JP2000294239A - Manufacture of spinel type lithium manganate - Google Patents

Manufacture of spinel type lithium manganate

Info

Publication number
JP2000294239A
JP2000294239A JP11101273A JP10127399A JP2000294239A JP 2000294239 A JP2000294239 A JP 2000294239A JP 11101273 A JP11101273 A JP 11101273A JP 10127399 A JP10127399 A JP 10127399A JP 2000294239 A JP2000294239 A JP 2000294239A
Authority
JP
Japan
Prior art keywords
lithium
manganese dioxide
spinel
lithium manganate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11101273A
Other languages
Japanese (ja)
Other versions
JP4306868B2 (en
Inventor
Koichi Numata
幸一 沼田
Tsuneyoshi Kamata
恒好 鎌田
Takuya Nakajima
琢也 中嶋
Shinji Arimoto
真司 有元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10127399A priority Critical patent/JP4306868B2/en
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to AU36705/00A priority patent/AU3670500A/en
Priority to CNA2004100052036A priority patent/CN1536694A/en
Priority to KR1020007013912A priority patent/KR100639060B1/en
Priority to CA002334377A priority patent/CA2334377A1/en
Priority to EP00915359A priority patent/EP1094034A4/en
Priority to US09/701,670 priority patent/US6576215B1/en
Priority to PCT/JP2000/002211 priority patent/WO2000061495A1/en
Priority to CNB008005370A priority patent/CN1173887C/en
Publication of JP2000294239A publication Critical patent/JP2000294239A/en
Priority to US10/262,096 priority patent/US20030035997A1/en
Application granted granted Critical
Publication of JP4306868B2 publication Critical patent/JP4306868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of spinel type lithium manganate restraining a manganese elution quantity and improving battery characteristics at a high temperature such as high temperature storage characteristics and high temperature charge/discharge cycle characteristics. SOLUTION: Electrodeposited manganese dioxide is neutralized by lithium hydroxide. After neutralization, electrolytic manganese dioxide containing 0.02-0.5 wt.% of lithium is mixed with a lithium raw material, and then is fired. The manganese dioxide is crushed before or after neutralization by the lithium hydroxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスピネル型マンガン
酸リチウムの製造方法に関し、詳しくは、非水電解質二
次電池用正極材料とした後に、マンガンの溶出量を抑制
し、高温保存特性、高温サイクル特性等の電池の高温特
性を向上させたスピネル型マンガン酸リチウムの製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spinel-type lithium manganate, and more particularly, to a method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, which suppresses the amount of manganese eluted, provides high-temperature storage characteristics, The present invention relates to a method for producing a spinel type lithium manganate having improved high-temperature characteristics of a battery such as characteristics.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近年
のパソコンや電話等のポータブル化、コードレス化の急
速な進歩によりそれらの駆動用電源としての二次電池の
需要が高まっている。その中でも非水電解質二次電池は
最も小型かつ高エネルギー密度を持つため特に期待され
ている。上記の要望を満たす非水電解質二次電池の正極
材料としてはコバルト酸リチウム(LiCoO2 )、ニ
ッケル酸リチウム(LiNiO2 )、マンガン酸リチウ
ム(LiMn2 4 )等がある。これらの複合酸化物は
リチウムに対し4V以上の電圧を有していることから、
高エネルギー密度を有する電池となり得る。
2. Description of the Related Art With the rapid progress of portable and cordless personal computers and telephones in recent years, the demand for secondary batteries as power sources for driving them has been increasing. Among them, non-aqueous electrolyte secondary batteries are particularly expected because they have the smallest size and high energy density. The positive electrode material of a nonaqueous electrolyte secondary battery that satisfies the above requirements lithium cobaltate (LiCoO 2), lithium nickelate (LiNiO 2), and the like of lithium manganate (LiMn 2 O 4). Since these composite oxides have a voltage of 4 V or more with respect to lithium,
A battery having a high energy density can be obtained.

【0003】上記の複合酸化物のうちLiCoO2 、L
iNiO2 は理論容量が280mAh/g程度であるの
に対し、LiMn2 4 は148mAh/gと小さいが
原料となるマンガン酸化物が豊富で安価であることや、
LiNiO2 のような充電時の熱的不安定性がないこと
から、EV用途に適していると考えられている。
[0003] Among the above composite oxides, LiCoO 2 , L
While iNiO 2 has a theoretical capacity of about 280 mAh / g, LiMn 2 O 4 is as small as 148 mAh / g, but is rich in manganese oxide as a raw material and is inexpensive.
Since there is no thermal instability during charging unlike LiNiO 2 , it is considered to be suitable for EV applications.

