JP3983745B2 - Lithium transition metal oxides for lithium batteries - Google Patents

Lithium transition metal oxides for lithium batteries Download PDF

Info

Publication number
JP3983745B2
JP3983745B2 JP2004104962A JP2004104962A JP3983745B2 JP 3983745 B2 JP3983745 B2 JP 3983745B2 JP 2004104962 A JP2004104962 A JP 2004104962A JP 2004104962 A JP2004104962 A JP 2004104962A JP 3983745 B2 JP3983745 B2 JP 3983745B2
Authority
JP
Japan
Prior art keywords
lithium
transition metal
metal oxide
positive electrode
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004104962A
Other languages
Japanese (ja)
Other versions
JP2005289700A (en
Inventor
ヤンコ マリノフ トドロフ
健司 鈴岡
隆史 数見
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004104962A priority Critical patent/JP3983745B2/en
Publication of JP2005289700A publication Critical patent/JP2005289700A/en
Application granted granted Critical
Publication of JP3983745B2 publication Critical patent/JP3983745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池などのリチウム電池の正極活物質として用いるリチウム遷移金属酸化物、特にレート特性に優れたリチウム電池を実現できるリチウム遷移金属酸化物に関する。   The present invention relates to a lithium transition metal oxide used as a positive electrode active material of a lithium battery such as a lithium primary battery, a lithium secondary battery, a lithium ion secondary battery, or a lithium polymer battery, and in particular, a lithium battery that is excellent in rate characteristics. It relates to a transition metal oxide.

リチウム電池、特にリチウム二次電池は、単位電気量当たりの重量が小さく、エネルギー密度が高いため、ビデオカメラ、ノート型パソコン、携帯電話機などの携帯型電子機器や電気自動車などに搭載する駆動用電源として急速に普及しつつある。   Lithium batteries, especially lithium secondary batteries, have a low weight per unit of electricity and high energy density, so they are used as power sources for driving in portable electronic devices such as video cameras, laptop computers, and mobile phones, and electric vehicles. As it is rapidly spreading.

リチウム二次電池の高いエネルギー密度は主に正極材料の電位に起因しており、この種の正極活物質としては、スピネル構造をもつリチウムマンガン酸化物(LiMn24)のほか、層状構造をもつLiCoO2、LiNiO2、LiMnO2など、リチウム複合酸化物(LiMxy)が知られている。
これらの中でも、現在市販されているリチウム二次電池の大半は、正極活物質として4Vの高電圧を有する層構造のLiCoO2であるが、Coが極めて高価であるためLiCoO2の代替材料として、例えば同様の層構造を有するリチウム複合酸化物(LiMxy)の研究開発が盛んに進められている。
The high energy density of the lithium secondary battery is mainly due to the potential of the positive electrode material. This type of positive electrode active material includes a spinel-structure lithium manganese oxide (LiMn 2 O 4 ) and a layered structure. Lithium composite oxides (LiM x O y ) such as LiCoO 2 , LiNiO 2 and LiMnO 2 are known.
Among these, most of the lithium secondary batteries are currently commercially available is the LiCoO 2 layer structure having a high voltage of 4V as the positive electrode active material, as a substitute material for LiCoO 2 for Co is very expensive, For example, research and development of a lithium composite oxide (LiM x O y ) having a similar layer structure has been actively promoted.

具体的には、特許文献1には、マンガンとニッケルの混合水溶液中にアルカリ溶液を加えてマンガンとニッケルを共沈させ、水酸化リチウムを加え、ついで焼成することによって式:LiNixMn1-x2(式中、0.7≦x≦0.95)で示される活物質を得る方法が開示され、
特許文献2には、式:LiNix1-x2(式中、MはCo、Mn、Cr、Fe、VおよびAlの少なくとも一種、1>x≧0.5)で示される組成を有する好ましい粒子状活物質が開示され、NiおよびMnを含む活物質としてx=0.15のものが示されている。
また、特許文献3には、共沈合成法で合成された式:Liy-x1Ni1-xx2(式中、MはCo、Al、Mg、Fe、MgまたはMn、0<x2≦0.5、0≦x1<0.2、x=x1+x2、0.9≦y≦1.3)で示される活物質が開示され、
特許文献4には、3種の遷移金属を含む酸化物の結晶粒子からなり、前記結晶粒子の結晶構造が層構造であり、前記酸化物を構成する酸素原子の配列が立方最密充填である、Li[Lix(APQR1-x]O2(式中、A、BおよびCはそれぞれ異なる3種の遷移金属元素、−0.1≦x≦0.3、0.2≦P≦0.4、0.2≦Q≦0.4、0.2≦R≦0.4)で表される正極活物質が開示されている。
特開平8−171910号公報 特開平9−129230号公報 特開平10−69910号公報 特開2003−17052号公報
Specifically, in Patent Document 1, an alkaline solution is added to a mixed aqueous solution of manganese and nickel to coprecipitate manganese and nickel, lithium hydroxide is added, and then calcined to form the formula: LiNi x Mn 1− Disclosed is a method for obtaining an active material represented by x O 2 (where 0.7 ≦ x ≦ 0.95),
Patent Document 2 discloses a composition represented by the formula: LiNi x M 1-x O 2 (wherein M is at least one of Co, Mn, Cr, Fe, V, and Al, 1> x ≧ 0.5). A preferred particulate active material is disclosed, with x = 0.15 being shown as the active material containing Ni and Mn.
Patent Document 3 discloses a formula synthesized by a coprecipitation synthesis method: Li y-x1 Ni 1-x M x O 2 (wherein M is Co, Al, Mg, Fe, Mg or Mn, 0 < x2 ≦ 0.5, 0 ≦ x1 <0.2, x = x1 + x2, 0.9 ≦ y ≦ 1.3) is disclosed,
Patent Document 4 is composed of oxide crystal particles containing three kinds of transition metals, the crystal structure of the crystal particles is a layered structure, and the arrangement of oxygen atoms constituting the oxide is cubic close packed. , Li [Li x ( AP B Q C R ) 1-x ] O 2 (wherein A, B and C are three different transition metal elements, −0.1 ≦ x ≦ 0.3, 0 .. 2 ≦ P ≦ 0.4, 0.2 ≦ Q ≦ 0.4, 0.2 ≦ R ≦ 0.4).
JP-A-8-171910 JP 9-129230 A JP-A-10-69910 JP 2003-17052 A

近年、携帯情報電子機器などの高性能化に伴い、より一層高い出力パワーを取り出せるリチウム電池が求められるようになり、正極活物質にもレート特性(大電流放電可能という特性)の向上が強く要求されている。
そこで本発明の目的は、層構造を有するリチウム遷移金属酸化物において、レート特性がより一層優れたものを開発することにある。
In recent years, with the improvement in performance of portable information electronic devices and the like, there has been a demand for lithium batteries that can extract even higher output power, and positive electrode active materials are also strongly required to improve rate characteristics (characteristics capable of discharging large currents). Has been.
Accordingly, an object of the present invention is to develop a lithium transition metal oxide having a layer structure that has even better rate characteristics.

本発明は、組成式Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2(x=0.01〜0.5)で表される層構造を有するリチウム遷移金属酸化物、すなわち組成式Li1+x1-x2で表される層構造を有するリチウム遷移金属酸化物であって、当該組成式中のMが、Mn、Co及びNiをほぼ1:1:1の原子比で含む遷移金属からなり、かつxの値が0.01〜0.5であることを特徴とするリチウム遷移金属酸化物の中で、赤外線吸収スペクトル(FT−IR)において、570〜595cm-1付近に出現するピーク(「ピークA」と言う)と、520〜550cm-1付近に出現するピーク(「ピークB」と言う)との差Δが50cm-1以下となる結合構造を有するリチウム遷移金属酸化物を提案するものである。 The present invention has the composition formula Li 1 + x (Mn (1-x) / 3 Co (1-x) / 3 Ni (1-x) / 3 ) O 2 (x = 0.01 to 0.5). Lithium transition metal oxide having a layer structure represented, that is, a lithium transition metal oxide having a layer structure represented by a composition formula Li 1 + x M 1-x O 2 , wherein M in the composition formula is Among the lithium transition metal oxides, characterized in that they are made of a transition metal containing an atomic ratio of approximately 1: 1: 1, Mn, Co and Ni, and the value of x is 0.01 to 0.5 In the infrared absorption spectrum (FT-IR), a peak appearing in the vicinity of 570 to 595 cm −1 (referred to as “peak A”) and a peak appearing in the vicinity of 520 to 550 cm −1 (referred to as “peak B”) A lithium transition metal oxide having a bond structure in which the difference Δ is 50 cm −1 or less is proposed.

