JP2002308627A - Method of manufacturing spinel type lithium manganate - Google Patents

Method of manufacturing spinel type lithium manganate

Info

Publication number
JP2002308627A
JP2002308627A JP2001111690A JP2001111690A JP2002308627A JP 2002308627 A JP2002308627 A JP 2002308627A JP 2001111690 A JP2001111690 A JP 2001111690A JP 2001111690 A JP2001111690 A JP 2001111690A JP 2002308627 A JP2002308627 A JP 2002308627A
Authority
JP
Japan
Prior art keywords
spinel
lithium manganate
type lithium
same manner
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001111690A
Other languages
Japanese (ja)
Inventor
Tsuneyoshi Kamata
恒好 鎌田
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001111690A priority Critical patent/JP2002308627A/en
Publication of JP2002308627A publication Critical patent/JP2002308627A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the elution of Mn in charging, to improve the high temperature property of a battery, such as high temperature preservation properties or high temperature cycle property and to improve current load factor. SOLUTION: The spinel type lithium manganate is manufactured by pulverizing electrodeposited manganese dioxide, neutralizing the resultant manganese dioxide with sodium hydroxide or sodium carbonate to adjust its pH to >=2, mixing the electrodeposited manganese dioxide having >=50 m<2> /g specific surface area and a lithium raw material with a compound containing at least one or more elements selected from magnesium, aluminum, nickel, cobalt, iron, copper, zinc, calcium, silicon, phosphorus, titanium, chromium, sodium, potassium, vanadium and boron so as to replace 0.05-12.5 mol% manganse with the elements of the compound and firing the mixture. A non-aqueous electrolyte secondary battery uses the spinel type lithium manganate as a positive electrode material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はスピネル型マンガン酸リ
チウムの製造方法に関し、詳しくは、非水電解質二次電
池用正極材料とした時に、高い不可逆容量を保ち、かつ
高温においてMnの溶出量を抑制し、高温保存特性、高
温サイクル特性等の電池の高温特性を向上させたスピネ
ル型マンガン酸リチウムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spinel-type lithium manganate. The present invention relates to a method for producing a spinel-type lithium manganate that suppresses and improves the high-temperature characteristics of a battery such as high-temperature storage characteristics and high-temperature cycle characteristics.

【0002】[0002]

【従来技術】近年のパソコンや電話等のポータブル化、
コードレス化の急速な進歩によりそれらの駆動用電源と
しての二次電池の需要が高まっている。その中でも非水
電解質二次電池は最も小型かつ高エネルギー密度を持つ
ため特に期待されている。上記の要望を満たす非水電解
質二次電池の正極材料としてはコバルト酸リチウム(L
iCoO)、ニッケル酸リチウム(LiNiO)、
マンガン酸リチウム(LiMn)等がある。これ
らの複合酸化物はリチウムに対し4V以上の電圧を有し
ていることから、高エネルギー密度を有する電池となり
得る。
2. Description of the Related Art In recent years, portable personal computers and telephones have become portable.
With the rapid progress of cordless technology, the demand for secondary batteries as power sources for their drive is increasing. Among them, non-aqueous electrolyte secondary batteries are particularly expected because they have the smallest size and high energy density. As a positive electrode material of a nonaqueous electrolyte secondary battery satisfying the above demand, lithium cobaltate (L
iCoO 2 ), lithium nickelate (LiNiO 2 ),
And lithium manganate (LiMn 2 O 4 ). Since these composite oxides have a voltage of 4 V or more with respect to lithium, a battery having a high energy density can be obtained.

【0003】上記の複合酸化物のうちLiCoO、L
iNiOは理論容量が280mAh/g程度であるの
に対し、LiMnは148mAh/gと小さい
が、原料となるマンガン酸化物が豊富で安価であること
や、LiNiOのような充電時の熱的不安定性がない
ことから、EV用途に適していると考えられている。
[0003] Among the above composite oxides, LiCoO 2 , L
INiO 2 whereas the theoretical capacity of about 280 mAh / g, but LiMn 2 O 4 is as small as 148 mAh / g, and that manganese oxide as a raw material is abundant and inexpensive, during charging, such as LiNiO 2 Is considered to be suitable for EV applications because of its lack of thermal instability.

【0004】しかしながら、このマンガン酸リチウム
(LiMn)は、高温においてMnが溶出するた
め、高温保存性、高温サイクル特性等の高温での電池特
性に劣るという問題がある。
However, since lithium manganate (LiMn 2 O 4 ) elutes Mn at a high temperature, there is a problem that the battery characteristics at a high temperature such as a high-temperature storage property and a high-temperature cycle characteristic are inferior.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の目的
は、非水電解質二次電池用正極材料とした時に、充電時
のMn溶出量を抑制し、高温保存性、高温サイクル特性
等の高温での電池特性を向上させたスピネル型マンガン
酸リチウムの製造方法および該マンガン酸リチウムから
なる正極材料、並びに該正極材を用いた非水電解質二次
電池を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a positive electrode material for a non-aqueous electrolyte secondary battery, which suppresses the amount of Mn elution during charging, and has a high temperature storage property and high temperature cycle characteristics. Another object of the present invention is to provide a method for producing a spinel-type lithium manganate having improved battery characteristics, a cathode material comprising the lithium manganate, and a non-aqueous electrolyte secondary battery using the cathode material.

【0006】[0006]

【課題を解決するための手段】スピネル型マンガン酸リ
チウムに用いるマンガン原料としてさまざまなマンガン
化合物の研究がなされている。電解二酸化マンガンは安
価、豊富であることから、スピネル型マンガン酸リチウ
ムのマンガン原料として好適である。リチウム一次電池
の正極活物質には比表面積の高い電解二酸化マンガンを
特定の温度で焼成したものが用いられている。この電解
二酸化マンガンの比表面積は電解条件に依存する。ま
た、アルカリマンガン電池用途にはソーダ中和が施され
る。ソーダ中和された電解二酸化マンガン中には少量の
ナトリウムが残留することが知られており、このナトリ
ウム量は中和条件に依存する。本発明者らは、マンガン
原料である電解二酸化マンガンを特定の条件で中和処理
を行い、その比表面積が一定以上であるとし、かつマン
ガンの一部を特定元素によって置換することによって、
上記目的を達成し得ることを知見した。
Various manganese compounds have been studied as a manganese raw material for spinel-type lithium manganate. Since electrolytic manganese dioxide is inexpensive and abundant, it is suitable as a manganese raw material for spinel-type lithium manganate. As a positive electrode active material of a lithium primary battery, a material obtained by firing electrolytic manganese dioxide having a high specific surface area at a specific temperature is used. The specific surface area of this electrolytic manganese dioxide depends on the electrolytic conditions. Soda neutralization is applied to alkaline manganese batteries. It is known that a small amount of sodium remains in soda-neutralized electrolytic manganese dioxide, and the amount of sodium depends on neutralization conditions. The present inventors perform a neutralization treatment on electrolytic manganese dioxide, which is a manganese raw material, under specific conditions, assume that the specific surface area is equal to or greater than a certain value, and replace a part of manganese with a specific element,
It has been found that the above object can be achieved.

【0007】よって、本発明は、電解析出した二酸化マ
ンガンを粉砕後、水酸化ナトリウムもしくは炭酸ナトリ
ウムで中和し、pHを2以上とし、かつその比表面積が
50m /g以上である電解二酸化マンガンとリチウム
原料とマグネシウム、アルミニウム、ニッケル、コバル
ト、鉄、銅、亜鉛、カルシウム、シリコン、リン、チタ
ン、クロム、ナトリウム、カリウム、バナジウム、ホウ
素から選ばれる少なくとも1種以上の元素を含む化合物
とを、該化合物がマンガンの0.05〜12.5モル%
を該元素で置換するように、混合し焼成することを特徴
とするスピネル型マンガン酸リチウムの製造方法であ
る。
Accordingly, the present invention provides a method for producing
After grinding the gun, add sodium hydroxide or sodium carbonate
And the pH is adjusted to 2 or more, and the specific surface area is
50m 2/ G or more electrolytic manganese dioxide and lithium
Raw materials and magnesium, aluminum, nickel, Kovar
G, iron, copper, zinc, calcium, silicon, phosphorus, titanium
, Chromium, sodium, potassium, vanadium, borane
Compound containing at least one element selected from elements
And the compound is 0.05 to 12.5 mol% of manganese.
Characterized by mixing and firing to replace
The method for producing spinel lithium manganate
You.

【0008】また、焼成温度が750℃以上で行われる
前記記載のスピネル型マンガン酸リチウムの製造方法で
ある。
[0008] Further, there is provided the method for producing spinel-type lithium manganate described above, wherein the firing temperature is 750 ° C or more.

【0009】また、前記記載の製造方法によって得られ
たスピネル型マンガン酸リチウムからなる非水電解質二
次電池用正極材料である。
A positive electrode material for a non-aqueous electrolyte secondary battery comprising a spinel-type lithium manganate obtained by the above-described production method.

