JP4306868B2 - Method for producing spinel type lithium manganate - Google Patents

Method for producing spinel type lithium manganate Download PDF

Info

Publication number
JP4306868B2
JP4306868B2 JP10127399A JP10127399A JP4306868B2 JP 4306868 B2 JP4306868 B2 JP 4306868B2 JP 10127399 A JP10127399 A JP 10127399A JP 10127399 A JP10127399 A JP 10127399A JP 4306868 B2 JP4306868 B2 JP 4306868B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
lithium manganate
manganese dioxide
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10127399A
Other languages
Japanese (ja)
Other versions
JP2000294239A (en
Inventor
幸一 沼田
恒好 鎌田
琢也 中嶋
真司 有元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10127399A priority Critical patent/JP4306868B2/en
Application filed by Panasonic Corp, Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to CNA2004100052036A priority patent/CN1536694A/en
Priority to AU36705/00A priority patent/AU3670500A/en
Priority to US09/701,670 priority patent/US6576215B1/en
Priority to EP00915359A priority patent/EP1094034A4/en
Priority to PCT/JP2000/002211 priority patent/WO2000061495A1/en
Priority to KR1020007013912A priority patent/KR100639060B1/en
Priority to CA002334377A priority patent/CA2334377A1/en
Priority to CNB008005370A priority patent/CN1173887C/en
Publication of JP2000294239A publication Critical patent/JP2000294239A/en
Priority to US10/262,096 priority patent/US20030035997A1/en
Application granted granted Critical
Publication of JP4306868B2 publication Critical patent/JP4306868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスピネル型マンガン酸リチウムの製造方法に関し、詳しくは、非水電解質二次電池用正極材料とした後に、マンガンの溶出量を抑制し、高温保存特性、高温サイクル特性等の電池の高温特性を向上させたスピネル型マンガン酸リチウムの製造方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
近年のパソコンや電話等のポータブル化、コードレス化の急速な進歩によりそれらの駆動用電源としての二次電池の需要が高まっている。その中でも非水電解質二次電池は最も小型かつ高エネルギー密度を持つため特に期待されている。上記の要望を満たす非水電解質二次電池の正極材料としてはコバルト酸リチウム(LiCoO2 )、ニッケル酸リチウム(LiNiO2 )、マンガン酸リチウム(LiMn2 4 )等がある。これらの複合酸化物はリチウムに対し4V以上の電圧を有していることから、高エネルギー密度を有する電池となり得る。
【0003】
上記の複合酸化物のうちLiCoO2 、LiNiO2 は理論容量が280mAh/g程度であるのに対し、LiMn2 4 は148mAh/gと小さいが原料となるマンガン酸化物が豊富で安価であることや、LiNiO2 のような充電時の熱的不安定性がないことから、EV用途に適していると考えられている。
【0004】
しかしながら、このマンガン酸リチウム(LiMn2 4 )は、高温においてMnが溶出するため、高温保存性、高温サイクル特性等の高温での電池特性に劣るという問題がある。
【0005】
従って、本発明の目的は、非水電解質二次電池用正極材料とした時に、充電時のマンガン溶出量を抑制し、高温保存性、高温サイクル特性等の高温での電池特性を向上させたスピネル型マンガン酸リチウムの製造方法および該マンガン酸リチウムからなる正極材料、並びに該正極材料を用いた非水電解質二次電池を提供することにある。
【0006】
【課題を解決するための手段】
電解二酸化マンガンは安価、豊富であることから、スピネル型マンガン酸リチウムのマンガン原料として好適である。通常、電解二酸化マンガンは電解後に、アルカリマンガン電池用途にはソーダ中和が施される。ソーダ中和された電解二酸化マンガン中には少量のナトリウムが残留することが知られており、このナトリウム量は中和条件に依存する。同様にリチウムで中和を行った場合も電解二酸化マンガン中には少量のリチウムが残留し、その量は中和条件に依存する。
【0007】
本発明者らは、電解二酸化マンガンの中和条件に着目し、これを特定することにより、理由は不明であるが得られたスピネル型マンガン酸リチウムが上記目的を達成し得ることを知見した。