本発明者が、層構造を有するリチウム遷移金属酸化物のレート特性について様々な観点から調査した中で、赤外線吸収スペクトル(FT−IR)において、570〜595cm-1付近に出現するピークAと、520〜550cm-1付近に出現するピークBとのピーク間距離(差Δ)に着目してレート特性との相関を調べたところ、その差Δが50cm-1付近を境にレート特性の傾向が変化し、その差Δが50cm-1以下である場合にレート特性が顕著に優れることを見出した。
570〜595cm-1付近に出現するピークA及び520〜550cm-1付近に出現するピークBそれぞれ、どのような化学結合のシグナルに相当するか同定できている訳ではないが、おそらくLi−OまたはM−Oの結合エネルギーがそれぞれ均質であることがレート特性が高まる一因になっているものと考えられる。つまり、ピーク間距離が小さいほど充放電の際のLiイオンの挿入脱離がスムースになるものと考えられるから、ピーク間距離が大きいもの、つまり結合エネルギーが不均質なものは充放電の際のLiイオンの挿入脱離に抵抗の大きい部分が存在することになり、特にハイレート充放電において容量劣化が著しくなるものと推定することができる。
While the present inventors investigated the rate characteristics of the lithium transition metal oxide having a layer structure from various viewpoints, in the infrared absorption spectrum (FT-IR), a peak A that appears in the vicinity of 570 to 595 cm −1 , Examination of the correlation between the rate characteristics by paying attention to the distance between peaks (the difference delta) between the peak B appeared in the vicinity 520~550cm -1, the difference delta is prone rate characteristic as a boundary around 50 cm -1 It has been found that rate characteristics are remarkably excellent when the difference Δ is 50 cm −1 or less.
Although it has not been possible to identify what kind of chemical bond signals peak A appearing near 570 to 595 cm −1 and peak B appearing near 520 to 550 cm −1 , it is probably Li—O or It is considered that the fact that the bond energy of M-O is uniform is one of the factors that increase the rate characteristics. In other words, it is thought that the smaller the distance between peaks, the smoother the insertion / desorption of Li ions during charging / discharging. A portion having a large resistance exists in insertion and desorption of Li ions, and it can be presumed that the capacity deterioration becomes remarkable especially in high-rate charge / discharge.

中でも、本発明のリチウム遷移金属酸化物は、当該リチウム遷移金属酸化物をリチウム電池の正極活物質として用い、負極にはリチウムを用いて充放電を行った時、充放電電圧範囲3.0〜4.3Vにおける充放電レートに対する容量の劣化が−6.7(mAh/(g・C)よりも小さくなる電池特性を実現できるものが好ましい。   Among these, when the lithium transition metal oxide of the present invention is charged and discharged using lithium as the positive electrode active material of the lithium battery and lithium as the negative electrode, the charge / discharge voltage range is 3.0 to What can implement | achieve the battery characteristic in which the capacity | capacitance deterioration with respect to the charging / discharging rate in 4.3V becomes smaller than -6.7 (mAh / (g * C) is preferable.

本発明で特定されるリチウム遷移金属酸化物を選別或いは製造し、このリチウム遷移金属酸化物を正極活物質として使用することにより、レート特性に優れたリチウム電池を実現することができる。   By selecting or producing the lithium transition metal oxide specified in the present invention and using this lithium transition metal oxide as the positive electrode active material, a lithium battery having excellent rate characteristics can be realized.

なお、本発明において「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウムを含有する電池を全て包含する。
また、本発明が特定する数値範囲の上限値及び下限値は、特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の範囲に含まる意を包含する。特に、ピークAとピークBとの差が50cm-1以下の「50cm-1」の値は、実施例1の結果が「50.1cm-1」であることからも分かるように、少なくとも四捨五入して「50cm-1」となる場合を包含する意である。
In the present invention, the “lithium battery” includes all batteries containing lithium in the battery, such as a lithium primary battery, a lithium secondary battery, a lithium ion secondary battery, and a lithium polymer battery.
Further, the upper and lower limits of the numerical range specified by the present invention are within the scope of the present invention as long as they have the same operational effects as those within the numerical range, even when slightly deviating from the specified numerical range. Includes intent to include. In particular, the peak value of the "50 cm -1" difference 50 cm -1 or less of A and peak B, as evidenced by the results of Example 1 are "50.1Cm -1", and at least rounded It is meant to encompass the case of “50 cm −1 ”.

本発明のリチウム遷移金属酸化物は、遷移金属としてNi、Co、Mnをほぼ1:1:1の比率で含む層構造を有し、組成式Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2で表されるリチウム遷移金属酸化物であり、その中でも、赤外線吸収スペクトル(FT−IR)において、570〜595cm-1付近に出現するピークAと、520〜550cm-1付近に出現するピークBとの差Δが50cm-1以下となる結合構造を有するリチウム遷移金属酸化物である。 The lithium transition metal oxide of the present invention has a layer structure containing Ni, Co, and Mn as transition metals in a ratio of approximately 1: 1: 1, and has the composition formula Li 1 + x (Mn (1-x) / 3 It is a lithium transition metal oxide represented by Co (1-x) / 3 Ni (1-x) / 3 ) O 2 , and among them, in the infrared absorption spectrum (FT-IR), around 570 to 595 cm −1 a peak a appearing in the difference between the peak B appeared in the vicinity 520~550cm -1 Δ is a lithium transition metal oxide having a bonded structure comprising a 50 cm -1 or less.

本発明のリチウム遷移金属酸化物は、遷移金属に対するLiの比率、すなわちLi/Mf定比組成よりも大きいことが必要であり、中でも当該比率が1.01〜1.50、特に1.03〜1.30が好ましい。
遷移金属Mは、Mn、Co及びNiの3元素を含み、Mn、Co及びNiをほぼ1:1:1の原子比で含むことを特徴とする。なお、Ni、Co及びMnの比率が1:1:1から多少ズレた場合も、ピークA、ピークB間の差Δとレート特性との間には同様の相関があるものと考えられるから、本発明における「ほぼ1:1:1の原子比」とは四捨五入して1:1:1となる原子比を包含する意である。また、現段階では、Ni、Co及びMnをほぼ1:1:1の比率で含むリチウム遷移金属酸化物についての知見しか得られていないが、Ni、Co及びMnの比率がズレても同様の結果が得られるものと考えられるから、現在調査中である。
The lithium transition metal oxide of the present invention needs to be larger than the ratio of Li to the transition metal, that is, the Li / Mf stoichiometric composition, among which the ratio is 1.01 to 1.50, particularly 1.03 to 3. 1.30 is preferred.
The transition metal M includes three elements of Mn, Co, and Ni, and is characterized by including Mn, Co, and Ni in an atomic ratio of approximately 1: 1: 1. Even when the ratio of Ni, Co and Mn is slightly deviated from 1: 1: 1, it is considered that there is a similar correlation between the difference Δ between peak A and peak B and the rate characteristics. The “substantially 1: 1: 1 atomic ratio” in the present invention is meant to include an atomic ratio rounded to 1: 1: 1. At the present stage, only knowledge about lithium transition metal oxides containing Ni, Co and Mn at a ratio of approximately 1: 1: 1 has been obtained, but the same is true even if the ratio of Ni, Co and Mn is shifted. We are currently investigating because the results are expected.

赤外線吸収スペクトル(FT−IR)言い換えればフーリエ変換赤外分光分析は、フーリエ変換を利用して赤外光の各波長における強度分布を調べる分析法である。分子内の原子の結合はそれぞれ赤外線領域に固有の振動数を持っているため、或る物質に赤外線を照射すると、ある振動数(波長)の光が選択的に吸収を受け、この振動数(波長)は赤外線吸収スペクトルにより測定され、分子内の原子の結合に関する情報を得ることができる。
本発明のリチウム遷移金属酸化物、すなわち遷移金属としてNi、Co、Mnをほぼ1:1:1の比率で含む層構造を有し、組成式Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2で表されるリチウム遷移金属酸化物について赤外線吸収スペクトル(FT−IR)を測定すると、図1に示すように、570〜595cm-1付近にピークAが出現し、520〜550cm-1付近にピークBが出現すること、並びに、同様の組成を示すリチウム遷移金属酸化物であっても、同一物でなければピークA及びピークBの出現する位置がずれてピークA、ピークB間の差Δ、すなわちピーク間距離が変化することが判明した。また、後述する試験では、同様の組成を有するリチウム遷移金属酸化物において、ピークA、ピークB間の差Δ(すなわちIRピーク間距離)が異なる複数のサンプルを作製し、差Δとレート特性との関係を調べたところ、差Δが50cm-1付近を境にレート特性の傾向が顕著に変化すること、すなわち差Δ50cm-1付近に変曲点があり、差Δが50cm-1以下である場合にレート特性が顕著に優れることを見出すに至った。
Infrared absorption spectrum (FT-IR), in other words, Fourier transform infrared spectroscopic analysis is an analysis method for examining the intensity distribution at each wavelength of infrared light using Fourier transform. Since each atomic bond in the molecule has a specific frequency in the infrared region, when a certain substance is irradiated with infrared light, light of a certain frequency (wavelength) is selectively absorbed, and this frequency ( (Wavelength) is measured by an infrared absorption spectrum, and information on the bonding of atoms in the molecule can be obtained.
The lithium transition metal oxide of the present invention, that is, has a layer structure containing Ni, Co, and Mn as transition metals in a ratio of approximately 1: 1: 1, and has the composition formula Li 1 + x (Mn (1-x) / 3 When an infrared absorption spectrum (FT-IR) of the lithium transition metal oxide represented by Co (1-x) / 3 Ni (1-x) / 3 ) O 2 is measured, as shown in FIG. 595cm peak a appeared around -1, it 520~550cm peak around -1 B appears, and even the lithium transition metal oxide having the same composition, peaks a and to be identical product It was found that the position where peak B appears shifted and the difference Δ between peak A and peak B, that is, the distance between peaks changed. Further, in the test described later, in a lithium transition metal oxide having a similar composition, a plurality of samples having different differences Δ between peaks A and B (that is, the distance between IR peaks) were prepared. Examination of the relationship, the difference Δ is 50cm near the boundary -1 tendency of rate characteristics change significantly, i.e. there is an inflection point in the vicinity of the difference Deruta50cm -1, the difference Δ is a 50cm -1 or less In some cases, it has been found that the rate characteristics are remarkably excellent.