【0010】また、前記記載の正極材料を用いた正極
と、リチウムを吸蔵・脱蔵できる負極と、非水電解質と
から構成される非水電解質二次電池である。
A non-aqueous electrolyte secondary battery comprises a positive electrode using the above-described positive electrode material, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態である
スピネル型マンガン酸リチウムの製造方法を詳細に説明
する。本発明において、スピネル型マンガン酸リチウム
のマンガン原料として、電解二酸化マンガンを用いる。
本発明における電解二酸化マンガンは、次の方法によっ
て得られる。電解液として所定濃度の硫酸マンガン溶液
を用い、陰極にカーボン板、陽極にチタン板を用い、加
温しつつ、一定の電流密度で電解を行い、陽極に二酸化
マンガンを電析させる。次に、電析した二酸化マンガン
を陽極から剥離し,所定粒度に粉砕する。この所定粒度
に粉砕された電解二酸化マンガンは、ナトリウム中和
後、水洗、乾燥する。ナトリウム中和としては、具体的
には水酸化ナトリウムまたは炭酸ナトリウムで中和され
る。なお、粉砕、中和の順序は特に限定されず、中和
後、粉砕してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing spinel-type lithium manganate according to an embodiment of the present invention will be described in detail. In the present invention, electrolytic manganese dioxide is used as a manganese raw material for spinel-type lithium manganate.
The electrolytic manganese dioxide in the present invention is obtained by the following method. A manganese sulfate solution having a predetermined concentration is used as an electrolytic solution, a carbon plate is used as a cathode, and a titanium plate is used as an anode. While heating, electrolysis is performed at a constant current density to deposit manganese dioxide on the anode. Next, the deposited manganese dioxide is peeled off from the anode and ground to a predetermined particle size. The electrolytic manganese dioxide pulverized to the predetermined particle size is washed with water and dried after neutralization with sodium. As the sodium neutralization, specifically, it is neutralized with sodium hydroxide or sodium carbonate. The order of pulverization and neutralization is not particularly limited, and pulverization may be performed after neutralization.

【0012】中和された電解二酸化マンガンのpHは2
以上、好ましくは2〜5.5である。pHが高いほど、
高温でのMn溶出量は低減されるが、初期放電容量が減
少する。pHが2未満ではその効果は不十分である。こ
の中和された電解二酸化マンガンの比表面積は50m
/g以上である。比表面積が50m/g以下だとリチ
ウム原料との反応性が悪くなり、均一なものが得られな
いためMn溶出量が低減されない。また、比表面積が5
0m/g以上の電解二酸化マンガンでは、均一なスピ
ネル型マンガン酸リチウムを得ることはできるが、比表
面積も高くなるため電解液との反応面積も高くなりMn
溶出量は低減されない。そこでナトリウム中和すること
で残存したナトリウムが焼成したときに均一に分散した
状態で反応することによりMn溶出量が低減される。
The pH of the neutralized electrolytic manganese dioxide is 2
As mentioned above, it is preferably 2 to 5.5. The higher the pH,
Although the amount of Mn elution at a high temperature is reduced, the initial discharge capacity is reduced. If the pH is less than 2, the effect is insufficient. The specific surface area of the neutralized electrolytic manganese dioxide is 50 m 2.
/ G or more. When the specific surface area is 50 m 2 / g or less, the reactivity with the lithium raw material is deteriorated, and a uniform product cannot be obtained. In addition, the specific surface area is 5
With electrolytic manganese dioxide of 0 m 2 / g or more, uniform spinel-type lithium manganate can be obtained, but the specific surface area also increases, so the reaction area with the electrolytic solution also increases, and Mn
The elution volume is not reduced. Thus, by neutralizing sodium, the remaining sodium reacts in a state of being uniformly dispersed when calcined, thereby reducing the amount of Mn eluted.

【0013】本発明では、この電解二酸化マンガンをリ
チウム原料とマグネシウム、アルミニウム、ニッケル、
コバルト、鉄、銅、亜鉛、カルシウム、シリコン、リ
ン、チタン、クロム、ナトリウム、カリウム、バナジウ
ム、ホウ素から選ばれる少なくとも1種以上の元素を含
む化合物とを混合、焼成してスピネル型マンガン酸リチ
ウムを得る。リチウム原料としては、炭酸リチウム(L
2CO3)、硝酸リチウム(LiNO )、水酸化リチ
ウム(LiOH)等が挙げられる。電解二酸化マンガン
とリチウム原料のLi/Mnモル比は0.50〜0.6
0が好ましい。
In the present invention, this electrolytic manganese dioxide is recycled.
Titanium raw materials and magnesium, aluminum, nickel,
Cobalt, iron, copper, zinc, calcium, silicon, metal
, Titanium, chromium, sodium, potassium, vanadium
Containing at least one element selected from the group consisting of
And calcination to form a spinel-type manganese oxide.
Get Umm. As a lithium raw material, lithium carbonate (L
iTwoCOThree), Lithium nitrate (LiNO 3), Lithium hydroxide
(LiOH). Electrolytic manganese dioxide
And the Li / Mn molar ratio of the lithium source is 0.50 to 0.6.
0 is preferred.

【0014】マンガンの一部を置換する元素を含む化合
物としては、マグネシウム、アルミニウム、ニッケル、
コバルト、鉄、銅、亜鉛、カルシウム、シリコン、リ
ン、チタン、クロム、ナトリウム、カリウム、バナジウ
ム、ホウ素の酸化物、水酸化物または炭酸塩である。ま
た、その置換量はマンガンの0.05〜12.5モル%
である。置換量がマンガンの12.5%を超えると、高
温でのマンガン溶出量は低減されるが、初期容量が減少
する。また、置換量がマンガンの0.05モル%未満で
は高温での電池特性の改善が十分でない。
Compounds containing an element that partially replaces manganese include magnesium, aluminum, nickel,
Cobalt, iron, copper, zinc, calcium, silicon, phosphorus, titanium, chromium, sodium, potassium, vanadium, boron oxides, hydroxides or carbonates. The substitution amount is 0.05 to 12.5 mol% of manganese.
It is. If the substitution amount exceeds 12.5% of manganese, the amount of manganese eluted at high temperatures is reduced, but the initial capacity is reduced. On the other hand, if the substitution amount is less than 0.05 mol% of manganese, the improvement in battery characteristics at high temperatures is not sufficient.

【0015】これら電解二酸化マンガンおよびリチウム
原料は、より大きな反応面積を得るために、原料混合前
あるいは後に粉砕することも好ましい。秤量、混合され
た原料はそのままでもあるいは造粒して使用してもよ
い。造粒方法は、湿式でも乾式でもよく、押し出し造
粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加
圧成型造粒、あるいはロール等を用いたフレーク造粒で
もよい。
These electrolytic manganese dioxide and lithium raw materials are preferably ground before or after mixing the raw materials in order to obtain a larger reaction area. The weighed and mixed raw materials may be used as they are or may be granulated. The granulation method may be wet or dry, and may be extrusion granulation, tumbling granulation, flow granulation, mixing granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. .

【0016】このようにして得られた原料は焼成炉内に
投入され、600〜1000℃で焼成することによっ
て、スピネル型マンガン酸リチウムが得られる。単一相
のスピネル型マンガン酸リチウムを得るには600℃程
度でも十分であるが、焼成温度が低いと粒成長が進まな
いので750℃以上の焼成温度、好ましくは850℃以
上の焼成温度が必要となる。ここで用いられる焼成炉と
しては、ロータリーキルンあるいは静置炉等が例示され
る。焼成時間は1時間以上、好ましくは5〜20時間で
ある。
The raw material thus obtained is put into a firing furnace and fired at 600 to 1000 ° C. to obtain a spinel type lithium manganate. A temperature of about 600 ° C. is sufficient to obtain a single-phase spinel-type lithium manganate, but a firing temperature of 750 ° C. or higher, preferably 850 ° C. or higher is necessary because a low firing temperature does not promote grain growth. Becomes Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours.

【0017】このようにして、ナトリウムを一定量含有
し、マンガンの一部を置換する元素を含む化合物を用い
て製造させるスピネル型マンガン酸リチウムが得られ
る。ナトリウムの含有量は0.07〜2.5重量%が好
ましい。このスピネル型マンガン酸リチウムは非水電解
質二次電池の正極材料として用いられる。
In this way, a spinel-type lithium manganate produced by using a compound containing a certain amount of sodium and containing an element that partially replaces manganese is obtained. The content of sodium is preferably 0.07 to 2.5% by weight. This spinel-type lithium manganate is used as a positive electrode material of a non-aqueous electrolyte secondary battery.

【0018】本発明の非水電解質二次電池では、上記正
極材料とカーボンブラック等の導電材とテフロン(登録
商標)バインダー等の結着剤とを混合して正極合剤と
し、また、負極にはリチウムまたはカーボン等のリチウ
ムを吸蔵、脱蔵できる材料が用いられ、非水系電解質と
しては、六フッ化リン酸リチウム(LiPF)等のリ
チウム塩をエチレンカーボネート−ジメチルカーボネー
ト等の混合溶媒に溶解したものが用いられるが、特に限
定されるものではない。
In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (registered trademark) are mixed to form a positive electrode mixture, and the negative electrode is formed. As the non-aqueous electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate. However, there is no particular limitation.

【0019】本発明の非水電解質二次電池は充電状態で
のマンガンの溶出を抑制することができるので、高温保
存、高温サイクル特性等の高温での電池特性を向上させ
ることができる。以下、実施例等に基づき本発明を具体
的に説明するが、本発明は特にこれに限定されるもので
はない。
The non-aqueous electrolyte secondary battery of the present invention can suppress the elution of manganese in a charged state, so that battery characteristics at high temperatures such as high-temperature storage and high-temperature cycle characteristics can be improved. Hereinafter, the present invention will be specifically described based on examples and the like, but the present invention is not particularly limited thereto.

【0020】[0020]

【実施例】実施例1 マンガンの電解液として、硫酸濃度10g/l、マンガ
ン濃度55g/lの硫酸マンガン水溶液を調製した。こ
の電解液の温度を90℃となるように加温して、陰極に
カーボン板、陽極にチタン板を用いて、90A/m
電流密度で電解を行った。次いで、陽極に電析した二酸
化マンガンを剥離し、7mm以下のチップに粉砕し、さ
らにこのチップを平均粒径約20μmに粉砕した。
EXAMPLE 1 A manganese sulfate aqueous solution having a sulfuric acid concentration of 10 g / l and a manganese concentration of 55 g / l was prepared as a manganese electrolytic solution. The temperature of the electrolytic solution was heated to 90 ° C., and electrolysis was performed at a current density of 90 A / m 2 using a carbon plate as a cathode and a titanium plate as an anode. Next, the manganese dioxide electrodeposited on the anode was peeled off and crushed into chips of 7 mm or less, and the chips were further crushed to an average particle size of about 20 μm.

