JP2002033101A - Lithium-manganese oxide and lithium secondary battery using it - Google Patents

Lithium-manganese oxide and lithium secondary battery using it

Info

Publication number
JP2002033101A
JP2002033101A JP2000213814A JP2000213814A JP2002033101A JP 2002033101 A JP2002033101 A JP 2002033101A JP 2000213814 A JP2000213814 A JP 2000213814A JP 2000213814 A JP2000213814 A JP 2000213814A JP 2002033101 A JP2002033101 A JP 2002033101A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
mixed
positive electrode
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000213814A
Other languages
Japanese (ja)
Inventor
Shintaro Ishida
新太郎 石田
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000213814A priority Critical patent/JP2002033101A/en
Publication of JP2002033101A publication Critical patent/JP2002033101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a Li-Mn spinel compound having an excellent rate characteristic in relation to a Li ion battery positive electrode. SOLUTION: The composition of this lithium-manganese oxide is Li1+x Mn2-x-yMhyO4, where x=0.03-0.15 and y=0.005-0.05, the specific surface area thereof is 0.5-0.8 m2/g, and the content of sodium thereof is 1000 ppm or less. This lithium secondary battery uses the lithium-manganese oxide as a positive electrode material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムーマンガン系
酸化物及びこれを用いたリチウム二次電池に関する。
The present invention relates to a lithium-manganese oxide and a lithium secondary battery using the same.

【0002】[0002]

【従来技術】近年のパソコンや電話等のポータブル化、
コードレス化の急速な進歩により、それらの駆動用電源
としての二次電池の需要が高まっている。その中でも非
水電解質二次電池は、小型かつ高エネルギー密度を持つ
ため特に期待されている。非水電解質二次電池の正極材
料としては、コバルト酸リチウム(LiCoO2)、ニ
ッケル酸リチウム(LiNiO2)、マンガン酸リチウ
ム(LiMn2O4)等がある。これらの複合酸化物は、
リチウムに対し4V以上の電圧を有していることから、
高エネルギー密度を有する電池となる。
2. Description of the Related Art In recent years, portable personal computers and telephones have become portable.
With the rapid progress of cordless technology, the demand for secondary batteries as power sources for driving them is increasing. Among them, non-aqueous electrolyte secondary batteries are particularly expected because of their small size and high energy density. As the positive electrode material of the nonaqueous electrolyte secondary battery, there are lithium cobaltate (LiCoO2), lithium nickelate (LiNiO2), lithium manganate (LiMn2O4) and the like. These composite oxides
Since it has a voltage of 4 V or more with respect to lithium,
The battery has a high energy density.

【0003】しかしながら、これらの正極材料を用いて
リチウム二次電池を製造した場合、レート特性共に優れ
たものが得られないという問題があった。
[0003] However, when a lithium secondary battery is manufactured using these positive electrode materials, there is a problem that an excellent rate characteristic cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、Liイオン電池用の正極材料として、レート特性の優
れたリチウムーマンガン系酸化物を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a lithium-manganese-based oxide having excellent rate characteristics as a cathode material for a Li-ion battery.

【0005】[0005]