また、本発明のリチウム遷移金属酸化物は、当該リチウム遷移金属酸化物をリチウム電池の正極活物質として用い、負極にはリチウムを用いて充放電を行った時、充放電電圧範囲3.0〜4.3Vにおける充放電レートに対する容量の劣化が−6.7(mAh/(g・C)よりも小さくなる電池特性を実現できるものが好ましい。また、充放電電圧範囲3.0〜4.3Vで充放電レート0.3Cでの初期放電容量が120mAh/g以上の電池特性を発揮するものが好ましい。
なお、この際の電池構成の詳細及び充放電条件等の試験条件については下記実施例に記載する。
Moreover, when the lithium transition metal oxide of the present invention is charged and discharged using lithium as the positive electrode active material of the lithium battery and lithium as the negative electrode, the charge / discharge voltage range is 3.0 to What can implement | achieve the battery characteristic in which the deterioration of the capacity | capacitance with respect to the charge / discharge rate in 4.3V becomes smaller than -6.7 (mAh / (g * C) is preferable. It is preferable to exhibit battery characteristics with an initial discharge capacity of 120 mAh / g or more at a charge / discharge rate of 0.3 C.
Details of the battery configuration and test conditions such as charge / discharge conditions are described in the following examples.

(製造方法)
本発明のリチウム遷移金属酸化物の製造方法は特に限定されるものではない。例えば公知の製造方法(例えば特開2003−17052の[0022]〜[0030]に記載された方法)によって、所定の組成を有するリチウム遷移金属酸化物を製造し、その中から、赤外線吸収スペクトル(FT−IR)において、570〜595cm-1付近に出現するピークAと、520〜550cm-1付近に出現するピークBとの差Δが50cm-1以下であるものを選別して得ることができる。
上述したリチウム遷移金属酸化物を製造するための公知の方法とは、例えばリチウム塩化合物、ニッケル塩化合物、コバルト塩化合物及びマンガン塩化合物を所定比率で乾式混合して焼成する方法、金属塩と場合によってはLi塩とを湿式で混合分散したスラリーをスプレードライヤーなどで乾燥して焼成する方法、特開2003-181639で示されているような連続式に湿式合成し、これを乾燥後焼成する方法、ニッケルイオン、コバルトイオン及びマンガンイオンを含む混合水溶液中にキレート剤を加えてこれらの遷移金属を共沈させ、この共沈で得られた遷移金属塩化合物とリチウム塩化合物とを混合して焼成する方法などを挙げることができるが、中でも3種類の遷移金属を均質に存在させられる点で共沈法を採用するのが好ましい。
(Production method)
The method for producing the lithium transition metal oxide of the present invention is not particularly limited. For example, a lithium transition metal oxide having a predetermined composition is produced by a known production method (for example, the method described in [0022] to [0030] of JP-A-2003-17052), and an infrared absorption spectrum ( in FT-IR), can be a peak a appeared in the vicinity 570~595cm -1, the difference between the peak B appeared in the vicinity 520~550cm -1 Δ is obtained by selecting not more 50 cm -1 or less .
Examples of the known method for producing the above-mentioned lithium transition metal oxide include a method in which a lithium salt compound, a nickel salt compound, a cobalt salt compound and a manganese salt compound are dry-mixed at a predetermined ratio and fired. Depending on the method, a slurry in which Li salt is mixed and dispersed in a wet process is dried and fired with a spray dryer, etc., or a wet synthesis is performed continuously as shown in Japanese Patent Application Laid-Open No. 2003-181039, followed by drying and firing. Then, a chelating agent is added to a mixed aqueous solution containing nickel ion, cobalt ion and manganese ion to coprecipitate these transition metals, and the transition metal salt compound and lithium salt compound obtained by this coprecipitation are mixed and fired. However, it is preferable to use the coprecipitation method because three kinds of transition metals can exist uniformly. Yes.

本発明のリチウム遷移金属酸化物の製造方法として好ましいのは、製造されたリチウム遷移金属酸化物の全てが差Δ50cm-1以下となり、赤外線吸収スペクトル(FT−IR)測定して選別する必要のない製造方法である。そこで以下、共沈法を利用してそのようなリチウム遷移金属酸化物を製造する方法について説明する。但し、本発明のリチウム遷移金属酸化物の製造方法を以下の方法に限定する意ではない。 A preferable method for producing the lithium transition metal oxide of the present invention is that all of the produced lithium transition metal oxides have a difference of Δ50 cm −1 or less, and there is no need to select them by measuring an infrared absorption spectrum (FT-IR). It is a manufacturing method. Accordingly, a method for producing such a lithium transition metal oxide using a coprecipitation method will be described below. However, the production method of the lithium transition metal oxide of the present invention is not limited to the following method.

共沈法とは、水溶液中で中和反応を利用して複数元素を同時に沈殿させて複合酸化物を得る方法であり、本発明のリチウム遷移金属酸化物の製造においては、例えば、ニッケルイオン、コバルトイオン及びマンガンイオンを所定量含む混合水溶液中にキレート剤とアルカリ溶液とを混合し、この混合溶液のpHを調整することによってニッケルイオン、コバルトイオン及びマンガンイオンを共沈させて遷移金属塩化合物を得、得られた遷移金属塩化合物とリチウム塩化合物とを混合して所定の条件下で焼成する。この際、例えば混合溶液のpH及び焼成温度を調整することによってピークAとピークBとの差Δ(IRピーク間距離)を調整することができ、例えば反応溶液(母液)のpHを11.0〜13.0に調整し、かつ800℃以上で焼成することにより、ピークAとピークBとの差が50cm-1以下のリチウム遷移金属酸化物を製造することができる。
以下、さらに詳細に説明する。
The coprecipitation method is a method of obtaining a composite oxide by simultaneously precipitating multiple elements in an aqueous solution using a neutralization reaction. In the production of the lithium transition metal oxide of the present invention, for example, nickel ions, A transition metal salt compound by coprecipitation of nickel ions, cobalt ions and manganese ions by mixing a chelating agent and an alkaline solution in a mixed aqueous solution containing a predetermined amount of cobalt ions and manganese ions, and adjusting the pH of the mixed solution The obtained transition metal salt compound and the lithium salt compound are mixed and fired under predetermined conditions. At this time, for example, the difference Δ (the distance between IR peaks) between the peak A and the peak B can be adjusted by adjusting the pH of the mixed solution and the baking temperature. For example, the pH of the reaction solution (mother liquid) is 11.0. By adjusting to ˜13.0 and firing at 800 ° C. or higher, a lithium transition metal oxide having a difference between the peak A and the peak B of 50 cm −1 or less can be produced.
This will be described in more detail below.

先ず、マンガン、ニッケル及びコバルトの原子比が実質的に1:1:1となる遷移金属塩化合物を得るため、マンガン、ニッケル及びコバルトの原子比が実質的に1:1:1となるように秤量したマンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物を水に添加し、キレート剤溶液(錯化剤)を加え、アルカリ溶液を加えてこの反応溶液のpHを調整しながら反応させ、ニッケルイオン、コバルトイオン及びマンガンイオンを共沈させて遷移金属塩化合物粒子を得る。   First, in order to obtain a transition metal salt compound in which the atomic ratio of manganese, nickel and cobalt is substantially 1: 1: 1, the atomic ratio of manganese, nickel and cobalt is substantially 1: 1: 1. Weighed manganese salt compound, nickel salt compound and cobalt salt compound are added to water, chelating agent solution (complexing agent) is added, alkali solution is added and reacted while adjusting pH of this reaction solution, nickel ions, Cobalt ions and manganese ions are coprecipitated to obtain transition metal salt compound particles.

この際、マンガン塩化合物の種類は特に制限はなく、例えば硫酸マンガン、硝酸マンガン、塩化マンガンなどを用いることができ、中でも硫酸マンガン水和物が好ましい。
ニッケル塩化合物の種類も特に制限はなく、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケルなどを用いることができ、中でも硫酸ニッケル水和物が好ましい。
コバルト塩化合物の種類も特に制限はなく、例えば硫酸コバルト、硝酸コバルト、塩化コバルトなどを用いることができ、中でも硫酸コバルト水和物が好ましい。
In this case, the type of the manganese salt compound is not particularly limited, and for example, manganese sulfate, manganese nitrate, manganese chloride, etc. can be used, and manganese sulfate hydrate is particularly preferable.
The kind of the nickel salt compound is not particularly limited, and for example, nickel sulfate, nickel nitrate, nickel chloride and the like can be used. Among these, nickel sulfate hydrate is preferable.
The type of the cobalt salt compound is not particularly limited, and for example, cobalt sulfate, cobalt nitrate, cobalt chloride and the like can be used, and among these, cobalt sulfate hydrate is preferable.