【0021】この二酸化マンガン10kgを20リット
ルの水で洗浄し、洗浄水を排出後、再度20リットルの
水を加えた。ここに水酸化ナトリウム140gを溶解
し、撹拌しながら24時間中和処理し、水洗、濾過後、
乾燥(50℃、12時間)した。得られた粉末につい
て、JIS K14677−1984に従って測定した
pH、ナトリウム含有量および比表面積を表1に示す。
10 kg of this manganese dioxide was washed with 20 liters of water, and after washing water was discharged, 20 liters of water was added again. Here, 140 g of sodium hydroxide was dissolved, neutralized for 24 hours while stirring, washed with water, filtered,
It was dried (50 ° C., 12 hours). Table 1 shows the pH, sodium content and specific surface area of the obtained powder measured according to JIS K14677-1984.

【0022】この平均粒径約20μmの二酸化マンガン
950g、水酸化アルミニウム41.7g(マンガンの
5モル%を置換)とLi/(Mn+置換元素)モル比
0.54となるように炭酸リチウムを混合し、箱型炉
中、850℃で20時間焼成してスピネル型マンガン酸
リチウムを得た。このスピネル型マンガン酸リチウムの
置換元素及びマンガンの置換量を表1に示す。
Lithium carbonate was mixed with 950 g of manganese dioxide having an average particle diameter of about 20 μm, 41.7 g of aluminum hydroxide (substituted for 5 mol% of manganese), and a Li / (Mn + substituted element) molar ratio of 0.54. Then, the resultant was fired in a box furnace at 850 ° C. for 20 hours to obtain spinel-type lithium manganate. Table 1 shows the substitution elements of the spinel-type lithium manganate and the substitution amounts of manganese.

【0023】このようにして得られたスピネル型マンガ
ン酸リチウムを80重量部、導電剤としてカーボンブラ
ック15重量部および結着剤としてポリ四フッ化エチレ
ン5重量部を混合して正極合剤を作製した。
A positive electrode mixture is prepared by mixing 80 parts by weight of the thus obtained spinel type lithium manganate, 15 parts by weight of carbon black as a conductive agent and 5 parts by weight of polytetrafluoroethylene as a binder. did.

【0024】この正極合剤を用いて図1に示すコイン型
非水電解質二次電池を作製した。すなわち、耐有機電解
液性のステンレス鋼製の正極ケース1の内側には同じく
ステンレス鋼製の集電体3がスポット熔接されている。
集電体3の上面には上記正極合剤からなる正極5が圧着
されている。正極5の上面には、電解液を含浸した微孔
性のポリプロピレン樹脂製のセパレータ6が配置されて
いる。正極ケース1の開口部には、下方に金属リチウム
からなる負極4を接合した封口板2が、ポリプロピレン
製のガスケット7を挟んで配置されており、これにより
電池は密封されている。封口板2は、負極端子を兼ね、
正極ケース1と同様のステンレス鋼製である。電池の直
径は20mm、電池総高1.6mmである。電解液に
は、エチレンカーボネートと1,3−ジメトキシエタン
を等体積混合したものを溶媒とし、これに溶質として六
フッ化リン酸リチウムを1mol/リットル溶解させた
ものを用いた。
Using this positive electrode mixture, a coin-type nonaqueous electrolyte secondary battery shown in FIG. 1 was produced. That is, the current collector 3 also made of stainless steel is spot-welded inside the positive electrode case 1 made of stainless steel having resistance to organic electrolyte.
On the upper surface of the current collector 3, a positive electrode 5 made of the above positive electrode mixture is pressed. On the upper surface of the positive electrode 5, a separator 6 made of microporous polypropylene resin impregnated with an electrolytic solution is arranged. At the opening of the positive electrode case 1, a sealing plate 2 to which a negative electrode 4 made of metallic lithium is joined is disposed below a gasket 7 made of polypropylene, whereby the battery is sealed. The sealing plate 2 also serves as a negative electrode terminal,
It is made of the same stainless steel as the positive electrode case 1. The diameter of the battery is 20 mm, and the total height of the battery is 1.6 mm. As the electrolytic solution, a solution obtained by mixing ethylene carbonate and 1,3-dimethoxyethane in an equal volume was used as a solvent, and a solution in which lithium hexafluorophosphate was dissolved at 1 mol / liter as a solute was used.

【0025】このようにして得られた電池について充放
電試験を行った。充放電試験は20℃において行われ、
電流密度を0.5mA/cmとし、電圧4.3Vから
3.0Vの範囲で行った。また、この電池を4.3Vで
充電し、80℃の環境下で3日間保存した後、これらの
電池の放電容量を容量維持率として電池の保存特性を確
認した。初期放電容量および高温保存容量維持率の測定
結果を表1に示す。
The battery obtained in this manner was subjected to a charge / discharge test. The charge / discharge test is performed at 20 ° C.
The current density was 0.5 mA / cm 2 , and the voltage was in the range of 4.3 V to 3.0 V. The batteries were charged at 4.3 V and stored in an environment of 80 ° C. for 3 days, and the storage characteristics of the batteries were checked using the discharge capacity of these batteries as the capacity retention ratio. Table 1 shows the measurement results of the initial discharge capacity and the high-temperature storage capacity retention rate.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例2 電解二酸化マンガンの中和の際の水酸化ナトリウム添加
量を75gとした以外は、実施例1と同様にスピネル型
マンガン酸リチウムの合成を行った。用いた電解二酸化
マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 2 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of sodium hydroxide added during neutralization of electrolytic manganese dioxide was changed to 75 g. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.

【0028】実施例3 電解二酸化マンガンの中和の際の水酸化ナトリウム添加
量を280gとした以外は、実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 3 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the amount of sodium hydroxide added during neutralization of electrolytic manganese dioxide was changed to 280 g. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.

【0029】実施例4 焼成温度を900℃とした以外は、実施例1と同様にス
ピネル型マンガン酸リチウムの合成を行った。用いた電
解二酸化マンガンの中和後のpH、ナトリウム含有量、
比表面積、得られたスピネル型マンガン酸リチウムの置
換元素及びマンガンの置換量を表1に示す。また、この
スピネル型マンガン酸リチウムを正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量および高温保存容量維持率を測定し、その
結果を表1に示す。
Example 4 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the sintering temperature was 900 ° C. PH after neutralization of used electrolytic manganese dioxide, sodium content,
Table 1 shows the specific surface area, the substitution element of the obtained spinel-type lithium manganate, and the substitution amount of manganese. Further, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material,
The initial discharge capacity and the high-temperature storage capacity retention rate were measured, and the results are shown in Table 1.

【0030】実施例5 焼成温度を750℃とした以外は、実施例1と同様にス
ピネル型マンガン酸リチウムの合成を行った。用いた電
解二酸化マンガンの中和後のpH、ナトリウム含有量、
比表面積、得られたスピネル型マンガン酸リチウムの置
換元素及びマンガンの置換量を表1に示す。また、この
スピネル型マンガン酸リチウムを正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量および高温保存容量維持率を測定し、その
結果を表1に示す。
Example 5 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the firing temperature was 750 ° C. PH after neutralization of used electrolytic manganese dioxide, sodium content,
Table 1 shows the specific surface area, the substitution element of the obtained spinel-type lithium manganate, and the substitution amount of manganese. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material,
The initial discharge capacity and the high-temperature storage capacity retention rate were measured, and the results are shown in Table 1.

【0031】実施例6 実施例1で作製した電解二酸化マンガン995g、水酸
化アルミニウム4.17g(マンガンの0.5モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 6 995 g of electrolytic manganese dioxide and 4.17 g of aluminum hydroxide (substituted by 0.5 mol% of manganese) prepared in Example 1 were adjusted to have a Li / (Mn + substituted element) molar ratio of 0.54. , And spinel-type lithium manganate was synthesized in the same manner as in Example 1. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0032】実施例7 実施例1で作製した電解二酸化マンガン875g、水酸
化アルミニウム104.25g(マンガンの12.5モ
ル%を置換)とLi/(Mn+置換元素)モル比0.5
4となるように炭酸リチウムを混合した以外は実施例1
と同様にスピネル型マンガン酸リチウムの合成を行っ
た。用いた電解二酸化マンガンの中和後のpH、ナトリ
ウム含有量、比表面積、得られたスピネル型マンガン酸
リチウムの置換元素及びマンガンの置換量を表1に示
す。また、このスピネル型マンガン酸リチウムを正極材
料として実施例1と同様にしてコイン型非水電解液二次
電池を作製し、初期放電容量および高温保存容量維持率
を測定し、その結果を表1に示す。
Example 7 875 g of electrolytic manganese dioxide prepared in Example 1, 104.25 g of aluminum hydroxide (substituting 12.5 mol% of manganese) and a Li / (Mn + substituted element) molar ratio of 0.5 were used.
Example 1 except that lithium carbonate was mixed so as to obtain No. 4.
In the same manner as described above, spinel-type lithium manganate was synthesized. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0033】実施例8 実施例1で作製した電解二酸化マンガン995g、酸化
マグネシウム2.16g(マンガンの0.5モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 8 995 g of electrolytic manganese dioxide prepared in Example 1, 2.16 g of magnesium oxide (substituting 0.5 mol% of manganese) and the Li / (Mn + substituted element) molar ratio were set to 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0034】実施例9 実施例1で作製した電解二酸化マンガン950g、酸化
マグネシウム21.6g(マンガンの5モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表1に示す。
Example 9 950 g of electrolytic manganese dioxide prepared in Example 1 and 21.6 g of magnesium oxide (substituting 5 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured.

