of elements of Group 2, Group 3, and Group 4 of the long-period element periodic table, is used as the first lithium. It was prepared without addition to the transition metal composite oxide. Therefore, the chemical formula of the first lithium-transition metal composite oxide is Li, Ni, C of LiNiCoMO.
The ratio of o and M elements x, 1-yz, y, z is x = 1.0
2, 1-y-z = 0.70, y = 0.30, and z = 0.

【0041】次に、第1のリチウム遷移金属複合酸化物
は、水酸化リチウム、一酸化ニッケル、酸化コバルトを
上述した配合で混合したものを800℃の酸素気流中で
10時間焼成した後、粉砕して得られる。そして、得ら
れた粉末を原子吸光分析機器により分析した結果、第1
のリチウム遷移金属複合酸化物は化学式LiNiCoO
で表されることが確認された。また、この粉末の平均粒
径をレーザ一図析法により測定した結果、15μmと確
認された。また、この粉末のX線回析測定を行った結
果、得られた回析パターンは、International Centre
for Diffraction Date(以下ICDD)の09−0
063にあるLiNiOの回析パターンに類似してお
り、LiNiOと同様の層状構造を形成していているこ
とが確認された。
Next, the first lithium-transition metal composite oxide is a mixture of lithium hydroxide, nickel monoxide, and cobalt oxide mixed in the above-mentioned composition, fired in an oxygen stream at 800 ° C. for 10 hours, and then pulverized. Obtained. Then, as a result of analyzing the obtained powder with an atomic absorption spectrometer, the first
The lithium-transition metal composite oxide has a chemical formula of LiNiCoO.
It was confirmed that The average particle size of this powder was measured by a laser monochromatography method, and as a result, it was confirmed to be 15 μm. In addition, as a result of X-ray diffraction measurement of this powder, the obtained diffraction pattern is
09-0 of for Diffraction Date (ICDD)
It was confirmed that it had a layered structure similar to that of LiNiO, which is similar to the diffraction pattern of LiNiO in 063.

【0042】次に、第2のリチウム遷移金属複合酸化物
を次のようにして作製した。第2のリチウム遷移金属複
合酸化物の原料には、市販の水酸化リチウム、一酸化ニ
ッケル、二酸化マンガンを用いた。第2のリチウム遷移
金属複合酸化物は、水酸化リチウム、一酸化ニッケル、
二酸化マンガンを次のような配合で混合した。なお、第
1のリチウム遷移金属複合酸化物と同様に第2のリチウ
ム遷移金属複合酸化物に、遷移金属、或いは長周期型元
素周期表の2族、3族、4族の元素のうち1種の元素若
しくは複数種からなる化合物の添加物M′を第2のリチ
ウム遷移金属複合酸化物に添加せずに作製した。第2の
リチウム遷移金属複合酸化物の化学式LiNiMnM′
OのLi、Ni、Mn、M′元素の比s、1−t−u、
t、uが、s=1.02、1−t−u=0.65、t=
0.35、u=0となるように混合した。
Next, a second lithium-transition metal composite oxide was prepared as follows. Commercially available lithium hydroxide, nickel monoxide, and manganese dioxide were used as raw materials for the second lithium-transition metal composite oxide. The second lithium-transition metal composite oxide is lithium hydroxide, nickel monoxide,
Manganese dioxide was mixed in the following formulation. In addition, like the first lithium-transition metal composite oxide, the second lithium-transition metal composite oxide contains one of a transition metal and elements of groups 2, 3, and 4 of the long-period element periodic table. Was prepared without adding the additive M'of the element or the compound consisting of plural kinds to the second lithium-transition metal composite oxide. Chemical formula of the second lithium-transition metal composite oxide LiNiMnM ′
O of Li, Ni, Mn, M'element ratio s, 1-tu,
t and u are s = 1.02, 1-t-u = 0.65, t =
It mixed so that it might be set to 0.35 and u = 0.

【0043】次に、第2のリチウム遷移金属複合酸化物
は、水酸化リチウム、一酸化ニッケル、二酸化マンガン
を上述した比になるように混合したものを800℃の酸
素気流中で10時間焼成した後、粉砕して得られた。そ
して、得られた粉末を原子吸光分析機器により分析した
結果、第2のリチウム遷移金属複合酸化物の化学式Li
NiMnOで表されることが確認された。また、この粉
末の平均粒径をレーザ一図析法により測定した結果、1
5μmが確認された。また、この粉末のX線回析測定を
行った結果、得られた回析パターンは、ICDDの09
−0063にあるLiNiOの回析パターンに類似して
おり、LiNiOと同様の層状構造を形成していている
ことが確認された。
Next, as the second lithium-transition metal composite oxide, a mixture of lithium hydroxide, nickel monoxide and manganese dioxide in the above-mentioned ratio was fired in an oxygen stream at 800 ° C. for 10 hours. After that, it was obtained by crushing. Then, as a result of analyzing the obtained powder with an atomic absorption spectrometer, the chemical formula Li of the second lithium-transition metal composite oxide was obtained.
It was confirmed that it was represented by NiMnO. In addition, the average particle size of this powder was measured by a laser monochromatography method, and as a result, 1
5 μm was confirmed. The X-ray diffraction measurement of this powder revealed that the obtained diffraction pattern was 09 of ICDD.
It was confirmed that it was similar to the diffraction pattern of LiNiO in -0063 and formed a layered structure similar to LiNiO.

【0044】次に、正極を作製した。先ず、上述した第
1のリチウム遷移金属複合酸化物と第2のリチウム遷移
金属複合酸化物とを混合して正極活物質を作製した。正
極活物質は、第1のリチウム遷移金属複合酸化物と第2
のリチウム遷移金属複合酸化物との混合比が第1のリチ
ウム遷移金属複合酸化物対第2のリチウム遷移金属複合
酸化物=50重量%対50重量%となるように混合して
作製した。次に、第1のリチウム遷移金属複合酸化物と
第2のリチウム遷移金属複合酸化物を混合して得られた
正極活物質86重量%、導電剤としてグラファイト10
重量%、結合剤としてポリフッ化ビニリデン(以下、P
VdFと称する)4重量%を混合し、有機溶媒N−メチ
ル−2−ビロリドン(以下、NMPと称する)に分散さ
せて得られた正極合剤をスラリー状とした。次に、スラ
リー状にした正極合剤を厚さ20μmの帯状のアルミニ
ウム箔の両面に均一に塗布して正極合剤層を形成し、乾
燥後、ローラープレス機で圧縮して帯状の正極を得た。
Next, a positive electrode was prepared. First, the above-mentioned first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide were mixed to prepare a positive electrode active material. The positive electrode active material is composed of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide.
It was prepared by mixing so that the mixing ratio of the lithium transition metal composite oxide with the first lithium transition metal composite oxide: the second lithium transition metal composite oxide = 50% by weight: 50% by weight. Next, 86 wt% of a positive electrode active material obtained by mixing the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide, and graphite 10 as a conductive agent.
% By weight, polyvinylidene fluoride as a binder (hereinafter, P
4% by weight of VdF) was mixed and dispersed in an organic solvent N-methyl-2-pyrrolidone (hereinafter, referred to as NMP) to obtain a positive electrode mixture, which was made into a slurry. Next, a slurry-like positive electrode mixture is uniformly applied to both sides of a 20 μm-thick strip-shaped aluminum foil to form a positive electrode mixture layer, which is dried and then compressed with a roller press to obtain a strip-shaped positive electrode. It was

【0045】次に、負極を作製した。負極は、負極活物
質に粉末状の人造黒鉛を用い、人工黒鉛90重量%にP
VdF10重量%を混合し、NMPに分散させて得られ
た負極合剤をスラリー状とした。このスラリー状にした
負極合剤を厚さ10μmの銅箔の両面に均一に塗布して
負極合剤層を形成し、乾燥後にローラープレス機で圧縮
して負極を得た。
Next, a negative electrode was prepared. For the negative electrode, artificial graphite in powder form was used as the negative electrode active material, and 90% by weight of artificial graphite was added to P.
A negative electrode mixture obtained by mixing 10 wt% of VdF and dispersing it in NMP was made into a slurry. The negative electrode mixture in the form of a slurry was uniformly applied to both surfaces of a copper foil having a thickness of 10 μm to form a negative electrode mixture layer, which was dried and then compressed with a roller press to obtain a negative electrode.

【0046】次に、非水電解液を作製した。非水電解液
は、エチレンカーボネートとメチルエチルカーボネート
との体積混合比を1対1とする混合溶液を、濃度1mol/
dmとなるように溶媒LiPFに溶解させて得られた。
Next, a non-aqueous electrolytic solution was prepared. The non-aqueous electrolyte is a mixed solution of ethylene carbonate and methyl ethyl carbonate at a volume mixing ratio of 1: 1 and a concentration of 1 mol /
It was obtained by dissolving it in a solvent LiPF to have a dm.

【0047】次に、円筒型の非水電解質二次電池を作製
した。先ず、以上のように作製された正極と負極とを多
孔性ポリオレフィンフィルムからなるセパレータを介し
て多数回巻回して、渦巻き型の電極体を作製した。渦巻
き型の電極体の上下両面に絶縁板を配置して、ニッケル
めっき処理を施した鉄製の電池缶に収納した。正極の集
電をとるために、アルミニウム製正極リードの一端を正
極集電体から導出して、他端を電流遮断用薄板に溶接す
ることで電流遮断用薄板を介して電池蓋と電気的に接続
した。また、負極の集電をとるために、ニッケル負極リ
ードの一端を負極集電体から導出して、他端を電池缶の
底部に溶接した。
Next, a cylindrical non-aqueous electrolyte secondary battery was produced. First, the positive electrode and the negative electrode produced as described above were wound many times with a separator made of a porous polyolefin film interposed therebetween, to produce a spiral type electrode body. Insulating plates were arranged on the upper and lower surfaces of the spirally-wound electrode body and housed in a nickel-plated iron battery can. In order to collect current from the positive electrode, one end of the positive electrode lead made of aluminum is led out from the positive electrode current collector, and the other end is welded to the thin plate for current interruption to electrically connect with the battery lid through the thin sheet for current interruption. Connected Further, in order to collect the current of the negative electrode, one end of the nickel negative electrode lead was led out from the negative electrode current collector, and the other end was welded to the bottom of the battery can.

【0048】次に、上述した電極体が組み込まれた電池
缶内に、調製した非水電解液を注入後、絶縁封ロガスケ
ットを介して電池缶をかしめることにより電池蓋が固定
されて、外径18mm、高さ65mmの円筒型の非水電解質
二次電池が作製された。なお、非水電解質二次電池にお
いて、正極リード及び負極リードに接続するセンターピ
ンが設けられているとともに、非水電解質二次電池内部
の圧力が所定の値よりも高くなった場合に、非水電解質
電池内部の気体を抜くための安全弁、及び非水電解質二
次電池内部の温度上昇を防止するためのPTC(positi
ve temperturecoefficient)素子が設けた。
Next, after pouring the prepared non-aqueous electrolyte into the battery can in which the above-mentioned electrode body is incorporated, the battery can is fixed by caulking the battery can through the insulating sealing gasket. A cylindrical non-aqueous electrolyte secondary battery having an outer diameter of 18 mm and a height of 65 mm was produced. In the non-aqueous electrolyte secondary battery, a center pin connected to the positive electrode lead and the negative electrode lead is provided, and when the pressure inside the non-aqueous electrolyte secondary battery becomes higher than a predetermined value, the non-aqueous electrolyte secondary battery Safety valve for venting gas inside the electrolyte battery, and PTC (positi for preventing temperature rise inside the non-aqueous electrolyte secondary battery)
ve temperturecoefficient) element.

【0049】実施例2 実施例2では、第1のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムを用いて、これらの原
料を次のような割合で混合した。第1のリチウム遷移金
属複合酸化物の化学式LiNiCoAlOのLi、N
i、Co、Al元素の比x、1−y−z、y、zが、x
=1.02、1−y−z=0.70、y=0.25、z
=0.05となるように混合した以外は実施例1と同様
にして、LiNiCoAlOの第1のリチウム遷移金属
複合酸化物を作製した。そして、この第1のリチウム遷
移金属複合酸化物を用いたこと以外は実施例1と同様に
して非水電解質二次電池を作製した。
Example 2 In Example 2, aluminum hydroxide was used in addition to lithium hydroxide, nickel monoxide, and cobalt oxide as a raw material for the first lithium-transition metal composite oxide. Mixed in proportions such as. Chemical formula of first lithium-transition metal composite oxide Li, N in LiNiCoAlO
i, Co, Al element ratio x, 1-yz, y, z is x
= 1.02, 1-y-z = 0.70, y = 0.25, z
A first lithium-transition metal composite oxide of LiNiCoAlO was produced in the same manner as in Example 1 except that the mixture was carried out so that the ratio was 0.05. Then, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this first lithium-transition metal composite oxide was used.

