JPH11157841A - Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator - Google Patents

Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator

Info

Publication number
JPH11157841A
JPH11157841A JP9332593A JP33259397A JPH11157841A JP H11157841 A JPH11157841 A JP H11157841A JP 9332593 A JP9332593 A JP 9332593A JP 33259397 A JP33259397 A JP 33259397A JP H11157841 A JPH11157841 A JP H11157841A
Authority
JP
Japan
Prior art keywords
lithium
manganese dioxide
electric furnace
aqueous electrolyte
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9332593A
Other languages
Japanese (ja)
Inventor
Koichi Numata
幸一 沼田
Munetoshi Yamaguchi
宗利 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP9332593A priority Critical patent/JPH11157841A/en
Publication of JPH11157841A publication Critical patent/JPH11157841A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To produce Li-Mn multiple oxide as a positive electrode material used in a non-aq. electrolyte accumulator typified by a lithium accumulator and to obtain a non-aq. electrolyte accumulator using the Li-Mn multiple oxide. SOLUTION: Manganese dioxide as Mn stock is fired at 800-900 deg.C, mixed with an Li salt and fired at 650-850 deg.C in an atmosphere of oxygen to obtain the objective Li-Mn multiple oxide represented by the formula, Li1+x Mn2-x Oy (where 0.04<=x<=0.08) and having 0.3-0.7 m<3> /g specific surface area and <=4 wt.% SO4 content. The multiple oxide is used as a positive electrode active material for a non-aq. electrolyte accumulator to obtain the objective non-aq. electrolyte accumulator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
で代表される非水電解液二次電池に用いられる正極材料
としてのLi−Mn複合酸化物及びその製造方法並びに
Li−Mn複合酸化物を用いた非水電解液二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Li-Mn composite oxide as a cathode material used in a non-aqueous electrolyte secondary battery represented by a lithium secondary battery, a method for producing the same, and a Li-Mn composite oxide. And a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年、AV機器或いはパソコン等の電子
機器のポータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
ー密度を有する二次電池への要求が高い。このような要
求に対して、非水系二次電池、特にリチウム二次電池
は、とりわけ高電圧,高エネルギー密度を有する電池と
しての期待が大きい。これらの要求を満足するリチウム
二次電池用の正極材料としてリチウムをインターカレー
ション,デインターカレーションすることのできるLi
CoO2 ,LiNiO2 或いはこれらの酸化物に遷移金
属元素を一部置換した複合酸化物等の層状化合物の研究
が盛んに行われている。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advanced, and there has been a demand for small, lightweight, high energy density secondary batteries as power sources for driving these devices. high. In response to such demands, non-aqueous secondary batteries, particularly lithium secondary batteries, are highly expected as batteries having high voltage and high energy density. Li capable of intercalating and deintercalating lithium as a cathode material for a lithium secondary battery satisfying these requirements.
Studies on layered compounds such as CoO 2 , LiNiO 2, or composite oxides in which a transition metal element is partially substituted for these oxides have been actively conducted.

【0003】また、層状構造を持たないが、LiCoO
2 等と同様な4V級の高電圧を有する安価な材料とし
て、Li−Mn複合酸化物であるLiMn2 4 や、ま
た電圧は約3Vと若干低いLiMnO2 の開発も進めら
れている。
[0003] Further, although having no layered structure, LiCoO
As an inexpensive material having a high voltage of 4V class similar to 2 or the like, development of LiMn 2 O 4 which is a Li—Mn composite oxide and LiMnO 2 having a slightly lower voltage of about 3 V are also in progress.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
Li−Mn複合酸化物をリチウム二次電池用の正極材料
として用いた場合、従来のLiCoO2 ,LiNiO2
を正極材料として用いた場合と比較して高温電池特性に
劣るという問題があった。この対策として、Mnの一部
をLiで置換したり、遷移元素で置換するという方法も
試みれらたが、ある程度の改善は得られるものの未だ充
分ではない。また、電池容量も小さいという問題があ
る。
However, when these Li—Mn composite oxides are used as a cathode material for a lithium secondary battery, conventional LiCoO 2 and LiNiO 2
There was a problem that the high-temperature battery characteristics were inferior to the case of using as a positive electrode material. As a countermeasure for this, a method of substituting a part of Mn with Li or substituting with a transition element has been attempted, but some improvement is obtained, but it is not enough. There is also a problem that the battery capacity is small.