【0035】実施例10 実施例1で作製した電解二酸化マンガン900g、酸化
マグネシウム43.2g(マンガンの10モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 10 900 g of electrolytic manganese dioxide and 43.2 g of magnesium oxide (substituted for 10 mol% of manganese) prepared in Example 1 were mixed with lithium carbonate so that the molar ratio of Li / (Mn + substituted element) was 0.54. Was synthesized in the same manner as in Example 1 except that was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0036】実施例11 実施例1で作製した電解二酸化マンガン995g、水酸
化ニッケル4.96g(マンガンの0.5モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 11 995 g of electrolytic manganese dioxide and 4.96 g of nickel hydroxide (substituted by 0.5 mol% of manganese) prepared in Example 1 were adjusted to have a Li / (Mn + substituted element) molar ratio of 0.54. , And spinel-type lithium manganate was synthesized in the same manner as in Example 1. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0037】実施例12 実施例1で作製した電解二酸化マンガン950g、水酸
化ニッケル49.6g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 12 950 g of electrolytic manganese dioxide and 49.6 g of nickel hydroxide (substituted for 5 mol% of manganese) prepared in Example 1 were carbonated so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0038】実施例13 実施例1で作製した電解二酸化マンガン900g、水酸
化ニッケル99.2g(マンガンの10モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表1に示す。
Example 13 900 g of electrolytic manganese dioxide prepared in Example 1 and 99.2 g of nickel hydroxide (replace 10 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 1.

【0039】実施例14 実施例1で作製した電解二酸化マンガン995g、水酸
化コバルト4.97g(マンガンの0.5モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 14 995 g of electrolytic manganese dioxide prepared in Example 1, 4.97 g of cobalt hydroxide (substituting 0.5 mol% of manganese), and the molar ratio of Li / (Mn + substituted element) was 0.54. , And spinel-type lithium manganate was synthesized in the same manner as in Example 1. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0040】実施例15 実施例1で作製した電解二酸化マンガン950g、水酸
化コバルト49.7g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 15 950 g of electrolytic manganese dioxide and 49.7 g of cobalt hydroxide (substituted for 5 mol% of manganese) prepared in Example 1 were carbonated so that the Li / (Mn + substituted element) molar ratio was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0041】実施例16 実施例1で作製した電解二酸化マンガン875g、水酸
化コバルト124.25g(マンガンの12.5モル%
を置換)とLi/(Mn+置換元素)モル比0.54と
なるように炭酸リチウムを混合した以外は実施例1と同
様にスピネル型マンガン酸リチウムの合成を行った。用
いた電解二酸化マンガンの中和後のpH、ナトリウム含
有量、比表面積、得られたスピネル型マンガン酸リチウ
ムの置換元素及びマンガンの置換量を表1に示す。ま
た、このスピネル型マンガン酸リチウムを正極材料とし
て実施例1と同様にしてコイン型非水電解液二次電池を
作製し、初期放電容量および高温保存容量維持率を測定
し、その結果を表1に示す。
Example 16 875 g of electrolytic manganese dioxide prepared in Example 1 and 124.25 g of cobalt hydroxide (12.5 mol% of manganese)
Was replaced with lithium carbonate so that the molar ratio of Li / (Mn + substituted element) was 0.54, and spinel-type lithium manganate was synthesized in the same manner as in Example 1. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0042】実施例17 実施例1で作製した電解二酸化マンガン995g、三酸
化二鉄2.16g(マンガンの0.5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 17 995 g of electrolytic manganese dioxide prepared in Example 1, 2.16 g of diiron trioxide (substituting 0.5 mol% of manganese), and the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed as described above. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0043】実施例18 実施例1で作製した電解二酸化マンガン950g、三酸
化二鉄21.6g(マンガンの5モル%を置換)とLi
/(Mn+置換元素)モル比0.54となるように炭酸
リチウムを混合した以外は実施例1と同様にスピネル型
マンガン酸リチウムの合成を行った。用いた電解二酸化
マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 18 950 g of electrolytic manganese dioxide prepared in Example 1 and 21.6 g of diiron trioxide (substituting 5 mol% of manganese) with Li
/ (Mn + substituted element) A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so as to have a molar ratio of 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0044】実施例19 実施例1で作製した電解二酸化マンガン875g、三酸
化二鉄54g(マンガンの12.5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 19 875 g of electrolytic manganese dioxide prepared in Example 1 and 54 g of diiron trioxide (substituting 12.5 mol% of manganese) with L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0045】実施例20 実施例1で作製した電解二酸化マンガン997.5g、
一酸化銅2.13g(マンガンの0.25モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 20 997.5 g of the electrolytic manganese dioxide prepared in Example 1,
Spinel-type manganese in the same manner as in Example 1 except that 2.13 g of copper monoxide (substituting 0.25 mol% of manganese) and lithium carbonate were mixed so that the molar ratio of Li / (Mn + substituting element) was 0.54. Synthesis of lithium oxide was performed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0046】実施例21 実施例1で作製した電解二酸化マンガン950g、一酸
化銅42.6g(マンガンの5モル%を置換)とLi/
(Mn+置換元素)モル比0.54となるように炭酸リ
チウムを混合した以外は実施例1と同様にスピネル型マ
ンガン酸リチウムの合成を行った。用いた電解二酸化マ
ンガンの中和後のpH、ナトリウム含有量、比表面積、
得られたスピネル型マンガン酸リチウムの置換元素及び
マンガンの置換量を表1に示す。また、このスピネル型
マンガン酸リチウムを正極材料として実施例1と同様に
してコイン型非水電解液二次電池を作製し、初期放電容
量および高温保存容量維持率を測定し、その結果を表1
に示す。
Example 21 950 g of electrolytic manganese dioxide prepared in Example 1, 42.6 g of copper monoxide (substituting 5 mol% of manganese) with Li /
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of (Mn + substituted element) was 0.54. PH after neutralization of the used electrolytic manganese dioxide, sodium content, specific surface area,
Table 1 shows the substitution elements of the obtained spinel-type lithium manganate and the substitution amounts of manganese. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured.
Shown in

【0047】実施例22 実施例1で作製した電解二酸化マンガン900g、一酸
化銅85.2g(マンガンの10モル%を置換)とLi
/(Mn+置換元素)モル比0.54となるように炭酸
リチウムを混合した以外は実施例1と同様にスピネル型
マンガン酸リチウムの合成を行った。用いた電解二酸化
マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 22 900 g of electrolytic manganese dioxide prepared in Example 1, 85.2 g of copper monoxide (substituting 10 mol% of manganese) with Li
/ (Mn + substituted element) A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so as to have a molar ratio of 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0048】実施例23 実施例1で作製した電解二酸化マンガン997.5g、
酸化亜鉛2.18g(マンガンの0.25モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 23 997.5 g of the electrolytic manganese dioxide prepared in Example 1
Spinel-type manganic acid as in Example 1 except that 2.18 g of zinc oxide (substituting 0.25 mol% of manganese) and lithium carbonate were mixed so that the molar ratio of Li / (Mn + substituting element) was 0.54. Synthesis of lithium was performed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0049】実施例24 実施例1で作製した電解二酸化マンガン950g、酸化
亜鉛43.5g(マンガンの5モル%を置換)とLi/
(Mn+置換元素)モル比0.54となるように炭酸リ
チウムを混合した以外は実施例1と同様にスピネル型マ
ンガン酸リチウムの合成を行った。用いた電解二酸化マ
ンガンの中和後のpH、ナトリウム含有量、比表面積、
得られたスピネル型マンガン酸リチウムの置換元素及び
マンガンの置換量を表1に示す。また、このスピネル型
マンガン酸リチウムを正極材料として実施例1と同様に
してコイン型非水電解液二次電池を作製し、初期放電容
量および高温保存容量維持率を測定し、その結果を表1
に示す。
Example 24 950 g of electrolytic manganese dioxide prepared in Example 1, 43.5 g of zinc oxide (substituting 5 mol% of manganese) with Li /
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of (Mn + substituted element) was 0.54. PH after neutralization of the used electrolytic manganese dioxide, sodium content, specific surface area,
Table 1 shows the substitution elements of the obtained spinel-type lithium manganate and the substitution amounts of manganese. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured.
Shown in

【0050】実施例25 実施例1で作製した電解二酸化マンガン900g、酸化
亜鉛87g(マンガンの10モル%を置換)とLi/
(Mn+置換元素)モル比0.54となるように炭酸リ
チウムを混合した以外は実施例1と同様にスピネル型マ
ンガン酸リチウムの合成を行った。用いた電解二酸化マ
ンガンの中和後のpH、ナトリウム含有量、比表面積、
得られたスピネル型マンガン酸リチウムの置換元素及び
マンガンの置換量を表1に示す。また、このスピネル型
マンガン酸リチウムを正極材料として実施例1と同様に
してコイン型非水電解液二次電池を作製し、初期放電容
量および高温保存容量維持率を測定し、その結果を表1
に示す。
Example 25 900 g of electrolytic manganese dioxide prepared in Example 1, 87 g of zinc oxide (substituted by 10 mol% of manganese) and Li /
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of (Mn + substituted element) was 0.54. PH after neutralization of the used electrolytic manganese dioxide, sodium content, specific surface area,
Table 1 shows the substitution elements of the obtained spinel-type lithium manganate and the substitution amounts of manganese. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured.
Shown in

【0051】実施例26 実施例1で作製した電解二酸化マンガン997.5g、
水酸化カルシウム1.98g(マンガンの0.25モル
%を置換)とLi/(Mn+置換元素)モル比0.54
となるように炭酸リチウムを混合した以外は実施例1と
同様にスピネル型マンガン酸リチウムの合成を行った。
用いた電解二酸化マンガンの中和後のpH、ナトリウム
含有量、比表面積、得られたスピネル型マンガン酸リチ
ウムの置換元素及びマンガンの置換量を表1に示す。ま
た、このスピネル型マンガン酸リチウムを正極材料とし
て実施例1と同様にしてコイン型非水電解液二次電池を
作製し、初期放電容量および高温保存容量維持率を測定
し、その結果を表1に示す。
Example 26 997.5 g of the electrolytic manganese dioxide prepared in Example 1,
1.98 g of calcium hydroxide (substituting 0.25 mol% of manganese) and a molar ratio of Li / (Mn + substituting element) of 0.54
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed such that
Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0052】実施例27 実施例1で作製した電解二酸化マンガン950g、水酸
化カルシウム39.6g(マンガンの5モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表1に示す。
Example 27 950 g of electrolytic manganese dioxide prepared in Example 1 and 39.6 g of calcium hydroxide (substituting 5 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 1.