【0050】実施例3 実施例3では、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムを用いて、これらの原
料を次のような割合で混合した。第2のリチウム遷移金
属複合酸化物の化学式LiNiMnAlOのLi、N
i、Mn、Al元素の比s、1−t−u、t、uがs=
1.02、1−t−u=0.65、t=0.30、u=
0.05となるように配合し混合した以外は実施例1と
同様にして、LiNiMnAlOの第2のリチウム遷移
金属複合酸化物を作製した。その第2のリチウム遷移金
属複合酸化物を用いたこと以外は、実施例1と同様にし
て非水電解質二次電池を作製した。
Example 3 In Example 3, aluminum hydroxide was used in addition to lithium hydroxide, nickel monoxide, and cobalt oxide as raw materials for the second lithium-transition metal composite oxide, and these raw materials were used as follows. Mixed in proportions such as. Chemical formula of the second lithium-transition metal composite oxide LiNiMnAlO Li, N
The ratio of i, Mn, and Al element s, 1-t-u, t, u is s =
1.02, 1-t-u = 0.65, t = 0.30, u =
A second lithium-transition metal composite oxide of LiNiMnAlO was produced in the same manner as in Example 1 except that the components were mixed and mixed so as to be 0.05. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the second lithium transition metal composite oxide was used.

【0051】実施例4 実施例4では、第1のリチウム遷移金属複合酸化物を実
施例2の第1のリチウム遷移金属複合酸化物と同様にし
て、化学式LiNiCoAlOの第1のリチウム遷移金
属複合酸化物を作製した。第2のリチウム遷移金属複合
酸化物は、実施例3の第2のリチウム遷移金属複合酸化
物と同様にして、化学式LiNiMnAlOの第2のリ
チウム遷移金属複合酸化物を作製した。これら第1のリ
チウム遷移金属複合酸化物と第2のリチウム遷移金属複
合酸化物とを用いた以外は、実施例1と同様にして非水
電解質二次電池を作製した。
Example 4 In Example 4, the first lithium-transition metal composite oxide was prepared in the same manner as the first lithium-transition metal composite oxide of Example 2, and the first lithium-transition metal composite oxide of the chemical formula LiNiCoAlO was used. The thing was made. As the second lithium-transition metal composite oxide, a second lithium-transition metal composite oxide having the chemical formula LiNiMnAlO was prepared in the same manner as the second lithium-transition metal composite oxide of Example 3. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the first lithium transition metal composite oxide and the second lithium transition metal composite oxide were used.

