JP3441652B2 - Method for producing positive electrode material for lithium secondary battery - Google Patents

Method for producing positive electrode material for lithium secondary battery

Info

Publication number
JP3441652B2
JP3441652B2 JP20946498A JP20946498A JP3441652B2 JP 3441652 B2 JP3441652 B2 JP 3441652B2 JP 20946498 A JP20946498 A JP 20946498A JP 20946498 A JP20946498 A JP 20946498A JP 3441652 B2 JP3441652 B2 JP 3441652B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
electrode material
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20946498A
Other languages
Japanese (ja)
Other versions
JP2000040512A (en
Inventor
幸一 沼田
恒好 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP20946498A priority Critical patent/JP3441652B2/en
Publication of JP2000040512A publication Critical patent/JP2000040512A/en
Application granted granted Critical
Publication of JP3441652B2 publication Critical patent/JP3441652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
正極材料の製造方法に関し、詳しくは、マンガンの溶出
量を抑制し、高温保存性、高温サイクル特性等の電池の
高温特性を向上させたリチウム二次電池用正極材料の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode material for a lithium secondary battery, and more specifically, it suppresses the elution amount of manganese and improves high temperature characteristics such as high temperature storage stability and high temperature cycle characteristics of the battery. The present invention relates to a method for producing a positive electrode material for a lithium secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年の
パソコンや電話等のポータブル化、コードレス化の急速
な進歩によりそれらの駆動用電源としての二次電池の需
要が高まっている。その中でもリチウム二次電池は最も
小型かつ高エネルギー密度を持つため特に期待されてい
る。上記の要望を満たすリチウム二次電池の正極材料と
してはコバルト酸リチウム(LiCoO2 )、ニッケル
酸リチウム(LiNiO2 )、マンガン酸リチウム(L
iMn2 4 )等がある。これらの複合酸化物はリチウ
ムに対し4V以上の電位を有していることから、高エネ
ルギー密度を有する電池となり得る。
2. Description of the Related Art Due to the rapid progress of portable and cordless personal computers and telephones in recent years, the demand for secondary batteries as a power source for driving them has increased. Among them, lithium secondary batteries are particularly expected because they are the smallest and have the highest energy density. Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (L
iMn 2 O 4 ) and the like. Since these composite oxides have a potential of 4 V or higher with respect to lithium, they can be a battery having a high energy density.

【0003】上記の複合酸化物のうちLiCoO2 、L
iNiO2 は、理論容量が280mAh/g程度である
のに対し、LiMn2 4 は148mAh/gと小さい
が、原料となるマンガン酸化物が豊富で安価であること
や、LiNiO2 のような充電時の熱的不安定性が無い
ことから、EV用途等に適していると考えられている。
Of the above composite oxides, LiCoO 2 , L
iNiO 2 has a theoretical capacity of about 280 mAh / g, whereas LiMn 2 O 4 has a small value of 148 mAh / g, but it is rich in manganese oxide as a raw material and is inexpensive, and charging such as LiNiO 2 Since there is no thermal instability, it is considered suitable for EV applications.

【0004】しかしながら、このマンガン酸リチウム
(LiMn2 4 )は、高温においてマンガンが溶出す
るため、高温保存性、高温サイクル特性等の高温での電
池特性に劣るという問題がある。
However, this lithium manganate (LiMn 2 O 4 ) has a problem that manganese is eluted at a high temperature, so that battery characteristics at a high temperature such as high temperature storability and high temperature cycle characteristics are poor.

【0005】従って、本発明の目的は、充電時のマンガ
ン溶出量を抑制し、高温保存性、高温サイクル特性等の
高温での電池特性を向上させたリチウム二次電池用正極
材料の製造方法、及び該正極材料を用いたリチウム二次
電池を提供することにある。
Therefore, an object of the present invention is to suppress the elution amount of manganese during charging and to improve the battery characteristics at high temperatures such as high temperature storability and high temperature cycle characteristics. And to provide a lithium secondary battery using the positive electrode material.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

【0007】本発明者らは、マンガン酸リチウムに特定
元素の酸化物又は水酸化物を一定量添加し、混合後、熱
処理することにより上記目的を達成し得ることを知見し
た。
The present inventors have found that the above object can be achieved by adding a certain amount of an oxide or hydroxide of a specific element to lithium manganate, mixing and heat-treating.