キレート剤の溶液としては、例えばアンモニウムイオン供給体(塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、アンモニア水、アンモニアガスなど)、ヒドラジン、グリシン、グルタミン酸、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸などのアミノカルボン酸またはそれらの塩、シュウ酸・リンゴ酸・クエン酸・サリチル酸などのオキシカルボン酸またはそれらの塩が挙げられ、中でもアンモニア水溶液が好ましい。
アルカリ溶液としては、例えばアルカリ金属水酸化物、例えば水酸化リチウム 、水酸化ナトリウム、水酸化カリウムが挙げられ、中でも水酸化ナトリウム水溶液が好ましい。
Examples of the chelating agent solution include ammonium ion suppliers (ammonium chloride, ammonium carbonate, ammonium fluoride, ammonium sulfate, ammonium nitrate, ammonia water, ammonia gas, etc.), hydrazine, glycine, glutamic acid, ethylenediaminetetraacetic acid, nitritotriacetic acid, uracil. Examples thereof include aminocarboxylic acids such as diacetic acid or salts thereof, and oxycarboxylic acids such as oxalic acid, malic acid, citric acid, and salicylic acid, or salts thereof. Among them, an aqueous ammonia solution is preferable.
Examples of the alkali solution include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide. Among these, an aqueous sodium hydroxide solution is preferable.

このような共沈法によって遷移金属塩化合物を製造する場合に、ピークAとピークBとの差Δが50cm-1以下となるようにするためには、反応溶液(母液)のpHを11.0〜13.0に厳格に調整することが大切である。中でもpHを13.0に近付けるほどΔを小さくすることができるから、pH12.0〜13.0に調整するのが特に好ましい。
但し、pH11.0を下回ると溶液中のNiイオンが沈降しづらくなり、水酸化物の組成ずれを引起こし易くなり、pH13.0を上回ると沈殿した水酸化物が微粒となり、洗浄、回収が著しく困難になる。
In the case of producing a transition metal salt compound by such a coprecipitation method, the pH of the reaction solution (mother liquor) is set to 11.1 so that the difference Δ between the peak A and the peak B is 50 cm −1 or less. It is important to strictly adjust to 0 to 13.0. Among them, it is particularly preferable to adjust the pH to 12.0 to 13.0 because Δ can be reduced as the pH is brought closer to 13.0.
However, if the pH is lower than 11.0, Ni ions in the solution are difficult to settle, and it is easy to cause a shift in the composition of the hydroxide. If the pH is higher than 13.0, the precipitated hydroxide becomes fine particles, which can be washed and recovered. It becomes extremely difficult.

次に、このようにして得られた遷移金属塩化合物粒子を乾燥後、リチウム塩化合物と所定比率で混合し、焼成する。   Next, the transition metal salt compound particles thus obtained are dried, mixed with a lithium salt compound at a predetermined ratio, and fired.

リチウム塩化合物としては、例えば水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)、硝酸リチウム(LiNO3)、LiOH・H2O、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
リチウム塩化合物と遷移金属塩化合物とのモル比は理想的には1:1であるが、1.01〜1.5:0.99〜0.95範囲であれば同様の効果を得られることが期待できる。
Examples of the lithium salt compound include lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), LiOH · H 2 O, lithium oxide (Li 2 O), other fatty acid lithium and lithium halogen. And the like. Of these, lithium hydroxide salts, carbonates and nitrates are preferred.
The molar ratio of the lithium salt compound to the transition metal salt compound is ideally 1: 1, but the same effect can be obtained if it is in the range of 1.01 to 1.5: 0.99 to 0.95. Can be expected.

混合方法は、均一に混合できれば、その方法を特に限定するものではない。例えばミキサー等の公知の混合機を用いて各原料を同時又は適当な順序で加えて乾式で攪拌混合すればよい。
また、必要に応じて、焼成前に、混合した原料を所定の大きさに造粒するようにしてもよい。造粒方法は、湿式でも乾式でもよく、押し出し造粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加圧成型造粒、或いはロール等を用いたフレーク造粒でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。乾燥方法としては、噴霧熱乾燥、熱風乾燥、真空乾燥、フリーズドライなどの公知の乾燥方法によって乾燥させればよい。
The mixing method is not particularly limited as long as it can be uniformly mixed. For example, using a known mixer such as a mixer, the respective raw materials may be added simultaneously or in an appropriate order, followed by dry stirring and mixing.
If necessary, the mixed raw materials may be granulated to a predetermined size before firing. The granulation method may be wet or dry, and may be extrusion granulation, rolling granulation, fluid granulation, mixed granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. . However, when wet granulation is performed, it is necessary to sufficiently dry before firing. As a drying method, it may be dried by a known drying method such as spray heat drying, hot air drying, vacuum drying or freeze drying.

焼成は、大気雰囲気中で行うのが好ましく、800℃以上1000℃以下、好ましくは850℃以上950℃以下で、1時間〜30時間、好ましくは5時間〜25時間保持するように焼成する。なお、ここでの焼成温度は焼成炉内の品温を意味する。
焼成炉としては、ロータリーキルン或いは静置炉等を用いることができる。
焼成雰囲気は、大気雰囲気下のほか、酸化性雰囲気を採用することも可能である。
また、焼成に続いて特定の温度でアニーリング(熱処理)するようにしてもよい。
Firing is preferably performed in an air atmosphere, and is performed at 800 ° C. to 1000 ° C., preferably 850 ° C. to 950 ° C. for 1 hour to 30 hours, preferably 5 hours to 25 hours. Here, the firing temperature means the product temperature in the firing furnace.
As the baking furnace, a rotary kiln or a stationary furnace can be used.
The firing atmosphere may be an atmospheric atmosphere or an oxidizing atmosphere.
Further, annealing (heat treatment) may be performed at a specific temperature following firing.

このようにして得られたリチウム遷移金属酸化物は、Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2で表され、遷移金属としてNi、Co、Mnをほぼ1:1:1の比率で含む層構造を有するリチウム遷移金属酸化物であり、赤外線吸収スペクトル(FT−IR)を測定すると、570〜595cm-1付近に出現するピークAと、520〜550cm-1付近に出現するピークBとの差Δが50cm-1以下を示すものとなる。 The lithium transition metal oxide thus obtained is represented by Li 1 + x (Mn (1-x) / 3 Co (1-x) / 3 Ni (1-x) / 3 ) O 2 , It is a lithium transition metal oxide having a layer structure containing Ni, Co, and Mn as a transition metal in a ratio of approximately 1: 1: 1. When an infrared absorption spectrum (FT-IR) is measured, it is around 570 to 595 cm −1 . a peak a appearing, the difference between the peak B appeared in the vicinity 520~550cm -1 Δ may be indicators of 50 cm -1 or less.

以上のように焼成して得られたリチウム遷移金属酸化物は、必要に応じて解砕・分級した後、リチウム電池の正極活物質として有効に利用することができる。例えば、リチウム遷移金属酸化物と、カーボンブラック等からなる導電材と、テフロン(登録商標)バインダー等からなる結着剤とを混合して正極合剤を製造することができる。
そしてそのような正極合剤を正極に用い、負極にはリチウム、カーボン、黒鉛等のリチウムを吸蔵、脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF6)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム電池を構成することができる。
The lithium transition metal oxide obtained by firing as described above can be effectively used as a positive electrode active material of a lithium battery after being crushed and classified as necessary. For example, a positive electrode mixture can be produced by mixing a lithium transition metal oxide, a conductive material made of carbon black or the like, and a binder made of Teflon (registered trademark) binder or the like.
Such a positive electrode mixture is used for the positive electrode, a material that can occlude and desorb lithium, such as lithium, carbon, and graphite, is used for the negative electrode, and lithium such as lithium hexafluorophosphate (LiPF6) is used for the non-aqueous electrolyte. A lithium battery can be formed using a salt dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate.

このように構成したリチウム電池は、例えばノート型パソコン、携帯電話、コードレスフォン子機、ビデオムービー、液晶テレビ、電気シェーバー、携帯ラジオ、ヘッドホンステレオ、バックアップ電源、メモリーカード等の電子機器、ペースメーカー、補聴器等の医療機器、電気自動車搭載用の駆動電源に使用することができる。中でも、優れたレート特性が要求される携帯電話機、PDA(携帯情報端末)やノート型パソコンなどの各種携帯型コンピュータ、電気自動車(ハイブリッド自動車を含む)、電力貯蔵用電源などの駆動用電源として特に有効である。   Lithium batteries configured in this way are, for example, notebook computers, mobile phones, cordless phones, video movies, LCD TVs, electric shavers, portable radios, headphone stereos, backup power supplies, memory cards, and other electronic devices, pacemakers, hearing aids It can be used as a drive power source for medical equipment such as electric vehicles. Among them, mobile phones that require excellent rate characteristics, various portable computers such as PDAs (personal digital assistants) and notebook computers, electric vehicles (including hybrid vehicles), and power sources for driving power storages It is valid.