【0052】実施例5 実施例5は、第1のリチウム遷移金属複合酸化物の原料
として、水酸化リチウム、一酸化ニッケル、酸化コバル
トの他に、水酸化アルミニウムに換えて水酸化鉄を用い
て、第1のリチウム遷移金属複合酸化物の化学式LiN
iCoFeOのLi、Ni、Co、Fe元素の比x、1
−y−z、y、zが、x=1.02、1−y−z=0.
70、y=0.25、z=0.05となるように混合し
た以外は実施例4と同様にして、LiNiCoFeOの
第1のリチウム遷移金属複合酸化物を作製した。この第
1のリチウム遷移金属複合酸化物を用いた以外は実施例
4と同様にして非水電解質二次電池を作製した。
Example 5 In Example 5, as the raw material of the first lithium-transition metal composite oxide, lithium hydroxide, nickel monoxide, and cobalt oxide were used, and iron hydroxide was used instead of aluminum hydroxide. , The chemical formula of the first lithium-transition metal composite oxide LiN
iCoFeO ratio of Li, Ni, Co, Fe elements x, 1
-Yz, y, z are x = 1.02, 1-yz = 0.
A first lithium-transition metal composite oxide of LiNiCoFeO was prepared in the same manner as in Example 4 except that 70, y = 0.25 and z = 0.05 were mixed. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0053】実施例6 実施例6は、第1のリチウム遷移金属複合酸化物の原料
として、水酸化リチウム、一酸化ニッケル、酸化コバル
トの他に、水酸化アルミニウムに換えて酸化スズを用い
て、第1のリチウム遷移金属複合酸化物の化学式LiN
iCoSnOのLi、Ni、Co、Sn元素の比x、1
−y−z、y、zが、x=1.02、1−y−z=0.
70、y=0.25、z=0.05となるように混合し
た以外は実施例4と同様にして、LiNiCoSnOの
第1のリチウム遷移金属複合酸化物を作製した。この第
1のリチウム遷移金属複合酸化物を用いたこと以外は実
施例4と同様にして非水電解質二次電池を作製した。
Example 6 In Example 6, as the raw material of the first lithium-transition metal composite oxide, tin oxide was used instead of aluminum hydroxide in addition to lithium hydroxide, nickel monoxide, and cobalt oxide. Chemical formula of the first lithium-transition metal composite oxide LiN
iCoSnO Li, Ni, Co, Sn element ratio x, 1
-Yz, y, z are x = 1.02, 1-yz = 0.
A first lithium-transition metal composite oxide of LiNiCoSnO was prepared in the same manner as in Example 4 except that 70, y = 0.25 and z = 0.05 were mixed. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0054】実施例7 実施例7は、第1のリチウム遷移金属複合酸化物の原料
として、水酸化リチウム、一酸化ニッケル、酸化コバル
トの他に、水酸化アルミニウムに換えて酸化クロムを用
いて、第1のリチウム遷移金属複合酸化物の化学式Li
NiCoCrOのLi、Ni、Cr、Al元素の比x、
1−y−z、y、zが、x=1.02、1−y−z=
0.70、y=0.25、z=0.05となるように混
合した以外は実施例4と同様にして、LiNiCoCr
Oの第1のリチウム遷移金属複合酸化物を作製した。こ
の第1のリチウム遷移金属複合酸化物を用いたこと以外
は実施例4と同様にして非水電解質二次電池を作製し
た。
Example 7 In Example 7, as a raw material for the first lithium-transition metal composite oxide, in addition to lithium hydroxide, nickel monoxide and cobalt oxide, chromium oxide was used instead of aluminum hydroxide. Chemical formula Li of the first lithium-transition metal composite oxide
NiCoCrO Li, Ni, Cr, Al element ratio x,
1-yz, y and z are x = 1.02, 1-yz =
LiNiCoCr was prepared in the same manner as in Example 4, except that 0.70, y = 0.25 and z = 0.05 were mixed.
A first lithium-transition metal composite oxide of O was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0055】実施例8 実施例8は、第1のリチウム遷移金属複合酸化物の原料
として、水酸化リチウム、一酸化ニッケル、酸化コバル
トの他に、水酸化アルミニウムに換えて五酸化バナジウ
ムを用いて、第1のリチウム遷移金属複合酸化物の化学
式LiNiCoVOのLi、Ni、Co、V元素の比
x、1−y−z、y、zが、x=1.02、1−y−z
=0.70、y=0.25、z=0.05となるように
混合した以外は実施例4と同様にして、LiNiCoV
Oの第1のリチウム遷移金属複合酸化物を作製した。こ
の第1のリチウム遷移金属複合酸化物を用いたこと以外
は実施例4と同様にして非水電解質二次電池を作製し
た。
Example 8 In Example 8, as the raw material for the first lithium-transition metal composite oxide, vanadium pentoxide was used in place of aluminum hydroxide, in addition to lithium hydroxide, nickel monoxide, and cobalt oxide. , The chemical formula LiNiCoVO of the first lithium-transition metal composite oxide, the ratio x, 1-yz, y, z of Li, Ni, Co and V elements is x = 1.02, 1-yz
= 0.70, y = 0.25, z = 0.05. LiNiCoV
A first lithium-transition metal composite oxide of O was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0056】実施例9 実施例9は、第1のリチウム遷移金属複合酸化物の原料
として、水酸化リチウム、一酸化ニッケル、酸化コバル
トの他に、水酸化アルミニウムに換えて酸化チタンを用
いて、第1のリチウム遷移金属複合酸化物の化学式Li
NiCoTiOのLi、Ni、Co、Ti元素の比x、
1−y−z、y、zが、x=1.02、1−y−z=
0.70、y=0.25、z=0.05となるように混
合した以外は実施例4と同様にして、LiNiCoTi
Oの第1のリチウム遷移金属複合酸化物を作製した。こ
の第1のリチウム遷移金属複合酸化物を用いたこと以外
は実施例4と同様にして非水電解質二次電池を作製し
た。
Example 9 In Example 9, as a raw material for the first lithium-transition metal composite oxide, titanium oxide was used in place of aluminum hydroxide in addition to lithium hydroxide, nickel monoxide, and cobalt oxide. Chemical formula Li of the first lithium-transition metal composite oxide
NiCoTiO Li, Ni, Co, Ti element ratio x,
1-yz, y and z are x = 1.02, 1-yz =
LiNiCoTi was prepared in the same manner as in Example 4 except that the components were mixed such that 0.70, y = 0.25 and z = 0.05.
A first lithium-transition metal composite oxide of O was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0057】実施例10 実施例10は、第1のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて酸化マグネシ
ウムを用いて、第1のリチウム遷移金属複合酸化物の化
学式LiNiCoMgOのLi、Ni、Co、Mg元素
の比x、1−y−z、y、zが、x=1.02、1−y
−z=0.70、y=0.25、z=0.05となるよ
うに混合した以外は実施例4と同様にして、LiNiC
oMgOの第1のリチウム遷移金属複合酸化物を作製し
た。この第1のリチウム遷移金属複合酸化物を用いたこ
と以外は実施例4と同様にして非水電解質二次電池を作
製した。
Example 10 In Example 10, as a raw material for the first lithium-transition metal composite oxide, in addition to lithium hydroxide, nickel monoxide, and cobalt oxide, magnesium oxide was used instead of aluminum hydroxide. Chemical formula of the first lithium-transition metal composite oxide LiNiCoMgO of Li, Ni, Co, Mg element ratio x, 1-y-z, y, z, x = 1.02, 1-y
LiNiC was prepared in the same manner as in Example 4 except that the components were mixed such that -z = 0.70, y = 0.25, and z = 0.05.
A first lithium-transition metal composite oxide of oMgO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0058】実施例11 実施例11は、第1のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて硝酸ガリウム
を用いて、第1のリチウム遷移金属複合酸化物の化学式
LiNiCoGaOのLi、Ni、Co、Ga元素の比
x、1−y−z、y、zが、x=1.02、1−y−z
=0.70、y=0.25、z=0.05となるように
混合した以外は実施例4と同様にして、LiNiCoG
aOの第1のリチウム遷移金属複合酸化物を作製した。
この第1のリチウム遷移金属複合酸化物を用いたこと以
外は実施例4と同様にして非水電解質二次電池を作製し
た。
Example 11 Example 11 uses lithium hydroxide, nickel monoxide, cobalt oxide, and gallium nitrate in place of aluminum hydroxide as a raw material for the first lithium-transition metal composite oxide. The chemical formula LiNiCoGaO of the first lithium-transition metal composite oxide has a ratio x, 1-yz, y, z of Li, Ni, Co, and Ga elements of x = 1.02, 1-yz.
= 0.70, y = 0.25, z = 0.05. LiNiCoG was prepared in the same manner as in Example 4 except that the components were mixed.
A first lithium-transition metal composite oxide of aO was prepared.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0059】実施例12 実施例12は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて水酸化鉄を用
いて、第2のリチウム遷移金属複合酸化物の化学式Li
NiMnFeOのLi、Ni、Mn、Fe元素の比s、
1−t−u、t、uがs=1.02、1−t−u=0.
65、t=0.30、u=0.05となるように配合し
混合した以外は実施例4と同様にして、LiNiMnF
eOの第2のリチウム遷移金属複合酸化物を作製した。
この第1のリチウム遷移金属複合酸化物を用いたこと以
外は実施例4と同様にして非水電解質二次電池を作製し
た。
Example 12 In Example 12, as a raw material for the second lithium-transition metal composite oxide, iron hydroxide was used in place of aluminum hydroxide, in addition to lithium hydroxide, nickel monoxide, and cobalt oxide. The chemical formula Li of the second lithium-transition metal composite oxide
The ratio s of Li, Ni, Mn, and Fe elements of NiMnFeO,
1-t-u, t, and u are s = 1.02, 1-t-u = 0.
LiNiMnF was prepared in the same manner as in Example 4 except that the components were blended and mixed so that 65, t = 0.30 and u = 0.05.
A second lithium-transition metal composite oxide of eO was prepared.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0060】実施例13 実施例13は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて酸化コバルト
を用いて、第2のリチウム遷移金属複合酸化物の化学式
LiNiMnCoOのLi、Ni、Mn、Co元素の比
s、1−t−u、t、uがs=1.02、1−t−u=
0.65、t=0.30、u=0.05となるように配
合し混合した以外は実施例4と同様にして、LiNiM
nCoOの第2のリチウム遷移金属複合酸化物を作製し
た。この第2のリチウム遷移金属複合酸化物を用いたこ
と以外は実施例4と同様にして非水電解質二次電池を作
製した。
Example 13 In Example 13, as the raw material of the second lithium-transition metal composite oxide, in addition to lithium hydroxide, nickel monoxide and cobalt oxide, cobalt oxide was used instead of aluminum hydroxide. Chemical formula of the second lithium-transition metal composite oxide LiNiMnCoO of Li, Ni, Mn, Co element ratio s, 1-t-u, t, u is s = 1.02, 1-t-u =
LiNiM was prepared in the same manner as in Example 4 except that the ingredients were blended so as to be 0.65, t = 0.30 and u = 0.05.
A second lithium-transition metal composite oxide of nCoO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0061】実施例14 実施例14は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて水酸化亜鉛を
用いて、第2のリチウム遷移金属複合酸化物の化学式L
iNiMnZnOのLi、Ni、Mn、Zn元素の比
s、1−t−u、t、uがs=1.02、1−t−u=
0.65、t=0.30、u=0.05となるように配
合し混合した以外は実施例4と同様にして、LiNiM
nZnOの第2のリチウム遷移金属複合酸化物を作製し
た。この第2のリチウム遷移金属複合酸化物を用いたこ
と以外は実施例4と同様にして非水電解質二次電池を作
製した。
Example 14 In Example 14, as the raw material of the second lithium-transition metal composite oxide, zinc hydroxide was used instead of aluminum hydroxide in addition to lithium hydroxide, nickel monoxide, and cobalt oxide. , The chemical formula L of the second lithium-transition metal composite oxide
The ratio s, 1-t-u, t, u of the Li, Ni, Mn, and Zn elements of iNiMnZnO is s = 1.02, 1-t-u =
LiNiM was prepared in the same manner as in Example 4 except that the ingredients were blended so as to be 0.65, t = 0.30 and u = 0.05.
A second lithium-transition metal composite oxide of nZnO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0062】実施例15 実施例15は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて酸化スズを用
いて、第2のリチウム遷移金属複合酸化物の化学式Li
NiMnSnOのLi、Ni、Mn、Sn元素の比s、
1−t−u、t、uがs=1.02、1−t−u=0.
65、t=0.30、u=0.05となるように配合し
混合した以外は実施例4と同様にして、LiNiMnS
nOの第2のリチウム遷移金属複合酸化物を作製した。
この第2のリチウム遷移金属複合酸化物を用いたこと以
外は実施例4と同様にして非水電解質二次電池を作製し
た。
Example 15 In Example 15, as a raw material of the second lithium-transition metal composite oxide, tin oxide was used in place of aluminum hydroxide, in addition to lithium hydroxide, nickel monoxide, and cobalt oxide. Chemical formula Li of the second lithium-transition metal composite oxide
The ratio s of Li, Ni, Mn, and Sn elements of NiMnSnO,
1-t-u, t, and u are s = 1.02, 1-t-u = 0.
LiNiMnS was prepared in the same manner as in Example 4 except that the ingredients were blended so as to be 65, t = 0.30, u = 0.05.
A second lithium-transition metal composite oxide of nO was prepared.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0063】実施例16 実施例16は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて酸化クロムを
用いて、第2のリチウム遷移金属複合酸化物の化学式L
iNiMnCrOのLi、Ni、Mn、Cr元素の比
s、1−t−u、t、uがs=1.02、1−t−u=
0.65、t=0.30、u=0.05となるように配
合し混合した以外は実施例1と同様にして、LiNiM
nCrOの第2のリチウム遷移金属複合酸化物を作製し
た。この第2のリチウム遷移金属複合酸化物を用いたこ
と以外は実施例4と同様にして非水電解質二次電池を作
製した。
Example 16 In Example 16, in addition to lithium hydroxide, nickel monoxide, and cobalt oxide, chromium oxide was used instead of aluminum hydroxide as a raw material for the second lithium-transition metal composite oxide. Chemical formula L of the second lithium-transition metal composite oxide
The ratio s, 1-t-u, t, u of Li, Ni, Mn, and Cr elements of iNiMnCrO is s = 1.02, 1-t-u =
LiNiM was prepared in the same manner as in Example 1 except that the ingredients were blended and mixed so that 0.65, t = 0.30 and u = 0.05.
A second lithium-transition metal composite oxide of nCrO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0064】実施例17 実施例17は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて五酸化バナジ
ウムを用いて、第2のリチウム遷移金属複合酸化物の化
学式LiNiMnVOのLi、Ni、Mn、Sn元素の
比s、1−t−u、t、uがs=1.02、1−t−u
=0.65、t=0.30、u=0.05となるように
配合し混合した以外は実施例4と同様にして、LiNi
MnVOの第2のリチウム遷移金属複合酸化物を作製し
た。この第2のリチウム遷移金属複合酸化物を用いたこ
と以外は実施例4と同様にして非水電解質二次電池を作
製した。
Example 17 In Example 17, as the raw material for the second lithium-transition metal composite oxide, vanadium pentoxide was used in place of aluminum hydroxide, in addition to lithium hydroxide, nickel monoxide and cobalt oxide. The chemical formula LiNiMnVO of the second lithium-transition metal composite oxide has a ratio of Li, Ni, Mn, and Sn elements of s, 1-t-u, t, and u is s = 1.02, 1-t-u.
LiNi was used in the same manner as in Example 4 except that the ingredients were blended and mixed so that = 0.65, t = 0.30, u = 0.05.
A second lithium-transition metal composite oxide of MnVO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0065】実施例18 実施例18は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて酸化チタンを
用いて、第2のリチウム遷移金属複合酸化物の化学式L
iNiMnTiOのLi、Ni、Mn、Ti元素の比
s、1−t−u、t、uがs=1.02、1−t−u=
0.65、t=0.30、u=0.05となるように配
合し混合した以外は実施例4と同様にして、LiNiM
nTiOの第2のリチウム遷移金属複合酸化物を作製し
た。この第2のリチウム遷移金属複合酸化物を用いたこ
と以外は実施例4と同様にして非水電解質二次電池を作
製した。
Example 18 In Example 18, as the raw material of the second lithium-transition metal composite oxide, in addition to lithium hydroxide, nickel monoxide and cobalt oxide, titanium oxide was used instead of aluminum hydroxide. Chemical formula L of the second lithium-transition metal composite oxide
The ratio s, 1-t-u, t, u of the Li, Ni, Mn, and Ti elements of iNiMnTiO is s = 1.02, 1-t-u =
LiNiM was prepared in the same manner as in Example 4 except that the ingredients were blended so as to be 0.65, t = 0.30 and u = 0.05.
A second lithium-transition metal composite oxide of nTiO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0066】実施例19 実施例19は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて酸化マグネシ
ウムを用いて、第2のリチウム遷移金属複合酸化物の化
学式LiNiMnMgOのLi、Ni、Mn、Mg元素
の比s、1−t−u、t、uがs=1.02、1−t−
u=0.65、t=0.30、u=0.05となるよう
に配合し混合した以外は実施例4と同様にして、LiN
iMnMgOの第2のリチウム遷移金属複合酸化物を作
製した。この第2のリチウム遷移金属複合酸化物を用い
たこと以外は実施例4と同様にして非水電解質二次電池
を作製した。
Example 19 Example 19 uses lithium hydroxide, nickel monoxide, cobalt oxide, and magnesium oxide instead of aluminum hydroxide as a raw material for the second lithium-transition metal composite oxide. Chemical formula of the second lithium-transition metal composite oxide LiNiMnMgO of Li, Ni, Mn, Mg element ratio s, 1-t-u, t, u is s = 1.02, 1-t-
LiN was prepared in the same manner as in Example 4 except that the ingredients were blended and mixed so that u = 0.65, t = 0.30, and u = 0.05.
A second lithium-transition metal composite oxide of iMnMgO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0067】実施例20 実施例20は、第2のリチウム遷移金属複合酸化物の原
料として、水酸化リチウム、一酸化ニッケル、酸化コバ
ルトの他に、水酸化アルミニウムに換えて硝酸ガリウム
を用いて、第2のリチウム遷移金属複合酸化物の化学式
LiNiMnGaOのLi、Ni、Mn、Ga元素の比
s、1−t−u、t、uがs=1.02、1−t−u=
0.65、t=0.30、u=0.05となるように配
合し混合した以外は実施例4と同様にして、LiNiM
nGaOの第2のリチウム遷移金属複合酸化物を作製し
た。この第2のリチウム遷移金属複合酸化物を用いたこ
と以外は実施例4と同様にして非水電解質二次電池を作
製した。
Example 20 In Example 20, as a raw material for the second lithium-transition metal composite oxide, gallium nitrate was used in place of aluminum hydroxide in addition to lithium hydroxide, nickel monoxide and cobalt oxide. Chemical formula of the second lithium-transition metal composite oxide LiNiMnGaO ratios of Li, Ni, Mn, and Ga elements s, 1-t-u, t, u are s = 1.02, 1-t-u =
LiNiM was prepared in the same manner as in Example 4 except that the ingredients were blended so as to be 0.65, t = 0.30 and u = 0.05.
A second lithium-transition metal composite oxide of nGaO was prepared. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0068】実施例21 実施例21は、第1のリチウム遷移金属複合酸化物及び
第2のリチウム遷移金属複合酸化物の混合比を第1のリ
チウム遷移金属複合酸化物:第2のリチウム遷移金属複
合酸化物=15重量%:85重量%として混合した以外
は実施例4と同様にして正極活物質を作製した。この正
極活物質を用いた以外は、実施例4と同様にして非水電
解質二次電池を作製した。
Example 21 In Example 21, the mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide was changed from the first lithium-transition metal composite oxide to the second lithium-transition metal composite oxide. A positive electrode active material was produced in the same manner as in Example 4 except that the compound oxides were mixed at 15% by weight: 85% by weight. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this positive electrode active material was used.

【0069】実施例22 実施例22は、第1のリチウム遷移金属複合酸化物及び
第2のリチウム遷移金属複合酸化物の混合比を第1のリ
チウム遷移金属複合酸化物:第2のリチウム遷移金属複
合酸化物=30重量%:70重量%となるように混合し
た以外は実施例4と同様にして正極活物質を作製した。
この正極活物質を用いた以外は、実施例4と同様にして
非水電解質二次電池を作製した。
Example 22 In Example 22, the mixing ratio of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide was changed from the first lithium transition metal composite oxide to the second lithium transition metal. A positive electrode active material was produced in the same manner as in Example 4 except that the mixture was such that the composite oxide = 30% by weight: 70% by weight.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this positive electrode active material was used.

【0070】実施例23 実施例23は、第1のリチウム遷移金属複合酸化物及び
第2のリチウム遷移金属複合酸化物の混合比を第1のリ
チウム遷移金属複合酸化物:第2のリチウム遷移金属複
合酸化物=70重量%:30重量%となるように混合し
た以外は実施例4と同様にして正極活物質を作製した。
この正極活物質として用いた以外は実施例4と同様にし
て非水電解質二次電池を作製した。
Example 23 In Example 23, the mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide was changed from the first lithium-transition metal composite oxide to the second lithium-transition metal composite oxide. A positive electrode active material was produced in the same manner as in Example 4 except that the mixture was such that the composite oxide = 70% by weight: 30% by weight.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that it was used as this positive electrode active material.