【0008】
かかる知見に基づく[請求項1]のスピネル型マンガン酸リチウムの製造方法の発明は、電解析出した二酸化マンガンを水酸化リチウムで中和し、中和後のリチウムを0.02〜0.5重量%含む電解二酸化マンガンをリチウム原料と混合、焼成することを特徴とするスピネル型マンガン酸リチウムの製造方法。
【0009】
[請求項2]の発明は、請求項1において、上記水酸化リチウムでの中和の前または中和の後のいずれかで二酸化マンガンを粉砕することを特徴とする。
【0010】
[請求項3]の発明は、請求項2において、上記粉砕後の二酸化マンガンの平均粒径が5〜30μmであることを特徴とする。
【0011】
[請求項4]の発明は、請求項1乃至3のいずれか1項において、上記焼成が750℃以上で行われることを特徴とする。
【0012】
[請求項5]の非水電解質二次電池用正極材料の発明は、上記請求項1乃至4に記載の製造方法によって得られたスピネル型マンガン酸リチウムからなることを特徴とする。
【0013】
[請求項6]の非水電解質二次電池の発明は、上記請求項5に記載の正極材料を用いた正極とリチウム合金もしくはリチウムを吸蔵・脱蔵できる負極と非水電解液とから構成されることを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明において、スピネル型マンガン酸リチウムのマンガン原料として、電解二酸化マンガンを用いる。
【0015】
本発明における電解二酸化マンガンは、次の方法によって得られる。例えば、電解液として所定濃度の硫酸マンガン溶液を用い、陰極にカーボン板、陽極にチタン板を用い、加温しつつ、一定の電流密度で電解を行い、陰極に二酸化マンガンを電析させる。次に、電析した二酸化マンガンを陽極から剥離し、所定粒度、好ましくは平均粒径5〜30μmに粉砕する。
【0016】
非水電解質二次電池では、正極材料が膜厚100μm程度の厚膜に加工されるため、粒度が大きすぎるとひび割れ等を発生し、均一な厚膜が形成しにくい。そこで、平均粒度として5〜30μmの電解二酸化マンガンを原料としてスピネル型マンガン酸リチウムを合成すると、追加の粉砕なしに、製膜に適した正極材料となり得る。こうして微粒の電解二酸化マンガンをリチウムにて中和すると、リチウムがより均一に分布しやすくなるものと推定される。
【0017】
この所定粒度に粉砕された電解二酸化マンガンは、リチウム中和後、水洗、乾燥する。リチウム中和としては、具体的には水酸化リチウムで中和される。なお、粉砕、中和の順序は特に限定されず、中和後、粉砕してもよい。
【0018】
中和された電解二酸化マンガン中のリチウム量は、0.02〜0.5重量%が好ましく、0.5重量%より多くなると高温でのマンガン溶出量は低減されるが、初期放電容量が減少する。0.02重量%未満ではその効果は不十分である。
【0019】
本発明では、この電解二酸化マンガンをリチウム原料と混合し、焼成してスピネル型マンガン酸リチウムを得る。リチウム原料としては、炭酸リチウム(Li2 CO3 )、硝酸リチウム(LiNO3 )、水酸化リチウム(LiOH)等が挙げられる。電解二酸化マンガンとリチウム原料のLi/Mnモル比は0.50〜0.60が好ましい。
【0020】
これら電解二酸化マンガンおよびリチウム原料は、より大きな反応面積を得るために、原料混合前あるいは後に粉砕することも好ましい。秤量、混合された原料はそのままでもあるいは造粒して使用してもよい。造粒方法は、湿式でも乾式でもよく、押し出し造粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加圧成型造粒、あるいはロール等を用いたフレーク造粒でもよい。
【0021】
このようにして得られた原料は焼成炉内に投入され、600〜1000℃で焼成することによって、スピネル型マンガン酸リチウムが得られる。単一相のスピネル型マンガン酸リチウムを得るには600℃程度でも十分であるが、焼成温度が低いと粒成長が進まないので750℃以上の焼成温度、好ましくは850℃以上の焼成温度が必要となる。ここで用いられる焼成炉としては、ロータリーキルンあるいは静置炉等が例示される。焼成時間は均一な反応を得るため1時間以上、好ましくは5〜20時間である。このスピネル型マンガン酸リチウムは非水電解質二次電池の正極材料として用いられる。
【0022】
本発明の非水電解質二次電池では、上記正極材料とカーボンブラック等の導電材とテフロン(商品名:ポリテトラフルオロエチレン)バインダー等の結着剤とを混合して正極合剤とし、また、負極にはリチウム合金、またはカーボン等のリチウムを吸蔵、脱蔵できる材料が用いられ、非水系電解質としては、六フッ化リン酸リチウム(LiPF8 )等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したもの、あるいはそれらをゲル電解質にしたものが用いられるが、特に限定されるものではない。
【0023】
本発明の非水電解質二次電池は充電状態でのマンガンの溶出を抑制することができるので、高温保存、高温サイクル特性等の高温での電池特性を向上させることができる。
【0024】
【実施例】
以下、実施例等に基づき本発明を具体的に説明するが、本発明は特にこれに限定されるものではない。
【0025】
[実施例1]
マンガンの電解液として、硫酸濃度50g/l、マンガン濃度40g/lの硫酸マンガン水溶液を調製した。この電解液の温度を95℃となるように加温して、陰極にカーボン板、陽極にチタン板を用いて、60A/m2 の電流密度で電解を行った。次いで、陽極に電析した二酸化マンガンを剥離し、7mm以下のチップに粉砕し、さらにこのチップを平均粒径約20μmに粉砕した。
【0026】
この二酸化マンガン10kgを20リットルの水で洗浄し、洗浄水を排出後、再度20リットルの水を加えた。ここに水酸化リチウム35gを溶解し、撹拌しながら24時間中和処理し、水洗、濾過後、乾燥(50℃、12時間)した。得られた粉末について、リチウム含有量を表1に示す。
【0027】
この平均粒径約20μmの二酸化マンガン1kgにLi/Mnモル比が0.54となるように炭酸リチウムを加えて混合し、箱型炉中、800℃で20時間焼成してスピネル型マンガン酸リチウムを得た。