なお、後述する試験結果が示すように、Δ50cm-1以下のリチウム遷移金属酸化物粉末を正極活物質として用いてリチウム電池を作成し、充放電を繰り返し行った後、当該リチウム電池を解体してその正極活物質の赤外線吸収スペクトルを測定してみると、リチウム遷移金属酸化物粉末の場合より差Δが低下することが確認された。例えばΔ約50cm-1のリチウム遷移金属酸化物粉末の場合、充放電後Δ46cm-1となった。このことから、使用後の電池を解体してその正極活物質の赤外線吸収スペクトルを測定してその差Δが46cm-1以下であれば、電池製造時の正極活物質及びその原料としてのリチウム遷移金属酸化物粉末のΔは50cm-1以下であったことが分かる。 As shown in the test results to be described later, a lithium battery was prepared using a lithium transition metal oxide powder of Δ50 cm −1 or less as a positive electrode active material, charged and discharged repeatedly, and then the lithium battery was disassembled. When the infrared absorption spectrum of the positive electrode active material was measured, it was confirmed that the difference Δ was lower than that of the lithium transition metal oxide powder. For example, in the case of a lithium transition metal oxide powder having Δ of about 50 cm −1 , it became Δ46 cm −1 after charge and discharge. From this, the battery after use is disassembled, the infrared absorption spectrum of the positive electrode active material is measured, and if the difference Δ is 46 cm −1 or less, the positive electrode active material at the time of battery production and the lithium transition as its raw material It can be seen that Δ of the metal oxide powder was 50 cm −1 or less.

次に、実際に製造した実施例及び比較例に基づいて説明するが、本発明が以下に示す実施例に限定されるものではない。   Next, although it demonstrates based on the Example and comparative example which were actually manufactured, this invention is not limited to the Example shown below.

(電池評価の方法)
Li電池評価は以下の方法で行った。
正極活物質10.4gとアセチレンブッラク(電気化学工業社製)0.86gおよびNMP(N-メチルピロリドン)中にPVdF(ダイキン工業社製)10wt%溶解した液8.6gを正確に計り取り、そこにNMPを10.8g加え十分に混合し、ペーストを作成した。このペーストを集電体であるアルミ箔上にのせ150μmのギャップに調整したアプリケーターで塗膜化し、120℃で120min乾燥した後、50μmのギャップに調整したロールプレスで厚密した。その後φ13mmに打ち抜き正極とした。電池作成直前に120℃で12hr以上乾燥し水分を十分に除去し電池に組み込んだ。また予めφ13mmのアルミ箔の重さの平均を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求め、また正極活物質とアセチレンブラックおよびPVdFの混合割合から正極活物質の含有量を求めた。負極はφ16mm×厚さ0.6mmの金属Liとし、これらの材料を使用して図2に示す2032型コイン電池を作製した。
(Method of battery evaluation)
Li battery evaluation was performed by the following method.
Accurately measure 10.6 g of the positive electrode active material, 0.86 g of acetylene black (manufactured by Denki Kagaku Kogyo) and 8.6 g of a solution of 10 wt% of PVdF (manufactured by Daikin Kogyo) in NMP (N-methylpyrrolidone), There, 10.8 g of NMP was added and mixed well to prepare a paste. This paste was placed on an aluminum foil as a current collector and formed into a coating film with an applicator adjusted to a gap of 150 μm, dried at 120 ° C. for 120 minutes, and then thickened with a roll press adjusted to a gap of 50 μm. Thereafter, a positive electrode was punched into φ13 mm. Immediately before the battery was made, it was dried at 120 ° C. for 12 hours or more to remove water sufficiently and incorporated into the battery. In addition, the average weight of the aluminum foil having a diameter of 13 mm is obtained in advance, the weight of the positive electrode mixture is obtained by subtracting the weight of the aluminum foil from the weight of the positive electrode, and from the mixing ratio of the positive electrode active material, acetylene black and PVdF. The content of the positive electrode active material was determined. The negative electrode was made of metal Li of φ16 mm × thickness 0.6 mm, and these materials were used to produce a 2032 type coin battery shown in FIG.

図2のコイン電池は、耐有機電解液性のステンレンス鋼製の正極ケース11の内側に、同じくステンレス鋼製の集電体13がスポット溶接されている。この集電体13の上面には前記正極合材からなる正極15が圧着されている。この正極15の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ16が配置されている。前記正極ケース11の開口部には、下方に金属Liからなる負極14を接合した封口板12がポリプロピレン製のガスケット17をはさんで配置され、これにより電池は密封されている。前記封口板12は負極端子をかね、正極ケースと同様ステンレス製である。
電池の直径は20mm、電池の総高は1.6mmとした。電解液は、エチレンカーボネートと1,3−ジメトキシカーボネートを等体積混合したものを溶媒とし、これに溶質としてLiPF6を1moL/L溶解させたものを用いた。
In the coin battery of FIG. 2, a current collector 13 made of stainless steel is spot-welded inside a positive electrode case 11 made of stainless steel that is resistant to organic electrolyte. A positive electrode 15 made of the positive electrode mixture is pressure-bonded to the upper surface of the current collector 13. On the upper surface of the positive electrode 15, a separator 16 made of a microporous polypropylene resin impregnated with an electrolytic solution is disposed. In the opening of the positive electrode case 11, a sealing plate 12 with a negative electrode 14 made of metal Li bonded below is disposed with a gasket 17 made of polypropylene interposed therebetween, thereby sealing the battery. The sealing plate 12 serves as a negative electrode terminal and is made of stainless steel like the positive electrode case.
The battery diameter was 20 mm and the total battery height was 1.6 mm. As the electrolytic solution, a mixture of ethylene carbonate and 1,3-dimethoxy carbonate in an equal volume was used as a solvent, and a solution obtained by dissolving 1 mol / L of LiPF6 as a solute was used.

このようにして準備したコインセルを下記に記述する方法で充放電試験しレート特性を求めた。
充放電範囲は3.0〜4.3Vとし、正極中の正極活物質の含有量から0.3C、1.0C、1.5C、2.0C、3.0Cの充放電レートになるよう電流値を算出し、それぞれのレートでの最大放電容量が観測されるまでサイクルを行なった。このときX軸に放電レートを取り、Y軸に最大放電容量(mAh/g)をプロットし、最小二乗法で一次近似式を求めた。この近似式の傾き(mAh/gC)が大きなものほど、放電レートに対する容量劣化率が小さいことを示し、この傾きをレート特性値と定義した。
The coin cell thus prepared was subjected to a charge / discharge test by the method described below to obtain rate characteristics.
The charge / discharge range is 3.0 to 4.3 V, and the current is set so that the charge / discharge rate is 0.3 C, 1.0 C, 1.5 C, 2.0 C, and 3.0 C based on the content of the positive electrode active material in the positive electrode. The value was calculated and cycled until the maximum discharge capacity at each rate was observed. At this time, the discharge rate was taken on the X-axis, the maximum discharge capacity (mAh / g) was plotted on the Y-axis, and a first order approximate expression was obtained by the least square method. The larger the slope (mAh / gC) of this approximate expression, the smaller the capacity deterioration rate with respect to the discharge rate, and this slope was defined as the rate characteristic value.

(FT−IRの測定方法)
正極活物質および正極のFT−IRは、次に記述する方法により測定した。
正極活物質0.2〜1.0mgとKBr0.2gを計り取り、乳鉢で手早く混合し、この混合粉全量をφ13mmのプレス冶具に入れ、8tonのプレス圧で成型した。これを測定冶具に装着し、透過法で、積算測定回数は100回としてFT−IR測定を行った。今回の測定には、島津製作所社製FTIR-8300を用いた。例として下記実施例1に示す正極活物質粉末をFT−IR測定したときのチャートを図1に示す。このチャートから読み取ることができる570〜595cm-1付近に出現するPeakAのTop位置と520〜550cm-1付近に出現するPeakBのTop位置の差ΔをIR特性値として用いた。
正極または充放電後の正極中の活物質のFT−IR測定を行う際は、正極から正極活物質とアセチレンブラックおよびPVdFが混合され塗膜された部位のみをピンセットでわずかにかきとり、KBrと混合して上記と同様の方法にて測定を実施した。
(Measurement method of FT-IR)
The FT-IR of the positive electrode active material and the positive electrode was measured by the method described below.
0.2 to 1.0 mg of the positive electrode active material and 0.2 g of KBr were weighed and quickly mixed in a mortar, and the total amount of the mixed powder was put in a φ13 mm press jig and molded with a press pressure of 8 ton. This was mounted on a measurement jig, and the FT-IR measurement was performed by the transmission method with the total number of measurements being 100 times. For this measurement, FTIR-8300 manufactured by Shimadzu Corporation was used. As an example, FIG. 1 shows a chart when the FT-IR measurement is performed on the positive electrode active material powder shown in Example 1 below. The difference Δ between the Peak position of Peak A that appears near 570 to 595 cm −1 and the Peak position of Peak B that appears near 520 to 550 cm −1 that can be read from this chart was used as the IR characteristic value.
When performing the FT-IR measurement of the active material in the positive electrode or the positive electrode after charging / discharging, only the portion coated with the positive electrode active material, acetylene black and PVdF from the positive electrode is slightly scraped with tweezers and mixed with KBr. Then, the measurement was carried out by the same method as described above.