【0071】実施例24 実施例24は、第1のリチウム遷移金属複合酸化物及び
第2のリチウム遷移金属複合酸化物の混合比を第1のリ
チウム遷移金属複合酸化物:第2のリチウム遷移金属複
合酸化物=85重量%:15重量%となるように混合し
た以外は実施例4と同様にして正極活物質を作製した。
この正極活物質を用いた以外は実施例4と同様にして非
水電解質二次電池を作製した。
Example 24 In Example 24, the mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide was changed from the first lithium-transition metal composite oxide to the second lithium-transition metal composite oxide. A positive electrode active material was produced in the same manner as in Example 4 except that the mixture was such that the composite oxide = 85% by weight: 15% by weight.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this positive electrode active material was used.

【0072】実施例25 実施例25は、第1のリチウム遷移金属複合酸化物は、
作製条件を変えて平均平均粒径2μmの第1のリチウム
遷移金属複合酸化物を実施例4と同様にして作製した。
この第1のリチウム遷移金属複合酸化物を用いた以外は
実施例4と同様にして非水電解質二次電池を作製した。
Example 25 In Example 25, the first lithium-transition metal composite oxide was
A first lithium-transition metal composite oxide having an average average particle size of 2 μm was produced in the same manner as in Example 4 by changing the production conditions.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0073】実施例26 実施例26は、第1のリチウム遷移金属複合酸化物は、
作製条件を変えて平均平均粒径8μmの第1のリチウム
遷移金属複合酸化物を実施例4と同様にして作製した。
この第1のリチウム遷移金属複合酸化物を用いる以外は
実施例4と同様にして非水電解質二次電池を作製した。
Example 26 In Example 26, the first lithium-transition metal composite oxide was
The first lithium-transition metal composite oxide having an average average particle size of 8 μm was produced in the same manner as in Example 4 by changing the production conditions.
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0074】実施例27 実施例27は、第1のリチウム遷移金属複合酸化物は、
作製条件を変えて平均平均粒径20μmの第1のリチウ
ム遷移金属複合酸化物を作製した以外は実施例4と同様
にして作製した。これ以外は実施例4と同様にして非水
電解質二次電池を作製した。
Example 27 In Example 27, the first lithium-transition metal composite oxide was
It was produced in the same manner as in Example 4 except that the first lithium-transition metal composite oxide having an average average particle size of 20 μm was produced by changing the production conditions. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except for this.

【0075】実施例28 実施例28は、第1のリチウム遷移金属複合酸化物の作
製条件を変えて、平均平均粒径30μmの第1のリチウ
ム遷移金属複合酸化物を実施例4と同様にして作製し
た。この第1のリチウム遷移金属複合酸化物を用いる以
外実施例4と同様にして非水電解質二次電池を作製し
た。
Example 28 In Example 28, the conditions for producing the first lithium-transition metal composite oxide were changed, and the first lithium-transition metal composite oxide having an average average particle diameter of 30 μm was prepared in the same manner as in Example 4. It was made. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0076】実施例29 実施例29は、実施例4において第2のリチウム遷移金
属複合酸化物の作製条件を換えて、平均粒径2μmの第
2のリチウム遷移金属複合酸化物を実施例4の第2のリ
チウム遷移金属複合酸化物と同様して作製した。この第
2のリチウム遷移金属複合酸化物を用いる以外は実施例
4と同様にして非水電解質二次電池を作製した。
Example 29 In Example 29, the production conditions of the second lithium-transition metal composite oxide in Example 4 were changed, and the second lithium-transition metal composite oxide having an average particle diameter of 2 μm was used. It was prepared in the same manner as the second lithium-transition metal composite oxide. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0077】実施例30 実施例30は、第2のリチウム遷移金属複合酸化物の作
製条件を換えて、平均平均粒径9μmの第2のリチウム
遷移金属複合酸化物を実施例4の第2のリチウム遷移金
属複合酸化物と同様にして作製した。この第2のリチウ
ム遷移金属複合酸化物を用いる以外は実施例4と同様に
して非水電解質二次電池を作製した。
Example 30 In Example 30, the production conditions of the second lithium-transition metal composite oxide were changed, and the second lithium-transition metal composite oxide having an average average particle size of 9 μm was used. It was prepared in the same manner as the lithium transition metal composite oxide. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0078】実施例31 実施例31は、第2のリチウム遷移金属複合酸化物の作
製条件を換えて、平均平均粒径18μmの第2のリチウ
ム遷移金属複合酸化物を実施例4の第2のリチウム遷移
金属複合酸化物と同様にして作製した。この第2のリチ
ウム遷移金属複合酸化物を用いる以外は実施例4と同様
にして非水電解質二次電池を作製した。
Example 31 In Example 31, the production conditions of the second lithium-transition metal composite oxide were changed, and the second lithium-transition metal composite oxide having an average particle diameter of 18 μm was used. It was prepared in the same manner as the lithium transition metal composite oxide. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0079】実施例32 実施例32は、第2のリチウム遷移金属複合酸化物の作
製条件を換えて、平均粒径30μmの第2のリチウム遷
移金属複合酸化物を実施例4の第2のリチウム遷移金属
複合酸化物と同様にして作製した。この第2のリチウム
遷移金属複合酸化物を用いる以外は実施例4と同様にし
て非水電解質二次電池を作製した。
Example 32 In Example 32, the production conditions of the second lithium-transition metal composite oxide were changed, and the second lithium-transition metal composite oxide having an average particle diameter of 30 μm was used. It was prepared in the same manner as the transition metal composite oxide. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0080】実施例33 実施例33は、第1のリチウム遷移金属複合酸化物中の
コバルトの組成の比yを0.05に換えて第1のリチウ
ム遷移金属複合酸化物中のLi、Ni、Co、Al元素
の組成の比x、1−y−z、y、zが、x=1.02、
1−y−z=0.90、y=0.05、z=0.05と
なるように混合して、第1のリチウム遷移金属複合酸化
物を作製した。これ以外は実施例4と同様にして非水電
解質二次電池を作製した。
Example 33 In Example 33, the composition ratio y of cobalt in the first lithium-transition metal composite oxide was changed to 0.05, and Li, Ni, The composition ratio x, 1-yz, y, z of Co and Al elements is x = 1.02,
The first lithium-transition metal composite oxide was prepared by mixing so that 1-y-z = 0.90, y = 0.05, and z = 0.05. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except for this.

【0081】実施例34 実施例34は、第1のリチウム遷移金属複合酸化物中の
コバルトの組成の比yを0.50に変えて、Li、N
i、Co、Al元素の組成の比x、1−y−z、y、z
が、x=1.02、1−y−z=0.45、y=0.5
0、z=0.05となるように混合して、第1のリチウ
ム遷移金属複合酸化物を実施例4の第1のリチウム遷移
金属複合酸化物と同様にして作製した。この第1のリチ
ウム遷移金属複合酸化物を用いる以外は実施例4と同様
にして非水電解質二次電池を作製した。
Example 34 In Example 34, the composition ratio y of cobalt in the first lithium-transition metal composite oxide was changed to 0.50, and Li, N
i, Co, Al element composition ratio x, 1-yz, y, z
, X = 1.02, 1-yz = 0.45, y = 0.5
The first lithium-transition metal composite oxide was prepared in the same manner as the first lithium-transition metal composite oxide of Example 4 by mixing so that 0 and z = 0.05. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0082】実施例35 実施例35は、第2のリチウム遷移金属複合酸化物中の
マンガンの組成の比tを0.05に変えて、Li、N
i、Mn、Al元素の組成の比s、1−t−u、t、u
が、s=1.02、1−t−u=0.90、t=0.0
5、u=0.05となるように混合して、第2のリチウ
ム遷移金属複合酸化物を実施例4の第2のリチウム遷移
金属複合酸化物と同様にして作製した。この第2のリチ
ウム遷移金属複合酸化物を用いること以外は実施例4と
同様にして非水電解質二次電池を作製した。
Example 35 In Example 35, the composition ratio t of manganese in the second lithium-transition metal composite oxide was changed to 0.05, and Li, N
i, Mn, Al element composition ratios s, 1-t-u, t, u
, S = 1.02, 1-t-u = 0.90, t = 0.0
5, and mixed so that u = 0.05, and a second lithium-transition metal composite oxide was produced in the same manner as the second lithium-transition metal composite oxide of Example 4. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0083】実施例36 実施例36は、第2のリチウム遷移金属複合酸化物中の
マンガンの組成の比tを0.50に変えて第2のリチウ
ム遷移金属複合酸化物中のLi、Ni、Mn、Al元素
の組成の比がs、1−t−u、t、uが、s=1.0
2、1−t−u=0.45、t=0.50、u=0.0
5となるように混合して、第2のリチウム遷移金属複合
酸化物を実施例4と同様にして作製した。この第2のリ
チウム遷移金属複合酸化物を用いる以外は実施例4と同
様にして非水電解質二次電池を作製した。
Example 36 In Example 36, the composition ratio t of manganese in the second lithium-transition metal composite oxide was changed to 0.50, and Li, Ni, The composition ratio of Mn and Al elements is s, 1-t-u, t, and u are s = 1.0.
2, 1-t-u = 0.45, t = 0.50, u = 0.0
Then, the second lithium-transition metal composite oxide was produced in the same manner as in Example 4. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0084】比較例1 比較例1は、第1のリチウム遷移金属複合酸化物の原料
として水酸化リチウム、一酸化ニッケル、酸化コバルト
を次のような配合で混合した。第1のリチウム遷移金属
複合酸化物の化学式LiNiCoMOのLi、Ni、C
o、M元素の比x、1−y−z、y、zが、x=1.0
2、1−y−z=0.70、y=0.30、z=0とな
るように配合した。第1のリチウム遷移金属複合酸化物
は、化学式LiNiCoOで表され、実施例4の第1の
リチウム遷移金属複合酸化物と同様に作製した。比較例
1では、第2のリチウム遷移金属複合酸化物を用いずに
第1のリチウム遷移金属複合酸化物を単独で正極活物質
を作製した。この正極活物質を用いること以外は実施例
4と同様にして非水電解質二次電池を作製した。
Comparative Example 1 In Comparative Example 1, lithium hydroxide, nickel monoxide and cobalt oxide were mixed as the raw materials of the first lithium-transition metal composite oxide in the following composition. Chemical formula of the first lithium-transition metal composite oxide Li, Ni, C of LiNiCoMO
The ratio of o and M elements x, 1-yz, y, z is x = 1.0
2, 1-y-z = 0.70, y = 0.30, and z = 0. The first lithium-transition metal composite oxide was represented by the chemical formula LiNiCoO, and was prepared in the same manner as the first lithium-transition metal composite oxide of Example 4. In Comparative Example 1, the positive electrode active material was prepared by using the first lithium-transition metal composite oxide alone without using the second lithium-transition metal composite oxide. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this positive electrode active material was used.

【0085】比較例2 比較例2は、第2のリチウム遷移金属複合酸化物の原料
として、市販の水酸化リチウム、一酸化ニッケル、二酸
化マンガンを用いた。第2のリチウム遷移金属複合酸化
物は、化学式LiNiMnOで表される第1のリチウム
遷移金属複合酸化物を実施例4と同様にして作製した。
比較例2では、第1のリチウム遷移複合酸化物を用いず
に第2のリチウム遷移金属複合酸化物を単独で正極活物
質を作製した。この正極活物質を用いる以外は実施例4
と同様にして非水電解質二次電池を作製した。
Comparative Example 2 In Comparative Example 2, commercially available lithium hydroxide, nickel monoxide and manganese dioxide were used as raw materials for the second lithium-transition metal composite oxide. As the second lithium-transition metal composite oxide, the first lithium-transition metal composite oxide represented by the chemical formula LiNiMnO was prepared in the same manner as in Example 4.
In Comparative Example 2, the positive electrode active material was prepared by using the second lithium-transition metal composite oxide alone without using the first lithium-transition composite oxide. Example 4 except that this positive electrode active material was used
A non-aqueous electrolyte secondary battery was produced in the same manner as in.