【0028】
このようにして得られたスピネル型マンガン酸リチウムを80重量部、導電剤としてカーボンプラック15重量部および結着剤としてポリ四フッ化エチレン5重量部を混合して正極合剤を作製した。
【0029】
この正極合剤を用いて図1に示すコイン型非水電解質二次電池を作製した。すなわち、耐有機電解液性のステンレス鋼製の正極ケース1の内側には同じくステンレス鋼製の集電体3がスポット熔接されている。集電体3の上面には上記正極合剤からなる正極5が圧着されている。正極5の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ6が配置されている。正極ケース1の開口部には、下方に金属リチウムからなる負極4を接合した封口板2が、ポリプロピレン製のガスケット7を挟んで配置されており、これにより電池は密封されている。封口板2は、負極端子を兼ね、正極ケース1と同様のステンレス鋼製である。電池の直径は20mm、電池総高1.6mmである。電解液には、エチレンカーボネートと1,3−ジメトキシエタンを等体積混合したものを溶媒とし、これを溶質として六フッ化リン酸リチウムを1mol/リットル溶解させたものを用いた。
【0030】
このようにして得られた電池について充放電試験を行った。充放電試験は20℃において行われ、電流密度を0.5mA/cm2 とし、電圧4.3Vから3.0Vの範囲で行った。また、この電池を4.3Vで充電し、80℃の環境下で3日間保存した後、これらの電池の放電容量を容量維持率として電池の保存特性を確認した。初期放電容量および高温保存容量維持率の測定結果を表1に示す。
【0031】
[実施例2]
電解二酸化マンガンの中和の際の水酸化リチウム添加量を55gとした以外は、実施例1と同様にスピネル型マンガン酸リチウムの合成を行った。リチウム含有量を表1に示す。また、このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、初期放電容量および高温保存容量維持率を測定し、その結果を表1に示す。
【0032】
[実施例3]
電解二酸化マンガンの中和の際の水酸化リチウム添加量を85gとした以外は、実施例1と同様にスピネル型マンガン酸リチウムの合成を行った。リチウム含有量を表1に示す。また、このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、初期放電容量および高温保存容量維持率を測定し、その結果を表1に示す。
【0033】
[実施例4]
電解二酸化マンガンの中和の際の水酸化リチウム添加量を130gとした以外は、実施例1と同様にスピネル型マンガン酸リチウムの合成を行った。リチウム含有量を表1に示す。また、このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、初期放電容量および高温保存容量維持率を測定し、その結果を表1に示す。
【0034】
[実施例5]
電解二酸化マンガンの中和の際の水酸化リチウム添加量を180gとした以外は、実施例1と同様にスピネル型マンガン酸リチウムの合成を行った。リチウム含有量を表1に示す。また、このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、初期放電容量および高温保存容量維持率を測定し、その結果を表1に示す。
【0035】
[実施例6]
焼成温度を900℃とした以外は、実施例2と同様にスピネル型マンガン酸リチウムの合成を行った。リチウム含有量を表1に示す。また、このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、初期放電容量および高温保存容量維持率を測定し、その結果を表1に示す。
【0036】
[実施例7]
焼成温度を700℃とした以外は、実施例2と同様にスピネル型マンガン酸リチウムの合成を行った。リチウム含有量を表1に示す。また、このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、初期放電容量および高温保存容量維持率を測定し、その結果を表1に示す。
【0037】
[比較例1]
電解二酸化マンガンの中和を行わなかった(水酸化リチウムの添加量0g)とした以外は、実施例1と同様にスピネル型マンガン酸リチウムを行った。リチウム含有量を表1に示す。また、このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、初期放電容量および高温保存容量維持率を測定し、その結果を表1に示す。
【0038】
【表1】

Figure 0004306868
【0039】
[実施例8]
電解二酸化マンガンの粉砕時の平均粒径を5μmとした以外は実施例1と同様にスピネル型マンガン酸リチウムの合成を行った。このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、2種の電流密度、0.5mA/cm2 と1.0mA/cm2 で評価し、0.5mA/cm2 の電流密度の放電容量を100とし、1.0mA/cm2 での放電容量比率を電流負荷率として表した。表2に電流負荷率を示す。
【0040】
[実施例9]
実施例1で作製したコイン型非水電解質二次電池について実施例8と同様の評価を行った。表2に電流負荷率を示す。
実施例10
電解二酸化マンガンの粉砕時の平均粒径を30μmとした以外は、実施例1と同様にスピネル型マンガン酸リチウムの合成を行った。このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、実施例8と同様の評価を行った。表2に電流負荷率を示す。
【0041】
[実施例11]
電解二酸化マンガンの粉砕時の平均粒径を35μmとした以外は、実施例1と同様にスピネル型マンガン酸リチウムの合成を行った。このスピネル型マンガン酸リチウムを正極材料として実施例1と同様にしてコイン型非水電解質二次電池を作製し、実施例8と同様の評価を行った。表2に電流負荷率を示す。
【0042】
【表2】
Figure 0004306868
