JP2002308626A - Method for manufacturing spinel type lithium manganate - Google Patents

Method for manufacturing spinel type lithium manganate

Info

Publication number
JP2002308626A
JP2002308626A JP2001111205A JP2001111205A JP2002308626A JP 2002308626 A JP2002308626 A JP 2002308626A JP 2001111205 A JP2001111205 A JP 2001111205A JP 2001111205 A JP2001111205 A JP 2001111205A JP 2002308626 A JP2002308626 A JP 2002308626A
Authority
JP
Japan
Prior art keywords
lithium manganate
manganese dioxide
spinel
type lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001111205A
Other languages
Japanese (ja)
Inventor
Tsuneyoshi Kamata
恒好 鎌田
Koichi Numata
幸一 沼田
Hidekazu Hiratsuka
秀和 平塚
Akira Hashimoto
彰 橋本
Shinji Arimoto
真司 有元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001111205A priority Critical patent/JP2002308626A/en
Publication of JP2002308626A publication Critical patent/JP2002308626A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing spinel type lithium manganate, by which the high temperature properties of a battery such as high temperature preservation properties or high temperature cycle property is improved. SOLUTION: The spinel type lithium manganate is manufactured by adding phosphoric acid in an electrolyte, pulverizing manganese dioxide electrodeposited in the presence of phosphoric acid, neutralizing the resultant manganese dioxide with the phosphoric acid with sodium hydroxide or sodium carbonate to adjust the pH to >=2, mixing the electrodeposited manganese dioxide having >=50 m<2> /g specific surface area and containing 0.1-1 wt.% phosphor with a lithium raw material and firing the mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスピネル型マンガン
酸リチウムの製造方法に関し、詳しくは、非水電解質二
次電池用正極材料とした時に、Mnの溶出量を抑制し、
高温保存特性、高温サイクル特性等の電池の高温特性を
向上させたスピネル型マンガン酸リチウムの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spinel-type lithium manganate, and more particularly, to a method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, which suppresses the amount of Mn eluted,
The present invention relates to a method for producing a spinel-type lithium manganate having improved high-temperature characteristics of a battery such as high-temperature storage characteristics and high-temperature cycle characteristics.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近年
のパソコンや電話等のポータブル化、コードレス化の急
速な進歩によりそれらの駆動用電源としての二次電池の
需要が高まっている。その中でも非水電解質二次電池は
最も小型かつ高エネルギー密度を持つため特に期待され
ている。上記の要望を満たす非水電解質二次電池の正極
材料としてはコバルト酸リチウム(LiCoO2)、ニッケル
酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)
等がある。これらの複合酸化物はリチウムに対し4V以
上の電圧を有していることから、高エネルギー密度を有
する電池となり得る。
2. Description of the Related Art With the rapid progress of portable and cordless personal computers and telephones in recent years, the demand for secondary batteries as power sources for driving them has been increasing. Among them, non-aqueous electrolyte secondary batteries are particularly expected because they have the smallest size and high energy density. Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) are used as the positive electrode material of the non-aqueous electrolyte secondary battery satisfying the above requirements.
Etc. Since these composite oxides have a voltage of 4 V or more with respect to lithium, a battery having a high energy density can be obtained.

【0003】上記の複合酸化物のうちLiCoO2、LiNiO2
理論容量が280mAh/g程度であるのに対し、LiMn2O4
は148mAh/gと小さいが、原料となるマンガン酸化物
が豊富で安価であることや、LiNiO2のような充電時の熱
的不安定性がないことから、EV用途に適していると考
えられている。
[0003] Among the above composite oxides, LiCoO 2 and LiNiO 2 have a theoretical capacity of about 280 mAh / g, while LiMn 2 O 4
Is small at 148 mAh / g, but is considered to be suitable for EV applications because it is abundant and inexpensive with manganese oxide as a raw material and does not have thermal instability during charging like LiNiO 2. I have.

【0004】しかしながら、このマンガン酸リチウム(L
iMn2O4) は、高温においてMnが溶出するため、高温保
存性、高温サイクル特性等の高温での電池特性に劣ると
いう問題がある。
However, this lithium manganate (L
Since iMn 2 O 4 ) elutes Mn at a high temperature, there is a problem that the battery characteristics at a high temperature such as a high-temperature storage property and a high-temperature cycle characteristic are inferior.

【0005】従って本発明の目的は、非水電解質二次電
池用正極材料とした時に、充電時のMn溶出量を抑制
し、高温保存性、高温サイクル特性等の高温での電池特
性を向上させたスピネル型マンガン酸リチウムの製造方
法および該マンガン酸リチウムからなる正極材料、並び
に該正極材を用いた非水電解質二次電池を提供すること
にある。
Accordingly, an object of the present invention is to provide a positive electrode material for a non-aqueous electrolyte secondary battery, which suppresses the amount of Mn elution during charging and improves battery characteristics at high temperatures such as high-temperature preservability and high-temperature cycle characteristics. Another object of the present invention is to provide a method for producing spinel-type lithium manganate, a cathode material comprising the lithium manganate, and a non-aqueous electrolyte secondary battery using the cathode material.