【0086】比較例3 比較例3は、第1のリチウム遷移金属複合酸化物及び第
2のリチウム遷移金属複合酸化物の混合比を、第1のリ
チウム遷移金属複合酸化物:第2のリチウム遷移金属複
合酸化物=10重量%:90重量%として混合した以外
は実施例4と同様にして正極活物質を作製した。この正
極活物質を用いる以外は実施例4と同様にして非水電解
質二次電池を作製した。
Comparative Example 3 In Comparative Example 3, the mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide was changed to the first lithium-transition metal composite oxide: the second lithium-transition metal oxide. A positive electrode active material was produced in the same manner as in Example 4 except that the metal composite oxide was mixed at 10% by weight: 90% by weight. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this positive electrode active material was used.

【0087】比較例4 比較例4は、第1のリチウム遷移金属複合酸化物及び第
2のリチウム遷移金属複合酸化物の混合比を、第1のリ
チウム遷移金属複合酸化物:第2のリチウム遷移金属複
合酸化物=90重量%:10重量%として混合した以外
は実施例4と同様にして正極活物質を作製した。こ以外
は実施例4と同様にして非水電解質二次電池を作製し
た。
Comparative Example 4 In Comparative Example 4, the mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide was changed to the first lithium-transition metal composite oxide: the second lithium-transition metal oxide. A positive electrode active material was produced in the same manner as in Example 4 except that the metal composite oxide was mixed at 90% by weight: 10% by weight. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except for the above.

【0088】比較例5 比較例5は、第1のリチウム遷移金属複合酸化物の作製
条件を変えて、平均粒径1μmの第1のリチウム遷移金
属複合酸化物を実施例4と同様にして作製した。この第
1のリチウム遷移金属複合酸化物を用いた以外は実施例
4と同様にして非水電解質二次電池を作製した。
Comparative Example 5 In Comparative Example 5, the first lithium-transition metal composite oxide having an average particle size of 1 μm was prepared in the same manner as in Example 4 by changing the preparation conditions of the first lithium-transition metal composite oxide. did. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0089】比較例6 比較例6は、第1のリチウム遷移金属複合酸化物の作製
条件を変えて、平均粒径40μmの第1のリチウム遷移
金属複合酸化物を実施例4と同様にして作製した。この
第1のリチウム遷移金属複合酸化物を用いた以外は実施
例4と同様にして非水電解質二次電池を作製した。
Comparative Example 6 In Comparative Example 6, the first lithium-transition metal composite oxide having an average particle diameter of 40 μm was prepared in the same manner as in Example 4 except that the preparation conditions of the first lithium-transition metal composite oxide were changed. did. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0090】比較例7 比較例7は、第2のリチウム遷移金属複合酸化物の作製
条件を変えて、平均粒径1μmの第2のリチウム遷移金
属複合酸化物を実施例4と同様にして作製した。この第
2のリチウム遷移金属複合酸化物を用いた以外は実施例
4と同様にして非水電解質二次電池を作製した。
Comparative Example 7 In Comparative Example 7, a second lithium-transition metal composite oxide having an average particle size of 1 μm was produced in the same manner as in Example 4 by changing the production conditions of the second lithium-transition metal composite oxide. did. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0091】比較例8 比較例8は、第2のリチウム遷移金属複合酸化物の作製
条件を変えて、平均粒径40μmの第2のリチウム遷移
金属複合酸化物を実施例4と同様にして作製した。この
第2のリチウム遷移金属複合酸化物を用いた以外は実施
例4と同様にして非水電解質二次電池を作製した。
Comparative Example 8 In Comparative Example 8, a second lithium-transition metal composite oxide having an average particle size of 40 μm was prepared in the same manner as in Example 4 by changing the preparation conditions for the second lithium-transition metal composite oxide. did. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0092】比較例9 比較例9は、第1のリチウム遷移金属複合酸化物中のコ
バルトの組成の比yを0.01に変えて、Li、Ni、
Co、Al元素の組成の比x、1−y−z、y、zが、
x=1.02、1−y−z=0.70、y=0.01、
z=0.05となるように混合して、第1のリチウム遷
移金属複合酸化物を実施例4の第1のリチウム遷移金属
複合酸化物と同様にして作製した。この第1のリチウム
遷移金属複合酸化物を用いる以外は実施例4と同様にし
て非水電解質二次電池を作製した。
Comparative Example 9 In Comparative Example 9, the composition ratio y of cobalt in the first lithium-transition metal composite oxide was changed to 0.01, and Li, Ni,
The composition ratios x, 1-yz, y, z of Co and Al elements are
x = 1.02, 1-yz = 0.70, y = 0.01,
Mixing was performed so that z = 0.05, and a first lithium-transition metal composite oxide was produced in the same manner as the first lithium-transition metal composite oxide of Example 4. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0093】比較例10 比較例10は、第1のリチウム遷移金属複合酸化物中の
コバルトの組成の比yを0.60に変えて、Li、N
i、Co、Al元素の組成の比x、1−y−z、y、z
が、x=1.02、1−y−z=0.70、y=0.6
0、z=0.05となるように混合して、第1のリチウ
ム遷移金属複合酸化物を実施例4の第1のリチウム遷移
金属複合酸化物と同様にして作製した。この第1のリチ
ウム遷移金属複合酸化物を用いる以外は実施例4と同様
にして非水電解質二次電池を作製した。
Comparative Example 10 In Comparative Example 10, the composition ratio y of cobalt in the first lithium-transition metal composite oxide was changed to 0.60, and Li, N
i, Co, Al element composition ratio x, 1-yz, y, z
, X = 1.02, 1-yz = 0.70, y = 0.6
The first lithium-transition metal composite oxide was prepared in the same manner as the first lithium-transition metal composite oxide of Example 4 by mixing so that 0 and z = 0.05. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this first lithium-transition metal composite oxide was used.

【0094】比較例11 比較例11は、第2のリチウム遷移金属複合酸化物中の
マンガンの組成の比tを0.01に変えて、Li、N
i、Mn、Al元素の組成の比s、1−t−u、t、u
が、s=1.02、1−t−u=0.70、t=0.0
1、u=0.05となるように混合して、第2のリチウ
ム遷移金属複合酸化物を実施例4の第2のリチウム遷移
金属複合酸化物と同様にして作製した。この第2のリチ
ウム遷移金属複合酸化物を用いること以外は実施例4と
同様にして非水電解質二次電池を作製した。
Comparative Example 11 In Comparative Example 11, the composition ratio t of manganese in the second lithium-transition metal composite oxide was changed to 0.01, and Li, N
i, Mn, Al element composition ratios s, 1-t-u, t, u
, S = 1.02, 1-t-u = 0.70, t = 0.0
Then, the second lithium-transition metal composite oxide was prepared in the same manner as the second lithium-transition metal composite oxide of Example 4 by mixing 1 and u = 0.05. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0095】比較例12 比較例12は、第2のリチウム遷移金属複合酸化物中の
マンガンの組成の比tを0.60に変えて、Li、N
i、Mn、Al元素の組成の比s、1−t−u、t、u
が、s=1.02、1−t−u=0.70、t=0.6
0、u=0.05となるように混合して、第2のリチウ
ム遷移金属複合酸化物を実施例4の第2のリチウム遷移
金属複合酸化物と同様にして作製した。この第2のリチ
ウム遷移金属複合酸化物を用いること以外は実施例4と
同様にして非水電解質二次電池を作製した。
Comparative Example 12 In Comparative Example 12, the composition ratio t of manganese in the second lithium-transition metal composite oxide was changed to 0.60, and Li, N
i, Mn, Al element composition ratios s, 1-t-u, t, u
, S = 1.02, 1-t-u = 0.70, t = 0.6
The second lithium-transition metal composite oxide was prepared in the same manner as the second lithium-transition metal composite oxide of Example 4 by mixing so that 0 and u = 0.05. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4 except that this second lithium-transition metal composite oxide was used.

【0096】次に、以上のように作製した実施例及び比
較例の非水電解質二次電池について、環境温度23℃、
充電電圧4.20V、充電電流1000mA、充電時間
2.5時間の条件で充電を行った後、充電電流1500
mA、終止電圧2.75Vで放電を行い初期容量を測定し
た。更に、同条件で充放電を繰り返し、23℃における
100サイクル目の放電容量を測定して、初期容量に対
する100サイクル目の容量維持率を求めた。また、環
境温度を50℃に設定して、他の条件を環境温度23℃
の場合と同様にして、50℃での充放電を繰り返した時
の100サイクル目の容量維持率の測定を行った。
Next, regarding the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples produced as described above, the environmental temperature was 23 ° C.,
After charging under the conditions of charging voltage 4.20 V, charging current 1000 mA, charging time 2.5 hours, charging current 1500
The initial capacity was measured by discharging at mA and a final voltage of 2.75V. Further, charging and discharging were repeated under the same conditions, the discharge capacity at the 100th cycle at 23 ° C. was measured, and the capacity retention rate at the 100th cycle with respect to the initial capacity was obtained. Also, set the environmental temperature to 50 ° C and set the other conditions to the environmental temperature of 23 ° C.
In the same manner as in, the capacity retention rate at the 100th cycle was measured when charging and discharging were repeated at 50 ° C.

【0097】以下に、実施例1乃至実施例20、比較例
1及び比較例2における初期容量、23℃における10
0サイクル容量維持率及び50℃における100サイク
ル容量維持率の評価結果を表1に示す。
Hereinafter, the initial capacities in Examples 1 to 20, Comparative Examples 1 and 2, and 10 at 23 ° C.
Table 1 shows the evaluation results of the 0 cycle capacity retention rate and the 100 cycle capacity retention rate at 50 ° C.

【0098】[0098]

【表1】 [Table 1]

【0099】表1に示す評価結果から、第1のリチウム
遷移金属複合酸化物と第2のリチウム遷移金属複合酸化
物を混合した混合物を正極活物質に用いた実施例1乃至
実施例20では、第1のリチウム遷移金属複合酸化物を
単独で正極活物質を形成している比較例1と比べて、2
3℃及び50℃における100サイクル容量維持率の向
上が図られていることが分かる。
From the evaluation results shown in Table 1, in Examples 1 to 20 in which a mixture of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide was used as the positive electrode active material, Compared with Comparative Example 1 in which the first lithium-transition metal composite oxide alone is used to form the positive electrode active material, 2
It can be seen that the 100 cycle capacity retention rate at 3 ° C. and 50 ° C. is improved.

【0100】比較例1は、第1のリチウム遷移金属複合
酸化物を単独で正極活物質に用いた場合であり、遷移金
属、或いは元素周期表の2族、3族、4族の元素のうち
1種若しくは複数種からなる化合物を添加されていない
ため、結晶構造が不安定であるため充放電を繰り返す度
に結晶構造が劣化している。その為、第1のリチウム遷
移金属複合酸化物を単独で正極活物質に用いた場合は、
充放電サイクル容量維持率が低下してしまう。特に、高
温環境下における充放電サイクル容量維持率は、高温に
より結晶構造の劣化が促進され、更に電解質の分解によ
って著しく低下している。
Comparative Example 1 is a case where the first lithium-transition metal composite oxide was used alone as the positive electrode active material, and the transition metal or the elements of Groups 2, 3 and 4 of the periodic table of elements was used. Since the compound consisting of one kind or a plurality of kinds is not added, the crystal structure is unstable, and therefore the crystal structure is deteriorated every time charging and discharging are repeated. Therefore, when the first lithium-transition metal composite oxide is used alone as the positive electrode active material,
The charge / discharge cycle capacity retention rate decreases. In particular, the charge / discharge cycle capacity retention rate under a high temperature environment is significantly lowered due to the deterioration of the crystal structure promoted by the high temperature and the decomposition of the electrolyte.

【0101】一方、実施例1乃至実施例20は、第1の
リチウム遷移金属複合酸化物の他に第2のリチウム遷移
金属複合酸化物を混合することによって、第2のリチウ
ム遷移金属複合酸化物の結晶構造が安定であることか
ら、充放電に伴う正極活物質の結晶構造の変化が小さく
なり、充放電に伴う正極活物質全体の結晶構造の劣化が
抑制される。その為、正極活物質は、23℃及び50℃
における100サイクル容量維持率が向上が図られてい
る。
On the other hand, in Examples 1 to 20, the second lithium-transition metal composite oxide was mixed with the first lithium-transition metal composite oxide to obtain the second lithium-transition metal composite oxide. Since the crystal structure of is stable, the change in the crystal structure of the positive electrode active material due to charge / discharge becomes small, and the deterioration of the crystal structure of the entire positive electrode active material due to charge / discharge is suppressed. Therefore, the positive electrode active material should be 23 ℃ and 50 ℃.
The 100-cycle capacity retention ratio in 100 is improved.