【0043】
【発明の効果】
以上説明したように、本発明の製造方法で得られたスピネル型マンガン酸リチウムを非水電解質二次電池用正極材料として用いることによって、充電時のマンガン溶出量を抑制し、高温保存特性、高温サイクル特性等の高温での電池特性を向上させ、また電流負荷率を改善することができる。
【図面の簡単な説明】
【図1】実施例及び比較例のコイン型非水電解質二次電池の縦断面図である。
【符号の説明】
1 正極ケース
2 封口板
3 集電体
4 金属リチウム負極
5 正極
6 セパレータ
7 ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing spinel type lithium manganate, and more specifically, after making a positive electrode material for a non-aqueous electrolyte secondary battery, the elution amount of manganese is suppressed, and high temperature characteristics of the battery such as high temperature storage characteristics and high temperature cycle characteristics. The present invention relates to a method for producing spinel-type lithium manganate with improved resistance.
[0002]
[Background Art and Problems to be Solved by the Invention]
Due to the rapid progress of portable and cordless computers and telephones in recent years, there is an increasing demand for secondary batteries as power sources for driving them. Among them, the nonaqueous electrolyte secondary battery is particularly expected because it is the smallest and has a high energy density. Examples of the positive electrode material of the non-aqueous electrolyte secondary battery that satisfies the above requirements include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ). Since these composite oxides have a voltage of 4 V or more with respect to lithium, a battery having a high energy density can be obtained.
[0003]
Among the above complex oxides, LiCoO 2 and LiNiO 2 have a theoretical capacity of about 280 mAh / g, while LiMn 2 O 4 is as small as 148 mAh / g, but it is rich in manganese oxide as a raw material and inexpensive. In addition, since there is no thermal instability during charging as in LiNiO 2 , it is considered suitable for EV applications.
[0004]
However, since this lithium manganate (LiMn 2 O 4 ) elutes Mn at a high temperature, there is a problem that the battery characteristics at a high temperature such as a high temperature storage property and a high temperature cycle characteristic are inferior.
[0005]
Accordingly, an object of the present invention is to provide a spinel that suppresses manganese elution during charging and improves battery characteristics at high temperatures such as high temperature storage stability and high temperature cycle characteristics when used as a positive electrode material for nonaqueous electrolyte secondary batteries. It is in providing the manufacturing method of a type lithium manganate, the positive electrode material which consists of this lithium manganate, and the nonaqueous electrolyte secondary battery using this positive electrode material.