【課題を解決するための手段】よって、本発明は、その
組成がLi1+xMn2-x-yMgyO4(x=0.03〜0.15, y=0.005〜0.0
5)であり、比表面積が0.5〜0.8m2/gで、且つナトリウム
含有量が1000ppm以下であるリチウムーマンガン系酸化
物である。また、前記リチウムーマンガン系酸化物を正
極材料として用いたリチウム二次電池である。
Therefore, according to the present invention, the composition of Li1 + xMn2-x-yMgyO4 (x = 0.03-0.15, y = 0.005-0.0
5) The lithium-manganese-based oxide having a specific surface area of 0.5 to 0.8 m2 / g and a sodium content of 1000 ppm or less. Further, there is provided a lithium secondary battery using the lithium-manganese-based oxide as a positive electrode material.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
レート特性に優れるリチウムーマンガン系酸化物の比表
面積は、0.5〜0.8m2/gの範囲にある。これよりも小さ
いと、充放電にともなうLiの脱離・挿入が行われる面積
が小さくなるのでレート特性は悪化する。また、これよ
りも比表面積が大きいと、導電剤との電気的なネットワ
ークが不十分になり、電気抵抗が上昇してレート特性は
悪化する。また、導電性を上げるために導電剤を増やす
と、正極自体の容量が低下する。そのために、比表面積
がこの範囲にあるスピネルを用いることが、レート特性
を上げるうえで必要である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The specific surface area of the lithium-manganese-based oxide having excellent rate characteristics is in the range of 0.5 to 0.8 m2 / g. If it is smaller than this, the area in which Li is desorbed / inserted during charging / discharging becomes small, so that the rate characteristics deteriorate. On the other hand, if the specific surface area is larger than this, the electrical network with the conductive agent becomes insufficient, the electrical resistance increases, and the rate characteristics deteriorate. Further, when the amount of the conductive agent is increased to increase the conductivity, the capacity of the positive electrode itself decreases. Therefore, it is necessary to use a spinel having a specific surface area in this range in order to improve the rate characteristics.

【0007】以前の特許で我々はMg置換品についての特
許を報告している。今回我々は、その中で特に、上記請
求項1に示した条件のMg置換スピネルがレート特性に優
れることを見い出した。比表面積を制御する方法として
は、焼成温度と時間、原料の種類、原料粒度を制御する
方法があげられる。10μm程度の電解二酸化マンガン、
炭酸リチウム、酸化マグネシウムを原料に用いた場合、
上記の比表面積を持つスピネルを得るためには、825〜8
75℃で20時間焼成が適切である。これよりも焼成温度が
高い、又は焼成時間が長いと比表面積は小さくなり、焼
成温度が低い、又は焼成時間が短いと比表面積は大きく
なる。原料粒径を大きくした場合、上記温度は低温側
に、化学合成二酸化マンガンを用いた場合、高温側にシ
フトする。また、Mn2O3, Mn3O4等を原料に用いる場合
は、その粉体特性により、最適焼成温度範囲は決定され
る。
[0007] In previous patents we have reported patents on Mg replacements. This time, we have found that, among them, the Mg-substituted spinel under the conditions described in claim 1 has excellent rate characteristics. Examples of a method for controlling the specific surface area include a method for controlling the firing temperature and time, the type of the raw material, and the particle size of the raw material. Electrolytic manganese dioxide of about 10 μm,
When using lithium carbonate and magnesium oxide as raw materials,
To obtain a spinel with the above specific surface area, 825-8
Firing at 75 ° C for 20 hours is appropriate. If the firing temperature is higher or the firing time is longer, the specific surface area becomes smaller, and if the firing temperature is lower or the firing time is shorter, the specific surface area becomes larger. The temperature shifts to a lower temperature when the raw material particle diameter is increased, and shifts to a higher temperature when chemically synthesized manganese dioxide is used. When Mn2O3, Mn3O4, or the like is used as a raw material, the optimum firing temperature range is determined by the powder characteristics.

【0008】また、リチウムーマンガン系正極材料の比
表面積を上記範囲に制御した場合、サイクル特性、容量
を両立させるためには上記のリチウム、マグネシウム置
換量が適切である。これよりもLi置換量が少ないとサイ
クル特性が悪化し、置換量が多いと容量が低下してしま
う。
When the specific surface area of the lithium-manganese-based positive electrode material is controlled within the above range, the above-mentioned lithium and magnesium substitution amounts are appropriate for achieving both cycle characteristics and capacity. If the Li substitution amount is smaller than this, the cycle characteristics deteriorate, and if the substitution amount is large, the capacity decreases.

【0009】本発明のLi−Mn系スピネル化合物は、
リチウム原料、Mg酸化物、及びMn酸化物を混合し、
焼成して得られる。リチウム原料としては、炭酸リチウ
ム(Li2CO3)、硝酸リチウム(Li2NO3)、水酸
化リチウム(LiOH)等が挙げられる。
The Li—Mn spinel compound of the present invention comprises:
Mixing lithium material, Mg oxide, and Mn oxide,
Obtained by firing. Examples of the lithium raw material include lithium carbonate (Li2CO3), lithium nitrate (Li2NO3), lithium hydroxide (LiOH) and the like.