【0006】[0006]

【課題を解決するための手段】スピネル型マンガン酸リ
チウムに用いるマンガン原料としてさまざまなマンガン
化合物の研究がなされている。電解二酸化マンガンは安
価、豊富であることから、スピネル型マンガン酸リチウ
ムのマンガン原料として好適である。リチウム一次電池
の正極活物質には比表面積の高い電解二酸化マンガンを
特定の温度で焼成したものが用いられている。この電解
二酸化マンガンの比表面積は電解条件に依存する。その
方法の一つとして電解中の電解液にリン酸を加えて電解
する方法があり、電解二酸化マンガン中に少量のリンが
残留することが知られている。また、アルカリマンガン
電池用途にはソーダ中和が施される。ソーダ中和された
電解二酸化マンガン中には少量のナトリウムが残留する
ことが知られており、このナトリウム量は中和条件に依
存する。
Various manganese compounds have been studied as a manganese raw material for spinel-type lithium manganate. Since electrolytic manganese dioxide is inexpensive and abundant, it is suitable as a manganese raw material for spinel-type lithium manganate. As a positive electrode active material of a lithium primary battery, a material obtained by firing electrolytic manganese dioxide having a high specific surface area at a specific temperature is used. The specific surface area of this electrolytic manganese dioxide depends on the electrolytic conditions. As one of the methods, there is a method in which phosphoric acid is added to an electrolytic solution during electrolysis to perform electrolysis, and it is known that a small amount of phosphorus remains in electrolytic manganese dioxide. Soda neutralization is applied to alkaline manganese batteries. It is known that a small amount of sodium remains in soda-neutralized electrolytic manganese dioxide, and the amount of sodium depends on neutralization conditions.

【0007】本発明者らは、電解二酸化マンガンの比表
面積、リン含有量および中和条件に着目し、これを特定
することにより、得られたスピネル型マンガン酸リチウ
ムが上記目的を達成し得ることを知見した。
The present inventors have focused on the specific surface area, phosphorus content and neutralization conditions of electrolytic manganese dioxide, and by specifying these, the obtained spinel-type lithium manganate can achieve the above object. Was found.

【0008】本発明は、上記知見に基づきなされたもの
で、第1のスピネル型マンガン酸リチウムの製造方法の
発明は、リン酸を電解液に添加し、リン酸の存在下にお
いて電解析出した二酸化マンガンを粉砕後、水酸化ナト
リウムもしくは炭酸ナトリウムで中和し、pHを2以上
とし、その比表面積が50m2/g以上であり、かつリン
の含有量が0.1〜1重量%である電解二酸化マンガン
と、リチウム原料とを混合し、焼成することを特徴とす
るスピネル型マンガン酸リチウムの製造方法。
The present invention has been made based on the above findings. The first invention of the method for producing spinel-type lithium manganate is characterized in that phosphoric acid is added to an electrolytic solution and electrolytic deposition is performed in the presence of phosphoric acid. After pulverizing manganese dioxide, it is neutralized with sodium hydroxide or sodium carbonate to adjust the pH to 2 or more, the specific surface area is 50 m 2 / g or more, and the phosphorus content is 0.1 to 1% by weight. A method for producing spinel-type lithium manganate, comprising mixing electrolytic manganese dioxide and a lithium raw material, followed by firing.

【0009】第2の発明は、第1の発明において、電解
液に加えるリン酸の量が3g/l未満であることを特徴
とする。
A second invention is characterized in that, in the first invention, the amount of phosphoric acid added to the electrolyte is less than 3 g / l.

【0010】第3の発明は、第1又は第2の発明におい
て、上記焼成が750℃以上で行われることを特徴とす
る。
A third invention is characterized in that, in the first or second invention, the calcination is performed at 750 ° C. or higher.

【0011】第4の発明は、第1乃至第3のいずれか一
の発明において、上記粉砕後の二酸化マンガンの平均粒
径が5〜30μmであることを特徴とする。の製造方
法。
A fourth invention is characterized in that, in any one of the first to third inventions, the manganese dioxide after pulverization has an average particle size of 5 to 30 μm. Manufacturing method.

【0012】第5の非水電解質二次電池用正極材料の発
明は、第1乃至第4のいずれか一の発明によって得られ
たスピネル型マンガン酸リチウムからなることを特徴と
する。
A fifth invention of a cathode material for a non-aqueous electrolyte secondary battery is characterized by comprising the spinel-type lithium manganate obtained by any one of the first to fourth inventions.

【0013】第5の非水電解質二次電池の発明は、上記
第4の正極材料を用いた正極とリチウムを吸蔵、脱蔵で
きる負極と非水電解質とから構成されることを特徴とす
る。
The invention of a fifth non-aqueous electrolyte secondary battery is characterized by comprising a positive electrode using the fourth positive electrode material, a negative electrode capable of inserting and extracting lithium and a non-aqueous electrolyte.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において、スピネル型マンガン酸リチウムのマン
ガン原料として、電解二酸化マンガンを用いる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, electrolytic manganese dioxide is used as a manganese raw material for spinel-type lithium manganate.

【0015】本発明における電解二酸化マンガンは、次
の方法によって得られる。電解液として所定濃度の硫酸
マンガン溶液を用い、陰極にカーボン板、陽極にチタン
板を用い、加温しつつ、一定の電流密度で電解を行い、
陽極に二酸化マンガンを電析させる。このとき電解液中
に所定のリン酸を添加する。次に、電析した二酸化マン
ガンを陽極から剥離し、所定粒度に粉砕する。
The electrolytic manganese dioxide in the present invention is obtained by the following method. Using a manganese sulfate solution of a predetermined concentration as the electrolytic solution, using a carbon plate for the cathode and a titanium plate for the anode, performing electrolysis at a constant current density while heating,
Manganese dioxide is electrodeposited on the anode. At this time, a predetermined phosphoric acid is added to the electrolytic solution. Next, the deposited manganese dioxide is peeled off from the anode and pulverized to a predetermined particle size.