【0053】実施例28 実施例1で作製した電解二酸化マンガン900g、水酸
化カルシウム79.2g(マンガンの10モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 28 900 g of electrolytic manganese dioxide and 79.2 g of calcium hydroxide (substituted for 10 mol% of manganese) prepared in Example 1 were carbonated so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0054】実施例29 実施例1で作製した電解二酸化マンガン997.5g、
二酸化ケイ素1.53g(マンガンの0.25モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 29 997.5 g of the electrolytic manganese dioxide prepared in Example 1
Spinel-type manganic acid in the same manner as in Example 1 except that 1.53 g of silicon dioxide (substituting 0.25 mol% of manganese) and lithium carbonate were mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Synthesis of lithium was performed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0055】実施例30 実施例1で作製した電解二酸化マンガン950g、二酸
化ケイ素30.6g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 30 950 g of electrolytic manganese dioxide prepared in Example 1, 30.6 g of silicon dioxide (substituted for 5 mol% of manganese) and L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0056】実施例31 実施例1で作製した電解二酸化マンガン900g、二酸
化ケイ素61.2g(マンガンの10モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 31 900 g of electrolytic manganese dioxide and 61.2 g of silicon dioxide (substituted for 10 mol% of manganese) prepared in Example 1 were mixed with lithium carbonate so that the molar ratio of Li / (Mn + substituted element) was 0.54. Was synthesized in the same manner as in Example 1 except that was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0057】実施例32 実施例1で作製した電解二酸化マンガン997.5g、
二酸化チタン2.13g(マンガンの0.25モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 32 997.5 g of the electrolytic manganese dioxide prepared in Example 1
Spinel-type manganic acid in the same manner as in Example 1 except that 2.13 g of titanium dioxide (substituting 0.25 mol% of manganese) and lithium carbonate were mixed so that the molar ratio of Li / (Mn + substituting element) was 0.54. Synthesis of lithium was performed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0058】実施例33 実施例1で作製した電解二酸化マンガン950g、二酸
化チタン42.7g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 33 950 g of electrolytic manganese dioxide and 42.7 g of titanium dioxide (substituted for 5 mol% of manganese) prepared in Example 1 were replaced by L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0059】実施例34 実施例1で作製した電解二酸化マンガン900g、二酸
化チタン85.4g(マンガンの10モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 34 Lithium carbonate was prepared in the same manner as in Example 1 except that 900 g of electrolytic manganese dioxide, 85.4 g of titanium dioxide (substituted for 10 mol% of manganese) and Li / (Mn + substituted element) molar ratio were 0.54. Was synthesized in the same manner as in Example 1 except that was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0060】実施例35 実施例1で作製した電解二酸化マンガン995g、三酸
化二クロム4.06g(マンガンの0.5モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 35 995 g of electrolytic manganese dioxide prepared in Example 1, 4.06 g of dichromium trioxide (substituting 0.5 mol% of manganese), and the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed as described above. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0061】実施例36 実施例1で作製した電解二酸化マンガン950g、三酸
化二クロム40.6g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 36 The electrolytic manganese dioxide prepared in Example 1 was 950 g, dichromium trioxide 40.6 g (substituted 5 mol% of manganese) and the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0062】実施例37 実施例1で作製した電解二酸化マンガン875g、三酸
化二クロム101.5g(マンガンの12.5モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 37 875 g of electrolytic manganese dioxide prepared in Example 1, 101.5 g of dichromium trioxide (substituting 12.5 mol% of manganese), and a molar ratio of Li / (Mn + substituted element) of 0.54 were obtained. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed as described above. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0063】実施例38 実施例1で作製した電解二酸化マンガン997.5g、
五酸化ニリン1.83g(マンガンの0.25モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 38 997.5 g of the electrolytic manganese dioxide prepared in Example 1
Spinel-type manganese in the same manner as in Example 1 except that 1.83 g of diphosphorus pentoxide (substituting 0.25 mol% of manganese) and lithium carbonate were mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Synthesis of lithium oxide was performed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0064】実施例39 実施例1で作製した電解二酸化マンガン950g、五酸
化ニリン36.6g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 39 950 g of the electrolytic manganese dioxide prepared in Example 1 and 36.6 g of diphosphorus pentoxide (substituting 5 mol% of manganese) with L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0065】実施例40 実施例1で作製した電解二酸化マンガン900g、五酸
化ニリン73.2g(マンガンの10モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
EXAMPLE 40 900 g of electrolytic manganese dioxide prepared in Example 1, 73.2 g of diphosphorus pentoxide (substituting 10 mol% of manganese), and carbonic acid were added so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0066】実施例41 実施例1で作製した電解二酸化マンガン997.5g、
炭酸ナトリウム1.33g(マンガンの0.25モル%
を置換)とLi/(Mn+置換元素)モル比0.54と
なるように炭酸リチウムを混合した以外は実施例1と同
様にスピネル型マンガン酸リチウムの合成を行った。用
いた電解二酸化マンガンの中和後のpH、ナトリウム含
有量、比表面積、得られたスピネル型マンガン酸リチウ
ムの置換元素及びマンガンの置換量を表1に示す。ま
た、このスピネル型マンガン酸リチウムを正極材料とし
て実施例1と同様にしてコイン型非水電解液二次電池を
作製し、初期放電容量および高温保存容量維持率を測定
し、その結果を表1に示す。
Example 41 997.5 g of the electrolytic manganese dioxide prepared in Example 1
1.33 g of sodium carbonate (0.25 mol% of manganese
Was replaced with lithium carbonate so that the molar ratio of Li / (Mn + substituted element) was 0.54, and spinel-type lithium manganate was synthesized in the same manner as in Example 1. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0067】実施例42 実施例1で作製した電解二酸化マンガン990g、炭酸
ナトリウム5.3g(マンガンの1モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 42 990 g of electrolytic manganese dioxide prepared in Example 1, 5.3 g of sodium carbonate (substituting 1 mol% of manganese) and L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0068】実施例43 実施例1で作製した電解二酸化マンガン950g、炭酸
ナトリウム26.5g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 43 950 g of electrolytic manganese dioxide prepared in Example 1, 26.5 g of sodium carbonate (substituting 5 mol% of manganese), and lithium carbonate so that the molar ratio of Li / (Mn + substituted element) was 0.54. Was synthesized in the same manner as in Example 1 except that was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0069】実施例44 実施例1で作製した電解二酸化マンガン997.5g、
炭酸カリウム1.73g(マンガンの0.25モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 44 997.5 g of the electrolytic manganese dioxide prepared in Example 1
Spinel-type manganic acid in the same manner as in Example 1 except that 1.73 g of potassium carbonate (substituting 0.25 mol% of manganese) and lithium carbonate were mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Synthesis of lithium was performed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0070】実施例45 実施例1で作製した電解二酸化マンガン990g、炭酸
カリウム6.92g(マンガンの1モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 45 990 g of electrolytic manganese dioxide prepared in Example 1 and 6.92 g of potassium carbonate (substituting 1 mol% of manganese) with L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0071】実施例46 実施例1で作製した電解二酸化マンガン950g、炭酸
カリウム34.6g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 46 950 g of electrolytic manganese dioxide prepared in Example 1 and 34.6 g of potassium carbonate (substituted by 5 mol% of manganese) were replaced by L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0072】実施例47 実施例1で作製した電解二酸化マンガン995g、五酸
化二バナジウム4.86g(マンガンの0.5モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Example 47 995 g of electrolytic manganese dioxide prepared in Example 1, 4.86 g of divanadium pentoxide (substituting 0.5 mol% of manganese), and the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed as described above. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0073】[0073]

【表2】 [Table 2]