【0010】これらの原料は、より大きな反応面積を得
る為に、原料混合前あるいは後に粉砕することも好まし
い。秤量・混合された原料はそのままでも、あるいは造
粒して使用してもよい。造粒方法は、湿式でも乾式でも
よい。
[0010] In order to obtain a larger reaction area, these raw materials are preferably ground before or after mixing the raw materials. The weighed and mixed raw materials may be used as they are or may be granulated and used. The granulation method may be wet or dry.

【0011】これらの原料を焼成炉内に投入し、600
℃〜1000℃の温度範囲で焼成することにより、本発
明のリチウムーマンガン系酸化物が得られる。ここで用
いられる焼成炉としては、ロータリーキルン或いは静置
炉等が例示される。焼成時間は、均一な反応を得る為1
時間以上、好ましくは5〜20時間である。ここで合成
されたLi−Mn系スピネル化合物は、リチウム二次電
池の正極材料として用いられる。
[0011] These raw materials are put into a firing furnace, and 600
By calcining at a temperature in the range of ° C to 1000 ° C, the lithium-manganese-based oxide of the present invention is obtained. Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 to obtain a uniform reaction.
The time is at least an hour, preferably 5 to 20 hours. The Li—Mn-based spinel compound synthesized here is used as a positive electrode material of a lithium secondary battery.

【0012】ここで、リチウム二次電池に関して、上記
正極材料とカーボンブラック等の導電材と、テフロン
(商品名:ポリテトラフルオロエチレン)バインダー等
の結着剤とを混合して正極合剤とし、また、負極にはリ
チウム合金、またはカーボン等のリチウムを脱・吸蔵で
きる材料が用いられ、非水系電解質としては、六フッ化
リン酸リチウム(LiPF6)等のリチウム塩をエチレ
ンカーボネート−ジメチルカーボネート等の混合溶媒に
溶解したもの、あるいはそれらをゲル電解質にしたもの
が用いられる。
Here, regarding the lithium secondary battery, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (polytetrafluoroethylene) binder are mixed to form a positive electrode mixture, For the negative electrode, a lithium alloy or a material capable of desorbing and occluding lithium such as carbon is used. As the non-aqueous electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF6) is used such as ethylene carbonate-dimethyl carbonate. Those dissolved in a mixed solvent or those obtained by converting them into a gel electrolyte are used.

【0013】[0013]

【実施例】実施例1 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:228.0g:4.43gを混合し、850℃で20hr焼成した。
このようにして得られたリチウムーマンガン系酸化物を
80wt%、導電剤15wt%、結着剤5wt%を混合してシート状に
し、正極として用いた。負極には金属Li、セパレーター
に微孔性のポリプロピレンを用い、電解液には1MのLiPF
6を溶解させたEC:DMC=1:1の混合溶媒を用いた。
EXAMPLES Example 1 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide adjusted to about 10 μm after neutralizing and washing with ammonia
990 g: 228.0 g: 4.43 g were mixed and fired at 850 ° C. for 20 hours.
The lithium-manganese oxide obtained in this way is
80 wt%, a conductive agent 15 wt%, and a binder 5 wt% were mixed to form a sheet, which was used as a positive electrode. Metal Li for negative electrode, microporous polypropylene for separator, 1M LiPF for electrolyte
A mixed solvent of EC: DMC = 1: 1 in which 6 was dissolved was used.