【0005】例えば、高容量タイプのLiMn2
4 (>120mAh/g,MnO2 原料を使用し、650 ℃〜800 ℃の
焼成、高い比表面積(1m2 /g以上)の場合) には、
高温電池特性が悪いという問題がある(特開平7−97
216号公報,特開平7−245103号公報参照)。
また、高温特性を改良したタイプのLi2 MnO4 (Mn
O2原料を使用し、900℃→600 ℃の二段階の焼成、低い
比表面積(0.5m2 /g以下)の場合) には、放電容量
が低い(<110mAh/g)という問題がある(Yuan Gao and
J.R.Dahn;J.Electrochem.Soc.Vol.143,No.6,June 1996
参照) 。よって、良好な特性を有する電池材料の出現
が望まれている。
For example, a high capacity type LiMn 2 O
4 (> 120 mAh / g, using MnO 2 material, firing 650 ° C. to 800 ° C., a high specific surface area (in the case of 1 m 2 / g or higher)), the
There is a problem that the high-temperature battery characteristics are poor (Japanese Patent Laid-Open No. 7-97)
216, JP-A-7-245103).
In addition, a type of Li 2 MnO 4 (Mn
The use of O 2 raw materials, two-stage firing from 900 ° C. to 600 ° C., and a low specific surface area (0.5 m 2 / g or less) has the problem of low discharge capacity (<110 mAh / g). (Yuan Gao and
JRDahn; J.Electrochem.Soc.Vol.143, No.6, June 1996
See). Therefore, the appearance of a battery material having good characteristics is desired.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する[請
求項1]のLi−Mn複合酸化物は、Li1+x Mn2- x
y において、0.04≦x≦0.08であり、比表面積が
0.3〜0.7m2 /gであり、SO4 含有量が0.4重量%
以下であることを特徴とする。
Means for Solving the Problems The Li-Mn composite oxide according to claim 1 for solving the above-mentioned problems is Li 1 + x Mn 2- x
In O y, it is 0.04 ≦ x ≦ 0.08, a specific surface area
0.3 to 0.7 m 2 / g, and the SO 4 content is 0.4% by weight.
It is characterized by the following.

【0007】[請求項2]のLi−Mn複合酸化物の製
造方法は、Mn原料のMnO2 を800℃〜900℃で
焼成し、その後Li塩と混合し、酸素雰囲気下で650
℃〜950℃で焼成することを特徴とする。
According to a second aspect of the present invention, there is provided a method for producing a Li—Mn composite oxide, wherein MnO 2 as a Mn raw material is calcined at 800 ° C. to 900 ° C., mixed with a Li salt, and then mixed with an Li salt at 650 ° C.
It is characterized in that it is fired at from 950C to 950C.

【0008】[請求項3]の非水電解液二次電池の発明
は、請求項1のLi−Mn複合酸化物を非水電解液二次
電池用正極活物質として用いてなることを特徴とする。
[0008] A third aspect of the invention of a non-aqueous electrolyte secondary battery is characterized in that the Li-Mn composite oxide of the first aspect is used as a positive electrode active material for a non-aqueous electrolyte secondary battery. I do.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0010】本発明の上記課題を解決する非水電解液二
次電池用正極活物質の発明は、Li 1+x Mn2-x y
おいて、0.04≦x≦0.08であり、比表面積が0.3〜
0.7m2 /gであり、SO4 含有量が0.4重量%以下で
あるものである。
[0010] A non-aqueous electrolyte solution for solving the above problems of the present invention.
The invention of the positive electrode active material for a secondary battery is based on Li 1 + xMn2-xOyTo
0.04 ≦ x ≦ 0.08, and the specific surface area is 0.3 to
0.7mTwo/ G and SOFourIf the content is less than 0.4% by weight
There is something.