【0008】本発明は、上記知見に基づきなされたもの
で、マンガン酸リチウムと該マンガン酸リチウムに対し
て0.1〜5重量%のZnの水酸化物を添加し、混合
後、150〜700℃で熱処理することを特徴とするリ
チウム二次電池用正極材料の製造方法を提供するもので
ある。
The present invention has been made on the basis of the above findings. Lithium manganate and a hydroxide of Zn of 0.1 to 5% by weight based on the lithium manganate are added, and after mixing, 150 to 700. The present invention provides a method for producing a positive electrode material for a lithium secondary battery, which is characterized by performing a heat treatment at ° C.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明では、マンガン酸リチウム(LiMn2 4)をリ
チウム二次電池用正極材料とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
In the present invention, lithium manganate (LiMn 2 O 4 ) is used as the positive electrode material for lithium secondary batteries.

【0010】このマンガン酸リチウムの製造に用いられ
るリチウム原料としては、炭酸リチウム(Li2
3 )、硝酸リチウム(LiNO3 )、水酸化リチウム
(LiOH)等が挙げられる。また、マンガン原料とし
ては、二酸化マンガン(MnO2)、三酸化二マンガン
(Mn2 3 )、オキシ水酸化マンガン(MnOOH)
等が使用できる。マンガン原料としてはMnO2 が特に
好適に使用できる。その理由としては、MnO2 はリチ
ウムの一次電池用正極材料として利用されており、リチ
ウムを構造内に取り込みやすいことや、特に電解MnO
2 ではタップ密度を大きくしやすいことが挙げられる。
なお、マンガン原料として二酸化マンガンを用いた場合
に、リチウム原料として水酸化リチウムを用いると、ロ
ータリーキルン焼成の場合には、炉心管への付着が激し
く実用上問題があり、また、こうして得られたマンガン
酸リチウムをリチウム二次電池の正極材料に使用する
と、電池性能が低下するので好ましくない。これらのリ
チウム及びマンガン原料の中で、二酸化マンガンと炭酸
リチウムの組み合わせが最も好ましい。
As the lithium raw material used for the production of this lithium manganate, lithium carbonate (Li 2 C
O 3 ), lithium nitrate (LiNO 3 ), lithium hydroxide (LiOH) and the like. The manganese raw materials include manganese dioxide (MnO 2 ), dimanganese trioxide (Mn 2 O 3 ), and manganese oxyhydroxide (MnOOH).
Etc. can be used. MnO 2 is particularly preferably used as the manganese raw material. The reason for this is that MnO 2 is used as a positive electrode material for lithium primary batteries, and it is easy to incorporate lithium into the structure.
In 2 , it is easy to increase the tap density.
When manganese dioxide is used as the manganese raw material, if lithium hydroxide is used as the lithium raw material, in the case of the rotary kiln firing, the adhesion to the furnace core tube is severe and there is a problem in practical use. It is not preferable to use lithium oxide as a positive electrode material for a lithium secondary battery because the battery performance will be deteriorated. Among these lithium and manganese raw materials, the combination of manganese dioxide and lithium carbonate is most preferable.

【0011】これらリチウム及びマンガン原料は、より
大きな反応断面積を得るために、原料混合前あるいは後
に粉砕することも好ましい。秤量、混合された原料はそ
のままでもあるいは造粒して使用してもよい。造粒方法
は、湿式でも乾式でも良く、押し出し造粒、転動造粒、
流動造粒、混合造粒、噴霧乾燥造粒、加圧成形造粒ある
いはロール等を用いたフレーク造粒でも良い。
The lithium and manganese raw materials are preferably pulverized before or after the raw materials are mixed in order to obtain a larger reaction cross-sectional area. The weighed and mixed raw materials may be used as they are or after granulation. The granulation method may be wet or dry, and may be extrusion granulation, rolling granulation,
Fluidized granulation, mixed granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like may be used.