(実施例1)
攪拌機付きの10Lの密閉容器(オイルジャケット付き)に市水を2.5L量入れ、硫酸マンガン・5水和物(柳島製薬社製)588g、硫酸コバルト・6水和物(関西触媒社製)703gおよび硫酸ニッケル・6水和物(三井金属社製)762gを溶解し、4Lになるよう水を加え調整した。その中に25wt%のアンモニア水(アガタ薬品工業社製)300mLを加え、この溶液を攪拌しながら6moL/Lの苛性ソーダ水溶液を加え、市販のpH計(横川電機(株)製モデルpH81)を用いてpH11.4に調整した。浴温は45℃に保ち12時間攪拌した。攪拌後の沈殿物を上澄みの導電率が1mS以下となるまでデカンテーション洗浄を繰り返し、その後反応溶液をろ過により固液分離し、固形物を120℃で10hr乾燥し、金属水酸化物原料(上記「遷移金属塩化合物」に相当)を得た。
この金属水酸化物原料の金属元素のみのモル数をXモルとし、炭酸リチウム中のLi元素のモル数Yが、Y/X=1.10となるように金属水酸化物原料と炭酸リチウム(SQM社製)を計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で850℃20時間焼成した。
Example 1
2.5L of city water is put in a 10L sealed container (with oil jacket) with a stirrer, 588g of manganese sulfate pentahydrate (manufactured by Yanagishima Pharmaceutical), cobalt sulfate hexahydrate (manufactured by Kansai Catalysts) 703 g and 762 g of nickel sulfate hexahydrate (manufactured by Mitsui Kinzoku Co., Ltd.) were dissolved, and water was added to adjust to 4 L. Into this, 300 mL of 25 wt% aqueous ammonia (Agata Pharmaceutical Co., Ltd.) was added, and 6 mol / L of aqueous caustic soda solution was added while stirring this solution, and a commercially available pH meter (model pH 81 manufactured by Yokogawa Electric Corporation) was used. To pH 11.4. The bath temperature was kept at 45 ° C. and stirred for 12 hours. The precipitate after stirring is repeatedly decanted and washed until the conductivity of the supernatant becomes 1 mS or less, and then the reaction solution is solid-liquid separated by filtration, and the solid is dried at 120 ° C. for 10 hours to obtain a metal hydroxide raw material (above Corresponding to “transition metal salt compound”).
The number of moles of only the metal element of the metal hydroxide raw material is X mole, and the number of moles of Li element in the lithium carbonate is Y / X = 1.10, so that the metal hydroxide raw material and the lithium carbonate ( SQM) was weighed and thoroughly mixed with a ball mill to obtain a raw material mixed powder, and this raw material mixed powder was fired in the atmosphere at 850 ° C. for 20 hours.

焼成して得られた粉末を乳鉢で解砕後、目開き75μmの篩で分級し、その粒度をレーザー散乱式の粒度分布計で測定したところ、体積平均粒子径D50は12μmであり、N2吸着法による比表面積は0.6m2/gであった。また、化学分析結果とXRD測定結果で、目的物ができていることを確認した。 The powder obtained by firing was crushed in a mortar, classified with a sieve having an opening of 75 μm, and the particle size was measured with a laser scattering particle size distribution meter. The volume average particle size D 50 was 12 μm, and N The specific surface area by the 2 adsorption method was 0.6 m 2 / g. Moreover, it was confirmed from the chemical analysis results and the XRD measurement results that the target product was formed.

焼成して得られた粉末(乳鉢解砕及び分級済)をIR測定し、ピークトップ間距離(Δ)を算出したところ50.1cm-1であった(以下「粉末IR特性値」と呼ぶ)。
また、前述した方法で作製した正極のIR測定を行なったところピーク間距離は、46.3cm-1であった(以下「正極IR特性値」と呼ぶ)。
また、0.3Cで3サイクル充放電し、放電で終了した正極をコインセルから取り出しEC中でよく洗浄し、IR測定を行なったところ46.1cm-1であった(以下「充放電後IR特性値」と呼ぶ)。
レート特性値は−6.6であった。
以上の結果をまとめたものを表1に示し、IR測定結果をそれぞれプロットしたものを図3,4,5に示した。
It was 50.1 cm < -1 > when IR measurement was carried out and the peak top distance ((DELTA)) was calculated for the powder (mortar crushed and classified) obtained by baking (it is called "powder IR characteristic value" hereafter). .
Further, when IR measurement was performed on the positive electrode manufactured by the above-described method, the peak-to-peak distance was 46.3 cm −1 (hereinafter referred to as “positive electrode IR characteristic value”).
The positive electrode which was charged and discharged at 0.3 C for 3 cycles and was discharged was taken out from the coin cell, washed thoroughly in EC, and subjected to IR measurement, which was 46.1 cm −1 (hereinafter referred to as “IR characteristics after charge and discharge”). Called "value").
The rate characteristic value was −6.6.
The summary of the above results is shown in Table 1, and the IR measurement results are plotted in FIGS.

(実施例2)
実施例1と同じ原料混合粉を大気中で880℃20時間焼成した。
焼成して得られた粉末を、実施例1と同様に解砕及び分級し、その粒度を測定したところ、体積平均粒子径D50は10μmであり、比表面積は0.4m2/gであった。
また、焼成して得られた粉末(乳鉢解砕及び分級済)のレート特性値とそれぞれのIR測定値を表1にまとめ、プロットした結果を図3、図4、図5に示した。
(Example 2)
The same raw material mixed powder as in Example 1 was baked in the air at 880 ° C. for 20 hours.
The powder obtained by firing was crushed and classified in the same manner as in Example 1, and the particle size was measured. As a result, the volume average particle diameter D 50 was 10 μm, and the specific surface area was 0.4 m 2 / g. It was.
Moreover, the rate characteristic value of each powder (mortar crushed and classified) obtained by firing and the respective IR measurement values are summarized in Table 1, and the plotted results are shown in FIG. 3, FIG. 4, and FIG.

(実施例3)
実施例1と同じ原料混合粉を大気中で920℃20時間焼成した。
焼成して得られた粉末を、実施例1と同様に解砕及び分級し、その粒度を測定したところ、体積平均粒子径D50は9μmであり、比表面積は0.3m2/gであった。
また、焼成して得られた粉末(乳鉢解砕及び分級済)のレート特性値とそれぞれのIR測定値を表1にまとめ、プロットした結果を図3、図4、図5に示した。
(Example 3)
The same raw material mixed powder as in Example 1 was fired in the atmosphere at 920 ° C. for 20 hours.
The powder obtained by firing was crushed and classified in the same manner as in Example 1, and the particle size was measured. As a result, the volume average particle diameter D 50 was 9 μm, and the specific surface area was 0.3 m 2 / g. It was.
Moreover, the rate characteristic value of each powder (mortar crushed and classified) obtained by firing and the respective IR measurement values are summarized in Table 1, and the plotted results are shown in FIG. 3, FIG. 4, and FIG.

(実施例4)
攪拌機付きの10Lの密閉容器(オイルジャケット付き)に市水を2.5L量入れ、硫酸マンガン・5水和物(柳島製薬社製)588g、硫酸コバルト・6水和物(関西触媒社製)703gおよび硫酸ニッケル・6水和物(三井金属社製)762gを溶解し、4Lになるよう水を加え調整した。その中に25wt%のアンモニア水(アガタ薬品工業社製)300mLを加え、この溶液を攪拌しながら6mol/Lの苛性ソーダ水溶液を加え、実施例1と同じpH計を用いてpH12.6に調整した。浴温は45℃に保ち12時間攪拌した。攪拌後の沈殿物を上澄みの導電率が1mS以下となるまでデカンテーション洗浄を繰り返し、その後反応溶液をろ過により固液分離し、固形物を120℃で10hr乾燥し、金属水酸化物原料を得た。
この金属水酸化物原料の金属元素のみのモル数をXモルとし、炭酸リチウム中のLi元素のモル数Yが、Y/X=1.10となるように金属水酸化物原料と炭酸リチウム(SQM社製)を計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で880℃20時間焼成した。
焼成して得られた粉末を、実施例1と同様に解砕及び分級し、その粒度を測定したところ、体積平均粒子径D50は5μmであり、比表面積は2.2m2/gであった。
また、焼成して得られた粉末(乳鉢解砕及び分級済)のレート特性値とそれぞれのIR測定値を表1にまとめ、プロットした結果を図3,4,5に示した。
(Example 4)
2.5L of city water is put in a 10L sealed container (with oil jacket) with a stirrer, 588g of manganese sulfate pentahydrate (manufactured by Yanagishima Pharmaceutical), cobalt sulfate hexahydrate (manufactured by Kansai Catalysts) 703 g and 762 g of nickel sulfate hexahydrate (manufactured by Mitsui Kinzoku Co., Ltd.) were dissolved, and water was added to adjust to 4 L. Into this, 300 mL of 25 wt% aqueous ammonia (manufactured by Agata Pharmaceutical Co., Ltd.) was added, and a 6 mol / L aqueous caustic soda solution was added while stirring this solution, and the pH was adjusted to 12.6 using the same pH meter as in Example 1. . The bath temperature was kept at 45 ° C. and stirred for 12 hours. The precipitate after stirring is repeatedly decanted and washed until the conductivity of the supernatant is 1 mS or less, and then the reaction solution is solid-liquid separated by filtration, and the solid is dried at 120 ° C. for 10 hours to obtain a metal hydroxide raw material. It was.
The number of moles of only the metal element of the metal hydroxide raw material is X mole, and the number of moles of Li element in the lithium carbonate is Y / X = 1.10, so that the metal hydroxide raw material and the lithium carbonate ( SQM) was weighed and thoroughly mixed with a ball mill to obtain a raw material mixed powder, and this raw material mixed powder was baked in the atmosphere at 880 ° C. for 20 hours.
The powder obtained by firing was crushed and classified in the same manner as in Example 1, and the particle size was measured. As a result, the volume average particle diameter D 50 was 5 μm, and the specific surface area was 2.2 m 2 / g. It was.
Moreover, the rate characteristic value of each powder (mortar crushed and classified) obtained by baking and the respective IR measured values are summarized in Table 1, and the plotted results are shown in FIGS.