【0016】ここで、電解時の電解液に加えるリン酸の
量をは3g/l未満、より好ましくは0.2〜2g/lと
するのが好ましい。これは3g/l以上であると、初期
放電容量が低下し、好ましくないからである。
Here, the amount of phosphoric acid added to the electrolytic solution during electrolysis is preferably less than 3 g / l, more preferably 0.2 to 2 g / l. This is because if it is 3 g / l or more, the initial discharge capacity decreases, which is not preferable.

【0017】ここで、剥離した二酸化マンガンの粉砕は
平均粒径5〜30μmに粉砕するのが好ましい。これ
は、粒度は細かいほど電流負荷率が向上して好ましい
く、一方平均粒径が30μmを超えると、正極材料とし
て形成される膜にひび割れ等が発生し、均一が膜厚が形
成しにくくなるからである。
Here, the pulverized manganese dioxide is preferably pulverized to an average particle size of 5 to 30 μm. This is preferable because the finer the particle size, the better the current load factor is. On the other hand, when the average particle size exceeds 30 μm, cracks and the like are generated in the film formed as the positive electrode material, and it is difficult to form a uniform film thickness. Because.

【0018】この所定粒度に粉砕された電解二酸化マン
ガンは、ナトリウム中和後、水洗、乾燥する。ナトリウ
ム中和としては、具体的には水酸化ナトリウムまたは炭
酸ナトリウムで中和される。なお、粉砕、中和の順序は
特に限定されず、中和後、粉砕してもよい。
The electrolytic manganese dioxide ground to a predetermined particle size is neutralized with sodium, washed with water and dried. As the sodium neutralization, specifically, it is neutralized with sodium hydroxide or sodium carbonate. The order of pulverization and neutralization is not particularly limited, and pulverization may be performed after neutralization.

【0019】中和された電解二酸化マンガンのpHは2
以上、好ましくは2〜5.5、さらに好ましくは2〜4で
ある。pHが高いほど、高温でのMn溶出量は低減され
るが、初期放電容量が減少する。pHが2未満ではその
効果は不十分である。
The pH of the neutralized electrolytic manganese dioxide is 2
As mentioned above, it is preferably 2 to 5.5, more preferably 2 to 4. The higher the pH, the lower the Mn elution amount at high temperatures, but the lower the initial discharge capacity. If the pH is less than 2, the effect is insufficient.

【0020】この電解二酸化マンガンの比表面積は50
2/g以上である。比表面積が50m2/g以下だとリチ
ウム原料との反応性が悪くなり、均一なものが得られな
いためMn溶出量が低減されない。比表面積が50m2/
g以上の電解二酸化マンガンであってもナトリウムを含
有しない場合、均一なスピネル型マンガン酸リチウムを
得ることはできるが、得られたスピネル型マンガン酸リ
チウムの比表面積も高くなる。そのため電解液との反応
面積も高くなりMn溶出量は低減されない。そこでナト
リウム中和し、ナトリウムが電解二酸化マンガン中に残
存することで、ナトリウムも均一に分散して反応したこ
とによりMn溶出量が低減される。
The specific surface area of this electrolytic manganese dioxide is 50
m 2 / g or more. When the specific surface area is 50 m 2 / g or less, the reactivity with the lithium raw material is deteriorated, and a uniform product cannot be obtained. Specific surface area is 50m 2 /
Even if electrolytic manganese dioxide of g or more does not contain sodium, uniform spinel-type lithium manganate can be obtained, but the specific surface area of the obtained spinel-type lithium manganate also increases. Therefore, the reaction area with the electrolytic solution also increases, and the amount of Mn eluted is not reduced. Then, sodium is neutralized, and sodium remains in the electrolytic manganese dioxide, so that sodium is also uniformly dispersed and reacted, so that the amount of Mn eluted is reduced.

【0021】また、電解二酸化マンガンの比表面積を5
0m2/g以上にするためには電解中の電流密度を高くし
たり、電解液濃度や酸濃度、温度を下げることで可能で
あるが、電極に電解二酸化マンガンを連続的に電解析出
させるのは難しい。そこで、本発明では、電解液中にリ
ン酸を存在させて理解することで連続的に比表面積を5
0m2/g以上の電解二酸化マンガンを電解析出させるこ
とができる。このとき、電解二酸化マンガン中にリンが
残存する。その効果については不明であるが、Mn溶出
量が低減させる。電解二酸化マンガン中の含有量として
0.1〜1重量%が好ましい。これは1重量%を超えると
初期容量が減少するからである。
The specific surface area of the electrolytic manganese dioxide is 5
To increase the current density to 0 m 2 / g or more, it is possible to increase the current density during electrolysis or to lower the concentration of the electrolyte, the concentration of the acid, and the temperature. Difficult. Therefore, in the present invention, the specific surface area can be continuously adjusted to 5 by understanding the presence of phosphoric acid in the electrolytic solution.
Electrolytic manganese dioxide of 0 m 2 / g or more can be electrolytically deposited. At this time, phosphorus remains in the electrolytic manganese dioxide. Although the effect is unknown, it reduces the amount of Mn eluted. As content in electrolytic manganese dioxide
0.1-1% by weight is preferred. This is because if it exceeds 1% by weight, the initial capacity decreases.