【0074】実施例48 実施例1で作製した電解二酸化マンガン950g、五酸
化二バナジウム48.6g(マンガンの5モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Example 48 The electrolytic manganese dioxide prepared in Example 1 and 950 g of divanadium pentoxide (substituted by 5 mol% of manganese) with Li / (Mn + substituted element) at a molar ratio of 0.54 were prepared. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0075】実施例49 実施例1で作製した電解二酸化マンガン875g、五酸
化二バナジウム121.5g(マンガンの12.5モル
%を置換)とLi/(Mn+置換元素)モル比0.54
となるように炭酸リチウムを混合した以外は実施例1と
同様にスピネル型マンガン酸リチウムの合成を行った。
用いた電解二酸化マンガンの中和後のpH、ナトリウム
含有量、比表面積、得られたスピネル型マンガン酸リチ
ウムの置換元素及びマンガンの置換量を表1に示す。ま
た、このスピネル型マンガン酸リチウムを正極材料とし
て実施例1と同様にしてコイン型非水電解液二次電池を
作製し、初期放電容量および高温保存容量維持率を測定
し、その結果を表2に示す。
Example 49 875 g of electrolytic manganese dioxide prepared in Example 1 and 121.5 g of divanadium pentoxide (substituting 12.5 mol% of manganese) with a molar ratio of Li / (Mn + substituted element) of 0.54
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed such that
Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0076】実施例50 実施例1で作製した電解二酸化マンガン997.5g、
三酸化ホウ素0.97g(マンガンの0.25モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Example 50 997.5 g of the electrolytic manganese dioxide prepared in Example 1 was used.
Spinel-type manganese in the same manner as in Example 1 except that 0.97 g of boron trioxide (substituting 0.25 mol% of manganese) and lithium carbonate were mixed so that the molar ratio of Li / (Mn + substituting element) was 0.54. Synthesis of lithium oxide was performed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0077】実施例51 実施例1で作製した電解二酸化マンガン990g、三酸
化ホウ素3.86g(マンガンの1モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Example 51 990 g of electrolytic manganese dioxide prepared in Example 1 and 3.86 g of boron trioxide (substituting 1 mol% of manganese) with L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0078】実施例52 実施例1で作製した電解二酸化マンガン950g、三酸
化ホウ素19.3g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Example 52 950 g of the electrolytic manganese dioxide prepared in Example 1 and 19.3 g of boron trioxide (substituting 5 mol% of manganese) were replaced by L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0079】比較例1 マンガンの電解液として、硫酸濃度50g/l、マンガ
ン濃度40g/lの硫酸マンガン水溶液を調製した。こ
の電解液の温度を95℃となるように加温して、陰極に
カーボン板、陽極にチタン板を用いて、60A/m
電流密度で電解を行った。これ以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解質二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 1 A manganese sulfate aqueous solution having a sulfuric acid concentration of 50 g / l and a manganese concentration of 40 g / l was prepared as a manganese electrolytic solution. The temperature of the electrolytic solution was heated to 95 ° C., and electrolysis was performed at a current density of 60 A / m 2 using a carbon plate as a cathode and a titanium plate as an anode. Except for this, the synthesis of spinel-type lithium manganate was performed in the same manner as in Example 1. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0080】比較例2 電解二酸化マンガンの中和を行わなかった(水酸化ナト
リウム添加量0g)とした以外は、比較例1と同様にス
ピネル型マンガン酸リチウムの合成を行った。用いた電
解二酸化マンガンの中和後のpH、ナトリウム含有量、
比表面積、得られたスピネル型マンガン酸リチウムの置
換元素及びマンガンの置換量を表1に示す。また、この
スピネル型マンガン酸リチウムを正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量および高温保存容量維持率を測定し、その
結果を表2に示す。
Comparative Example 2 A spinel-type lithium manganate was synthesized in the same manner as in Comparative Example 1 except that the electrolytic manganese dioxide was not neutralized (the amount of sodium hydroxide added was 0 g). PH after neutralization of used electrolytic manganese dioxide, sodium content,
Table 1 shows the specific surface area, the substitution element of the obtained spinel-type lithium manganate, and the substitution amount of manganese. Further, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material,
The initial discharge capacity and high-temperature storage capacity retention were measured, and the results are shown in Table 2.

【0081】比較例3 電解二酸化マンガンの中和を行わなかった(水酸化ナト
リウム添加量0g)とした以外は、実施例1と同様にス
ピネル型マンガン酸リチウムの合成を行った。用いた電
解二酸化マンガンの中和後のpH、ナトリウム含有量、
比表面積、得られたスピネル型マンガン酸リチウムの置
換元素及びマンガンの置換量を表1に示す。また、この
スピネル型マンガン酸リチウムを正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量および高温保存容量維持率を測定し、その
結果を表2に示す。
Comparative Example 3 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the electrolytic manganese dioxide was not neutralized (addition amount of sodium hydroxide was 0 g). PH after neutralization of used electrolytic manganese dioxide, sodium content,
Table 1 shows the specific surface area, the substitution element of the obtained spinel-type lithium manganate, and the substitution amount of manganese. Further, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material,
The initial discharge capacity and high-temperature storage capacity retention were measured, and the results are shown in Table 2.

【0082】比較例4 比較例1で作製した電解二酸化マンガン850g、水酸
化アルミニウム125.1g(マンガンの15モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
COMPARATIVE EXAMPLE 4 850 g of electrolytic manganese dioxide prepared in Comparative Example 1, 125.1 g of aluminum hydroxide (substituting 15 mol% of manganese), and carbonic acid were added so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0083】比較例5 実施例1で作製した電解二酸化マンガン850g、水酸
化アルミニウム125.1g(マンガンの15モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 5 850 g of electrolytic manganese dioxide and 125.1 g of aluminum hydroxide (substituted for 15 mol% of manganese) prepared in Example 1 were carbonated so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0084】比較例6 実施例1で作製した電解二酸化マンガン850g、酸化
マグネシウム64.8g(マンガンの15モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 6 850 g of electrolytic manganese dioxide and 64.8 g of magnesium oxide (substituted for 15 mol% of manganese) prepared in Example 1 were mixed with lithium carbonate so that the molar ratio of Li / (Mn + substituted element) was 0.54. Was synthesized in the same manner as in Example 1 except that was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0085】比較例7 実施例1で作製した電解二酸化マンガン850g、水酸
化ニッケル148.8g(マンガンの15モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
COMPARATIVE EXAMPLE 7 850 g of electrolytic manganese dioxide and 148.8 g of nickel hydroxide (substituted for 15 mol% of manganese) prepared in Example 1 were carbonated so that the Li / (Mn + substituted element) molar ratio was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0086】比較例8 実施例1で作製した電解二酸化マンガン850g、水酸
化コバルト149.1g(マンガンの15モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 8 850 g of electrolytic manganese dioxide and 149.1 g of cobalt hydroxide (substituted for 15 mol% of manganese) prepared in Example 1 were carbonated so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0087】比較例9 実施例1で作製した電解二酸化マンガン850g、三酸
化二鉄64.8g(マンガンの15モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 9 850 g of electrolytic manganese dioxide prepared in Example 1 and 64.8 g of diiron trioxide (substituting 15 mol% of manganese) were replaced by L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0088】比較例10 実施例1で作製した電解二酸化マンガン850g、一酸
化銅127.8g(マンガンの15モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 10 850 g of electrolytic manganese dioxide and 127.8 g of copper monoxide (substituted for 15 mol% of manganese) prepared in Example 1 were replaced by L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0089】比較例11 実施例1で作製した電解二酸化マンガン850g、酸化
亜鉛130.5g(マンガンの15モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 11 850 g of electrolytic manganese dioxide and 130.5 g of zinc oxide (substituted for 15 mol% of manganese) prepared in Example 1 were replaced with L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0090】比較例12 実施例1で作製した電解二酸化マンガン850g、水酸
化カルシウム118.8g(マンガンの15モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 12 850 g of electrolytic manganese dioxide and 118.8 g of calcium hydroxide (substituted for 15 mol% of manganese) prepared in Example 1 were carbonated so that the Li / (Mn + substituted element) molar ratio was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0091】比較例13 実施例1で作製した電解二酸化マンガン850g、二酸
化ケイ素91.8g(マンガンの15モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表2に示す。
Comparative Example 13 Lithium carbonate was prepared in the same manner as in Example 1 except that 850 g of electrolytic manganese dioxide, 91.8 g of silicon dioxide (substituted 15 mol% of manganese) and Li / (Mn + substituted element) molar ratio were 0.54. Was synthesized in the same manner as in Example 1 except that was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0092】比較例14 実施例1で作製した電解二酸化マンガン850g、二酸
化チタン128.1g(マンガンの15モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表2に示す。
Comparative Example 14 850 g of electrolytic manganese dioxide and 128.1 g of titanium dioxide prepared in Example 1 (substituting 15 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 2.

【0093】比較例15 実施例1で作製した電解二酸化マンガン850g、三酸
化二クロム121.8g(マンガンの15モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 15 The electrolytic manganese dioxide prepared in Example 1, 850 g of dichromium trioxide and 121.8 g of dichromium trioxide (substituted by 15 mol% of manganese) were adjusted to have a Li / (Mn + substituted element) molar ratio of 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0094】比較例16 実施例1で作製した電解二酸化マンガン850g、五酸
化ニリン109.8g(マンガンの15モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表2に示す。
Comparative Example 16 850 g of electrolytic manganese dioxide prepared in Example 1 and 109.8 g of diphosphorus pentoxide (substituted 15 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 2.

【0095】比較例17 実施例1で作製した電解二酸化マンガン850g、炭酸
ナトリウム79.5g(マンガンの15モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表2に示す。
Comparative Example 17 850 g of electrolytic manganese dioxide prepared in Example 1 and 79.5 g of sodium carbonate (replace 15 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 2.

【0096】比較例18 実施例1で作製した電解二酸化マンガン850g、炭酸
カリウム103.8g(マンガンの15モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表2に示す。
Comparative Example 18 850 g of electrolytic manganese dioxide prepared in Example 1 and 103.8 g of potassium carbonate (replace 15 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 2.

【0097】比較例19 実施例1で作製した電解二酸化マンガン850g、五酸
化二バナジウム145.8g(マンガンの15モル%を
置換)とLi/(Mn+置換元素)モル比0.54とな
るように炭酸リチウムを混合した以外は実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。用い
た電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 19 The electrolytic manganese dioxide prepared in Example 1 and 850 g of divanadium pentoxide (substituted by 15 mol% of manganese) were replaced by Li / (Mn + substituted element) in a molar ratio of 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0098】比較例20 実施例1で作製した電解二酸化マンガン850g、三酸
化ホウ素57.9g(マンガンの15モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表2に示す。
Comparative Example 20 Carbon dioxide was prepared so as to obtain 850 g of electrolytic manganese dioxide, 57.9 g of boron trioxide (substituting 15 mol% of manganese) prepared in Example 1, and a Li / (Mn + substituted element) molar ratio of 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0099】比較例21 比較例1で作製した電解二酸化マンガン950g、水酸
化アルミニウム41.7g(マンガンの5モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 21 950 g of electrolytic manganese dioxide and 41.7 g of aluminum hydroxide (substituted for 5 mol% of manganese) prepared in Comparative Example 1 were carbonated so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured.
Table 2 shows the results.

【0100】比較例22 比較例1で作製した電解二酸化マンガン950g、酸化
マグネシウム21.6g(マンガンの5モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表2に示す。
Comparative Example 22 950 g of electrolytic manganese dioxide and 21.6 g of magnesium oxide prepared in Comparative Example 1 (substituting 5 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 2.