(実施例5)
実施例4と同じ原料混合粉を大気中で920℃20時間焼成した。
焼成して得られた粉末を、実施例1と同様に解砕及び分級し、その粒度を測定したところ、体積平均粒子径D50は7μmであり、比表面積は1.9m2/gであった。
また、焼成して得られた粉末(乳鉢解砕及び分級済)のレート特性値とそれぞれのIR測定値を表1にまとめ、プロットした結果を図3、図4、図5に示した。
(Example 5)
The same raw material mixed powder as in Example 4 was fired in the atmosphere at 920 ° C. for 20 hours.
The powder obtained by firing was crushed and classified in the same manner as in Example 1, and the particle size was measured. As a result, the volume average particle diameter D 50 was 7 μm, and the specific surface area was 1.9 m 2 / g. It was.
Moreover, the rate characteristic value of each powder (mortar crushed and classified) obtained by firing and the respective IR measurement values are summarized in Table 1, and the plotted results are shown in FIG. 3, FIG. 4, and FIG.

(比較例1)
攪拌機付きの10Lの密閉容器(オイルジャケット付き)に市水を2.5L量入れ、硫酸マンガン・5水和物(柳島製薬社製)588g、硫酸コバルト・6水和物(関西触媒社製)703gおよび硫酸ニッケル・6水和物(三井金属社製)762gを溶解し、4Lになるよう水を加え調整した。その中に25wt%のアンモニア水(アガタ薬品工業社製)600mLを加え、この溶液を攪拌しながら6mol/Lの苛性ソーダ水溶液を加え、実施例1と同じpH計を用いてpH10.9に調整した。浴温は45℃に保ち12時間攪拌した。攪拌後の沈殿物を上澄みの導電率が1mS以下となるまでデカンテーション洗浄を繰り返し、その後反応溶液をろ過により固液分離し、固形物を120℃で10hr乾燥し、金属水酸化物原料を得た。
この金属水酸化物原料の金属元素のみのモル数をXモルとし、炭酸リチウム中のLi元素のモル数Yが、Y/X=1.10となるように金属水酸化物原料と炭酸リチウム(SQM社製)を計り取り、ボールミルで十分に混合し、原料混合粉を得、この原料混合粉を大気中で850℃20時間焼成した。
焼成して得られた粉末を、実施例1と同様に解砕及び分級し、その粒度を測定したところ、体積平均粒子径D50は18μmであり、比表面積は0.1m2/gであった。
また、焼成して得られた粉末(乳鉢解砕及び分級済)のレート特性値とそれぞれのIR測定値を表1にまとめ、プロットした結果を図3、図4、図5に示した。
(Comparative Example 1)
2.5L of city water is put in a 10L sealed container (with oil jacket) with a stirrer, 588g of manganese sulfate pentahydrate (manufactured by Yanagishima Pharmaceutical), cobalt sulfate hexahydrate (manufactured by Kansai Catalysts) 703 g and 762 g of nickel sulfate hexahydrate (manufactured by Mitsui Kinzoku Co., Ltd.) were dissolved, and water was added to adjust to 4 L. Into this, 600 mL of 25 wt% aqueous ammonia (manufactured by Agata Pharmaceutical Co., Ltd.) was added, and a 6 mol / L aqueous caustic soda solution was added while stirring this solution, and the pH was adjusted to 10.9 using the same pH meter as in Example 1. . The bath temperature was kept at 45 ° C. and stirred for 12 hours. The precipitate after stirring is repeatedly decanted and washed until the conductivity of the supernatant is 1 mS or less, and then the reaction solution is solid-liquid separated by filtration, and the solid is dried at 120 ° C. for 10 hours to obtain a metal hydroxide raw material. It was.
The number of moles of only the metal element of the metal hydroxide raw material is X mole, and the number of moles of Li element in the lithium carbonate is Y / X = 1.10, so that the metal hydroxide raw material and the lithium carbonate ( SQM) was weighed and thoroughly mixed with a ball mill to obtain a raw material mixed powder, and this raw material mixed powder was fired in the atmosphere at 850 ° C. for 20 hours.
The powder obtained by firing was crushed and classified in the same manner as in Example 1, and the particle size was measured. As a result, the volume average particle size D 50 was 18 μm, and the specific surface area was 0.1 m 2 / g. It was.
Moreover, the rate characteristic value of each powder (mortar crushed and classified) obtained by firing and the respective IR measurement values are summarized in Table 1, and the plotted results are shown in FIG. 3, FIG. 4, and FIG.

(比較例2)
比較例1と同じ原料混合粉を大気中で880℃20時間焼成した。
焼成して得られた粉末を、実施例1と同様に解砕及び分級し、その粒度を測定したところ、体積平均粒子径D50は19μmであり、比表面積は0.1m2/gであった。
また、焼成して得られた粉末(乳鉢解砕及び分級済)のレート特性値とそれぞれのIR測定値を表1にまとめ、プロットした結果を図3、図4、図5に示した。
(Comparative Example 2)
The same raw material mixed powder as in Comparative Example 1 was baked in the air at 880 ° C. for 20 hours.
The powder obtained by firing was crushed and classified in the same manner as in Example 1, and the particle size was measured. As a result, the volume average particle diameter D 50 was 19 μm, and the specific surface area was 0.1 m 2 / g. It was.
Moreover, the rate characteristic value of each powder (mortar crushed and classified) obtained by firing and the respective IR measurement values are summarized in Table 1, and the plotted results are shown in FIG. 3, FIG. 4, and FIG.

(比較例3)
比較例1と同じ原料混合粉を大気中で920℃20時間焼成した。
焼成して得られた粉末を、実施例1と同様に解砕及び分級し、その粒度を測定したところ、体積平均粒子径D50は22μmであり、比表面積は0.1m2/gであった。
また、焼成して得られた粉末(乳鉢解砕及び分級済)のレート特性値とそれぞれのIR測定値を表1にまとめ、プロットした結果を図3、図4、図5に示した。
(Comparative Example 3)
The same raw material mixed powder as in Comparative Example 1 was baked in the atmosphere at 920 ° C. for 20 hours.
The powder obtained by firing was crushed and classified in the same manner as in Example 1, and the particle size was measured. As a result, the volume average particle diameter D 50 was 22 μm, and the specific surface area was 0.1 m 2 / g. It was.
Moreover, the rate characteristic value of each powder (mortar crushed and classified) obtained by firing and the respective IR measurement values are summarized in Table 1, and the plotted results are shown in FIG. 3, FIG. 4, and FIG.


Figure 0003983745
Figure 0003983745

実施例1で得たリチウム遷移金属酸化物粉末のFT−IRスペクトルを示した図である。3 is a diagram showing an FT-IR spectrum of the lithium transition metal oxide powder obtained in Example 1. FIG. 電池評価のために作製した2032型コイン電池の構成を示す断面図である。It is sectional drawing which shows the structure of the 2032 type coin battery produced for battery evaluation. 横軸:Δ(IRピーク間距離)、縦軸:レート特性値からなる座標上に、実施例1〜5及び比較例13で得られたリチウム遷移金属酸化物粉末の各値をプロットし、その傾向を示したグラフである。The horizontal axis: Δ (distance between IR peaks), the vertical axis: on the coordinates consisting of the rate characteristic value, the values of the lithium transition metal oxide powders obtained in Examples 1 to 5 and Comparative Example 13 are plotted. It is the graph which showed the tendency. 横軸:Δ(IRピーク間距離)、縦軸:レート特性値からなる座標上に、実施例1〜5及び比較例13で得られたリチウム遷移金属酸化物粉末から製造した正極の各値をプロットし、その傾向を示したグラフである。Each value of the positive electrode manufactured from the lithium transition metal oxide powders obtained in Examples 1 to 5 and Comparative Example 13 is plotted on the coordinate composed of the horizontal axis: Δ (distance between IR peaks) and the vertical axis: rate characteristic value. It is the graph which plotted and showed the tendency. 横軸:Δ(IRピーク間距離)、縦軸:レート特性値からなる座標上に、実施例1〜5及び比較例13で得られたリチウム遷移金属酸化物粉末から製造した電池を充放電し、その後の正極材料の各値をプロットし、その傾向を示したグラフである。The battery manufactured from the lithium transition metal oxide powders obtained in Examples 1 to 5 and Comparative Example 13 is charged and discharged on the coordinates composed of the horizontal axis: Δ (distance between IR peaks) and the vertical axis: rate characteristic values. It is the graph which plotted each value of the positive electrode material after that, and showed the tendency.