【0022】本発明では、この電解二酸化マンガンをリ
チウム原料と混合し、焼成してスピネル型マンガン酸リ
チウムを得る。リチウム原料としては、炭酸リチウム
(Li2CO3)、硝酸リチウム(LiNO3)、水酸化リチウム
(LiOH)等が挙げられる。電解二酸化マンガンとリチウ
ム原料のLi/Mnモル比は0.50〜0.60が好まし
い。
In the present invention, this electrolytic manganese dioxide is mixed with a lithium raw material and fired to obtain a spinel type lithium manganate. Examples of the lithium raw material include lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), and lithium hydroxide (LiOH). The Li / Mn molar ratio between the electrolytic manganese dioxide and the lithium raw material is preferably 0.50 to 0.60.

【0023】これら電解二酸化マンガンおよびリチウム
原料は、より大きな反応面積を得るために、原料混合前
あるいは後に粉砕することも好ましい。秤量、混合され
た原料はそのままでもあるいは造粒して使用してもよ
い。造粒方法は、湿式でも乾式でもよく、押し出し造
粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加
圧成型造粒、あるいはロール等を用いたフレーク造粒で
もよい。
These electrolytic manganese dioxide and lithium raw materials are preferably ground before or after mixing the raw materials in order to obtain a larger reaction area. The weighed and mixed raw materials may be used as they are or may be granulated. The granulation method may be wet or dry, and may be extrusion granulation, tumbling granulation, flow granulation, mixing granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. .

【0024】このようにして得られた原料は焼成炉内に
投入され、600〜1000℃で焼成することによっ
て、スピネル型マンガン酸リチウムが得られる。単一相
のスピネル型マンガン酸リチウムを得るには600℃程
度でも十分であるが、焼成温度が低いと粒成長が進まな
いので750℃以上の焼成温度、好ましくは850℃以
上の焼成温度が必要となる。ここで用いられる焼成炉と
しては、ロータリーキルンあるいは静置炉等が例示され
る。焼成時間は1時間以上、好ましくは5〜20時間で
ある。
The raw material thus obtained is put into a firing furnace and fired at 600 to 1000 ° C. to obtain a spinel type lithium manganate. A temperature of about 600 ° C. is sufficient to obtain a single-phase spinel-type lithium manganate, but a firing temperature of 750 ° C. or higher, preferably 850 ° C. or higher is necessary because a low firing temperature does not promote grain growth. Becomes Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours.

【0025】このようにして、ナトリウムを一定量含有
するスピネル型マンガン酸リチウムが得られる。ナトリ
ウムの含有量は0.07〜2.5重量%が好ましい。このナ
トリウムを含有するスピネル型マンガン酸リチウムは非
水電解質二次電池の正極材料として用いられる。
Thus, a spinel-type lithium manganate containing a certain amount of sodium is obtained. The content of sodium is preferably from 0.07 to 2.5% by weight. This sodium-containing spinel-type lithium manganate is used as a positive electrode material of a nonaqueous electrolyte secondary battery.

【0026】本発明の非水電解質二次電池では、上記正
極材料とカーボンブラック等の導電材とテフロン(登録
商標)バインダー等の結着剤とを混合して正極合剤と
し、また、負極にはリチウムまたはカーボン等のリチウ
ムを吸蔵、脱蔵できる材料が用いられ、非水系電解質と
しては、六フッ化リン酸リチウム(LiPF6)等のリチウム
塩をエチレンカーボネート−ジメチルカーボネート等の
混合溶媒に溶解したものが用いられるが、特に限定され
るものではない。
In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (registered trademark) are mixed to form a positive electrode mixture, and Is made of a material capable of occluding and desorbing lithium such as lithium or carbon. As a non-aqueous electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate. However, there is no particular limitation.

【0027】本発明の非水電解質二次電池は充電状態で
のマンガンの溶出を抑制することができるので、高温保
存、高温サイクル特性等の高温での電池特性を向上させ
ることかできる。
Since the non-aqueous electrolyte secondary battery of the present invention can suppress the elution of manganese in a charged state, the battery characteristics at high temperatures such as high-temperature storage and high-temperature cycle characteristics can be improved.

【0028】[0028]

【実施例】以下、実施例等に基づき本発明を具体的に説
明するが、本発明は特にこれに限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and the like, but the present invention is not particularly limited thereto.

【0029】<実施例1>マンガンの電解液として、硫
酸濃度30g/l、マンガン濃度50g/l、リン酸0.
5g/lの硫酸マンガン水溶液を調製した。この電解液
の温度を95℃となるように加温して、陰極にカーボン
板、陽極にチタン板を用いて、60A/m 2 の電流密度
で電解を行った。次いで、陽極に電析した二酸化マンガ
ンを剥離し、7mm以下のチップに粉砕し、さらにこの
チップを平均粒径約20μmに粉砕した。
Example 1 As a manganese electrolyte, sulfuric acid was used.
Acid concentration 30 g / l, manganese concentration 50 g / l, phosphoric acid 0.
A 5 g / l manganese sulfate aqueous solution was prepared. This electrolyte
Is heated to 95 ° C., and the carbon is
60A / m using titanium plate for plate and anode TwoCurrent density
Electrolysis was performed. Next, the manganese dioxide manganese electrodeposited on the anode
And crushed into chips of 7 mm or less.
The chips were ground to an average particle size of about 20 μm.