【0011】ここで、過剰に添加するLiの量(x)を
0.04≦x≦0.08とするのは、Liの添加量(x)が
0.04未満の場合であると、マンガン酸リチウムの格子
欠陥ができやすく、後述する実施例に示すように、20
℃での放電容量及び容量維持率が低く、85℃での保存
後の放電容量が低くなり、一方、添加量(x)が0.08
を超えた場合であると、過剰リチウムが多いため、後述
する実施例に示すように、20℃での放電容量が低く、
85℃での保存後の放電容量が低くなり、共に好ましく
ないからである。また、比表面積が0.3〜0.7m2 /g
とするのは、比表面積が0.3m2 /g未満であると、後
述する実施例に示すように、20℃での放電容量が低
く、85℃での保存後の放電容量が低くなり、一方、比
表面積が0.7m2 /gを超えた場合には、吸湿性が大と
なり、後述する実施例に示すように、85℃での保存後
の放電容量が低くなり、共に好ましくないからである。
また、SO4 含有量を0.4重量%以下とするのは、SO
4 含有量が0.4重量%を超えた場合には、吸湿性が大と
なり、後述する実施例に示すように、85℃での保存後
の放電容量が低くなり、好ましくないからである。
Here, the amount (x) of Li added excessively is
0.04 ≦ x ≦ 0.08 is satisfied when the added amount (x) of Li is
If it is less than 0.04, lattice defects of lithium manganate are likely to occur, and as shown in Examples described later,
C., the discharge capacity after storage at 85 ° C. is low, while the addition amount (x) is 0.08.
When the temperature exceeds 20 ° C., since the excess lithium is large, the discharge capacity at 20 ° C. is low as shown in the examples described later.
This is because the discharge capacity after storage at 85 ° C. becomes low, which is not preferable. The specific surface area is 0.3 to 0.7 m 2 / g.
When the specific surface area is less than 0.3 m 2 / g, the discharge capacity at 20 ° C. is low, and the discharge capacity after storage at 85 ° C. is low, as shown in Examples described later. On the other hand, when the specific surface area exceeds 0.7 m 2 / g, the hygroscopicity becomes large, and the discharge capacity after storage at 85 ° C. becomes low, as shown in Examples described later, and both are not preferable. It is.
The reason why the SO 4 content is set to 0.4% by weight or less is that SO 4
(4) If the content exceeds 0.4% by weight, the hygroscopicity becomes large and the discharge capacity after storage at 85 ° C. becomes low, as shown in the examples described later, which is not preferable.

【0012】また、マンガン酸リチウムの製造方法の発
明は、Mn原料のMnO2 を800℃〜900℃で焼成
し、その後Li塩と混合し、酸素雰囲気下で650℃〜
950℃でLi−Mn複合酸化物を焼成するものであ
る。
Further, the invention of a method for producing lithium manganate is characterized in that MnO 2 as a Mn raw material is calcined at 800 ° C. to 900 ° C., then mixed with a Li salt, and heated at 650 ° C. under an oxygen atmosphere.
The Li-Mn composite oxide is fired at 950 ° C.

【0013】ここで、原料のMnO2 の焼成を800℃
〜900℃とするのは、後述する実施例に示すように、
800℃未満であると、SO4 除去が不十分であり、2
0℃での容量維持率が低く、85℃での保存後の放電容
量が低いからであり、一方、900℃を超えて焼成する
と、Mn2 3 からMn3 4 への分解が起こり、20
℃での容量維持率が低く、85℃での保存後の放電容量
が低く、共に好ましくないからである。
Here, the sintering of the raw material MnO 2 is performed at 800 ° C.
The reason why the temperature is set to 900 ° C. is as shown in an example described later.
If the temperature is lower than 800 ° C., the removal of SO 4 is insufficient, and 2
This is because the capacity retention rate at 0 ° C. is low and the discharge capacity after storage at 85 ° C. is low. On the other hand, when firing is performed at over 900 ° C., decomposition of Mn 2 O 3 to Mn 3 O 4 occurs, 20
This is because the capacity retention rate at ℃ is low, and the discharge capacity after storage at 85 ° C is low, which is both undesirable.

【0014】また、Li−Mn複合酸化物を焼成する際
には、酸素雰囲気下で行う必要があるのは、Mnの酸化
を充分に行うためであり、また酸素雰囲気下で行わない
場合には、後述する実施例に示すように、20℃での容
量維持率が低く、85℃での保存後の放電容量が低くな
り、好ましくないからである。
The firing of the Li—Mn composite oxide must be performed in an oxygen atmosphere in order to sufficiently oxidize Mn, and when the firing is not performed in an oxygen atmosphere. This is because the capacity retention at 20 ° C. is low, and the discharge capacity after storage at 85 ° C. is low, as shown in Examples described below, which is not preferable.