【0014】充放電試験は20℃において、電流密度0.5m
A/cm2、電圧範囲3-4.3Vで行った。高温保存試験は4.3V
まで充電した電池を80℃で3日間保存した後に放電し、
この時の容量を初期容量に対する維持率として表わし
た。サイクル試験は、100サイクル後の容量を初期容量
に対する維持率として表わした。レート試験は、満充電
後、2Cで5秒間放電させたときのOCVからの電位降下を測
定することにより行った。得られた結果を表1に示す。
The charge / discharge test was conducted at 20 ° C. at a current density of 0.5 m
A / cm2, voltage range 3-4.3V. 4.3V high temperature storage test
Discharge after storing the battery charged to 80 ° C for 3 days,
The capacity at this time was expressed as a maintenance ratio with respect to the initial capacity. In the cycle test, the capacity after 100 cycles was expressed as a maintenance ratio with respect to the initial capacity. The rate test was performed by measuring a potential drop from OCV when discharging at 2C for 5 seconds after full charge. Table 1 shows the obtained results.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:221.6:4.43gを混合した以外は実施例1と同様に
処理した。
Example 2 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide, which was neutralized and washed with ammonia and adjusted to about 10 μm =
The same treatment as in Example 1 was carried out except that 990 g: 221.6: 4.43 g was mixed.

【0017】実施例3 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:251.2g:4.43gを混合した以外は実施例1と同様
に処理した。
Example 3 Aqueous electrolytic manganese dioxide: lithium carbonate: magnesium oxide adjusted to about 10 μm after neutralizing and washing with ammonia
The same treatment as in Example 1 was carried out except that 990 g: 251.2 g: 4.43 g were mixed.

【0018】実施例4 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
997.5g:228.0g:1.11gを混合した以外は実施例1と同
様に処理した。
Example 4 Aqueous electrolytic manganese dioxide: lithium carbonate: magnesium oxide adjusted to about 10 μm after neutralizing and washing with ammonia
The same treatment as in Example 1 was carried out except that 997.5 g: 228.0 g: 1.11 g were mixed.

【0019】実施例5 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
975g:228.0:11.1gを混合した以外は実施例1と同様に
処理した。
Example 5 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm after neutralizing and washing with ammonia.
The same treatment as in Example 1 was carried out except that 975 g: 228.0: 11.1 g was mixed.

【0020】実施例6 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:228.0g:4.43gを混合し、825℃で20hr焼成した。
Example 6 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm by neutralizing and washing with ammonia.
990 g: 228.0 g: 4.43 g were mixed and fired at 825 ° C. for 20 hours.

【0021】実施例7 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:228.0g:4.43gを混合し、875℃で20hr焼成した。
Example 7 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm by neutralizing and washing with ammonia.
990 g: 228.0 g: 4.43 g were mixed and fired at 875 ° C. for 20 hours.

【0022】比較例1 ソーダ中和、洗浄を行い、10μm程度に調整した電解二
酸化マンガン:炭酸リチウム:酸化マグネシウム=990
g:228.0g:4.43gを混合し、850℃で20hr焼成した。
COMPARATIVE EXAMPLE 1 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide = 990 after soda neutralization and washing, and adjusted to about 10 μm.
g: 228.0 g: 4.43 g were mixed and baked at 850 ° C. for 20 hours.

【0023】比較例2 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:218.0g:4.43gを混合した以外は実施例1と同様
に処理した。
Comparative Example 2 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm by neutralizing and washing with ammonia.
The same treatment as in Example 1 was carried out except that 990 g: 218.0 g: 4.43 g were mixed.

【0024】比較例3 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
1000g:268.5g:4.43gを混合した以外は実施例1と同様
に処理した。
Comparative Example 3 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm by neutralizing and washing with ammonia.
The same treatment as in Example 1 was carried out except that 1000 g: 268.5 g: 4.43 g was mixed.

【0025】比較例4 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
975g:261.7g:16.7gを混合し、850℃で20hr
焼成した以外は実施例1と同様に処理した。
Comparative Example 4 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm by neutralizing and washing with ammonia.
975 g: 261.7 g: 16.7 g were mixed and 850 ° C. for 20 hours.
Except for baking, the same treatment as in Example 1 was performed.