【0030】この二酸化マンガン10kgを20リット
ルの水で洗浄し、洗浄水を排出後、再度20リットルの
水を加えた。ここに水酸化ナトリウム110gを溶解
し、攪拌しながら24時間中和処理し、水洗、濾過後、
乾燥(50℃、12時間)した。得られた粉末につい
て、JIS K14677−1984に従って測定したp
H、ナトリウム含有量、比表面積およびP含有量を「表
1」に示す。
10 kg of this manganese dioxide was washed with 20 liters of water, and after washing water was discharged, 20 liters of water was added again. Here, 110 g of sodium hydroxide was dissolved, neutralized for 24 hours with stirring, washed with water, filtered,
It was dried (50 ° C., 12 hours). About the obtained powder, p measured according to JISK14677-1984
Table 1 shows the H, sodium content, specific surface area and P content.

【0031】この平均粒径約20μmの二酸化マンガン
1kgにLi/Mnモル比が0.54となるように炭酸リ
チウムを加えて混合し、箱型炉中、800℃で20時間
焼成してスピネル型マンガン酸リチウムを得た。このよ
うにして得られたスピネル型マンガン酸リチウムを80
重量部、導電剤としてカーボンブラック15重量部およ
び結着剤としてポリ四フッ化エチレン5重量部を混合し
て正極合剤を作製した。
Lithium carbonate was added to 1 kg of this manganese dioxide having an average particle size of about 20 μm and mixed so that the Li / Mn molar ratio became 0.54. Lithium manganate was obtained. The spinel-type lithium manganate obtained in this manner is
By weight, 15 parts by weight of carbon black as a conductive agent and 5 parts by weight of polytetrafluoroethylene as a binder were mixed to prepare a positive electrode mixture.

【0032】この正極合剤を用いて図1に示すコイン型
非水電解質二次電池を作製した。すなわち、耐有機電解
液性のステンレス鋼製の正極ケース1の内側には同じく
ステンレス鋼製の集電体3がスポット熔接されている。
集電体3の上面には上記正極合剤からなる正極5が圧着
されている。正極5の上面には、電解液を含浸した微孔
性のポリプロピレン樹脂製のセパレータ6が配置されて
いる。正極ケース1の開口部には、下方に金属リチウム
からなる負極4を接合した封口板2が、ポリプロピレン
製のガスケット7を挟んで配置されており、これにより
電池は密封されている。封口板2は、負極端子を兼ね、
正極ケース1と同様のステンレス鋼製である。電池の直
径は20mm、電池総高1.6mmである。電解液には、
エチレンカーボネートと1,3−ジメトキシエタンを等
体積混合したものを溶媒とし、これに溶質として六フッ
化リン酸リチウムを1mol/リットル溶解させたものを用
いた。
Using this positive electrode mixture, a coin-type nonaqueous electrolyte secondary battery shown in FIG. 1 was produced. That is, the current collector 3 also made of stainless steel is spot-welded inside the positive electrode case 1 made of stainless steel having resistance to organic electrolyte.
On the upper surface of the current collector 3, a positive electrode 5 made of the above positive electrode mixture is pressed. On the upper surface of the positive electrode 5, a separator 6 made of microporous polypropylene resin impregnated with an electrolytic solution is arranged. At the opening of the positive electrode case 1, a sealing plate 2 to which a negative electrode 4 made of metallic lithium is joined is disposed below a gasket 7 made of polypropylene, whereby the battery is sealed. The sealing plate 2 also serves as a negative electrode terminal,
It is made of the same stainless steel as the positive electrode case 1. The diameter of the battery is 20 mm, and the total height of the battery is 1.6 mm. In the electrolyte,
A solution obtained by mixing ethylene carbonate and 1,3-dimethoxyethane in equal volumes was used as a solvent, and a solution in which lithium hexafluorophosphate was dissolved at 1 mol / liter as a solute was used.

【0033】このようにして得られた電池について充放
電試験を行った。充放電試験は20℃において行われ、
電流密度を0.5mA/cm2 とし、電圧4.3Vから3.0
Vの範囲で行った。また、この電池を4.3Vで充電し、
80℃の環境下で3日間保存した後、これらの電池の放
電容量を容量維持率として電池の保存特性を確認した。
初期放電容量および高温保存容量維持率の測定結果を
「表1」に示す。
The battery thus obtained was subjected to a charge / discharge test. The charge / discharge test is performed at 20 ° C.
The current density was 0.5 mA / cm 2 , and the voltage was 4.3 V to 3.0 V.
Performed in the range of V. Also charge this battery at 4.3V,
After storing for 3 days in an environment of 80 ° C., the storage characteristics of the batteries were confirmed using the discharge capacity of these batteries as the capacity retention ratio.
Table 1 shows the measurement results of the initial discharge capacity and the high-temperature storage capacity retention rate.