【0102】また、表1に示す評価結果から、実施例1
乃至実施例20では、第2のリチウム遷移金属複合酸化
物を単独で正極活物質を形成している比較例2と比べ
て、初期容量の高容量化が図られていることが分かる。
From the evaluation results shown in Table 1, Example 1
It is understood that in Example 20, the initial capacity was increased as compared with Comparative Example 2 in which the second lithium-transition metal composite oxide alone was used to form the positive electrode active material.

【0103】比較例2では、第2のリチウム遷移金属複
合酸化物を単独で正極活物質に用いた場合であり、遷移
金属、或いは元素周期表の2族、3族、4族の元素のう
ち1種若しくは複数種からなる化合物を添加されたいな
いため、第2のリチウム遷移金属複合酸化物が低容量で
あるため初期容量が低下している。
In Comparative Example 2, the second lithium-transition metal composite oxide was used alone as the positive electrode active material, and among the transition metals or the elements of Groups 2, 3 and 4 of the periodic table of elements. Since the compound of one kind or a plurality of kinds is not added, the second lithium-transition metal composite oxide has a low capacity, so that the initial capacity is lowered.

【0104】一方、実施例1乃至実施例20は、第2の
リチウム遷移金属複合酸化物の他に第1のリチウム遷移
金属複合酸化物を混合することによって、第1のリチウ
ム遷移金属複合酸化物が高容量であることから、正極活
物質全体の初期容量が向上している。
On the other hand, in Examples 1 to 20, by mixing the first lithium-transition metal composite oxide in addition to the second lithium-transition metal composite oxide, the first lithium-transition metal composite oxide was mixed. Has a high capacity, the initial capacity of the entire positive electrode active material is improved.

【0105】以上のことから、非水電解質二次電池を作
製する際に、正極活物質に第1のリチウム遷移金属複合
酸化物と第2のリチウム遷移金属複合酸化物とを混合し
た混合物を用いることによって、初期容量の高容量化、
高エネルギー密度化及び充放電サイクル容量維持率の向
上に有効であることが明らかである。なお、実施例1の
ように、第1のリチウム遷移金属複合酸化物及び第2の
リチウム遷移金属複合酸化物に、遷移金属、或いは元素
周期表の2族、3族、4族中から選ばれる元素を加えな
くても、初期容量の高容量化及び充放電サイクル容量維
持率の向上が図られる。
From the above, a mixture of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide is used as the positive electrode active material when producing the non-aqueous electrolyte secondary battery. By increasing the initial capacity,
It is clear that it is effective for increasing the energy density and improving the charge / discharge cycle capacity retention rate. In addition, as in Example 1, the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide are selected from the group consisting of transition metals or groups 2, 3, and 4 of the periodic table of the elements. Even without adding an element, the initial capacity can be increased and the charge / discharge cycle capacity retention rate can be improved.

【0106】次に、実施例1、実施例21乃至実施例2
4、比較例3及び比較例4における初期容量、23℃に
おける100サイクル容量維持率及び50℃における1
00サイクル容量維持率の評価結果を表2に示す。な
お、第1のリチウム遷移金属複合酸化物及び第2のリチ
ウム遷移金属複合酸化物に添加する添加物M及び添加物
M′は、実施例1、実施例21乃至実施例24、比較例
3及び比較例4すべてAlである。
Next, Example 1, Example 21 to Example 2
4, initial capacity in Comparative Example 3 and Comparative Example 4, 100 cycle capacity retention rate at 23 ° C. and 1 at 50 ° C.
Table 2 shows the evaluation results of the 00 cycle capacity retention rate. The additive M and the additive M ′ added to the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide are the same as Example 1, Example 21 to Example 24, Comparative Example 3 and Comparative Example 4 All are Al.

【0107】[0107]

【表2】 [Table 2]

【0108】表2に示す評価結果から、第1のリチウム
遷移金属複合酸化物及び第2のリチウム遷移金属複合酸
化物の混合比を正極活物質全体に対して15重量%以
上、85重量%以下にした実施例1、実施例21乃至実
施例24では、第1のリチウム遷移金属複合酸化物を1
0%、第2のリチウム遷移金属複合酸化物を90%とし
た比較例3と比べて、初期容量の高容量化が図られてい
ることが分かる。
From the evaluation results shown in Table 2, the mixing ratio of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide was 15% by weight or more and 85% by weight or less based on the whole positive electrode active material. In Example 1, Example 21 to Example 24, in which the first lithium-transition metal composite oxide is 1
It can be seen that the initial capacity is increased as compared with Comparative Example 3 in which 0% and the second lithium-transition metal composite oxide are 90%.

【0109】比較例3は、正極活物質全体に対して第1
のリチウム遷移金属複合酸化物10重量%と第2のリチ
ウム遷移金属複合酸化物90重量%とを混合した混合物
を正極活物質に用いることによって、低容量の第2のリ
チウム遷移金属複合酸化物が正極活物質の多くを占めて
いるため、実施例1及び実施例21乃至実施24に比べ
て初期容量が著しく低下している。
In Comparative Example 3, the first positive electrode active material was added to the first positive active material as a whole.
The mixture of 10% by weight of the lithium transition metal composite oxide and 90% by weight of the second lithium transition metal composite oxide is used for the positive electrode active material, whereby a low capacity second lithium transition metal composite oxide is obtained. Since it occupies most of the positive electrode active material, the initial capacity is remarkably reduced as compared with Examples 1 and 21 to 24.

【0110】一方、実施例1、及び実施例21乃至実施
例24は、正極活物質全体に対して第2のリチウム遷移
金属複合酸化物の混合比を15重量%以上、85重量%
以下の範囲で混合することによって、高容量の第1のリ
チウム遷移金属複合酸化物が正極活物質全体に対して適
切な重量%で含有されているため初期容量の高容量化が
図られている。また、実施例1、及び実施例21乃至実
施例24では、第1のリチウム遷移金属複合酸化物の混
合比が増加するに従って初期容量の高容量化が図られて
いる。
On the other hand, in Example 1 and Examples 21 to 24, the mixing ratio of the second lithium-transition metal composite oxide was 15 wt% or more and 85 wt% with respect to the whole positive electrode active material.
By mixing in the following range, the high-capacity first lithium-transition metal composite oxide is contained in an appropriate weight% with respect to the entire positive electrode active material, so that the initial capacity can be increased. . In addition, in Example 1 and Examples 21 to 24, the initial capacity was increased as the mixing ratio of the first lithium-transition metal composite oxide increased.

【0111】また、表2に示す評価結果から、実施例
1、及び実施例21乃至実施例24は、第1のリチウム
遷移金属複合酸化物90%、第2のリチウム遷移金属複
合酸化物10%とした比較例4に比べて、23℃及び5
0℃における100サイクル容量維持率の向上が図られ
ていることが分かる。
Further, from the evaluation results shown in Table 2, in Example 1 and Examples 21 to 24, the first lithium transition metal composite oxide was 90% and the second lithium transition metal composite oxide was 10%. 23 ° C. and 5
It can be seen that the 100 cycle capacity retention rate at 0 ° C. is improved.

【0112】比較例4は、正極活物質全体に対して第1
のリチウム遷移金属複合酸化物90%と第2のリチウム
遷移金属複合酸化物10%とを混合した混合物を正極活
物質に用いることによって、結晶構造の不安定な第1の
リチウム遷移金属複合酸化物が正極活物質の多くを占め
ているため、充放電を繰り返す度に結晶構造の劣化が促
進されて充放電サイクル容量維持率が低下している。ま
た、特に、正極活物質は、高温環境下において結晶構造
の劣化が促進され、更に電解質の劣化も伴い50℃にお
ける100サイクル容量維持率が著しく低下している。
In Comparative Example 4, the first positive electrode active material was added to the first positive active material.
The first lithium-transition metal composite oxide having an unstable crystal structure is obtained by using a mixture of 90% of the second lithium-transition metal composite oxide and 10% of the second lithium-transition metal composite oxide as a positive electrode active material. Occupies most of the positive electrode active material, the deterioration of the crystal structure is promoted every time charge and discharge are repeated, and the charge and discharge cycle capacity retention rate decreases. In particular, in the positive electrode active material, the deterioration of the crystal structure is promoted in a high temperature environment, and the 100 cycle capacity retention ratio at 50 ° C. is remarkably reduced due to the deterioration of the electrolyte.

【0113】一方、実施例1、及び実施例21乃至実施
例24は、正極活物質全体に対して第1のリチウム遷移
金属複合酸化物の混合比を15重量%以上、85重量%
以下の範囲で混合し、正極活物質全体に対して適当な重
量%で混合されることによって、充放電に伴う正極活物
質の結晶構造の変化が抑制され、充放電サイクル容量維
持率が向上している。
On the other hand, in Examples 1 and 21 to 24, the mixing ratio of the first lithium-transition metal composite oxide to the whole positive electrode active material was 15% by weight or more and 85% by weight.
By mixing in the following range and mixing at an appropriate weight% with respect to the entire positive electrode active material, the change in the crystal structure of the positive electrode active material due to charge / discharge is suppressed, and the charge / discharge cycle capacity retention rate is improved. ing.

【0114】以上のことから、正極活物質は、非水電解
質二次電池を作製する際に、全体に対して第1のリチウ
ム遷移金属複合酸化物の混合比を15重量%以上、85
重量%以下の範囲で混合することによって、初期容量の
高容量化及び充放電サイクル容量維持率の向上が図られ
ることが分かる。
From the above, when the non-aqueous electrolyte secondary battery is manufactured, the positive electrode active material has a mixing ratio of the first lithium-transition metal composite oxide of 15% by weight or more and 85% to the whole.
It can be seen that by mixing in the range of not more than wt%, the initial capacity can be increased and the charge / discharge cycle capacity retention rate can be improved.

【0115】次に、実施例1、実施例27乃至実施例3
2、及び比較例5乃至比較例8における初期容量、23
℃における100サイクル容量維持率及び50℃におけ
る100サイクル容量維持率の評価結果を表3に示す。
なお、第1のリチウム遷移金属複合酸化物と第2のリチ
ウム遷移金属複合酸化物との混合比は、第1のリチウム
遷移金属複合酸化物:第2のリチウム遷移金属複合酸化
物=50重量%:50重量%である。
Next, Example 1, Example 27 to Example 3
2, and the initial capacity in Comparative Examples 5 to 8, 23
Table 3 shows the evaluation results of the 100 cycle capacity retention rate at 50 ° C and the 100 cycle capacity retention rate at 50 ° C.
The mixing ratio of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide is as follows: first lithium transition metal composite oxide: second lithium transition metal composite oxide = 50 wt%. : 50% by weight.

【0116】[0116]

【表3】 [Table 3]

【0117】表3の評価結果から、第1のリチウム遷移
金属複合酸化物及び第2のリチウム遷移金属複合酸化物
の各々の平均粒径を2μm以上、30μm以下の範囲とし
た実施例1、実施例27乃至実施例32と、第1のリチ
ウム遷移金属複合酸化物或いは第2のリチウム遷移金属
複合酸化物のどちらか一方を1μm若しくは40μmと
し、他方を15μmとした比較例5乃至比較例8とを比
べると、50℃100サイクル容量維持率の向上が図ら
れていることが分かる。
From the evaluation results of Table 3, Example 1 and Example 1 in which the average particle diameter of each of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide was set in the range of 2 μm to 30 μm Examples 27 to 32 and Comparative Examples 5 to 8 in which one of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide was 1 μm or 40 μm and the other was 15 μm. It can be seen from the comparison between the above results that the capacity retention rate at 50 ° C. for 100 cycles is improved.