[0006]
[Means for Solving the Problems]
Since electrolytic manganese dioxide is inexpensive and abundant, it is suitable as a manganese raw material for spinel type lithium manganate. Usually, electrolytic manganese dioxide is subjected to soda neutralization for alkaline manganese battery applications after electrolysis. It is known that a small amount of sodium remains in the electrolytic manganese dioxide neutralized with soda, and this amount of sodium depends on the neutralization conditions. Similarly, when neutralizing with lithium, a small amount of lithium remains in the electrolytic manganese dioxide, and the amount depends on the neutralization conditions.
[0007]
The inventors of the present invention have found that the spinel lithium manganate thus obtained can achieve the above-mentioned object by paying attention to the neutralization condition of electrolytic manganese dioxide and specifying this, although the reason is unknown.
[0008]
The invention of the method for producing spinel-type lithium manganate according to [Claim 1] based on such knowledge, neutralizes electrolytically deposited manganese dioxide with lithium hydroxide, and converts the neutralized lithium to 0.02 to 0.5. A method for producing spinel type lithium manganate, comprising mixing and baking electrolytic manganese dioxide containing wt% with a lithium raw material.
[0009]
[Claim 2] The invention of [Claim 2] is characterized in that, in Claim 1, manganese dioxide is pulverized either before or after neutralization with lithium hydroxide.
[0010]
[Claim 3] The invention according to [Claim 3] is characterized in that, in Claim 2, an average particle diameter of the pulverized manganese dioxide is 5 to 30 [mu] m.
[0011]
The invention of [Claim 4] is characterized in that, in any one of Claims 1 to 3, the firing is performed at 750 ° C. or higher.
[0012]
The invention of the positive electrode material for a non-aqueous electrolyte secondary battery according to [Claim 5] is characterized by comprising spinel type lithium manganate obtained by the manufacturing method according to any one of Claims 1 to 4.
[0013]
The invention of the non-aqueous electrolyte secondary battery of [Claim 6] is composed of a positive electrode using the positive electrode material according to claim 5, a negative electrode capable of inserting and extracting lithium alloy or lithium, and a non-aqueous electrolyte. It is characterized by that.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, electrolytic manganese dioxide is used as a manganese raw material for spinel type lithium manganate.
[0015]
The electrolytic manganese dioxide in the present invention is obtained by the following method. For example, a manganese sulfate solution having a predetermined concentration is used as the electrolytic solution, a carbon plate is used as the cathode, and a titanium plate is used as the anode. Electrolysis is performed at a constant current density while heating, and manganese dioxide is electrodeposited on the cathode. Next, the deposited manganese dioxide is peeled off from the anode and pulverized to a predetermined particle size, preferably an average particle size of 5 to 30 μm.
[0016]
In a non-aqueous electrolyte secondary battery, the positive electrode material is processed into a thick film with a film thickness of about 100 μm. Therefore, if the particle size is too large, cracks and the like are generated, and it is difficult to form a uniform thick film. Therefore, when spinel-type lithium manganate is synthesized using electrolytic manganese dioxide having an average particle size of 5 to 30 μm as a raw material, a positive electrode material suitable for film formation can be obtained without additional grinding. When the fine electrolytic manganese dioxide is neutralized with lithium in this way, it is presumed that lithium is more easily distributed more uniformly.
[0017]
The electrolytic manganese dioxide pulverized to a predetermined particle size is washed with water and dried after neutralization with lithium. Specifically, the lithium neutralization is neutralized with lithium hydroxide. In addition, the order of grinding | pulverization and neutralization is not specifically limited, You may grind | pulverize after neutralization.
[0018]
The amount of lithium in the neutralized electrolytic manganese dioxide is preferably 0.02 to 0.5% by weight, and if it exceeds 0.5% by weight, manganese elution at a high temperature is reduced, but the initial discharge capacity is reduced. To do. If it is less than 0.02% by weight, the effect is insufficient.
[0019]
In the present invention, this electrolytic manganese dioxide is mixed with a lithium raw material and fired to obtain spinel type lithium manganate. Examples of the lithium raw material include lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), and lithium hydroxide (LiOH). The Li / Mn molar ratio between the electrolytic manganese dioxide and the lithium raw material is preferably 0.50 to 0.60.