【0034】<実施例2>電解二酸化マンガンの中和の
際の水酸化ナトリウム添加量を45gとした以外は、実
施例1と同様にスピネル型マンガン酸リチウムの合成を
行った。中和後のpH、ナトリウム含有量、比表面積お
よびP含有量を「表1」に示す。また、このスピネル型
マンガン酸リチウムを正極材料として実施例1と同様に
してコイン型非水電解質二次電池を作製し、初期放電容
量および高温保存容量維持率を測定し、その結果を「表
1」に示す。
Example 2 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the amount of sodium hydroxide added during neutralization of electrolytic manganese dioxide was changed to 45 g. Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. In addition, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using the spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention were measured. "

【0035】<実施例3>電解二酸化マンガンの中和の
際の水酸化ナトリウム添加量を75gとした以外は、実
施例1と同様にスピネル型マンガン酸リチウムの合成を
行った。中和後のpH、ナトリウム含有量、比表面積お
よびP含有量を「表1」に示す。また、このスピネル型
マンガン酸リチウムを正極材料として実施例1と同様に
してコイン型非水電解質二次電池を作製し、初期放電容
量および高温保存容量維持率を測定し、その結果を「表
1」に示す。
Example 3 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the amount of sodium hydroxide added during neutralization of electrolytic manganese dioxide was changed to 75 g. Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0036】<実施例4>電解二酸化マンガンの中和の
際の水酸化ナトリウム添加量を140gとした以外は、
実施例1と同様にスピネル型マンガン酸リチウムの合成
を行った。中和後のpH、ナトリウム含有量、比表面積
およびP含有量を「表1」に示す。また、このスピネル
型マンガン酸リチウムを正極材料として実施例1と同様
にしてコイン型非水電解質二次電池を作製し、初期放電
容量および高温保存容量維持率を測定し、その結果を
「表1」に示す。
Example 4 Except that the amount of sodium hydroxide added during the neutralization of electrolytic manganese dioxide was 140 g,
In the same manner as in Example 1, spinel-type lithium manganate was synthesized. Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0037】<実施例5>電解二酸化マンガンの中和の
際の水酸化ナトリウム添加量を200gとした以外は、
実施例1と同様にスピネル型マンガン酸リチウムの合成
を行った。中和後のpH、ナトリウム含有量、比表面積
およびP含有量を「表1」に示す。また、このスピネル
型マンガン酸リチウムを正極材料として実施例1と同様
にしてコイン型非水電解質二次電池を作製し、初期放電
容量および高温保存容量維持率を測定し、その結果を
「表1」に示す。
<Example 5> Except that the amount of sodium hydroxide added during the neutralization of electrolytic manganese dioxide was 200 g,
In the same manner as in Example 1, spinel-type lithium manganate was synthesized. Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0038】<実施例6>電解二酸化マンガンの中和の
際の水酸化ナトリウム添加量を280gとした以外は、
実施例1と同様にスピネル型マンガン酸リチウムの合成
を行った。中和後のpH、ナトリウム含有量、および比
表面積を「表1」に示す。また、このスピネル型マンガ
ン酸リチウムを正極材料として実施例1と同様にしてコ
イン型非水電解質二次電池を作製し、初期放電容量およ
び高温保存容量維持率を測定し、その結果を「表1」に
示す。
<Example 6> Except that the amount of sodium hydroxide added during the neutralization of electrolytic manganese dioxide was 280 g,
In the same manner as in Example 1, spinel-type lithium manganate was synthesized. Table 1 shows the pH, sodium content, and specific surface area after neutralization. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0039】<実施例7>電解時の電解液に加えるリン
酸の量を0.2g/lとした以外は、実施例1と同様にス
ピネル型マンガン酸リチウムの合成を行った。中和後の
pH、ナトリウム含有量、比表面積およびP含有量を
「表1」に示す。また、このスピネル型マンガン酸リチ
ウムを正極材料として実施例1と同様にしてコイン型非
水電解質二次電池を作製し、初期放電容量および高温保
存容量維持率を測定し、その結果を「表1」に示す。
Example 7 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of phosphoric acid added to the electrolytic solution during electrolysis was 0.2 g / l. Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0040】<実施例8>電解時の電解液に加えるリン
酸の量を2g/lとした以外は、実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。中和後のp
H、ナトリウム含有量、比表面積およびP含有量を「表
1」に示す。また、このスピネル型マンガン酸リチウム
を正極材料として実施例1と同様にしてコイン型非水電
解質二次電池を作製し、初期放電容量および高温保存容
量維持率を測定し、その結果を「表1」に示す。
<Example 8> A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of phosphoric acid added to the electrolytic solution during electrolysis was 2 g / l. P after neutralization
Table 1 shows the H, sodium content, specific surface area and P content. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0041】<実施例9>焼成温度を900℃とした以
外は、実施例1と同様にスピネル型マンガン酸リチウム
の合成を行った。中和後のpH、ナトリウム含有量、比
表面積およびP含有量を「表1」に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解質二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を「表1」に示す。
Example 9 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the firing temperature was 900 ° C. Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 1.

【0042】<実施例10>焼成温度を750℃とした
以外は、実施例1と同様にスピネル型マンガン酸リチウ
ムの合成を行った。中和後のpH、ナトリウム含有量、
比表面積およびP含有量を「表1」に示す。また、この
スピネル型マンガン酸リチウムを正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
初期放電容量および高温保存容量維持率を測定し、その
結果を「表1」に示す。
Example 10 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the firing temperature was 750 ° C. PH after neutralization, sodium content,
Table 1 shows the specific surface area and the P content. Further, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material,
The initial discharge capacity and the high-temperature storage capacity retention rate were measured, and the results are shown in Table 1.