【0015】また、Li−Mn複合酸化物を焼成を65
0℃〜950℃とするのは、後述する実施例に示すよう
に、650℃未満であると、マンガン酸リチウムの合成
反応が不十分であり、20℃での放電容量及び容量維持
率が低く、85℃での保存後の放電容量が低くなるから
である。一方、950℃を超えて焼成すると、マンガン
酸リチウムの分解反応が起こり、20℃での放電容量が
低く、85℃での保存後の放電容量が低くなるからであ
る。
The Li-Mn composite oxide is fired at 65
When the temperature is set to 0 ° C. to 950 ° C., as shown in Examples described below, if the temperature is lower than 650 ° C., the synthesis reaction of lithium manganate is insufficient, and the discharge capacity and the capacity retention at 20 ° C. are low. This is because the discharge capacity after storage at 85 ° C. becomes low. On the other hand, when firing at more than 950 ° C., a decomposition reaction of lithium manganate occurs, resulting in a low discharge capacity at 20 ° C. and a low discharge capacity after storage at 85 ° C.

【0016】また、非水電解液二次電池の発明は、上記
非水電解液二次電池用正極活物質を用いてなるものであ
る。なお、本発明にける非水電解液二次電池の負極に
は、金属リチウム又はリチウムを吸蔵放出可能な物質を
用いれば何等限定されるものではなく、電解質について
も、例えばカーボネート類,スルホラン類,ラクトン
類,エーテル類の有機溶媒中にリチウム塩を溶解したも
のや、リチウムイオン導電性の固体電解質を用いること
ができ、本発明において何等制限されるものではない。
Further, the invention of a non-aqueous electrolyte secondary battery uses the above-mentioned positive electrode active material for a non-aqueous electrolyte secondary battery. The negative electrode of the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited as long as metallic lithium or a substance capable of inserting and extracting lithium is used. For the electrolyte, for example, carbonates, sulfolane, A solution in which a lithium salt is dissolved in an organic solvent of a lactone or an ether or a solid electrolyte having lithium ion conductivity can be used, and is not limited in the present invention.

【0017】[0017]

【実施例】以下、本発明の効果を示す実施例を説明する
が、本発明はこれに限定されるものではない。
EXAMPLES Examples showing the effects of the present invention will be described below, but the present invention is not limited to these examples.

【0018】(実施例1)二酸化マンガン(SO4 含有
率1.2%)を、電気炉中で800℃で20時間焼成し、
得られた焼成二酸化マンガンと、炭酸リチウムとを、L
i:Mn=1.06:1.94となるように秤量し、ボール
ミルで混合後、電気炉中で酸素雰囲気下800℃で20
時間焼成し、解砕してLi−Mn複合酸化物を生成し
た。このLi−Mn複合酸化物を正極活物質としてコイ
ン電池を作製し、放電試験を行った。試験内容として
は、Li−Mn複合酸化物の比表面積,SO4 含有率,
20℃における初期放電容量(mAh/g),15サイ
クル時での容量維持率(%)、充電後85℃で24時間
保存後の放電容量(mAh/g)を測定した。
Example 1 Manganese dioxide (SO 4 content: 1.2%) was calcined in an electric furnace at 800 ° C. for 20 hours.
The obtained calcined manganese dioxide and lithium carbonate are
i: Mn was weighed so that Mn = 1.06: 1.94, mixed with a ball mill, and then placed in an electric furnace at 800 ° C. in an oxygen atmosphere at 20 ° C.
It was calcined for a period of time and crushed to produce a Li-Mn composite oxide. A coin battery was manufactured using this Li-Mn composite oxide as a positive electrode active material, and a discharge test was performed. The test contents include the specific surface area of the Li—Mn composite oxide, the SO 4 content,
The initial discharge capacity (mAh / g) at 20 ° C., the capacity retention rate (%) at 15 cycles, and the discharge capacity (mAh / g) after storage at 85 ° C. for 24 hours after charging were measured.

【0019】(実施例2)二酸化マンガンの電気炉中で
の焼成を900℃とした以外は、実施例1と同様に操作
した。
Example 2 The same operation as in Example 1 was carried out except that manganese dioxide was fired in an electric furnace at 900 ° C.