[0020]
These electrolytic manganese dioxide and lithium raw materials are preferably pulverized before or after mixing the raw materials in order to obtain a larger reaction area. The weighed and mixed raw materials may be used as they are or after granulation. The granulation method may be wet or dry, and may be extrusion granulation, tumbling granulation, fluidized granulation, mixed granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. .
[0021]
The raw material thus obtained is put into a firing furnace and fired at 600 to 1000 ° C. to obtain spinel type lithium manganate. About 600 ° C. is sufficient to obtain a single-phase spinel type lithium manganate. However, if the firing temperature is low, grain growth does not proceed, so a firing temperature of 750 ° C. or more, preferably a firing temperature of 850 ° C. or more is required It becomes. Examples of the firing furnace used here include a rotary kiln or a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours in order to obtain a uniform reaction. This spinel type lithium manganate is used as a positive electrode material for a non-aqueous electrolyte secondary battery.
[0022]
In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (trade name: polytetrafluoroethylene) binder are mixed to form a positive electrode mixture, The negative electrode is made of a lithium alloy or a material that can occlude and desorb lithium, such as carbon. As a non-aqueous electrolyte, lithium salts such as lithium hexafluorophosphate (LiPF 8 ) can be used such as ethylene carbonate-dimethyl carbonate. Although what was melt | dissolved in the mixed solvent or what made them the gel electrolyte is used, it does not specifically limit.
[0023]
Since the nonaqueous electrolyte secondary battery of the present invention can suppress elution of manganese in a charged state, battery characteristics at high temperatures such as high temperature storage and high temperature cycle characteristics can be improved.
[0024]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example etc., this invention is not specifically limited to this.
[0025]
[Example 1]
As the manganese electrolyte, an aqueous manganese sulfate solution having a sulfuric acid concentration of 50 g / l and a manganese concentration of 40 g / l was prepared. The electrolyte was heated to 95 ° C., and electrolysis was performed at a current density of 60 A / m 2 using a carbon plate as the cathode and a titanium plate as the anode. Subsequently, the manganese dioxide electrodeposited on the anode was peeled off and pulverized into chips of 7 mm or less, and this chip was further pulverized to an average particle diameter of about 20 μm.
[0026]
10 kg of manganese dioxide was washed with 20 liters of water, and after draining the washing water, 20 liters of water was added again. 35 g of lithium hydroxide was dissolved therein, neutralized with stirring for 24 hours, washed with water, filtered, and dried (50 ° C., 12 hours). Table 1 shows the lithium content of the obtained powder.
[0027]
Lithium carbonate was added to 1 kg of manganese dioxide having an average particle size of about 20 μm and mixed so that the Li / Mn molar ratio was 0.54, and the mixture was baked in a box furnace at 800 ° C. for 20 hours to spinel lithium manganate. Got.
[0028]
A positive electrode mixture was prepared by mixing 80 parts by weight of the spinel type lithium manganate thus obtained, 15 parts by weight of carbon black as a conductive agent, and 5 parts by weight of polytetrafluoroethylene as a binder.
[0029]
A coin-type non-aqueous electrolyte secondary battery shown in FIG. 1 was produced using this positive electrode mixture. That is, a current collector 3 made of stainless steel is spot-welded inside the positive electrode case 1 made of stainless steel that is resistant to organic electrolyte. A positive electrode 5 made of the positive electrode mixture is pressure-bonded to the upper surface of the current collector 3. A separator 6 made of a microporous polypropylene resin impregnated with an electrolytic solution is disposed on the upper surface of the positive electrode 5. A sealing plate 2 having a negative electrode 4 made of metallic lithium bonded thereto is disposed in the opening of the positive electrode case 1 with a polypropylene gasket 7 interposed therebetween, thereby sealing the battery. The sealing plate 2 also serves as a negative electrode terminal and is made of stainless steel similar to the positive electrode case 1. The battery has a diameter of 20 mm and a total battery height of 1.6 mm. As the electrolytic solution, an equal volume mixture of ethylene carbonate and 1,3-dimethoxyethane was used as a solvent, and this was used as a solute to dissolve 1 mol / liter of lithium hexafluorophosphate.
[0030]
The battery thus obtained was subjected to a charge / discharge test. The charge / discharge test was performed at 20 ° C., the current density was 0.5 mA / cm 2 , and the voltage range was 4.3V to 3.0V. The batteries were charged at 4.3 V and stored at 80 ° C. for 3 days, and then the storage characteristics of the batteries were confirmed using the discharge capacity of these batteries as the capacity retention rate. Table 1 shows the measurement results of the initial discharge capacity and the high-temperature storage capacity retention rate.