【0004】しかしながら、このマンガン酸リチウム
(LiMn2 4 )は、高温においてMnが溶出するた
め、高温保存性、高温サイクル特性等の高温での電池特
性に劣るという問題がある。
However, since lithium manganate (LiMn 2 O 4 ) elutes Mn at a high temperature, there is a problem that the battery characteristics at a high temperature such as a high temperature storage property and a high temperature cycle characteristic are inferior.

【0005】従って、本発明の目的は、非水電解質二次
電池用正極材料とした時に、充電時のマンガン溶出量を
抑制し、高温保存性、高温サイクル特性等の高温での電
池特性を向上させたスピネル型マンガン酸リチウムの製
造方法および該マンガン酸リチウムからなる正極材料、
並びに該正極材料を用いた非水電解質二次電池を提供す
ることにある。
Accordingly, an object of the present invention is to provide a positive electrode material for a non-aqueous electrolyte secondary battery, which suppresses the amount of manganese eluted during charging and improves battery characteristics at high temperatures such as high-temperature preservability and high-temperature cycle characteristics. Method for producing spinel-type lithium manganate and a cathode material comprising the lithium manganate,
Another object of the present invention is to provide a non-aqueous electrolyte secondary battery using the positive electrode material.

【0006】[0006]

【課題を解決するための手段】電解二酸化マンガンは安
価、豊富であることから、スピネル型マンガン酸リチウ
ムのマンガン原料として好適である。通常、電解二酸化
マンガンは電解後に、アルカリマンガン電池用途にはソ
ーダ中和が施される。ソーダ中和された電解二酸化マン
ガン中には少量のナトリウムが残留することが知られて
おり、このナトリウム量は中和条件に依存する。同様に
リチウムで中和を行った場合も電解二酸化マンガン中に
は少量のリチウムが残留し、その量は中和条件に依存す
る。
Since electrolytic manganese dioxide is inexpensive and abundant, it is suitable as a manganese raw material for spinel-type lithium manganate. Normally, electrolytic manganese dioxide is subjected to soda neutralization for alkaline manganese battery applications after electrolysis. It is known that a small amount of sodium remains in soda neutralized electrolytic manganese dioxide, and the amount of sodium depends on neutralization conditions. Similarly, when neutralization is performed with lithium, a small amount of lithium remains in the electrolytic manganese dioxide, and the amount depends on the neutralization conditions.

【0007】本発明者らは、電解二酸化マンガンの中和
条件に着目し、これを特定することにより、理由は不明
であるが得られたスピネル型マンガン酸リチウムが上記
目的を達成し得ることを知見した。
The present inventors have focused on the neutralization conditions for electrolytic manganese dioxide, and by specifying the conditions, have found that the obtained spinel-type lithium manganate can achieve the above object, although the reason is unknown. I learned.

【0008】かかる知見に基づく[請求項1]のスピネ
ル型マンガン酸リチウムの製造方法の発明は、電解析出
した二酸化マンガンを水酸化リチウムで中和し、中和後
のリチウムを0.02〜0.5重量%含む電解二酸化マ
ンガンをリチウム原料と混合、焼成することを特徴とす
るスピネル型マンガン酸リチウムの製造方法。
[0008] The invention of the method for producing spinel-type lithium manganate according to claim 1 based on such knowledge is to neutralize electrolytically deposited manganese dioxide with lithium hydroxide, and to neutralize lithium by 0.02 to 0.02. A method for producing spinel-type lithium manganate, comprising mixing and calcining electrolytic manganese dioxide containing 0.5% by weight with a lithium raw material.

【0009】[請求項2]の発明は、請求項1におい
て、上記水酸化リチウムでの中和の前または中和の後の
いずれかで二酸化マンガンを粉砕することを特徴とす
る。
The invention of claim 2 is characterized in that, in claim 1, manganese dioxide is pulverized either before or after the neutralization with lithium hydroxide.

【0010】[請求項3]の発明は、請求項2におい
て、上記粉砕後の二酸化マンガンの平均粒径が5〜30
μmであることを特徴とする。
The invention according to claim 3 is the method according to claim 2, wherein the manganese dioxide after pulverization has an average particle size of 5 to 30.
μm.

【0011】[請求項4]の発明は、請求項1乃至3の
いずれか1項において、上記焼成が750℃以上で行わ
れることを特徴とする。
A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the calcination is performed at 750 ° C. or higher.

【0012】[請求項5]の非水電解質二次電池用正極
材料の発明は、上記請求項1乃至4に記載の製造方法に
よって得られたスピネル型マンガン酸リチウムからなる
ことを特徴とする。
[0012] [5] The invention of a cathode material for a non-aqueous electrolyte secondary battery according to [5] is characterized by comprising a spinel-type lithium manganate obtained by the production method according to any one of the above-mentioned [1] to [4].