【0012】このようにして得られた原料は、焼成炉内
に投入され、600〜1000℃で焼成することによっ
て、マンガン酸リチウムが得られる。単一相のマンガン
酸リチウムを得るには600℃程度の焼成温度でも十分
であるが、焼成温度が低いと粒成長が進まないので75
0℃以上の焼成温度、好ましくは850℃以上の焼成温
度が必要となる。ここで用いられる焼成炉としては、ロ
ータリーキルンあるいは静置炉等が例示される。焼成時
間は1時間以上、好ましくは5〜20時間である。この
マンガン酸リチウムの中でもスピネル型マンガン酸リチ
ウムが4V級の電位を有することから特に好ましく用い
られる。
The raw material thus obtained is put into a firing furnace and fired at 600 to 1000 ° C. to obtain lithium manganate. A firing temperature of about 600 ° C. is sufficient to obtain a single-phase lithium manganate, but if the firing temperature is low, grain growth does not proceed.
A firing temperature of 0 ° C. or higher, preferably 850 ° C. or higher is required. Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours. Among these lithium manganates, spinel type lithium manganate is particularly preferably used because it has a potential of 4V class.

【0013】本発明では、このマンガン酸リチウムと該
マンガン酸リチウムに対して0.1〜5重量%のZnの
水酸化物を添加し、混合する。上記元素の酸化物又は水
酸化物の添加量が0.1重量%未満では、高温保存性に
劣り、また5重量%を超えると初期放電容量が低下す
る。
In the present invention, this lithium manganate and 0.1 to 5% by weight of Zn hydroxide based on the lithium manganate are added and mixed. When the addition amount of the oxide or hydroxide of the above element is less than 0.1% by weight, the high temperature storage property is poor, and when it exceeds 5% by weight, the initial discharge capacity is reduced.

【0014】次いで、このマンガン酸リチウムと上記元
素の酸化物又は水酸化物からなる混合物を150〜70
0℃で熱処理してリチウム二次電池用正極材料とする。
熱処理温度が150℃未満又は700℃超では高温保存
性に劣る。また、熱処理時間は30分〜10時間が適当
である。
Then, a mixture of this lithium manganate and the oxide or hydroxide of the above elements is added to 150 to 70.
It heat-processes at 0 degreeC, and it is set as the positive electrode material for lithium secondary batteries.
If the heat treatment temperature is lower than 150 ° C or higher than 700 ° C, the high temperature storability is poor. Further, the heat treatment time is appropriately 30 minutes to 10 hours.

【0015】本発明のリチウム二次電池は、上記正極材
料とアセチレンブラック等の導電材とテフロンバインダ
ー等の結着剤とを混合して正極合剤とし、また、負極に
はリチウム又はカーボン等のリチウムを吸蔵、脱蔵でき
る材料が用いられ、非水系電解質としては、六フッ化リ
ンリチウム(LiPF6 )等のリチウム塩をエチレンカ
ーボネート−ジメチルカーボネート等の混合溶媒に溶解
したものが用いられるが、特に限定されるものではな
い。
In the lithium secondary battery of the present invention, the above positive electrode material, a conductive material such as acetylene black, and a binder such as Teflon binder are mixed to form a positive electrode mixture, and the negative electrode is made of lithium or carbon. A material capable of absorbing and desorbing lithium is used, and as the non-aqueous electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate is used. It is not particularly limited.

【0016】本発明のリチウム二次電池は、充電状態で
のマンガンの溶出を抑制することができるので、高温保
存性、高温サイクル特性等の高温での電池特性を向上さ
せることができる。
Since the lithium secondary battery of the present invention can suppress the elution of manganese in a charged state, it can improve battery characteristics at high temperatures such as high temperature storage stability and high temperature cycle characteristics.

【0017】[0017]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on Examples and the like.