【0101】比較例23 比較例1で作製した電解二酸化マンガン950g、水酸
化ニッケル49.6g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表2に示す。
Comparative Example 23 950 g of electrolytic manganese dioxide and 49.6 g of nickel hydroxide (substituted for 5 mol% of manganese) prepared in Comparative Example 1 were carbonated so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0102】比較例24 比較例1で作製した電解二酸化マンガン950g、水酸
化コバルト49.7g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表2に示す。
Comparative Example 24 950 g of electrolytic manganese dioxide and 49.7 g of cobalt hydroxide (substituted for 5 mol% of manganese) prepared in Comparative Example 1 were carbonated so that the molar ratio of Li / (Mn + substituted element) was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0103】比較例25 比較例1で作製した電解二酸化マンガン950g、三酸
化二鉄21.6g(マンガンの5モル%を置換)とLi
/(Mn+置換元素)モル比0.54となるように炭酸
リチウムを混合した以外は実施例1と同様にスピネル型
マンガン酸リチウムの合成を行った。用いた電解二酸化
マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 25 950 g of electrolytic manganese dioxide and 21.6 g of diiron trioxide (substituted by 5 mol% of manganese) prepared in Comparative Example 1 were replaced with Li
/ (Mn + substituted element) A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so as to have a molar ratio of 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0104】比較例26 比較例1で作製した電解二酸化マンガン950g、一酸
化銅42.6g(マンガンの5モル%を置換)とLi/
(Mn+置換元素)モル比0.54となるように炭酸リ
チウムを混合した以外は実施例1と同様にスピネル型マ
ンガン酸リチウムの合成を行った。用いた電解二酸化マ
ンガンの中和後のpH、ナトリウム含有量、比表面積、
得られたスピネル型マンガン酸リチウムの置換元素及び
マンガンの置換量を表1に示す。また、このスピネル型
マンガン酸リチウムを正極材料として実施例1と同様に
してコイン型非水電解液二次電池を作製し、初期放電容
量および高温保存容量維持率を測定し、その結果を表2
に示す。
Comparative Example 26 950 g of electrolytic manganese dioxide prepared in Comparative Example 1, 42.6 g of copper monoxide (substituted for 5 mol% of manganese) and Li /
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of (Mn + substituted element) was 0.54. PH after neutralization of the used electrolytic manganese dioxide, sodium content, specific surface area,
Table 1 shows the substitution elements of the obtained spinel-type lithium manganate and the substitution amounts of manganese. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured.
Shown in

【0105】比較例27 比較例1で作製した電解二酸化マンガン950g、酸化
亜鉛43.5g(マンガンの5モル%を置換)とLi/
(Mn+置換元素)モル比0.54となるように炭酸リ
チウムを混合した以外は実施例1と同様にスピネル型マ
ンガン酸リチウムの合成を行った。用いた電解二酸化マ
ンガンの中和後のpH、ナトリウム含有量、比表面積、
得られたスピネル型マンガン酸リチウムの置換元素及び
マンガンの置換量を表1に示す。また、このスピネル型
マンガン酸リチウムを正極材料として実施例1と同様に
してコイン型非水電解液二次電池を作製し、初期放電容
量および高温保存容量維持率を測定し、その結果を表2
に示す。
Comparative Example 27 950 g of electrolytic manganese dioxide prepared in Comparative Example 1, 43.5 g of zinc oxide (substituted for 5 mol% of manganese) and Li /
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of (Mn + substituted element) was 0.54. PH after neutralization of the used electrolytic manganese dioxide, sodium content, specific surface area,
Table 1 shows the substitution elements of the obtained spinel-type lithium manganate and the substitution amounts of manganese. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured.
Shown in

【0106】比較例28 比較例1で作製した電解二酸化マンガン950g、水酸
化カルシウム39.6g(マンガンの5モル%を置換)
とLi/(Mn+置換元素)モル比0.54となるよう
に炭酸リチウムを混合した以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。用いた電解
二酸化マンガンの中和後のpH、ナトリウム含有量、比
表面積、得られたスピネル型マンガン酸リチウムの置換
元素及びマンガンの置換量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解液二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表2に示す。
Comparative Example 28 950 g of electrolytic manganese dioxide prepared in Comparative Example 1 and 39.6 g of calcium hydroxide (substituting 5 mol% of manganese)
And spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of Li / (Mn + substituent element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
In the same manner as in the above, a coin-type nonaqueous electrolyte secondary battery was produced, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 2.

【0107】比較例29 比較例1で作製した電解二酸化マンガン950g、二酸
化ケイ素30.6g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 29 950 g of electrolytic manganese dioxide prepared in Comparative Example 1, 30.6 g of silicon dioxide (substituted for 5 mol% of manganese) and L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0108】比較例30 比較例1で作製した電解二酸化マンガン950g、二酸
化チタン42.7g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 30 950 g of electrolytic manganese dioxide and 42.7 g of titanium dioxide (substituted for 5 mol% of manganese) prepared in Comparative Example 1 were mixed with L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0109】比較例31 比較例1で作製した電解二酸化マンガン950g、三酸
化二クロム40.6g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表2に示す。
Comparative Example 31 The 950 g of electrolytic manganese dioxide, 40.6 g of dichromium trioxide (substituted for 5 mol% of manganese) prepared in Comparative Example 1, and the molar ratio of Li / (Mn + substituted element) were 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0110】比較例32 比較例1で作製した電解二酸化マンガン950g、五酸
化ニリン36.6g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 32 950 g of the electrolytic manganese dioxide prepared in Comparative Example 1, 36.6 g of diphosphorus pentoxide (substituting 5 mol% of manganese) and L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the electrolytic manganese dioxide used. Also, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Shown in

【0111】比較例33 比較例1で作製した電解二酸化マンガン950g、炭酸
ナトリウム26.5g(マンガンの5モル%を置換)と
Li/(Mn+置換元素)モル比0.54となるように
炭酸リチウムを混合した以外は実施例1と同様にスピネ
ル型マンガン酸リチウムの合成を行った。用いた電解二
酸化マンガンの中和後のpH、ナトリウム含有量、比表
面積、得られたスピネル型マンガン酸リチウムの置換元
素及びマンガンの置換量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解液二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表2に示す。
Comparative Example 33 950 g of electrolytic manganese dioxide prepared in Comparative Example 1, 26.5 g of sodium carbonate (substituting 5 mol% of manganese), and lithium carbonate in a Li / (Mn + substituted element) molar ratio of 0.54. Was synthesized in the same manner as in Example 1 except that was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0112】比較例34 比較例1で作製した電解二酸化マンガン950g、炭酸
カリウム34.6g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 34 950 g of electrolytic manganese dioxide prepared in Comparative Example 1, 34.6 g of potassium carbonate (substituting 5 mol% of manganese) and L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0113】比較例35 比較例1で作製した電解二酸化マンガン950g、五酸
化二バナジウム48.6g(マンガンの5モル%を置
換)とLi/(Mn+置換元素)モル比0.54となる
ように炭酸リチウムを混合した以外は実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。用いた
電解二酸化マンガンの中和後のpH、ナトリウム含有
量、比表面積、得られたスピネル型マンガン酸リチウム
の置換元素及びマンガンの置換量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解液二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表2に示す。
Comparative Example 35 The electrolytic manganese dioxide prepared in Comparative Example 1 was 950 g, divanadium pentoxide 48.6 g (substituting 5 mol% of manganese) and the Li / (Mn + substituted element) molar ratio was 0.54. A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 2 shows the results.

【0114】比較例36 比較例1で作製した電解二酸化マンガン950g、三酸
化ホウ素19.3g(マンガンの5モル%を置換)とL
i/(Mn+置換元素)モル比0.54となるように炭
酸リチウムを混合した以外は実施例1と同様にスピネル
型マンガン酸リチウムの合成を行った。用いた電解二酸
化マンガンの中和後のpH、ナトリウム含有量、比表面
積、得られたスピネル型マンガン酸リチウムの置換元素
及びマンガンの置換量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解液二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表2に示す。
Comparative Example 36 950 g of electrolytic manganese dioxide and 19.3 g of boron trioxide (substituted for 5 mol% of manganese) prepared in Comparative Example 1 were mixed with L
A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that lithium carbonate was mixed so that the molar ratio of i / (Mn + substituted element) was 0.54. Table 1 shows the pH, the sodium content, the specific surface area, the substitution element of the obtained spinel-type lithium manganate and the substitution amount of manganese after neutralization of the used electrolytic manganese dioxide. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. Shown in

【0115】実施例53 電解二酸化マンガンの粉砕時の平均粒径を5μmとした
以外は実施例1と同様にスピネル型マンガン酸リチウム
の合成を行った。このスピネル型マンガン酸リチウムを
正極材料として実施例1と同様にしてコイン型非水電解
質二次電池を作製し,2種の電流密度、0.5mA/c
と1.0mA/cmで評価し、0.5mA/cm
の電流密度の放電容量を100とし、1.0mA/c
での放電容量比率を電流負荷率として表した。表3
に電流負荷率を示す。
Example 53 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the average particle size at the time of pulverizing the electrolytic manganese dioxide was 5 μm. Using this spinel-type lithium manganate as a positive electrode material, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and two types of current densities of 0.5 mA / c were used.
It was evaluated in m 2 and 1.0mA / cm 2, 0.5mA / cm
The discharge capacity at a current density of 2 was assumed to be 100, and 1.0 mA / c
The discharge capacity ratio at m 2 was represented as a current load ratio. Table 3
Shows the current load factor.

【0116】[0116]

【表3】 [Table 3]

【0117】実施例54 実施例1で作製したコイン型非水電解質二次電池につい
て実施例53と同様の評価を行った。表3に電流負荷率
を示す。
Example 54 The same evaluation as in Example 53 was performed on the coin-type non-aqueous electrolyte secondary battery manufactured in Example 1. Table 3 shows the current load ratio.