【0013】[請求項6]の非水電解質二次電池の発明
は、上記請求項5に記載の正極材料を用いた正極とリチ
ウム合金もしくはリチウムを吸蔵・脱蔵できる負極と非
水電解液とから構成されることを特徴とする。
[0013] The invention of a non-aqueous electrolyte secondary battery according to claim 6 provides a positive electrode using the positive electrode material according to claim 5, a lithium alloy or a negative electrode capable of inserting and extracting lithium and a non-aqueous electrolyte. Characterized by the following.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において、スピネル型マンガン酸リチウムのマン
ガン原料として、電解二酸化マンガンを用いる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, electrolytic manganese dioxide is used as a manganese raw material for spinel-type lithium manganate.

【0015】本発明における電解二酸化マンガンは、次
の方法によって得られる。例えば、電解液として所定濃
度の硫酸マンガン溶液を用い、陰極にカーボン板、陽極
にチタン板を用い、加温しつつ、一定の電流密度で電解
を行い、陰極に二酸化マンガンを電析させる。次に、電
析した二酸化マンガンを陽極から剥離し、所定粒度、好
ましくは平均粒径5〜30μmに粉砕する。
The electrolytic manganese dioxide in the present invention is obtained by the following method. For example, a manganese sulfate solution having a predetermined concentration is used as an electrolytic solution, a carbon plate is used as a cathode, and a titanium plate is used as an anode. Electrolysis is performed at a constant current density while heating to deposit manganese dioxide on the cathode. Next, the deposited manganese dioxide is peeled off from the anode and pulverized to a predetermined particle size, preferably an average particle size of 5 to 30 μm.

【0016】非水電解質二次電池では、正極材料が膜厚
100μm程度の厚膜に加工されるため、粒度が大きす
ぎるとひび割れ等を発生し、均一な厚膜が形成しにく
い。そこで、平均粒度として5〜30μmの電解二酸化
マンガンを原料としてスピネル型マンガン酸リチウムを
合成すると、追加の粉砕なしに、製膜に適した正極材料
となり得る。こうして微粒の電解二酸化マンガンをリチ
ウムにて中和すると、リチウムがより均一に分布しやす
くなるものと推定される。
In a non-aqueous electrolyte secondary battery, since the positive electrode material is processed into a thick film having a thickness of about 100 μm, if the particle size is too large, cracks or the like are generated, and it is difficult to form a uniform thick film. Therefore, when spinel-type lithium manganate is synthesized from electrolytic manganese dioxide having an average particle size of 5 to 30 μm as a raw material, a positive electrode material suitable for film formation can be obtained without additional grinding. It is presumed that neutralizing fine electrolytic manganese dioxide with lithium in this way facilitates more uniform distribution of lithium.

【0017】この所定粒度に粉砕された電解二酸化マン
ガンは、リチウム中和後、水洗、乾燥する。リチウム中
和としては、具体的には水酸化リチウムで中和される。
なお、粉砕、中和の順序は特に限定されず、中和後、粉
砕してもよい。
The electrolytic manganese dioxide pulverized to a predetermined particle size is neutralized with lithium, washed with water and dried. Specifically, the lithium is neutralized with lithium hydroxide.
The order of pulverization and neutralization is not particularly limited, and pulverization may be performed after neutralization.

【0018】中和された電解二酸化マンガン中のリチウ
ム量は、0.02〜0.5重量%が好ましく、0.5重
量%より多くなると高温でのマンガン溶出量は低減され
るが、初期放電容量が減少する。0.02重量%未満で
はその効果は不十分である。
The amount of lithium in the neutralized electrolytic manganese dioxide is preferably 0.02 to 0.5% by weight. If it exceeds 0.5% by weight, the amount of manganese eluted at a high temperature is reduced. The capacity is reduced. If the amount is less than 0.02% by weight, the effect is insufficient.

【0019】本発明では、この電解二酸化マンガンをリ
チウム原料と混合し、焼成してスピネル型マンガン酸リ
チウムを得る。リチウム原料としては、炭酸リチウム
(Li 2 CO3 )、硝酸リチウム(LiNO3 )、水酸
化リチウム(LiOH)等が挙げられる。電解二酸化マ
ンガンとリチウム原料のLi/Mnモル比は0.50〜
0.60が好ましい。
In the present invention, this electrolytic manganese dioxide is
It is mixed with a raw material of chromium and calcined to produce spinel-type manganese oxide.
Obtains titanium. As a lithium raw material, lithium carbonate
(Li TwoCOThree), Lithium nitrate (LiNOThree), Hydroxyl
Lithium oxide (LiOH) and the like. Electrolytic dioxide
The Li / Mn molar ratio of manganese to lithium raw material is 0.50
0.60 is preferred.