【0018】〔実施例1〕 二酸化マンガン1kgに炭酸リチウム230gを加えて
混合し、箱型炉中800℃で20時間焼成してスピネル
型マンガン酸リチウムを得た。このようにして得られた
スピネル型マンガン酸リチウム100gと水酸化亜鉛
(ッZn(OH) 2 1gを混合し、500℃で2時間
焼成して正極材料を得た。得られた正極材料90重量
部、導電剤としてアセチレンブラック3重量部及び結着
剤としてテフロン7重量部を混合して正極合剤を作製し
た。
[Example 1] 230 g of lithium carbonate was added to 1 kg of manganese dioxide, mixed and fired in a box furnace at 800 ° C for 20 hours to obtain spinel type lithium manganate. 100 g of spinel type lithium manganate thus obtained and zinc hydroxide
1 g of (Zn (OH) 2 ) was mixed and fired at 500 ° C. for 2 hours to obtain a positive electrode material. 90 parts by weight of the obtained positive electrode material, 3 parts by weight of acetylene black as a conductive agent, and 7 parts by weight of Teflon as a binder were mixed to prepare a positive electrode mixture.

【0019】上記のようにして得られた正極合剤を用い
て2016型コイン電池を作製した。負極には金属リチ
ウムを、電解液には、1モルLiPF6 /エチレンカー
ボネート−ジメチルカーボネート(1:1)混合溶媒を
用いた。
A 2016 type coin battery was produced using the positive electrode mixture obtained as described above. Lithium metal was used as the negative electrode, and 1 mol LiPF 6 / ethylene carbonate-dimethyl carbonate (1: 1) mixed solvent was used as the electrolytic solution.

【0020】このようにして得られた電池について充放
電試験を電流密度0.5mA/cm 2 として、電圧4.
3Vから3.0Vの範囲で行なった。また、この電池を
4.3Vで充電し、80℃の環境下で3日間保存した
後、この電池の初期放電容量を測定した。また、保存前
の放電容量を100とした時の、保存後の放電容量を容
量維持率として電池の保存特性を評価した。初期放電容
量と高温保存容量維持率の測定結果を表1に示す。
Charge and discharge of the battery thus obtained
Current density 0.5mA / cm 2As the voltage 4.
It was performed in the range of 3V to 3.0V. Also, this battery
Charged at 4.3V and stored at 80 ℃ for 3 days
Then, the initial discharge capacity of this battery was measured. Also, before saving
The discharge capacity after storage when the discharge capacity of
The storage characteristics of the battery were evaluated as the amount maintenance rate. Initial discharge capacity
Table 1 shows the measurement results of the amount and the high temperature storage capacity retention rate.

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】[0028]

【0029】〔比較例1〕 スピネル型マンガン酸リチウムに水酸化亜鉛(Zn(O
H) 2 を混合しなかった以外は、実施例1と同様に正
極材料の合成、電池の作製を行い評価した。初期放電容
量と高温保存容量維持率の測定結果を表1に示す。
Comparative Example 1 Spinel type lithium manganate was mixed with zinc hydroxide (Zn (O
Except that H) 2 ) was not mixed, the positive electrode material was synthesized and the battery was produced in the same manner as in Example 1 and evaluated. Table 1 shows the measurement results of the initial discharge capacity and the high temperature storage capacity retention rate.

【0030】[0030]

【0031】[0031]

【0032】[0032]

【表1】 [Table 1]

【0033】表1に示されるように、実施例1は、比較
例1に比較して、初期放電容量及び高温保存後容量維持
率のいずれにおいても優れている。
As shown in Table 1, Example 1 is superior to Comparative Example 1 in both initial discharge capacity and capacity retention rate after high temperature storage.