【0026】比較例5 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:228.0g:4.43gを混合し、800℃で20hr焼成した以
外は実施例1と同様に処理した。
Comparative Example 5 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm by neutralizing and washing with ammonia.
990 g: 228.0 g: 4.43 g were mixed and fired at 800 ° C. for 20 hours, and treated in the same manner as in Example 1.

【0027】比較例6 アンモニア中和、洗浄を行い、10μm程度に調整した電
解二酸化マンガン:炭酸リチウム:酸化マグネシウム=
990g:228.0g:4.43gを混合し、900℃で20hr焼成した以
外は実施例1と同様に処理した。
Comparative Example 6 Electrolytic manganese dioxide: lithium carbonate: magnesium oxide was adjusted to about 10 μm by neutralizing and washing with ammonia.
990 g: 228.0 g: 4.43 g were mixed and fired at 900 ° C. for 20 hours, and treated in the same manner as in Example 1.

【0028】実施例1〜6で得られたリチウム二次電池
は、比表面積が0.50〜0.78m2/gという比較的狭い範囲に
あり、前述したとおりこの比表面積の範囲ではレート特
性が56〜59mVという比較的小さい値にあり、更にサイク
ル維持率も92.3〜97.1%と高く維持されている。又、電
池容量についても実施例3が85.0mAh/gと比較的低い
が、他の実施例では112mAh/g以上と高い放電容量を示し
た。
The lithium secondary batteries obtained in Examples 1 to 6 have a specific surface area in a relatively narrow range of 0.50 to 0.78 m2 / g, and as described above, the rate characteristic is 56 to 59 mV in this specific surface area range. And the cycle maintenance rate is maintained as high as 92.3 to 97.1%. The battery capacity of Example 3 was relatively low at 85.0 mAh / g, but the other examples showed a high discharge capacity of 112 mAh / g or more.

【0029】比較例1は、ナトリウム含有量が増大する
ことによりレート特性が大きく低下したことが分かる。
比較例2はxが0.03〜0.15の範囲外である0.02に低下した
ことでサイクル維持率が低下した事が分かる。比較例3
はxが0.03〜0.15の範囲外である0.17に増加した事によ
り容量が低下したことが分かる。比較例4はyが0.005〜
0.05の範囲外である0.07に増加した事により容量が低下
したことが分かる。比較例5は実施例1と比較して焼成温
度を下げたために比表面積が増加し、レート特性が低下
していることが分かる。比較例6は、実施例1と比較して
焼成温度を上げたために比表面積が減少し、レート特
性、及びサイクル維持率が低下したことが分かる。
In Comparative Example 1, it can be seen that the rate characteristics were greatly reduced by an increase in the sodium content.
In Comparative Example 2, it can be seen that the cycle maintenance ratio was reduced by reducing x to 0.02, which was outside the range of 0.03 to 0.15. Comparative Example 3
It can be seen that the capacity was reduced by increasing x to 0.17, which was outside the range of 0.03 to 0.15. In Comparative Example 4, y was 0.005 to
It can be seen that the capacity was reduced by increasing to 0.07, which is out of the range of 0.05. It can be seen that in Comparative Example 5, the specific surface area was increased and the rate characteristics were reduced because the firing temperature was lower than in Example 1. Comparative Example 6 shows that the specific surface area was reduced due to an increase in the firing temperature as compared with Example 1, and that the rate characteristics and the cycle retention were reduced.

【0030】[0030]