【0020】これら電解二酸化マンガンおよびリチウム
原料は、より大きな反応面積を得るために、原料混合前
あるいは後に粉砕することも好ましい。秤量、混合され
た原料はそのままでもあるいは造粒して使用してもよ
い。造粒方法は、湿式でも乾式でもよく、押し出し造
粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加
圧成型造粒、あるいはロール等を用いたフレーク造粒で
もよい。
These electrolytic manganese dioxide and lithium raw materials are preferably ground before or after mixing the raw materials in order to obtain a larger reaction area. The weighed and mixed raw materials may be used as they are or may be granulated. The granulation method may be wet or dry, and may be extrusion granulation, tumbling granulation, fluidized granulation, mixing granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. .

【0021】このようにして得られた原料は焼成炉内に
投入され、600〜1000℃で焼成することによっ
て、スピネル型マンガン酸リチウムが得られる。単一相
のスピネル型マンガン酸リチウムを得るには600℃程
度でも十分であるが、焼成温度が低いと粒成長が進まな
いので750℃以上の焼成温度、好ましくは850℃以
上の焼成温度が必要となる。ここで用いられる焼成炉と
しては、ロータリーキルンあるいは静置炉等が例示され
る。焼成時間は均一な反応を得るため1時間以上、好ま
しくは5〜20時間である。このスピネル型マンガン酸
リチウムは非水電解質二次電池の正極材料として用いら
れる。
The raw material thus obtained is put into a firing furnace and fired at 600 to 1000 ° C. to obtain a spinel type lithium manganate. A temperature of about 600 ° C. is sufficient to obtain a single-phase spinel-type lithium manganese oxide, but a firing temperature of 750 ° C. or higher, preferably 850 ° C. or higher is necessary because a low firing temperature does not promote the growth of grains. Becomes Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours, to obtain a uniform reaction. This spinel-type lithium manganate is used as a positive electrode material of a non-aqueous electrolyte secondary battery.

【0022】本発明の非水電解質二次電池では、上記正
極材料とカーボンブラック等の導電材とテフロン(商品
名:ポリテトラフルオロエチレン)バインダー等の結着
剤とを混合して正極合剤とし、また、負極にはリチウム
合金、またはカーボン等のリチウムを吸蔵、脱蔵できる
材料が用いられ、非水系電解質としては、六フッ化リン
酸リチウム(LiPF8 )等のリチウム塩をエチレンカ
ーボネート−ジメチルカーボネート等の混合溶媒に溶解
したもの、あるいはそれらをゲル電解質にしたものが用
いられるが、特に限定されるものではない。
In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (polytetrafluoroethylene) binder are mixed to form a positive electrode mixture. For the negative electrode, a lithium alloy or a material capable of occluding and desorbing lithium such as carbon is used. As the non-aqueous electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF 8 ) is ethylene carbonate-dimethyl. A solution dissolved in a mixed solvent such as carbonate or a solution obtained by using them as a gel electrolyte is used, but is not particularly limited.

【0023】本発明の非水電解質二次電池は充電状態で
のマンガンの溶出を抑制することができるので、高温保
存、高温サイクル特性等の高温での電池特性を向上させ
ることができる。
Since the non-aqueous electrolyte secondary battery of the present invention can suppress the elution of manganese in a charged state, battery characteristics at high temperatures such as high-temperature storage and high-temperature cycle characteristics can be improved.

【0024】[0024]

【実施例】以下、実施例等に基づき本発明を具体的に説
明するが、本発明は特にこれに限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and the like, but the present invention is not particularly limited thereto.

【0025】[実施例1]マンガンの電解液として、硫
酸濃度50g/l、マンガン濃度40g/lの硫酸マン
ガン水溶液を調製した。この電解液の温度を95℃とな
るように加温して、陰極にカーボン板、陽極にチタン板
を用いて、60A/m2 の電流密度で電解を行った。次
いで、陽極に電析した二酸化マンガンを剥離し、7mm
以下のチップに粉砕し、さらにこのチップを平均粒径約
20μmに粉砕した。
Example 1 A manganese sulfate aqueous solution having a sulfuric acid concentration of 50 g / l and a manganese concentration of 40 g / l was prepared as a manganese electrolytic solution. The temperature of the electrolytic solution was heated to 95 ° C., and electrolysis was performed at a current density of 60 A / m 2 using a carbon plate as a cathode and a titanium plate as an anode. Next, the manganese dioxide electrodeposited on the anode was peeled off, and 7 mm
The following chips were pulverized, and the chips were further pulverized to an average particle size of about 20 μm.