【0020】(実施例3)二酸化マンガンの電気炉中で
の焼成を900℃とし、得られた焼成二酸化マンガン
と、炭酸リチウムとを、Li:Mn=1.04:1.96と
なるように秤量した以外は、実施例1と同様に操作し
た。
Example 3 Manganese dioxide was fired in an electric furnace at 900 ° C., and the obtained fired manganese dioxide and lithium carbonate were mixed such that Li: Mn = 1.04: 1.96. The same operation as in Example 1 was performed except for weighing.

【0021】(実施例4)二酸化マンガンの電気炉中で
の焼成を900℃とし、得られた焼成二酸化マンガン
と、炭酸リチウムとを、Li:Mn=1.08:1.92と
なるように秤量した以外は、実施例1と同様に操作し
た。
Example 4 Manganese dioxide was fired in an electric furnace at 900 ° C., and the obtained fired manganese dioxide and lithium carbonate were mixed such that Li: Mn = 1.08: 1.92. The same operation as in Example 1 was performed except for weighing.

【0022】(実施例5)二酸化マンガンの電気炉中で
の焼成を900℃とし、ボールミル混合後の電気炉中の
焼成を650℃とした以外は、実施例1と同様に操作し
た。
Example 5 The same operation as in Example 1 was carried out except that the calcination of manganese dioxide in an electric furnace was 900 ° C., and the calcination in an electric furnace after mixing with a ball mill was 650 ° C.

【0023】(実施例6)二酸化マンガンの電気炉中で
の焼成を900℃とし、ボールミル混合後の電気炉中の
焼成を950℃とした以外は、実施例1と同様に操作し
た。
Example 6 The same operation as in Example 1 was performed except that calcination of manganese dioxide in an electric furnace was 900 ° C., and calcination in an electric furnace after mixing with a ball mill was 950 ° C.

【0024】(実施例7)二酸化マンガンを、SO4
有率1.2%のものから、0.6%のものに変えた以外は、
実施例2と同様に操作した。
Example 7 Manganese dioxide was changed from 1.2% SO 4 content to 0.6% SO 4 content.
The same operation was performed as in Example 2.

【0025】(実施例8)二酸化マンガンを、SO4
有率1.2%のものから、0.01%のものに変えた以外
は、実施例2と同様に操作した。
Example 8 The same operation as in Example 2 was carried out, except that the manganese dioxide was changed from the SO 4 content of 1.2% to 0.01%.

【0026】(実施例9)二酸化マンガンの電気炉中で
の焼成を900℃とし、ボールミル混合後の電気炉中の
焼成を850℃とした以外は、実施例1と同様に操作し
た。
Example 9 The same operation as in Example 1 was performed except that calcination of manganese dioxide in an electric furnace was 900 ° C., and calcination in an electric furnace after mixing with a ball mill was 850 ° C.

【0027】(実施例10)二酸化マンガンの電気炉中
での焼成を900℃とし、ボールミル混合後の電気炉中
の焼成を900℃とした以外は、実施例1と同様に操作
した。
Example 10 The same operation as in Example 1 was performed except that calcination of manganese dioxide in an electric furnace was 900 ° C., and calcination in an electric furnace after mixing with a ball mill was 900 ° C.

【0028】(比較例1)二酸化マンガンを焼成しない
以外は、実施例1と同様に操作した。
Comparative Example 1 The same operation as in Example 1 was performed except that manganese dioxide was not calcined.

【0029】(比較例2)二酸化マンガンの電気炉中で
の焼成を700℃とし、ボールミル混合後の電気炉中の
焼成を850℃とした以外は、実施例1と同様に操作し
た。
Comparative Example 2 The procedure of Example 1 was repeated, except that the firing of manganese dioxide in an electric furnace was performed at 700 ° C., and the firing in an electric furnace after mixing with a ball mill was performed at 850 ° C.

【0030】(比較例3)二酸化マンガンの電気炉中で
の焼成を1000℃とした以外は、実施例1と同様に操
作した。
(Comparative Example 3) The same operation as in Example 1 was carried out except that manganese dioxide was fired in an electric furnace at 1000 ° C.