【0118】比較例5乃至比較例8では、第1のリチウ
ム遷移金属複合酸化物或いは第2のリチウム遷移金属複
合酸化物のどちらか一方の平均粒径が2μm未満、他方
が15μmとすると、正極活物質と電解液との接触面積
が大きくなりすぎるため、電解質の分解が進行して、実
施例1、実施例27乃至実施例32と比較すると50℃
におけるサイクル容量維持率が低下している。また、平
均粒径が30μmを越えると、第1のリチウム遷移金属
複合酸化物と第2のリチウム遷移金属複合酸化物の混合
が不十分となり、サイクル容量維持率が低下して、特に
50℃におけるサイクル容量維持率が低下している。
In Comparative Examples 5 to 8, if the average particle size of either the first lithium-transition metal composite oxide or the second lithium-transition metal composite oxide is less than 2 μm and the other is 15 μm, the positive electrode Since the contact area between the active material and the electrolytic solution becomes too large, the decomposition of the electrolyte progresses, and as compared with Example 1 and Example 27 to Example 32, it is 50 ° C.
The cycle capacity retention rate in the is decreasing. On the other hand, if the average particle size exceeds 30 μm, the mixing of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide becomes insufficient and the cycle capacity retention rate decreases, especially at 50 ° C. The cycle capacity retention rate is decreasing.

【0119】一方、実施例1、実施例25乃至実施例2
8では、第1のリチウム遷移金属複合酸化物の平均粒径
を2μm以上、30μm以下の範囲として、第2のリチウ
ム遷移金属複合酸化物の平均粒径を15μmと一定にし
て混合した混合物を正極活物質に用いることで、正極活
物質と電解液との接触面積が小さくなり、また第1のリ
チウム遷移金属複合酸化物と第2のリチウム遷移金属複
合酸化物とが十分に混合される。従って、実施例1、実
施例25乃至実施例28では、比較例5乃至比較例8と
比較すると50℃における100サイクル容量維持率の
向上が図られる。
On the other hand, Example 1, Example 25 and Example 2
In No. 8, a mixture obtained by mixing the first lithium-transition metal composite oxide with an average particle size of 2 μm or more and 30 μm or less and the second lithium-transition metal composite oxide having an average particle size of 15 μm was used as a positive electrode. By using it as the active material, the contact area between the positive electrode active material and the electrolytic solution is reduced, and the first lithium transition metal composite oxide and the second lithium transition metal composite oxide are sufficiently mixed. Therefore, in Examples 1 and 25 to 28, the 100 cycle capacity retention ratio at 50 ° C. is improved as compared with Comparative Examples 5 to 8.

【0120】以上のことから、正極活物質は、非水電解
質二次電池を作製する際に、第1のリチウム遷移金属複
合酸化物及び第2のリチウム遷移金属複合酸化物の平均
粒径を2μm以上、30μm以下の範囲にすることより、
50℃における100サイクル容量維持率が向上する。
From the above, when the non-aqueous electrolyte secondary battery is manufactured, the positive electrode active material has an average particle size of 2 μm of the first lithium transition metal composite oxide and the second lithium transition metal composite oxide. Above, by setting the range of 30μm or less,
The 100 cycle capacity retention rate at 50 ° C. is improved.

【0121】次に、実施例1、実施例33乃至実施例3
6、及び比較例9乃至比較例12における初期容量、2
3℃における100サイクル容量維持率及び50℃にお
ける100サイクル容量維持率の評価結果を表4に示
す。なお、第1のリチウム遷移金属複合酸化物と第2の
リチウム遷移金属複合酸化物との混合比は、第1のリチ
ウム遷移金属複合酸化物対第2のリチウム遷移金属複合
酸化物=50重量%対50重量%である。
Next, Example 1, Example 33 to Example 3
6, and the initial capacities in Comparative Examples 9 to 12, 2
Table 4 shows the evaluation results of the 100 cycle capacity retention rate at 3 ° C and the 100 cycle capacity retention rate at 50 ° C. The mixing ratio of the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide is 50% by weight of the first lithium-transition metal composite oxide to the second lithium-transition metal composite oxide. 50% by weight.

【0122】[0122]

【表4】 [Table 4]

【0123】表4の評価結果から、第1のリチウム遷移
金属複合酸化物(LiNiCoMO)中のCoの比率y
及び第2のリチウム遷移金属複合酸化物(LiNiMn
MO)中のMnの比率tの範囲を0.05以上、0.5
0以下とした実施例1及び実施例33乃至実施例36
は、比率y或いはtの範囲を0.05以下とし、一方を
0.05以上、0.50以下の範囲とした比較例9乃至
比較例11とを比べて、50℃100サイクル容量維持
率の向上が図られていることが分かる。
From the evaluation results in Table 4, the ratio y of Co in the first lithium-transition metal composite oxide (LiNiCoMO) was y.
And a second lithium-transition metal composite oxide (LiNiMn
The range of the ratio t of Mn in (MO) is 0.05 or more, 0.5
Example 1 and Examples 33 to 36 in which the value is 0 or less
Is compared with Comparative Examples 9 to 11 in which the ratio y or t is set to 0.05 or less and one is set to 0.05 or more and 0.50 or less. It can be seen that the improvement is being made.

【0124】比較例9では、1のリチウム遷移金属複合
酸化物のCoの比率yを0.01として、比較例12
は、第2のリチウム遷移金属複合酸化物のMnの比率t
を0.01とした場合である。このように比較例9乃至
比較例11では、第1のリチウム遷移金属複合酸化物中
のCoの比率yを0.01、若しくは第2のリチウム遷
移金属複合酸化物中のMnの比率tを0.01にするこ
とによって、各々の結晶構造が不安定となり充放電を繰
り返す度に正極活物質の結晶構造が劣化して充放電サイ
クル容量維持率が低下している。また、特に、正極活物
質は、高温環境下において結晶構造の劣化が促進されて
50℃における100サイクル容量維持率が著しく低下
している。
In Comparative Example 9, the ratio y of Co in the lithium-transition metal composite oxide of 1 was set to 0.01, and Comparative Example 12
Is the ratio Mn of Mn in the second lithium-transition metal composite oxide.
Is 0.01. As described above, in Comparative Examples 9 to 11, the ratio y of Co in the first lithium-transition metal composite oxide was 0.01, or the ratio t of Mn in the second lithium-transition metal composite oxide was 0. By setting the ratio to 0.01, each crystal structure becomes unstable and the crystal structure of the positive electrode active material deteriorates every time charging and discharging are repeated, and the charge-discharge cycle capacity retention rate decreases. Further, in particular, in the positive electrode active material, the deterioration of the crystal structure is promoted in a high temperature environment, and the 100 cycle capacity retention rate at 50 ° C. is remarkably reduced.

【0125】一方、実施例1及び実施例33乃至実施例
36では、第1のリチウム遷移金属複合酸化物中のCo
の比率y及び第2のリチウム遷移金属複合酸化物(Li
NiMnMO)中のMnの比率tの範囲を0.05以
上、0.50以下とすることによって、第1のリチウム
遷移金属複合酸化物及び第2のリチウム遷移金属複合酸
化物中の各結晶構造が安定して高温環境下においても優
れた充放電サイクル容量維持率が得られる。
On the other hand, in Examples 1 and 33 to 36, Co in the first lithium-transition metal composite oxide was used.
Ratio y and the second lithium-transition metal composite oxide (Li
By setting the range of the ratio Mn of Mn in NiMnMO) to be 0.05 or more and 0.50 or less, each crystal structure in the first lithium-transition metal composite oxide and the second lithium-transition metal composite oxide is An excellent charge / discharge cycle capacity retention rate can be stably obtained even in a high temperature environment.

【0126】また、表4に示す評価結果から、実施例1
及び実施例33乃至実施例36は、第1のリチウム遷移
金属複合酸化物(LiNiCoMO)中のCoの比率y
或いは第2のリチウム遷移金属複合酸化物(LiNiM
nMO)中のMnの比率tの範囲を0.50を超え、一
方を0.05以上、0.50未満とした比較例10乃至
比較例12と比べて、初期容量の高容量化が図られてい
ることが分かる。
From the evaluation results shown in Table 4, Example 1
In Examples 33 to 36, the ratio y of Co in the first lithium-transition metal composite oxide (LiNiCoMO) is y.
Alternatively, the second lithium transition metal composite oxide (LiNiM
(nMO) has a higher initial capacity than Comparative Examples 10 to 12 in which the range of the ratio M of Mn is more than 0.50 and one is 0.05 or more and less than 0.50. I understand that.

【0127】比較例10は、Coの比率yを0.60と
する第1のリチウム遷移金属複合酸化物であり、比較例
12は、Mnの比率tを0.60とする第2のリチウム
遷移金属複合酸化物とした場合である。これら比較例1
0乃至比較例12のように、Co及びMnの比率を0.
5よりも大とすることにより、正極活物質全体の容量が
低下したため初期容量が低下した。
Comparative Example 10 is a first lithium transition metal composite oxide having a Co ratio y of 0.60, and Comparative Example 12 is a second lithium transition metal composite oxide having a Mn ratio t of 0.60. This is the case when a metal composite oxide is used. Comparative Example 1
0 to Comparative Example 12, the ratio of Co and Mn was set to 0.
By setting it to be larger than 5, the capacity of the whole positive electrode active material was decreased, and thus the initial capacity was decreased.

【0128】一方、実施例1及び実施例33乃至実施例
36は、第1のリチウム遷移金属複合酸化物中のCoの
比率y及び第2のリチウム遷移金属複合酸化物中のMn
の比率tの範囲を0.05以上、0.50以下にするこ
とによって、結晶構造が安定して初期容量の高容量化が
図られた。
On the other hand, in Examples 1 and 33 to 36, the ratio y of Co in the first lithium-transition metal composite oxide and Mn in the second lithium-transition metal composite oxide were determined.
By setting the range of the ratio t of 0.05 to 0.50, the crystal structure was stabilized and the initial capacity was increased.

【0129】以上のように、非水電解質二次電池を作製
する際には、第1のリチウム遷移金属複合酸化物中のC
o及び第2のリチウム遷移金属複合酸化物中のMnの比
率を0.05以上、0.50以下の範囲とすることによ
って、初期容量の高容量化及び充放電サイクル特性の向
上が図られることが分かった。
As described above, when the non-aqueous electrolyte secondary battery is manufactured, C in the first lithium-transition metal composite oxide is used.
By setting the ratio of O and Mn in the second lithium-transition metal composite oxide in the range of 0.05 or more and 0.50 or less, the initial capacity can be increased and the charge / discharge cycle characteristics can be improved. I understood.

【0130】[0130]

【発明の効果】以上、詳細に説明したように本発明によ
れば、高容量を有する第1の正極材料と、結晶構造が安
定な第2の正極材料とを混合した混合物を含有する正極
活物質を用いることによって、初期容量の高容量化及び
高エネルギー密度の向上が図られ、常温に限らず高温環
境下においても良好な充放電サイクル容量維持率を有す
る非水電解質二次電池を得ることができる。
As described above in detail, according to the present invention, a positive electrode active material containing a mixture of a first positive electrode material having a high capacity and a second positive electrode material having a stable crystal structure. By using a substance, the initial capacity can be increased and the energy density can be improved, and a non-aqueous electrolyte secondary battery having a good charge / discharge cycle capacity retention rate not only at room temperature but also in a high temperature environment can be obtained. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非水電解質二次電池の縦断面図で
ある。
FIG. 1 is a vertical cross-sectional view of a non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解質二次電池、2 正極、3 負極、4 セ
パレータ、5 電池缶、6 絶縁板、7 正極リード、
8 電流遮断用薄板、9 電池蓋、10 負極リード、
11 絶縁封口ガスケット、12 センターピン、13
安全弁、14PTC素子
1 non-aqueous electrolyte secondary battery, 2 positive electrode, 3 negative electrode, 4 separator, 5 battery can, 6 insulating plate, 7 positive electrode lead,
8 current cut thin plate, 9 battery cover, 10 negative electrode lead,
11 Insulation sealing gasket, 12 Center pin, 13
Safety valve, 14PTC element