【0026】この二酸化マンガン10kgを20リット
ルの水で洗浄し、洗浄水を排出後、再度20リットルの
水を加えた。ここに水酸化リチウム35gを溶解し、撹
拌しながら24時間中和処理し、水洗、濾過後、乾燥
(50℃、12時間)した。得られた粉末について、リ
チウム含有量を表1に示す。
The manganese dioxide (10 kg) was washed with 20 liters of water, and after washing water was discharged, 20 liters of water was added again. 35 g of lithium hydroxide was dissolved therein, neutralized for 24 hours while stirring, washed with water, filtered, and dried (50 ° C., 12 hours). Table 1 shows the lithium content of the obtained powder.

【0027】この平均粒径約20μmの二酸化マンガン
1kgにLi/Mnモル比が0.54となるように炭酸
リチウムを加えて混合し、箱型炉中、800℃で20時
間焼成してスピネル型マンガン酸リチウムを得た。
To 1 kg of manganese dioxide having an average particle size of about 20 μm, lithium carbonate was added and mixed so that the Li / Mn molar ratio was 0.54, and the mixture was baked in a box furnace at 800 ° C. for 20 hours to obtain a spinel type. Lithium manganate was obtained.

【0028】このようにして得られたスピネル型マンガ
ン酸リチウムを80重量部、導電剤としてカーボンプラ
ック15重量部および結着剤としてポリ四フッ化エチレ
ン5重量部を混合して正極合剤を作製した。
A positive electrode mixture is prepared by mixing 80 parts by weight of the thus obtained spinel type lithium manganate, 15 parts by weight of carbon plaque as a conductive agent and 5 parts by weight of polytetrafluoroethylene as a binder. did.

【0029】この正極合剤を用いて図1に示すコイン型
非水電解質二次電池を作製した。すなわち、耐有機電解
液性のステンレス鋼製の正極ケース1の内側には同じく
ステンレス鋼製の集電体3がスポット熔接されている。
集電体3の上面には上記正極合剤からなる正極5が圧着
されている。正極5の上面には、電解液を含浸した微孔
性のポリプロピレン樹脂製のセパレータ6が配置されて
いる。正極ケース1の開口部には、下方に金属リチウム
からなる負極4を接合した封口板2が、ポリプロピレン
製のガスケット7を挟んで配置されており、これにより
電池は密封されている。封口板2は、負極端子を兼ね、
正極ケース1と同様のステンレス鋼製である。電池の直
径は20mm、電池総高1.6mmである。電解液に
は、エチレンカーボネートと1,3−ジメトキシエタン
を等体積混合したものを溶媒とし、これを溶質として六
フッ化リン酸リチウムを1mol/リットル溶解させた
ものを用いた。
Using this positive electrode mixture, a coin-type nonaqueous electrolyte secondary battery shown in FIG. 1 was produced. That is, the current collector 3 also made of stainless steel is spot-welded to the inside of the positive electrode case 1 made of stainless steel having organic electrolyte resistance.
On the upper surface of the current collector 3, a positive electrode 5 made of the above positive electrode mixture is pressed. On the upper surface of the positive electrode 5, a separator 6 made of microporous polypropylene resin impregnated with an electrolytic solution is arranged. At the opening of the positive electrode case 1, a sealing plate 2 to which a negative electrode 4 made of metallic lithium is joined is disposed below a gasket 7 made of polypropylene, whereby the battery is sealed. The sealing plate 2 also serves as a negative electrode terminal,
It is made of the same stainless steel as the positive electrode case 1. The diameter of the battery is 20 mm, and the total height of the battery is 1.6 mm. As an electrolytic solution, a solution obtained by mixing ethylene carbonate and 1,3-dimethoxyethane in equal volumes was used as a solvent, and a solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate using this as a solute was used.

【0030】このようにして得られた電池について充放
電試験を行った。充放電試験は20℃において行われ、
電流密度を0.5mA/cm2 とし、電圧4.3Vから
3.0Vの範囲で行った。また、この電池を4.3Vで
充電し、80℃の環境下で3日間保存した後、これらの
電池の放電容量を容量維持率として電池の保存特性を確
認した。初期放電容量および高温保存容量維持率の測定
結果を表1に示す。
The battery thus obtained was subjected to a charge / discharge test. The charge / discharge test is performed at 20 ° C.
The current density was 0.5 mA / cm 2 and the voltage was in the range of 4.3 V to 3.0 V. The batteries were charged at 4.3 V and stored in an environment of 80 ° C. for 3 days, and the storage characteristics of the batteries were checked using the discharge capacity of these batteries as the capacity retention ratio. Table 1 shows the measurement results of the initial discharge capacity and the high-temperature storage capacity retention rate.