【0043】<比較例1>電解時の電解液に加えるリン
酸の量を0g/lとした以外は、実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。中和後のp
H、ナトリウム含有量、比表面積およびP含有量を「表
1」に示す。また、このスピネル型マンガン酸リチウム
を正極材料として実施例1と同様にしてコイン型非水電
解質二次電池を作製し、初期放電容量および高温保存容
量維持率を測定し、その結果を「表1」に示す。
Comparative Example 1 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of phosphoric acid added to the electrolytic solution during electrolysis was changed to 0 g / l. P after neutralization
Table 1 shows the H, sodium content, specific surface area and P content. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0044】<比較例2>電解時の電解液に加えるリン
酸の量を3g/lとした以外は、実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。中和後のp
H、ナトリウム含有量、比表面積およびP含有量を「表
1」に示す。また、このスピネル型マンガン酸リチウム
を正極材料として実施例1と同様にしてコイン型非水電
解質二次電池を作製し、初期放電容量および高温保存容
量維持率を測定し、その結果を「表1」に示す。
Comparative Example 2 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of phosphoric acid added to the electrolytic solution during electrolysis was 3 g / l. P after neutralization
Table 1 shows the H, sodium content, specific surface area and P content. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. "

【0045】<比較例3>電解二酸化マンガンの中和を
行わなかった(水酸化ナトリウム添加量0g)とした以
外は、比較例1と同様にスピネル型マンガン酸リチウム
の合成を行った。中和後のpH、ナトリウム含有量、比
表面積およびP含有量を「表1」に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解質二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を「表1」に示す。
Comparative Example 3 A spinel-type lithium manganate was synthesized in the same manner as in Comparative Example 1, except that the electrolytic manganese dioxide was not neutralized (addition amount of sodium hydroxide was 0 g). Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 1.

【0046】<比較例4>電解二酸化マンガンの中和を
行わなかった(水酸化ナトリウム添加量0g)とした以
外は、実施例1と同様にスピネル型マンガン酸リチウム
の合成を行った。中和後のpH、ナトリウム含有量、比
表面積およびP含有量を「表1」に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解質二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を「表1」に示す。
Comparative Example 4 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the electrolytic manganese dioxide was not neutralized (the amount of sodium hydroxide added was 0 g). Table 1 shows the pH, sodium content, specific surface area, and P content after neutralization. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】<実施例11>電解二酸化マンガンの粉砕
時の平均粒径を5μmとした以外は実施例1と同様にス
ピネル型マンガン酸リチウムの合成を行った。このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解質二次電池を作製し、2種
の電流密度、0.5mA/cm2 と1.0mA/cm2 で評
価し、0.5mA/cm2 の電流密度の放電容量を100
とし、1.0mA/cm2 での放電容量比率を電流負荷率
として表した。「表2」に電流負荷率を示す。
<Example 11> A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the average particle size of the electrolytic manganese dioxide during pulverization was 5 µm. Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and evaluated at two types of current densities, 0.5 mA / cm 2 and 1.0 mA / cm 2 . And discharge capacity at a current density of 0.5 mA / cm 2 to 100
The discharge capacity ratio at 1.0 mA / cm 2 was expressed as a current load ratio. Table 2 shows the current load ratio.

【0049】<実施例12>実施例1で作製したコイン
型非水電解質二次電池について実施例11と同様の評価
を行った。「表2」に電流負荷率を示す。
Example 12 The same evaluation as in Example 11 was performed on the coin-type nonaqueous electrolyte secondary battery manufactured in Example 1. Table 2 shows the current load ratio.

【0050】<実施例13>電解二酸化マンガンの粉砕
時の平均粒径を30μmとした以外は、実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。この
スピネル型マンガン酸リチウムを正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
実施例11と同様の評価を行った。「表2」に電流負荷
率を示す。
Example 13 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the average particle size of the electrolytic manganese dioxide during pulverization was 30 μm. Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1,
The same evaluation as in Example 11 was performed. Table 2 shows the current load ratio.