[0031]
[Example 2]
Spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of lithium hydroxide added during neutralization of electrolytic manganese dioxide was 55 g. Table 1 shows the lithium content. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.
[0032]
[Example 3]
Spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of lithium hydroxide added during neutralization of electrolytic manganese dioxide was 85 g. Table 1 shows the lithium content. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.
[0033]
[Example 4]
Spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of lithium hydroxide added during neutralization of electrolytic manganese dioxide was 130 g. Table 1 shows the lithium content. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.
[0034]
[Example 5]
Spinel type lithium manganate was synthesized in the same manner as in Example 1 except that the amount of lithium hydroxide added during neutralization of electrolytic manganese dioxide was 180 g. Table 1 shows the lithium content. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.
[0035]
[Example 6]
A spinel type lithium manganate was synthesized in the same manner as in Example 2 except that the firing temperature was 900 ° C. Table 1 shows the lithium content. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.
[0036]
[Example 7]
A spinel type lithium manganate was synthesized in the same manner as in Example 2 except that the firing temperature was 700 ° C. Table 1 shows the lithium content. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.
[0037]
[Comparative Example 1]
Spinel type lithium manganate was used in the same manner as in Example 1 except that neutralization of electrolytic manganese dioxide was not performed (addition amount of lithium hydroxide was 0 g). Table 1 shows the lithium content. Further, a coin-type non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the initial discharge capacity and the high-temperature storage capacity retention rate were measured. Show.
[0038]
[Table 1]
Figure 0004306868
[0039]
[Example 8]
Spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the average particle size during pulverization of electrolytic manganese dioxide was 5 μm. Using this spinel type lithium manganate as the positive electrode material, a coin type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and evaluated at two current densities, 0.5 mA / cm 2 and 1.0 mA / cm 2 . The discharge capacity at a current density of 0.5 mA / cm 2 was defined as 100, and the discharge capacity ratio at 1.0 mA / cm 2 was expressed as a current load factor. Table 2 shows the current load factor.
[0040]
[Example 9]
The coin-type non-aqueous electrolyte secondary battery produced in Example 1 was evaluated in the same manner as in Example 8. Table 2 shows the current load factor.
Example 10
Spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the average particle size during pulverization of electrolytic manganese dioxide was 30 μm. A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the same evaluation as in Example 8 was performed. Table 2 shows the current load factor.
[0041]
[Example 11]
Spinel-type lithium manganate was synthesized in the same manner as in Example 1 except that the average particle size at the time of pulverization of electrolytic manganese dioxide was 35 μm. A coin-type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 using this spinel type lithium manganate as the positive electrode material, and the same evaluation as in Example 8 was performed. Table 2 shows the current load factor.
[0042]
[Table 2]
Figure 0004306868
[0043]
【The invention's effect】
As described above, by using the spinel type lithium manganate obtained by the production method of the present invention as a positive electrode material for a non-aqueous electrolyte secondary battery, the manganese elution amount during charging is suppressed, high temperature storage characteristics, high temperature Battery characteristics at high temperatures such as cycle characteristics can be improved, and the current load factor can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a coin-type nonaqueous electrolyte secondary battery of an example and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Sealing plate 3 Current collector 4 Metal lithium negative electrode 5 Positive electrode 6 Separator 7 Gasket

Claims (6)

電解析出した二酸化マンガンを水酸化リチウムで中和し、中和後のリチウムを0.02〜0.5重量%含む電解二酸化マンガンをリチウム原料と混合、焼成することを特徴とするスピネル型マンガン酸リチウムの製造方法。Spinel-type manganese characterized in that electrolytically deposited manganese dioxide is neutralized with lithium hydroxide, and electrolytic manganese dioxide containing 0.02-0.5 wt% of neutralized lithium is mixed with a lithium raw material and fired. Method for producing lithium acid. 請求項1において、
上記水酸化リチウムでの中和の前または中和の後のいずれかで二酸化マンガンを粉砕することを特徴とするスピネル型マンガン酸リチウムの製造方法。
In claim 1,
A method for producing spinel-type lithium manganate, characterized in that manganese dioxide is pulverized either before or after neutralization with lithium hydroxide.
請求項2において、
上記粉砕後の二酸化マンガンの平均粒径が5〜30μmであることを特徴とするスピネル型マンガン酸リチウムの製造方法。
In claim 2,
The method for producing spinel type lithium manganate, wherein the average particle size of the manganese dioxide after pulverization is 5 to 30 μm.