符号の説明Explanation of symbols

11 正極ケース
12 封口板
13 集電体
15 正極
16 セパレータ
14 負極
17 ガスケット

DESCRIPTION OF SYMBOLS 11 Positive electrode case 12 Sealing plate 13 Current collector 15 Positive electrode 16 Separator 14 Negative electrode 17 Gasket

Claims (9)

組成式Li1+x(Mn(1-x)/3Co(1-x)/3Ni(1-x)/3)O2(x=0.01〜0.5)で表される層構造を有するリチウム遷移金属酸化物であって、赤外線吸収スペクトル(FT−IR)において、570〜595cm-1付近に出現するピークと、520〜550cm-1付近に出現するピークとの差が、50cm-1以下となる結合構造を有するリチウム遷移金属酸化物(75mol/Lに調整したニッケル:マンガン:コバルト=1:1:1の硫酸塩水溶液、13mol/Lのアンモニア水溶液、及び6mol/Lの水酸化ナトリウム水溶液を準備し、槽内に窒素ガスを毎分1リットルバブリングさせて溶存酸素量0.2mg/Lとし、ニッケル−マンガン−コバルト塩水溶液を毎分10ml及びアンモニアを毎分1mlの速度で、30℃に保ちながら混合撹拌し、槽内温度を30℃に保ったまま6mol/Lの水酸化ナトリウム水溶液を平均毎分6.2mlの速度で反応槽内のpHが12.0±0.2の範囲で保持されるように供給しつつ撹拌し、生成したマンガン含有複合水酸化物を反応槽上部よりオーバーフローさせ連続的に取り出し、滞留時間7時間で7時間連続作動させたのち採取し、水洗濾過後、80℃で12時間乾燥させてマンガン含有複合水酸化物を得、得られたマンガン含有複合水酸化物と水酸化リチウムとをリチウム/(ニッケル+マンガン+コバルト)のモル比が1.25となるように混合し、箱型炉中において800℃で20時間焼成して得られるリチウム遷移金属酸化物を除く。)。
Layer represented by the composition formula Li 1 + x (Mn (1-x) / 3 Co (1-x) / 3 Ni (1-x) / 3 ) O 2 (x = 0.01 to 0.5) A lithium transition metal oxide having a structure, and a difference between a peak appearing near 570 to 595 cm −1 and a peak appearing near 520 to 550 cm −1 in an infrared absorption spectrum (FT-IR) is 50 cm −1 or less lithium transition metal oxide (nickel: manganese: cobalt = 1: 1: 1 sulfate aqueous solution, 13 mol / L ammonia aqueous solution, and 6 mol / L water adjusted to 75 mol / L) A sodium oxide aqueous solution is prepared, nitrogen gas is bubbled into the tank at 1 liter per minute to a dissolved oxygen amount of 0.2 mg / L, a nickel-manganese-cobalt salt aqueous solution at a rate of 10 ml per minute and ammonia at a rate of 1 ml per minute. Keep at 30 ° C The mixture was stirred and maintained, and a 6 mol / L sodium hydroxide aqueous solution was maintained at a rate of 6.2 ml / min. The resulting manganese-containing composite hydroxide was continuously taken out by overflowing from the upper part of the reaction vessel, collected after being continuously operated for 7 hours with a residence time of 7 hours, filtered with water, 80 Dry at 12 ° C. for 12 hours to obtain a manganese-containing composite hydroxide, and the resulting manganese-containing composite hydroxide and lithium hydroxide have a lithium / (nickel + manganese + cobalt) molar ratio of 1.25. And a lithium transition metal oxide obtained by baking at 800 ° C. for 20 hours in a box furnace .
請求項1のリチウム遷移金属酸化物をリチウム電池の正極活物質として用い、負極にはリチウムを用いて充放電を行った時、充放電電圧範囲3.0〜4.3Vにおける充放電レートに対する容量の劣化が−6.7(mAh/(g・C))よりも小さいことを特徴とする請求項1記載のリチウム遷移金属酸化物。   When the lithium transition metal oxide according to claim 1 is used as a positive electrode active material of a lithium battery and the negative electrode is charged and discharged using lithium, the capacity with respect to a charge / discharge rate in a charge / discharge voltage range of 3.0 to 4.3 V. The lithium transition metal oxide according to claim 1, wherein the deterioration of the lithium is less than −6.7 (mAh / (g · C)). 請求項1又は2に記載のリチウム遷移金属酸化物を用いたリチウム電池用正極活物質。   The positive electrode active material for lithium batteries using the lithium transition metal oxide of Claim 1 or 2. 請求項3に記載の正極活物質を用いたリチウム電池用電極。   The electrode for lithium batteries using the positive electrode active material of Claim 3. 請求項4に記載のリチウム電池用電極を正極として用いたリチウム電池。   The lithium battery which used the electrode for lithium batteries of Claim 4 as a positive electrode. 請求項5に記載のリチウム電池を駆動用電源として用いた携帯電話機。   A mobile phone using the lithium battery according to claim 5 as a driving power source. 請求項5に記載のリチウム電池を駆動用電源として用いた携帯型コンピュータ。   A portable computer using the lithium battery according to claim 5 as a driving power source. 請求項5に記載のリチウム電池を駆動用電源として用いた電気自動車。   An electric vehicle using the lithium battery according to claim 5 as a driving power source. 請求項5に記載のリチウム電池を駆動用電源として用いた電力貯蔵用電源。

A power storage power source using the lithium battery according to claim 5 as a driving power source.

JP2004104962A 2004-03-31 2004-03-31 Lithium transition metal oxides for lithium batteries Expired - Lifetime JP3983745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104962A JP3983745B2 (en) 2004-03-31 2004-03-31 Lithium transition metal oxides for lithium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104962A JP3983745B2 (en) 2004-03-31 2004-03-31 Lithium transition metal oxides for lithium batteries

Publications (2)

Publication Number Publication Date
JP2005289700A JP2005289700A (en) 2005-10-20
JP3983745B2 true JP3983745B2 (en) 2007-09-26

Family

ID=35323087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104962A Expired - Lifetime JP3983745B2 (en) 2004-03-31 2004-03-31 Lithium transition metal oxides for lithium batteries

Country Status (1)

Country Link
JP (1) JP3983745B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595475B2 (en) * 2004-10-01 2010-12-08 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5315591B2 (en) * 2006-02-20 2013-10-16 ソニー株式会社 Positive electrode active material and battery
CN102983320A (en) * 2008-04-03 2013-03-20 株式会社Lg化学 Lithium secondary battery
WO2010082240A1 (en) * 2009-01-19 2010-07-22 株式会社村田製作所 Composite oxide, process for production thereof, and non-aqueous electrolyte secondary battery using the composite oxide
CN102341941B (en) 2009-03-31 2014-10-15 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery
US10056644B2 (en) * 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
EP2515364A1 (en) 2009-12-18 2012-10-24 JX Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
EP2518802B1 (en) 2009-12-22 2020-11-25 JX Nippon Mining & Metals Corporation Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
EP2533334B1 (en) 2010-02-05 2019-12-11 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101450416B1 (en) 2010-02-05 2014-10-14 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101445954B1 (en) 2010-03-04 2014-09-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101450421B1 (en) 2010-03-04 2014-10-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
CN102782913B (en) 2010-03-04 2015-02-11 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5467144B2 (en) 2010-03-05 2014-04-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102714312A (en) 2010-12-03 2012-10-03 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
CN102754252B (en) 2011-01-21 2014-12-17 Jx日矿日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
CN102812583B (en) 2011-03-29 2015-02-11 Jx日矿日石金属株式会社 Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
KR101539154B1 (en) 2011-03-31 2015-07-23 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
KR101316053B1 (en) * 2011-04-26 2013-10-11 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN104335396B (en) 2012-09-28 2018-01-05 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
TWI634695B (en) 2013-03-12 2018-09-01 美商蘋果公司 High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US9716265B2 (en) * 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
WO2017058650A1 (en) 2015-09-30 2017-04-06 Hongli Dai Cathode-active materials, their precursors, and methods of preparation
US10164256B2 (en) 2016-03-14 2018-12-25 Apple Inc. Cathode active materials for lithium-ion batteries
WO2018057584A1 (en) 2016-09-20 2018-03-29 Apple Inc. Cathode active materials having improved particle morphologies
WO2018057621A1 (en) 2016-09-21 2018-03-29 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
WO2019244278A1 (en) * 2018-06-20 2019-12-26 ヤマハ発動機株式会社 Nonaqueous electrolyte secondary battery positive electrode, and nonaqueous electrolyte secondary battery
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
US12074321B2 (en) 2019-08-21 2024-08-27 Apple Inc. Cathode active materials for lithium ion batteries

Also Published As

Publication number Publication date
JP2005289700A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP3983745B2 (en) Lithium transition metal oxides for lithium batteries
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
WO2005112152A1 (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
KR20140138780A (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JPWO2007037234A1 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2014166951A (en) Manganese based spinel type lithium transition metal oxide
JP2006525623A (en) A method for producing a lithium composite oxide for an anode active material of a lithium secondary battery.
JP5733571B2 (en) Method for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JP2020198195A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
Thirunakaran et al. Studies on chromium/aluminium-doped manganese spinel as cathode materials for lithium-ion batteries—A novel chelated sol–gel synthesis
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
JP2012195082A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
WO2016103571A1 (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP7135433B2 (en) Method for producing lithium-nickel composite oxide
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2009190954A (en) Lithium-titanium-iron compound oxide, its using method, lithium-ion secondary battery and method for producing the lithium-titanium-iron compound oxide
JP5819786B2 (en) Lithium cuprate positive electrode material, method for producing the positive electrode material, and lithium secondary battery containing the positive electrode material as a positive electrode active material
JP2014167873A (en) Negative electrode active material for lithium ion secondary battery, process of manufacturing the same, and lithium ion secondary battery
JPH10134811A (en) Manufacture of positive electrode material for lithium cell
JP5828282B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery and secondary battery using the same
JP7272052B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140713

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term