【0051】<比較例5>電解二酸化マンガンの粉砕時
の平均粒径を35μmとした以外は、実施例1と同様に
スピネル型マンガン酸リチウムの合成を行った。このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解質二次電池を作製し、実
施例11と同様の評価を行った。「表2」に電流負荷比
率を示す。
Comparative Example 5 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the average particle size of the electrolytic manganese dioxide at the time of pulverization was 35 μm. Example 1 using this spinel-type lithium manganate as a cathode material
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 11. Table 2 shows the current load ratio.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】以上説明したように、本発明の製造方法
で得られたスピネル型マンガン酸リチウムを非水電解質
二次電池用正極材料として用いることによって、充電時
のMn溶出量を抑制し、高温保存特性、高温サイクル特
性等の高温での電池特性を向上させ、また電流負荷率を
改善することができる。
As described above, by using the spinel-type lithium manganate obtained by the production method of the present invention as a positive electrode material for a non-aqueous electrolyte secondary battery, the amount of Mn elution during charging can be suppressed, Battery characteristics at high temperatures such as high-temperature storage characteristics and high-temperature cycle characteristics can be improved, and the current load factor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例のコイン型非水電解質二次電
池の縦断面図である。
FIG. 1 is a longitudinal sectional view of a coin-type nonaqueous electrolyte secondary battery of an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極ケース 2 封口板 3 集電体 4 金属リチウム負極 5 正極 6 セパレータ 7 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Sealing plate 3 Current collector 4 Metal negative electrode 5 Positive electrode 6 Separator 7 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沼田 幸一 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 (72)発明者 平塚 秀和 大阪府門真市大字門真1006番地 松下電器 産業株式会社 (72)発明者 橋本 彰 大阪府門真市大字門真1006番地 松下電器 産業株式会社 (72)発明者 有元 真司 大阪府門真市大字門真1006番地 松下電器 産業株式会社 Fターム(参考) 4G048 AA04 AB01 AB02 AB05 AC06 AD04 AD06 AE05 5H029 AJ04 AJ05 AK03 AL06 AL12 AM04 AM05 AM07 BJ03 CJ02 CJ08 CJ14 EJ01 EJ04 EJ12 HJ01 HJ05 HJ07 HJ10 HJ14 5H050 AA05 AA07 AA10 BA16 BA17 CA09 CB12 EA02 EA08 EA24 GA02 GA10 GA15 HA01 HA05 HA07 HA10 HA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Numata 1-5-1, Shiomachi, Takehara City, Hiroshima Prefecture Inside Battery Materials Research Laboratory, Mitsui Kinzoku Mining Co., Ltd. Matsushita Electric Industrial Co., Ltd. ) 4G048 AA04 AB01 AB02 AB05 AC06 AD04 AD06 AE05 5H029 AJ04 AJ05 AK03 AL06 AL12 AM04 AM05 AM07 BJ03 CJ02 CJ08 CJ14 EJ01 EJ04 EJ12 HJ01 HJ05 HJ07 HJ10 HJ14 5H050 AA05 AA07 GA10 BA16 GA10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リン酸を電解液に添加し、リン酸の存在
下において電解析出した二酸化マンガンを粉砕後、水酸
化ナトリウムもしくは炭酸ナトリウムで中和し、pHを
2以上とし、その比表面積が50m2/g以上であり、か
つリンの含有量が0.1〜1重量%である電解二酸化マン
ガンと、 リチウム原料とを混合し、焼成することを特徴とするス
ピネル型マンガン酸リチウムの製造方法。
1. A phosphoric acid is added to an electrolytic solution, manganese dioxide electrolytically precipitated in the presence of phosphoric acid is pulverized, then neutralized with sodium hydroxide or sodium carbonate to a pH of 2 or more, and its specific surface area Of spinel-type lithium manganate, characterized in that electrolytic manganese dioxide having a phosphorus content of 50 m 2 / g or more and a phosphorus content of 0.1 to 1% by weight and a lithium raw material are mixed and fired. Method.
【請求項2】 請求項1において、 電解液に加えるリン酸の量が3g/l未満であることを
特徴とするスピネル型マンガン酸リチウムの製造方法。
2. The method according to claim 1, wherein the amount of phosphoric acid added to the electrolytic solution is less than 3 g / l.
【請求項3】 請求項1において、 上記焼成が750℃以上で行われることを特徴とするス
ピネル型マンガン酸リチウムの製造方法。
3. The method according to claim 1, wherein the calcination is performed at 750 ° C. or higher.
【請求項4】 請求項1乃至3のいずれか一項におい
て、 上記粉砕後の二酸化マンガンの平均粒径が5〜30μm
であることを特徴とするスピネル型マンガン酸リチウム
の製造方法。
4. The manganese dioxide according to claim 1, wherein the manganese dioxide has an average particle size of 5 to 30 μm.
A method for producing spinel-type lithium manganate, characterized in that:
【請求項5】 上記請求項1乃至4のいずれか一項に記
載の製造方法によって得られたスピネル型マンガン酸リ
チウムからなることを特徴とする非水電解質二次電池用
正極材料。
5. A positive electrode material for a non-aqueous electrolyte secondary battery, comprising a spinel-type lithium manganate obtained by the production method according to claim 1. Description:
【請求項6】 上記請求項5に記載の正極材料を用いた
正極とリチウムを吸蔵、脱蔵できる負極と非水電解質と
から構成されることを特徴とする非水電解質二次電池。
6. A non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode material according to claim 5, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte.
JP2001111205A 2001-04-10 2001-04-10 Method for manufacturing spinel type lithium manganate Withdrawn JP2002308626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111205A JP2002308626A (en) 2001-04-10 2001-04-10 Method for manufacturing spinel type lithium manganate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111205A JP2002308626A (en) 2001-04-10 2001-04-10 Method for manufacturing spinel type lithium manganate

Publications (1)

Publication Number Publication Date
JP2002308626A true JP2002308626A (en) 2002-10-23

Family

ID=18962845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111205A Withdrawn JP2002308626A (en) 2001-04-10 2001-04-10 Method for manufacturing spinel type lithium manganate

Country Status (1)

Country Link
JP (1) JP2002308626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113130A (en) * 2017-01-10 2018-07-19 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and nonaqueous electrolyte secondary battery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113130A (en) * 2017-01-10 2018-07-19 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and nonaqueous electrolyte secondary battery including the same

Similar Documents

Publication Publication Date Title
JP4185191B2 (en) Method for producing spinel type lithium manganate
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP3048352B1 (en) Method for producing lithium manganate
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP2003257429A (en) Preparation method of iron-containing olivin manganese lithium phosphate and battery using the same
JP3499181B2 (en) Method for producing spinel type lithium manganate
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP2002308628A (en) Spinel type lithium manganate
JP3499180B2 (en) Method for producing spinel type lithium manganate
JP4806755B2 (en) Method for producing spinel type lithium manganate
JP2002308626A (en) Method for manufacturing spinel type lithium manganate
JPH06310145A (en) Manufacture of nickel acid lithium for lithium secondary battery
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
JP3387876B2 (en) Method for producing spinel type lithium manganate
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery
JP3499179B2 (en) Method for producing spinel type lithium manganate
JP2002033100A (en) Lithium - manganese oxide and lithium battery using it
JP2001130914A (en) Method for producing lithium manganese spinel oxide particle powder
JP2000058050A (en) Manufacture of positive electrode active material for lithium secondary battery
JP2003252630A (en) Method for producing spinel iron-containing lithium manganate and battery using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701