請求項1乃至3のいずれか1項において、
上記焼成が750℃以上で行われることを特徴とするスピネル型マンガン酸リチウムの製造方法。
In any one of Claims 1 thru | or 3,
The said baking is performed at 750 degreeC or more, The manufacturing method of the spinel type lithium manganate characterized by the above-mentioned.
上記請求項1乃至4に記載の製造方法によって得られたスピネル型マンガン酸リチウムからなることを特徴とする非水電解質二次電池用正極材料。A positive electrode material for a non-aqueous electrolyte secondary battery, comprising the spinel type lithium manganate obtained by the production method according to claim 1. 上記請求項5に記載の正極材料を用いた正極とリチウム合金もしくはリチウムを吸蔵・脱蔵できる負極と非水電解質とから構成されることを特徴とする非水電解質二次電池。A non-aqueous electrolyte secondary battery comprising a positive electrode using the positive electrode material according to claim 5, a negative electrode capable of inserting and extracting lithium alloy or lithium, and a non-aqueous electrolyte.
JP10127399A 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate Expired - Lifetime JP4306868B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10127399A JP4306868B2 (en) 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate
CNB008005370A CN1173887C (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
US09/701,670 US6576215B1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
EP00915359A EP1094034A4 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
PCT/JP2000/002211 WO2000061495A1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
KR1020007013912A KR100639060B1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
CNA2004100052036A CN1536694A (en) 1999-04-08 2000-04-06 Noaqueous electrolyte secondary battery positive pole material and nonaqueous electrolyte secondary battery
AU36705/00A AU3670500A (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
CA002334377A CA2334377A1 (en) 1999-04-08 2000-04-06 Method for preparing lithium manganate having spinel structure
US10/262,096 US20030035997A1 (en) 1999-04-08 2002-09-30 Process for preparation of spinel-type lithium manganate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10127399A JP4306868B2 (en) 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate

Publications (2)

Publication Number Publication Date
JP2000294239A JP2000294239A (en) 2000-10-20
JP4306868B2 true JP4306868B2 (en) 2009-08-05

Family

ID=14296288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10127399A Expired - Lifetime JP4306868B2 (en) 1999-04-08 1999-04-08 Method for producing spinel type lithium manganate

Country Status (1)

Country Link
JP (1) JP4306868B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274630B2 (en) * 1999-05-21 2009-06-10 三井金属鉱業株式会社 Method for producing spinel type lithium manganate
KR100417251B1 (en) * 1999-12-15 2004-02-05 주식회사 엘지화학 Method for preparing lithium manganese spinel oxide having improved electrochemical performance
WO2010150626A1 (en) * 2009-06-25 2010-12-29 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
US8980126B2 (en) * 2010-10-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for manufacturing power storage device
CN111276336B (en) * 2020-02-06 2021-06-25 重庆大学 Electrode material K of water-based potassium ion supercapacitor0.296Mn0.926O2And capacitor assembled by the same

Also Published As

Publication number Publication date
JP2000294239A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP4185191B2 (en) Method for producing spinel type lithium manganate
CN104703921A (en) Li-ni complex oxide particle powder and non-aqueous electrolyte secondary battery
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
CN108987683A (en) A kind of preparation method of carbon coating tertiary cathode material
CN113328083A (en) Preparation method of lithium metaaluminate coated nickel-cobalt-manganese ternary positive electrode material
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP4785230B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JP3048352B1 (en) Method for producing lithium manganate
CN107204424B (en) Preparation method of lithium-rich manganese-based layered lithium battery positive electrode material
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
CN111233052A (en) Nickel cobalt lithium manganate ternary positive electrode material, preparation method thereof, positive electrode and battery
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP4806755B2 (en) Method for producing spinel type lithium manganate
JP2000040512A (en) Manufacture of positive electrode material for lithium secondary battery
JP3499181B2 (en) Method for producing spinel type lithium manganate
JP3499180B2 (en) Method for producing spinel type lithium manganate
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
JP2002308628A (en) Spinel type lithium manganate
JP3387876B2 (en) Method for producing spinel type lithium manganate
JP3499179B2 (en) Method for producing spinel type lithium manganate
CN114824217A (en) Modified ferrite electrochemical material and preparation method and application thereof
JP2002308626A (en) Method for manufacturing spinel type lithium manganate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term