【0031】[実施例2]電解二酸化マンガンの中和の
際の水酸化リチウム添加量を55gとした以外は、実施
例1と同様にスピネル型マンガン酸リチウムの合成を行
った。リチウム含有量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 2 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the amount of lithium hydroxide added during the neutralization of electrolytic manganese dioxide was 55 g. Table 1 shows the lithium content. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. Show.

【0032】[実施例3]電解二酸化マンガンの中和の
際の水酸化リチウム添加量を85gとした以外は、実施
例1と同様にスピネル型マンガン酸リチウムの合成を行
った。リチウム含有量を表1に示す。また、このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、初期放
電容量および高温保存容量維持率を測定し、その結果を
表1に示す。
Example 3 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the amount of lithium hydroxide added during neutralization of electrolytic manganese dioxide was changed to 85 g. Table 1 shows the lithium content. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. Show.

【0033】[実施例4]電解二酸化マンガンの中和の
際の水酸化リチウム添加量を130gとした以外は、実
施例1と同様にスピネル型マンガン酸リチウムの合成を
行った。リチウム含有量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解質二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 4 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of lithium hydroxide added during the neutralization of electrolytic manganese dioxide was changed to 130 g. Table 1 shows the lithium content. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. Show.

【0034】[実施例5]電解二酸化マンガンの中和の
際の水酸化リチウム添加量を180gとした以外は、実
施例1と同様にスピネル型マンガン酸リチウムの合成を
行った。リチウム含有量を表1に示す。また、このスピ
ネル型マンガン酸リチウムを正極材料として実施例1と
同様にしてコイン型非水電解質二次電池を作製し、初期
放電容量および高温保存容量維持率を測定し、その結果
を表1に示す。
Example 5 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the amount of lithium hydroxide added during the neutralization of electrolytic manganese dioxide was changed to 180 g. Table 1 shows the lithium content. In addition, a coin-type nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention ratio were measured. Show.

【0035】[実施例6]焼成温度を900℃とした以
外は、実施例2と同様にスピネル型マンガン酸リチウム
の合成を行った。リチウム含有量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解質二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 6 A spinel-type lithium manganate was synthesized in the same manner as in Example 2 except that the sintering temperature was 900 ° C. Table 1 shows the lithium content. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0036】[実施例7]焼成温度を700℃とした以
外は、実施例2と同様にスピネル型マンガン酸リチウム
の合成を行った。リチウム含有量を表1に示す。また、
このスピネル型マンガン酸リチウムを正極材料として実
施例1と同様にしてコイン型非水電解質二次電池を作製
し、初期放電容量および高温保存容量維持率を測定し、
その結果を表1に示す。
Example 7 A spinel-type lithium manganate was synthesized in the same manner as in Example 2 except that the sintering temperature was 700 ° C. Table 1 shows the lithium content. Also,
Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and high-temperature storage capacity retention were measured.
Table 1 shows the results.

【0037】[比較例1]電解二酸化マンガンの中和を
行わなかった(水酸化リチウムの添加量0g)とした以
外は、実施例1と同様にスピネル型マンガン酸リチウム
を行った。リチウム含有量を表1に示す。また、このス
ピネル型マンガン酸リチウムを正極材料として実施例1
と同様にしてコイン型非水電解質二次電池を作製し、初
期放電容量および高温保存容量維持率を測定し、その結
果を表1に示す。
Comparative Example 1 Spinel-type lithium manganate was prepared in the same manner as in Example 1 except that the electrolytic manganese dioxide was not neutralized (the amount of lithium hydroxide added was 0 g). Table 1 shows the lithium content. Further, the spinel-type lithium manganate was used as a cathode material in Example 1
A coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】[実施例8]電解二酸化マンガンの粉砕時
の平均粒径を5μmとした以外は実施例1と同様にスピ
ネル型マンガン酸リチウムの合成を行った。このスピネ
ル型マンガン酸リチウムを正極材料として実施例1と同
様にしてコイン型非水電解質二次電池を作製し、2種の
電流密度、0.5mA/cm2 と1.0mA/cm2
評価し、0.5mA/cm2 の電流密度の放電容量を1
00とし、1.0mA/cm2 での放電容量比率を電流
負荷率として表した。表2に電流負荷率を示す。
Example 8 A spinel-type lithium manganate was synthesized in the same manner as in Example 1, except that the average particle size of the electrolytic manganese dioxide during pulverization was 5 μm. Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and evaluated at two types of current densities, 0.5 mA / cm 2 and 1.0 mA / cm 2 . And the discharge capacity at a current density of 0.5 mA / cm 2 is 1
The discharge capacity ratio at 1.0 mA / cm 2 was represented as a current load ratio. Table 2 shows the current load ratio.