【0118】実施例55 電解二酸化マンガンの粉砕時の平均粒径を30μmとし
た以外は、実施例1と同様にスピネル型マンガン酸リチ
ウムの合成を行った。このスピネル型マンガン酸リチウ
ムを正極材料として実施例1と同様にしてコイン型非水
電解質二次電池を作製し、実施例53と同様の評価を行
った。表3に電流負荷率を示す。
Example 55 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the average particle size of the electrolytic manganese dioxide during pulverization was 30 μm. A coin-type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and was evaluated in the same manner as in Example 53. Table 3 shows the current load ratio.

【0119】実施例56 電解二酸化マンガンの粉砕時の平均粒径を35μmとし
た以外は、実施例1と同様にスピネル型マンガン酸リチ
ウムの合成を行った。このスピネル型マンガン酸リチウ
ムを正極材料として実施例1と同様にしてコイン型非水
電解質二次電池を作製し,実施例53と同様に評価を行
った。表3に電流負荷比率を示す。
Example 56 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the average particle size of the electrolytic manganese dioxide during pulverization was 35 μm. A coin-type non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and was evaluated in the same manner as in Example 53. Table 3 shows the current load ratio.

【0120】[0120]

【発明の効果】以上説明したように、本発明の製造方法
で得られたスピネル型マンガン酸リチウムを非水電解質
二次電池用正極材料として用いることによって、充電時
のMn溶出量を抑制し、高温保存特性、高温サイクル特
性等の高温での電池特性を向上させ、また電流負荷率を
改善することができる。
As described above, by using the spinel-type lithium manganate obtained by the production method of the present invention as a positive electrode material for a non-aqueous electrolyte secondary battery, the amount of Mn elution during charging can be suppressed, Battery characteristics at high temperatures such as high-temperature storage characteristics and high-temperature cycle characteristics can be improved, and the current load factor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いた非水電解質二次電池を例示する
断面図
FIG. 1 is a cross-sectional view illustrating a non-aqueous electrolyte secondary battery used in the present invention.

【符号の説明】[Explanation of symbols]

1 正極ケース 2 封口板 3 集電体 4 金属リチウム負極 5 正極 6 セパレータ 7 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Sealing plate 3 Current collector 4 Metal negative electrode 5 Positive electrode 6 Separator 7 Gasket

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AA05 AB01 AB05 AC06 AD04 AD06 AE05 5H029 AJ04 AJ05 AK03 AL06 AL12 BJ03 CJ02 CJ08 CJ14 EJ01 EJ04 EJ12 HJ02 HJ07 HJ10 HJ14 5H050 AA05 AA07 AA10 BA16 BA17 CA09 CB07 CB12 EA08 EA24 GA02 GA05 GA10 GA15 HA02 HA07 HA10 HA14  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G048 AA04 AA05 AB01 AB05 AC06 AD04 AD06 AE05 5H029 AJ04 AJ05 AK03 AL06 AL12 BJ03 CJ02 CJ08 CJ14 EJ01 EJ04 EJ12 HJ02 HJ07 HJ10 HJ14 5H050 AA07 CB07A10 CB GA05 GA10 GA15 HA02 HA07 HA10 HA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電解析出した二酸化マンガンを粉砕後、水
酸化ナトリウムもしくは炭酸ナトリウムで中和し、pH
を2以上とし、かつその比表面積が50m/g以上で
ある電解二酸化マンガンとリチウム原料とマグネシウ
ム、アルミニウム、ニッケル、コバルト、鉄、銅、亜
鉛、カルシウム、シリコン、リン、チタン、クロム、ナ
トリウム、カリウム、バナジウム、ホウ素から選ばれる
少なくとも1種以上の元素を含む化合物とを、該化合物
がマンガンの0.05〜12.5モル%を該元素で置換
するように、混合し焼成することを特徴とするスピネル
型マンガン酸リチウムの製造方法。
A manganese dioxide deposited by electrolysis is ground, neutralized with sodium hydroxide or sodium carbonate,
Manganese dioxide having a specific surface area of 50 m 2 / g or more, a lithium raw material, magnesium, aluminum, nickel, cobalt, iron, copper, zinc, calcium, silicon, phosphorus, titanium, chromium, sodium, A compound containing at least one element selected from potassium, vanadium, and boron is mixed and fired so that the compound replaces 0.05 to 12.5 mol% of manganese with the element. For producing a spinel-type lithium manganate.
【請求項2】焼成温度が750℃以上で行われる請求項
1記載のスピネル型マンガン酸リチウムの製造方法。
2. The method for producing spinel-type lithium manganate according to claim 1, wherein the firing is performed at a temperature of 750 ° C. or higher.
【請求項3】請求項1又は2に記載の製造方法によって
得られたスピネル型マンガン酸リチウムからなる非水電
解質二次電池用正極材料。
3. A positive electrode material for a non-aqueous electrolyte secondary battery, comprising the spinel-type lithium manganate obtained by the production method according to claim 1.
【請求項4】請求項3に記載の正極材料を用いた正極
と、リチウムを吸蔵・脱蔵できる負極と、非水電解質と
から構成される非水電解質二次電池。
4. A non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode material according to claim 3, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte.
JP2001111690A 2001-04-10 2001-04-10 Method of manufacturing spinel type lithium manganate Pending JP2002308627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111690A JP2002308627A (en) 2001-04-10 2001-04-10 Method of manufacturing spinel type lithium manganate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111690A JP2002308627A (en) 2001-04-10 2001-04-10 Method of manufacturing spinel type lithium manganate

Publications (1)

Publication Number Publication Date
JP2002308627A true JP2002308627A (en) 2002-10-23

Family

ID=18963248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111690A Pending JP2002308627A (en) 2001-04-10 2001-04-10 Method of manufacturing spinel type lithium manganate

Country Status (1)

Country Link
JP (1) JP2002308627A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049474A1 (en) * 2002-11-22 2004-06-10 Mitsui Mining & Smelting Co., Ltd. POSITIVE ELECTRODE MATERIAL FOR Li ION SECONDARY BATTERY
EP1630891A1 (en) * 2004-08-30 2006-03-01 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode active material, non-aqueous electrolyte secondary battery and method for manufacturing positive electrode active material
US7192674B2 (en) 2002-01-24 2007-03-20 Sanyo Electric Co., Ltd. Lithium primary battery
WO2011162193A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for manufacturing spinel-type lithium manganate
WO2015076376A1 (en) * 2013-11-22 2015-05-28 三井金属鉱業株式会社 Spinel-type lithium metal composite oxide
KR101532807B1 (en) * 2007-11-12 2015-06-30 도다 고교 가부시끼가이샤 Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2016110798A (en) * 2014-12-04 2016-06-20 旭化成株式会社 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2018113130A (en) * 2017-01-10 2018-07-19 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and nonaqueous electrolyte secondary battery including the same
CN111162148A (en) * 2020-01-06 2020-05-15 佛山市国星半导体技术有限公司 Glue gas resistant LED chip and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192674B2 (en) 2002-01-24 2007-03-20 Sanyo Electric Co., Ltd. Lithium primary battery
WO2004049474A1 (en) * 2002-11-22 2004-06-10 Mitsui Mining & Smelting Co., Ltd. POSITIVE ELECTRODE MATERIAL FOR Li ION SECONDARY BATTERY
EP1630891A1 (en) * 2004-08-30 2006-03-01 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode active material, non-aqueous electrolyte secondary battery and method for manufacturing positive electrode active material
KR101532807B1 (en) * 2007-11-12 2015-06-30 도다 고교 가부시끼가이샤 Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2011162193A1 (en) * 2010-06-21 2011-12-29 日本碍子株式会社 Method for manufacturing spinel-type lithium manganate
US9960423B2 (en) 2013-11-22 2018-05-01 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium metal composite oxide
JPWO2015076376A1 (en) * 2013-11-22 2017-03-16 三井金属鉱業株式会社 Spinel type lithium metal composite oxide
GB2553263A (en) * 2013-11-22 2018-03-07 Mitsui Mining & Smelting Co Spinel-type lithium metal composite oxide
WO2015076376A1 (en) * 2013-11-22 2015-05-28 三井金属鉱業株式会社 Spinel-type lithium metal composite oxide
GB2553263B (en) * 2013-11-22 2021-06-09 Mitsui Mining & Smelting Co Spinel-type lithium metal composite oxide
JP2016110798A (en) * 2014-12-04 2016-06-20 旭化成株式会社 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2018113130A (en) * 2017-01-10 2018-07-19 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and nonaqueous electrolyte secondary battery including the same
CN111162148A (en) * 2020-01-06 2020-05-15 佛山市国星半导体技术有限公司 Glue gas resistant LED chip and manufacturing method thereof
CN111162148B (en) * 2020-01-06 2021-06-29 佛山市国星半导体技术有限公司 Glue gas resistant LED chip and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4185191B2 (en) Method for producing spinel type lithium manganate
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP4274630B2 (en) Method for producing spinel type lithium manganate
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP3048352B1 (en) Method for producing lithium manganate
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP3499181B2 (en) Method for producing spinel type lithium manganate
JP2003257429A (en) Preparation method of iron-containing olivin manganese lithium phosphate and battery using the same
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP2002308628A (en) Spinel type lithium manganate
US7829223B1 (en) Process for preparing lithium ion cathode material
JP3387876B2 (en) Method for producing spinel type lithium manganate
JPH06310145A (en) Manufacture of nickel acid lithium for lithium secondary battery
JP4806755B2 (en) Method for producing spinel type lithium manganate
JP3499180B2 (en) Method for producing spinel type lithium manganate
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery
JP3499179B2 (en) Method for producing spinel type lithium manganate
JP2002308626A (en) Method for manufacturing spinel type lithium manganate
JP2001130914A (en) Method for producing lithium manganese spinel oxide particle powder
JP2001180938A (en) Lithium manganese compound oxide and manufacturing method
JP2002033100A (en) Lithium - manganese oxide and lithium battery using it
JP2000058050A (en) Manufacture of positive electrode active material for lithium secondary battery