【0031】(比較例4)二酸化マンガンの電気炉中で
の焼成を900℃とし、得られた焼成二酸化マンガン
と、炭酸リチウムとを、Li:Mn=1.02:1.98と
なるように秤量した以外は、実施例1と同様に操作し
た。
COMPARATIVE EXAMPLE 4 Manganese dioxide was fired in an electric furnace at 900 ° C., and the obtained fired manganese dioxide and lithium carbonate were mixed such that Li: Mn = 1.02: 1.98. The same operation as in Example 1 was performed except for weighing.

【0032】(比較例5)二酸化マンガンの電気炉中で
の焼成を900℃とし、得られた焼成二酸化マンガン
と、炭酸リチウムとを、Li:Mn=1.10:1.90と
なるように秤量した以外は、実施例1と同様に操作し
た。
Comparative Example 5 Manganese dioxide was fired in an electric furnace at 900 ° C., and the obtained fired manganese dioxide and lithium carbonate were mixed such that Li: Mn = 1.10: 1.90. The same operation as in Example 1 was performed except for weighing.

【0033】(比較例6)二酸化マンガンの電気炉中で
の焼成を900℃とし、ボールミル混合後の電気炉中の
焼成を空気雰囲気とした以外は、実施例1と同様に操作
した。
Comparative Example 6 The same operation as in Example 1 was performed except that the manganese dioxide was fired in an electric furnace at 900 ° C., and the calcination in the electric furnace after mixing with the ball mill was performed in an air atmosphere.

【0034】(比較例7)二酸化マンガンの電気炉中で
の焼成を900℃とし、ボールミル混合後の電気炉中の
焼成を600℃とした以外は、実施例1と同様に操作し
た。
Comparative Example 7 The procedure of Example 1 was repeated, except that the firing of manganese dioxide in the electric furnace was 900 ° C. and the firing in the electric furnace after mixing with the ball mill was 600 ° C.

【0035】(比較例8)二酸化マンガンの電気炉中で
の焼成を900℃とし、ボールミル混合後の電気炉中の
焼成を1000℃とした以外は、実施例1と同様に操作
した。
(Comparative Example 8) The same operation as in Example 1 was performed except that calcination of manganese dioxide in an electric furnace was set at 900 ° C, and calcination in an electric furnace after mixing with a ball mill was set at 1000 ° C.

【0036】(比較例9)二酸化マンガンを焼成せず、
焼成雰囲気を空気とし、ボールミル混合後の電気炉中の
焼成を850℃とした以外は、実施例1と同様に操作し
た。
Comparative Example 9 Manganese dioxide was not fired,
The same operation as in Example 1 was carried out except that the firing atmosphere was air and the firing in the electric furnace after mixing the ball mill was 850 ° C.

【0037】以上の結果を、実施例1乃至実施例10の
結果を下記「表1」に、比較例1乃至比較例9の結果を
下記「表2」に各々示す。
The results of Examples 1 to 10 are shown in Table 1 below, and the results of Comparative Examples 1 to 9 are shown in Table 2 below.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】上記表より、本実施例にかかるものは、2
0℃での放電容量及び容量維持率、85℃での保存後の
放電容量が共に好ましく、駆動用電源としての好ましい
二次電池特性を有することが確認できた。
From the above table, it can be seen that according to the present embodiment
The discharge capacity at 0 ° C. and the capacity retention rate, and the discharge capacity after storage at 85 ° C. were both favorable, and it was confirmed that the battery had favorable secondary battery characteristics as a driving power supply.

【0041】[0041]