【発明の効果】本発明では、Liイオン電池正極におい
て、レート特性の優れたリチウムーマンガン系酸化物が
提供できる。
According to the present invention, a lithium-manganese-based oxide having excellent rate characteristics can be provided for a positive electrode of a Li-ion battery.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ05 AK03 AL12 AM03 AM04 AM05 AM07 DJ06 HJ01 HJ02 HJ07 5H050 AA02 AA07 BA17 CA09 CB12 EA10 EA24 FA17 HA01 HA02 HA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ02 AJ05 AK03 AL12 AM03 AM04 AM05 AM07 DJ06 HJ01 HJ02 HJ07 5H050 AA02 AA07 BA17 CA09 CB12 EA10 EA24 FA17 HA01 HA02 HA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】その組成がLi1+xMn2-x-yMgyO4(x=0.03〜0.
15, y=0.005〜0.05)であり、比表面積が0.5〜0.8m2/g
で、且つナトリウム含有量が1000ppm以下であるリチウ
ムーマンガン系酸化物
(1) The composition is Li1 + xMn2-x-yMgyO4 (x = 0.03 to 0.3).
15, y = 0.005 to 0.05), and the specific surface area is 0.5 to 0.8 m2 / g
Lithium-manganese oxides with a sodium content of 1000 ppm or less
【請求項2】請求項1のリチウムーマンガン系酸化物を
正極材料として用いることを特徴とするリチウム二次電
2. A lithium secondary battery using the lithium-manganese oxide according to claim 1 as a positive electrode material.
JP2000213814A 2000-07-14 2000-07-14 Lithium-manganese oxide and lithium secondary battery using it Pending JP2002033101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213814A JP2002033101A (en) 2000-07-14 2000-07-14 Lithium-manganese oxide and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213814A JP2002033101A (en) 2000-07-14 2000-07-14 Lithium-manganese oxide and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2002033101A true JP2002033101A (en) 2002-01-31

Family

ID=18709507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213814A Pending JP2002033101A (en) 2000-07-14 2000-07-14 Lithium-manganese oxide and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2002033101A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054436A1 (en) 2007-10-23 2009-04-30 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium-transition metal oxide
WO2010114015A1 (en) 2009-03-31 2010-10-07 三井金属鉱業株式会社 Positive electrode active material for lithium battery
JP2011251862A (en) * 2010-06-01 2011-12-15 Tosoh Corp Manganese oxide and method for producing the same
KR20140112044A (en) 2011-12-27 2014-09-22 미쓰이금속광업주식회사 Spinel-type lithium manganese transition metal oxide
KR20150045389A (en) * 2013-10-17 2015-04-28 주식회사 포스코 Spinel type lithium manganese complex oxide and method of preparing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054436A1 (en) 2007-10-23 2009-04-30 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium-transition metal oxide
US7988880B2 (en) 2007-10-23 2011-08-02 Mitsui Mining & Smelting Co., Ltd. Spinel type lithium transition metal oxide
WO2010114015A1 (en) 2009-03-31 2010-10-07 三井金属鉱業株式会社 Positive electrode active material for lithium battery
US8703341B2 (en) 2009-03-31 2014-04-22 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium battery
JP2011251862A (en) * 2010-06-01 2011-12-15 Tosoh Corp Manganese oxide and method for producing the same
KR20140112044A (en) 2011-12-27 2014-09-22 미쓰이금속광업주식회사 Spinel-type lithium manganese transition metal oxide
US9893355B2 (en) 2011-12-27 2018-02-13 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium manganese transition metal oxide
KR20150045389A (en) * 2013-10-17 2015-04-28 주식회사 포스코 Spinel type lithium manganese complex oxide and method of preparing the same
KR101589293B1 (en) 2013-10-17 2016-01-29 주식회사 포스코 Spinel type lithium manganese complex oxide and method of preparing the same

Similar Documents

Publication Publication Date Title
JP4185191B2 (en) Method for producing spinel type lithium manganate
JPH11292542A (en) Production of li-mn double oxide
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP3048352B1 (en) Method for producing lithium manganate
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JPH11339802A (en) Manufacture of positive active material for lithium secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP2002170566A (en) Lithium secondary cell
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP3835419B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2001064020A (en) Production of lithium manganate
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP2002251995A (en) Spinel type positive electrode material for lithium secondary battery and manufacturing method
JP2002033100A (en) Lithium - manganese oxide and lithium battery using it
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP4356127B2 (en) Lithium secondary battery
JPH04332480A (en) Nonaqueous secondary battery
JP2001110413A (en) Material for positive electrode of lithium secondary battery and the lithium secondary battery using the material
JP2002170569A (en) Lithium secondary cell
JPH11157841A (en) Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106