【0040】[実施例9]実施例1で作製したコイン型
非水電解質二次電池について実施例8と同様の評価を行
った。表2に電流負荷率を示す。実施例10電解二酸化
マンガンの粉砕時の平均粒径を30μmとした以外は、
実施例1と同様にスピネル型マンガン酸リチウムの合成
を行った。このスピネル型マンガン酸リチウムを正極材
料として実施例1と同様にしてコイン型非水電解質二次
電池を作製し、実施例8と同様の評価を行った。表2に
電流負荷率を示す。
Example 9 The same evaluation as in Example 8 was performed on the coin-type nonaqueous electrolyte secondary battery manufactured in Example 1. Table 2 shows the current load ratio. Example 10 Except that the average particle size of pulverized electrolytic manganese dioxide was 30 μm,
In the same manner as in Example 1, spinel-type lithium manganate was synthesized. A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 using this spinel-type lithium manganate as a positive electrode material, and the same evaluation as in Example 8 was performed. Table 2 shows the current load ratio.

【0041】[実施例11]電解二酸化マンガンの粉砕
時の平均粒径を35μmとした以外は、実施例1と同様
にスピネル型マンガン酸リチウムの合成を行った。この
スピネル型マンガン酸リチウムを正極材料として実施例
1と同様にしてコイン型非水電解質二次電池を作製し、
実施例8と同様の評価を行った。表2に電流負荷率を示
す。
Example 11 A spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the average particle size of the electrolytic manganese dioxide during pulverization was 35 μm. Using this spinel-type lithium manganate as a positive electrode material, a coin-type nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1,
The same evaluation as in Example 8 was performed. Table 2 shows the current load ratio.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】以上説明したように、本発明の製造方法
で得られたスピネル型マンガン酸リチウムを非水電解質
二次電池用正極材料として用いることによって、充電時
のマンガン溶出量を抑制し、高温保存特性、高温サイク
ル特性等の高温での電池特性を向上させ、また電流負荷
率を改善することができる。
As described above, by using the spinel-type lithium manganate obtained by the production method of the present invention as a positive electrode material for a non-aqueous electrolyte secondary battery, the amount of manganese eluted during charging can be suppressed, Battery characteristics at high temperatures such as high-temperature storage characteristics and high-temperature cycle characteristics can be improved, and the current load factor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例のコイン型非水電解質二次電
池の縦断面図である。
FIG. 1 is a longitudinal sectional view of a coin-type nonaqueous electrolyte secondary battery of an example and a comparative example.

【符号の説明】 1 正極ケース 2 封口板 3 集電体 4 金属リチウム負極 5 正極 6 セパレータ 7 ガスケット[Description of Signs] 1 Positive electrode case 2 Sealing plate 3 Current collector 4 Metal lithium negative electrode 5 Positive electrode 6 Separator 7 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中嶋 琢也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 有元 真司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G048 AA04 AB02 AB05 AC06 AD04 AD06 AE05 5H003 AA03 AA04 BA01 BA03 BA04 BA07 BB05 BC06 BD01 BD02 BD04  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takuya Nakajima 1006 Kadoma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. F term (reference) 4G048 AA04 AB02 AB05 AC06 AD04 AD06 AE05 5H003 AA03 AA04 BA01 BA03 BA04 BA07 BB05 BC06 BD01 BD02 BD04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解析出した二酸化マンガンを水酸化リ
チウムで中和し、中和後のリチウムを0.02〜0.5
重量%含む電解二酸化マンガンをリチウム原料と混合、
焼成することを特徴とするスピネル型マンガン酸リチウ
ムの製造方法。
1. The method according to claim 1, wherein the manganese dioxide electrolytically deposited is neutralized with lithium hydroxide.
Weight percent electrolytic manganese dioxide mixed with lithium raw material,
A method for producing spinel-type lithium manganate, which comprises firing.
【請求項2】 請求項1において、 上記水酸化リチウムでの中和の前または中和の後のいず
れかで二酸化マンガンを粉砕することを特徴とするスピ
ネル型マンガン酸リチウムの製造方法。
2. The method for producing spinel-type lithium manganate according to claim 1, wherein manganese dioxide is pulverized before or after neutralization with lithium hydroxide.
【請求項3】 請求項2において、 上記粉砕後の二酸化マンガンの平均粒径が5〜30μm
であることを特徴とするスピネル型マンガン酸リチウム
の製造方法。
3. The method according to claim 2, wherein the crushed manganese dioxide has an average particle size of 5 to 30 μm.
A method for producing spinel-type lithium manganate, characterized in that:
【請求項4】 請求項1乃至3のいずれか1項におい
て、 上記焼成が750℃以上で行われることを特徴とするス
ピネル型マンガン酸リチウムの製造方法。
4. The method according to claim 1, wherein the calcination is performed at 750 ° C. or higher.
【請求項5】 上記請求項1乃至4に記載の製造方法に
よって得られたスピネル型マンガン酸リチウムからなる
ことを特徴とする非水電解質二次電池用正極材料。
5. A positive electrode material for a non-aqueous electrolyte secondary battery, comprising a spinel-type lithium manganate obtained by the production method according to any one of claims 1 to 4.
【請求項6】 上記請求項5に記載の正極材料を用いた
正極とリチウム合金もしくはリチウムを吸蔵・脱蔵でき
る負極と非水電解質とから構成されることを特徴とする
非水電解質二次電池。
6. A non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode material according to claim 5, a lithium alloy or a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte. .
JP10127399A 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate Expired - Lifetime JP4306868B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10127399A JP4306868B2 (en) 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate
CNB008005370A CN1173887C (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
KR1020007013912A KR100639060B1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
CA002334377A CA2334377A1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
EP00915359A EP1094034A4 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
US09/701,670 US6576215B1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
AU36705/00A AU3670500A (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
CNA2004100052036A CN1536694A (en) 1999-04-08 2000-04-06 Noaqueous electrolyte secondary battery positive pole material and nonaqueous electrolyte secondary battery
PCT/JP2000/002211 WO2000061495A1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
US10/262,096 US20030035997A1 (en) 1999-04-08 2002-09-30 Process for preparation of spinel-type lithium manganate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10127399A JP4306868B2 (en) 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate

Publications (2)

Publication Number Publication Date
JP2000294239A true JP2000294239A (en) 2000-10-20
JP4306868B2 JP4306868B2 (en) 2009-08-05

Family

ID=14296288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10127399A Expired - Lifetime JP4306868B2 (en) 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate

Country Status (1)

Country Link
JP (1) JP4306868B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327332A (en) * 1999-05-21 2000-11-28 Mitsui Mining & Smelting Co Ltd Production of spinel type lithium manganate
US6929788B2 (en) * 1999-12-15 2005-08-16 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel oxide having improved electrochemical performance
WO2010150626A1 (en) * 2009-06-25 2010-12-29 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
JP2019094259A (en) * 2010-10-08 2019-06-20 株式会社半導体エネルギー研究所 Method for preparing manganese lithium phosphate
CN111276336A (en) * 2020-02-06 2020-06-12 重庆大学 Electrode material K of water-based potassium ion supercapacitor0.296Mn0.926O2And capacitor assembled by the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327332A (en) * 1999-05-21 2000-11-28 Mitsui Mining & Smelting Co Ltd Production of spinel type lithium manganate
US6929788B2 (en) * 1999-12-15 2005-08-16 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel oxide having improved electrochemical performance
WO2010150626A1 (en) * 2009-06-25 2010-12-29 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
US8303927B2 (en) 2009-06-25 2012-11-06 Ngk Insulators, Ltd. Methods for manufacturing spinel-type lithium manganese and cathode active material for lithium secondary battery
JP2019094259A (en) * 2010-10-08 2019-06-20 株式会社半導体エネルギー研究所 Method for preparing manganese lithium phosphate
CN111276336A (en) * 2020-02-06 2020-06-12 重庆大学 Electrode material K of water-based potassium ion supercapacitor0.296Mn0.926O2And capacitor assembled by the same

Also Published As

Publication number Publication date
JP4306868B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4185191B2 (en) Method for producing spinel type lithium manganate
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP3048352B1 (en) Method for producing lithium manganate
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP3499181B2 (en) Method for producing spinel type lithium manganate
JP4806755B2 (en) Method for producing spinel type lithium manganate
JP2002308628A (en) Spinel type lithium manganate
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
JP3499180B2 (en) Method for producing spinel type lithium manganate
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
JP3387876B2 (en) Method for producing spinel type lithium manganate
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery
JP3499179B2 (en) Method for producing spinel type lithium manganate
JP2002308626A (en) Method for manufacturing spinel type lithium manganate
JP3528615B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001180938A (en) Lithium manganese compound oxide and manufacturing method
JP2000215889A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacture
JP2002033100A (en) Lithium - manganese oxide and lithium battery using it
JP2001185139A (en) Positive electrode material for secondary battery using nonaqueous electrolyte and manufacturing method therefor and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term