【発明の効果】以上のように、本発明によれば、Li
1+x Mn2-x y (0.04≦x≦0.08)であり、比表
面積を0.3〜0.7m2 /gであり、SO4 含有量を0.4
重量%以下としてなるLi−Mn複合酸化物を正極活物
質として使用することにより、高容量で且つ高温特性が
良好であり、放電容量,容量維持率及び充電保存後放電
容量が共に好ましく、駆動用電源としての好ましい二次
電池特性を提供することができる。
As described above, according to the present invention, Li
1 + x Mn 2-x O y (0.04 ≦ x ≦ 0.08), the specific surface area is 0.3 to 0.7 m 2 / g, and the SO 4 content is 0.4.
By using a Li-Mn composite oxide of not more than 10% by weight as a positive electrode active material, a high capacity and good high temperature characteristics are obtained, and a discharge capacity, a capacity retention ratio and a discharge capacity after charge storage are all favorable. Preferred secondary battery characteristics as a power source can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Li1+x Mn2-x y において、0.04
≦x≦0.08であり、比表面積が0.3〜0.7m2 /gで
あり、SO4 含有量が0.4重量%以下であることを特徴
とするLi−Mn複合酸化物。
1. The method according to claim 1, wherein Li 1 + x Mn 2-x O y has a content of 0.04.
≦ x ≦ 0.08, a specific surface area of 0.3 to 0.7 m 2 / g, and a SO 4 content of 0.4% by weight or less, a Li—Mn composite oxide.
【請求項2】 Mn原料のMnO2 を800℃〜900
℃で焼成し、その後Li塩と混合し、酸素雰囲気下で6
50℃〜950℃で焼成することを特徴とするLi−M
n複合酸化物の製造方法。
2. An Mn raw material, MnO 2, having a temperature of 800 ° C. to 900 ° C.
C., then mixed with Li salt and dried under oxygen atmosphere for 6 hours.
Li-M characterized by being fired at 50 ° C to 950 ° C
Method for producing n composite oxide.
【請求項3】 請求項1のLi−Mn複合酸化物を非水
電解液二次電池用正極活物質として用いてなることを特
徴とする非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery comprising the Li-Mn composite oxide according to claim 1 as a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP9332593A 1997-12-03 1997-12-03 Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator Pending JPH11157841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9332593A JPH11157841A (en) 1997-12-03 1997-12-03 Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9332593A JPH11157841A (en) 1997-12-03 1997-12-03 Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator

Publications (1)

Publication Number Publication Date
JPH11157841A true JPH11157841A (en) 1999-06-15

Family

ID=18256684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9332593A Pending JPH11157841A (en) 1997-12-03 1997-12-03 Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator

Country Status (1)

Country Link
JP (1) JPH11157841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
EP1107338A2 (en) * 1999-11-30 2001-06-13 Nec Corporation Lithium manganese compound oxide and non-aqueous electrolyte secondary battery
JP2002056847A (en) * 2000-08-08 2002-02-22 Seimi Chem Co Ltd Method of manufacturing manganese oxide for positive electrode of lithium battery
KR100665323B1 (en) 2005-01-07 2007-01-09 건국대학교 산학협력단 Method for production of multi-component metal oxide nano-wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
EP1107338A2 (en) * 1999-11-30 2001-06-13 Nec Corporation Lithium manganese compound oxide and non-aqueous electrolyte secondary battery
EP1107338A3 (en) * 1999-11-30 2001-08-01 Nec Corporation Lithium manganese compound oxide and non-aqueous electrolyte secondary battery
JP2002056847A (en) * 2000-08-08 2002-02-22 Seimi Chem Co Ltd Method of manufacturing manganese oxide for positive electrode of lithium battery
KR100665323B1 (en) 2005-01-07 2007-01-09 건국대학교 산학협력단 Method for production of multi-component metal oxide nano-wire

Similar Documents

Publication Publication Date Title
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
KR100245808B1 (en) Process for manufacturing lithium ion secondary battery electrode compounds
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3372204B2 (en) Method for producing Li-Mn composite oxide
WO2010135960A1 (en) Titanium system composite and the preparing method of the same
CN104620434A (en) Nonaqueous electrolyte secondary battery
JP2000331682A (en) Positive electrode material for lithium secondary battery and battery using the same
KR100300334B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JPH10340726A (en) Manufacture of positive active material for lithium secondary battery and battery using the same
JPH11157841A (en) Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator
JP2001064020A (en) Production of lithium manganate
JP2004281255A (en) Cathode active material for nonaqueous electrolyte solution secondary battery
JP2002251995A (en) Spinel type positive electrode material for lithium secondary battery and manufacturing method
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
US7829223B1 (en) Process for preparing lithium ion cathode material
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method
JP2002151079A (en) Positive electrode active material for non-aqueous system electrolyte secondary battery, and its manufacturing method
JPH10334918A (en) Nonaqueous secondary battery
JP2000294237A (en) Positive electrode material for lithium secondary battery and its manufacture
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030212