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AC06 5H029 AJ03 AJ05 AK03 AK18 AL01 AL02 AL06 AL07 AL08 AL12 AM03 AM04 AM05 AM07 AM12 AM16 BJ02 BJ14 CJ08 DJ16 DJ17 HJ01 HJ05 5H050 AA07 AA08 BA17 CA08 CA09 CA29 CB01 CB02 CB07 CB08 CB09 CB12 FA17 FA19 GA10 HA01 HA02 HA05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G048 AA04 AC06                 5H029 AJ03 AJ05 AK03 AK18 AL01                       AL02 AL06 AL07 AL08 AL12                       AM03 AM04 AM05 AM07 AM12                       AM16 BJ02 BJ14 CJ08 DJ16                       DJ17 HJ01 HJ05                 5H050 AA07 AA08 BA17 CA08 CA09                       CA29 CB01 CB02 CB07 CB08                       CB09 CB12 FA17 FA19 GA10                       HA01 HA02 HA05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくともNi及びCoを含有し、層状
構造からなる第1の正極材料と、 少なくともNi及びMnを含有し、層状構造からなる第
2の正極材料との混合物を有することを特徴とする正極
活物質。
1. A mixture of a first positive electrode material containing at least Ni and Co and having a layered structure, and a second positive electrode material containing at least Ni and Mn and having a layered structure. Positive electrode active material.
【請求項2】 上記第1の正極材料が、式1に示される
第1のリチウム遷移金属複合酸化物であり、 上記第2の正極材料が、式2に示される第2のリチウム
遷移金属複合酸化物であること 【化1】 【化2】 を特徴とする請求項1記載の正極活物質。
2. The first positive electrode material is a first lithium-transition metal composite oxide represented by formula 1, and the second positive-electrode material is a second lithium transition metal composite oxide represented by formula 2. Be an oxide [Chemical formula 1] [Chemical 2] The positive electrode active material according to claim 1, wherein
【請求項3】 上記第1の正極材料及び上記第2の正極
材料の各々の混合比が、上記正極活物質全体に対して1
5重量%以上、85重量%以下の範囲であることを特徴
とする請求項1記載の正極活物質。
3. The mixing ratio of each of the first positive electrode material and the second positive electrode material is 1 with respect to the entire positive electrode active material.
The positive electrode active material according to claim 1, which is in a range of 5% by weight or more and 85% by weight or less.
【請求項4】 上記第1の正極材料及び上記第2の正極
材料の各々の平均粒径が、2μm以上、30μm以下の範
囲であることを特徴とする請求項1記載の正極活物質。
4. The positive electrode active material according to claim 1, wherein the average particle size of each of the first positive electrode material and the second positive electrode material is in the range of 2 μm or more and 30 μm or less.
【請求項5】 正極集電体上に正極活物質を含有する正
極合剤層が形成されてなる正極と、 負極集電体上に負極活物質を含有する負極合剤層が形成
されてなる負極と、 非水電解質とを備え、 上記正極活物質が、少なくともNi及びCoを含有し、
層状構造からなる第1の正極材料と、少なくともNi及
びMnを含有し、層状構造からなる第2の正極材料とを
混合した混合物を有していることを特徴とする非水電解
質二次電池。
5. A positive electrode having a positive electrode mixture layer containing a positive electrode active material formed on a positive electrode current collector, and a negative electrode mixture layer containing a negative electrode active material formed on a negative electrode current collector. A negative electrode and a non-aqueous electrolyte, wherein the positive electrode active material contains at least Ni and Co,
A non-aqueous electrolyte secondary battery comprising a mixture of a first positive electrode material having a layered structure and a second positive electrode material containing at least Ni and Mn and having a layered structure.
【請求項6】 上記第1の正極材料が、式1に示される
第1のリチウム遷移金属複合酸化物であり、 上記第2の正極材料が、式2に示される第2のリチウム
遷移金属複合酸化物であること 【化3】 【化4】 を特徴とする請求項5記載の非水電解質二次電池。
6. The first positive electrode material is a first lithium-transition metal composite oxide represented by formula 1, and the second positive electrode material is a second lithium-transition metal composite oxide represented by formula 2. Being an oxide [Chemical formula 3] [Chemical 4] The non-aqueous electrolyte secondary battery according to claim 5.
【請求項7】 上記第1の正極材料及び上記第2の正極
材料の各々の混合比が、上記正極活物質全体に対して1
5重量%以上、85重量%以下の範囲であることを特徴
とする請求項5記載の非水電解質二次電池。
7. The mixing ratio of each of the first positive electrode material and the second positive electrode material is 1 with respect to the entire positive electrode active material.
The non-aqueous electrolyte secondary battery according to claim 5, which is in a range of 5% by weight or more and 85% by weight or less.
【請求項8】 上記第1の正極材料及び上記第2の正極
材料の各々の平均粒径が、2μm以上、30μm以下の範
囲であることを特徴とする請求項5記載の非水電解質二
次電池。
8. The non-aqueous electrolyte secondary according to claim 5, wherein the average particle size of each of the first positive electrode material and the second positive electrode material is in the range of 2 μm or more and 30 μm or less. battery.
JP2002001724A 2002-01-08 2002-01-08 Positive electrode active material and non-aqueous electrolyte secondary battery using the same Expired - Lifetime JP4032744B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002001724A JP4032744B2 (en) 2002-01-08 2002-01-08 Positive electrode active material and non-aqueous electrolyte secondary battery using the same
EP03700481A EP1465271A4 (en) 2002-01-08 2003-01-08 Positive plate active material and nonaqueous electrolyte secondary cell using same
CNB038000539A CN100359724C (en) 2002-01-08 2003-01-08 Positive plate active material and nonaqueous electrolyte secondary cell using same
KR1020037011536A KR101027764B1 (en) 2002-01-08 2003-01-08 Cathode active material and non-aqueous electrolyte secondary battery using the same
US10/468,900 US7763386B2 (en) 2002-01-08 2003-01-08 Cathode active material and non-aqueous electrolyte secondary cell using same
CNB2007101012504A CN100521310C (en) 2002-01-08 2003-01-08 Positive plate active material and nonaqueous electrolyte secondary cell using same
PCT/JP2003/000065 WO2003063275A1 (en) 2002-01-08 2003-01-08 Positive plate active material and nonaqueous electrolyte secondary cell using same
CNB2007101012491A CN100541880C (en) 2002-01-08 2003-01-08 Positive electrode active materials and the rechargeable nonaqueous electrolytic battery that utilizes this positive electrode active materials
US12/222,198 US20090029254A1 (en) 2002-01-08 2008-08-05 Cathode active material and non-aqueous electrolyte secondary battery using the same
US15/695,257 US20180062171A1 (en) 2002-01-08 2017-09-05 Cathode active material and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001724A JP4032744B2 (en) 2002-01-08 2002-01-08 Positive electrode active material and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2003203631A true JP2003203631A (en) 2003-07-18
JP4032744B2 JP4032744B2 (en) 2008-01-16

Family

ID=27641784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001724A Expired - Lifetime JP4032744B2 (en) 2002-01-08 2002-01-08 Positive electrode active material and non-aqueous electrolyte secondary battery using the same

Country Status (2)

Country Link
JP (1) JP4032744B2 (en)
CN (2) CN100521310C (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054017A1 (en) * 2002-12-06 2004-06-24 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2006185887A (en) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2007517368A (en) * 2003-12-31 2007-06-28 エルジー・ケム・リミテッド Electrode active material powder having particle size-dependent composition and method for producing the same
JP2008198465A (en) * 2007-02-13 2008-08-28 Sanyo Electric Co Ltd Positive electrode for non-aqueous electrolyte secondary battery, and its manufacturing method
CN100421286C (en) * 2004-11-30 2008-09-24 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
JP2010086693A (en) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd Positive electrode material for lithium secondary battery and lithium secondary cell using the same
JP2011093783A (en) * 2009-10-02 2011-05-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary cell
JP2012079608A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Lithium ion secondary battery
WO2013038918A1 (en) * 2011-09-12 2013-03-21 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2013134819A (en) * 2011-12-26 2013-07-08 Hitachi Ltd Positive electrode material and lithium ion secondary battery
JP2014096379A (en) * 2013-12-25 2014-05-22 Semiconductor Energy Lab Co Ltd Secondary battery and electronic apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250508A1 (en) * 2008-10-13 2011-10-13 Basf Corporation Mixed lithium nickel cobalt oxide and lithium nickel manganese cobalt oxide cathodes
JP6674631B2 (en) 2016-06-23 2020-04-01 トヨタ自動車株式会社 Lithium ion secondary battery
WO2022113686A1 (en) * 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299092A (en) * 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JPH11162466A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2000231937A (en) * 1999-02-09 2000-08-22 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000251892A (en) * 1999-03-02 2000-09-14 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same
JP2001357851A (en) * 2000-06-15 2001-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024773A1 (en) * 1995-12-27 1997-07-10 Motorola Inc. Electrode material for electrochemical lithium intercalation
US6063526A (en) * 1998-04-16 2000-05-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
JP4101435B2 (en) * 1999-05-25 2008-06-18 三星エスディアイ株式会社 Positive electrode active material composition for lithium secondary battery and method for producing positive electrode using the same
US6413676B1 (en) * 1999-06-28 2002-07-02 Lithium Power Technologies, Inc. Lithium ion polymer electrolytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299092A (en) * 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JPH11162466A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2000231937A (en) * 1999-02-09 2000-08-22 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000251892A (en) * 1999-03-02 2000-09-14 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same
JP2001357851A (en) * 2000-06-15 2001-12-26 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054017A1 (en) * 2002-12-06 2004-06-24 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP4890264B2 (en) * 2003-12-31 2012-03-07 エルジー・ケム・リミテッド Electrode active material powder having particle size-dependent composition and method for producing the same
JP2007517368A (en) * 2003-12-31 2007-06-28 エルジー・ケム・リミテッド Electrode active material powder having particle size-dependent composition and method for producing the same
US8012626B2 (en) 2003-12-31 2011-09-06 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP2011091050A (en) * 2003-12-31 2011-05-06 Lg Chem Ltd Electrode active material powder with size dependent composition and method of manufacturing the same
US7771877B2 (en) 2003-12-31 2010-08-10 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP2005317499A (en) * 2004-03-29 2005-11-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4660164B2 (en) * 2004-03-29 2011-03-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7622223B2 (en) 2004-03-29 2009-11-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7858237B2 (en) 2004-03-29 2010-12-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
CN100421286C (en) * 2004-11-30 2008-09-24 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
JP2006185887A (en) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008198465A (en) * 2007-02-13 2008-08-28 Sanyo Electric Co Ltd Positive electrode for non-aqueous electrolyte secondary battery, and its manufacturing method
JP2010086693A (en) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd Positive electrode material for lithium secondary battery and lithium secondary cell using the same
JP2011093783A (en) * 2009-10-02 2011-05-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary cell
JP2012079608A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Lithium ion secondary battery
WO2013038918A1 (en) * 2011-09-12 2013-03-21 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JPWO2013038918A1 (en) * 2011-09-12 2015-03-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery
US9577247B2 (en) 2011-09-12 2017-02-21 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013134819A (en) * 2011-12-26 2013-07-08 Hitachi Ltd Positive electrode material and lithium ion secondary battery
JP2014096379A (en) * 2013-12-25 2014-05-22 Semiconductor Energy Lab Co Ltd Secondary battery and electronic apparatus

Also Published As

Publication number Publication date
CN101030641A (en) 2007-09-05
JP4032744B2 (en) 2008-01-16
CN100521310C (en) 2009-07-29
CN100541880C (en) 2009-09-16
CN101030640A (en) 2007-09-05

Similar Documents

Publication Publication Date Title
US20180062171A1 (en) Cathode active material and non-aqueous electrolyte secondary battery using the same
US7374841B2 (en) Positive electrode active matter and secondary battery using this
JP4510331B2 (en) Nonaqueous electrolyte secondary battery
US8298707B2 (en) Positive active material and nonaqueous electrolyte secondary battery
EP1936718B1 (en) Cathode active material for a lithium battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP5066798B2 (en) Secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2000195514A (en) Manufacture of nonaqueous solvent secondary battery
JP2009117159A (en) Positive electrode and lithium ion secondary battery
JP2008016414A (en) Non-aqueous electrolyte secondary battery
JP2008060033A (en) Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
US20030010631A1 (en) Cathode active material and non-aqueous electrolyte cell
JP4032744B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
EP2284934B1 (en) Electrode assembly and lithium secondary battery including the same
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP2001345101A (en) Secondary battery
JP2009206092A (en) Nonaqueous electrolyte battery and positive electrode, and method for manufacturing the same
JP2014078535A (en) Negative electrode and battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
US20170047608A1 (en) Rechargeable lithium battery including same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4032744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term