【0034】[0034]

【発明の効果】以上説明したように、本発明の製造方法
で得られたリチウム二次電池用正極材料として用いるこ
とによって、充電時のマンガン溶出量を抑制し、高温保
存性、高温サイクル特性等の高温での電池特性を向上さ
せることができる。
As described above, when it is used as the positive electrode material for a lithium secondary battery obtained by the production method of the present invention, the elution amount of manganese at the time of charging is suppressed, and the high temperature storability, high temperature cycle characteristics, etc. The battery characteristics at high temperatures can be improved.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−239221(JP,A) 特開 平11−71115(JP,A) 特開 平10−302767(JP,A) J.Electrochem.So c.,1991年10月,Vol.138,No. 10,pp.2859−2864 (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-239221 (JP, A) JP-A-11-71115 (JP, A) JP-A-10-302767 (JP, A) J. Electrochem. So c. , October 1991, Vol. 138, No. 10, pp. 2859-2864 (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マンガン酸リチウムに該マンガン酸リチ
ウムに対して0.1〜5重量%のZnの水酸化物を添加
し、混合後、150〜700℃で熱処理することを特徴
とするリチウム二次電池用正極材料の製造方法。
1. A lithium manganate characterized in that 0.1 to 5 wt% of a hydroxide of Zn is added to lithium manganate, the mixture is mixed and then heat treated at 150 to 700 ° C. Manufacturing method of positive electrode material for secondary battery.
【請求項2】 請求項1に記載の方法で製造されるリチ
ウム二次電池用正極材料。
2. A positive electrode material for a lithium secondary battery manufactured by the method according to claim 1.
【請求項3】 請求項2に記載のリチウム二次電池用正
極材料を用いたリチウム二次電池。
3. A lithium secondary battery using the positive electrode material for a lithium secondary battery according to claim 2.
JP20946498A 1998-07-24 1998-07-24 Method for producing positive electrode material for lithium secondary battery Expired - Fee Related JP3441652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20946498A JP3441652B2 (en) 1998-07-24 1998-07-24 Method for producing positive electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20946498A JP3441652B2 (en) 1998-07-24 1998-07-24 Method for producing positive electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000040512A JP2000040512A (en) 2000-02-08
JP3441652B2 true JP3441652B2 (en) 2003-09-02

Family

ID=16573311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20946498A Expired - Fee Related JP3441652B2 (en) 1998-07-24 1998-07-24 Method for producing positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3441652B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706090B2 (en) * 1999-04-23 2011-06-22 三菱化学株式会社 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery
DE10016024A1 (en) * 2000-03-31 2001-10-04 Merck Patent Gmbh Active anode material in electrochemical cells and process for their manufacture
JP4876371B2 (en) * 2004-01-29 2012-02-15 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode mixture for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2006066330A (en) * 2004-08-30 2006-03-09 Shin Kobe Electric Mach Co Ltd Cathode active material for nonaqueous electrolyte solution secondary battery, nonaqueous electrolyte solution secondary battery, and manufacturing method of cathode active material
US20120040248A1 (en) * 2009-04-24 2012-02-16 Sharp Kabushiki Kaisha Positive active material and nonaqueous secondary battery equipped with positive electrode including same
JP2011140430A (en) * 2010-01-08 2011-07-21 Sharp Corp Multiple inorganic compound system and utilization thereof and method for producing the multiple inorganic compound system
JP2012089441A (en) * 2010-10-22 2012-05-10 Sharp Corp Positive electrode active material, and nonaqueous secondary battery with positive electrode containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Electrochem.Soc.,1991年10月,Vol.138,No.10,pp.2859−2864

Also Published As

Publication number Publication date
JP2000040512A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
US7309546B2 (en) Positive active material for rechargeable lithium battery
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3562187B2 (en) Non-aqueous electrolyte secondary battery
JP2000195513A (en) Nonaqueous electrolyte secondary battery
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP2005123111A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP4069066B2 (en) Method for producing lithium-manganese composite oxide
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP3835419B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3274993B2 (en) Cathode materials for lithium secondary batteries
JP2007053116A (en) Non-aqueous electrolyte battery
JP3856517B2 (en) Method for producing lithium manganese oxide
JP2002251995A (en) Spinel type positive electrode material for lithium secondary battery and manufacturing method
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
US7829223B1 (en) Process for preparing lithium ion cathode material
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
JP2000294239A (en) Manufacture of spinel type lithium manganate
JP2002187722A (en) Non-aqueous electrolyte secondary cell, positive electrode active material thereof and manufacturing method thereof
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery
JP2002260654A (en) Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees