JP2002260654A - Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method - Google Patents
Spinel-type positive electrode material for lithium secondary battery, and its manufacturing methodInfo
- Publication number
- JP2002260654A JP2002260654A JP2001043784A JP2001043784A JP2002260654A JP 2002260654 A JP2002260654 A JP 2002260654A JP 2001043784 A JP2001043784 A JP 2001043784A JP 2001043784 A JP2001043784 A JP 2001043784A JP 2002260654 A JP2002260654 A JP 2002260654A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- spinel
- positive electrode
- lithium secondary
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウム二次電池用ス
ピネル型正極材料の製造方法、及び得られた正極材料、
またこれを用いたリチウム二次電池に関し、詳しくは高
温特性に優れたリチウム二次電池用スピネル型正極材料
の製造方法、及び得られた正極材料、またこれを用いた
リチウム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spinel type positive electrode material for a lithium secondary battery, and the obtained positive electrode material
Further, the present invention relates to a lithium secondary battery using the same, and more particularly, to a method for producing a spinel-type positive electrode material for a lithium secondary battery having excellent high-temperature characteristics, the obtained positive electrode material, and a lithium secondary battery using the same.
【0002】[0002]
【従来技術】近年のパソコンや電話等のポータブル化、
コードレス化の急速な進歩により、それらの駆動用電源
としての二次電池の需要が高まっている。その中でもリ
チウム二次電池は、小型かつ高エネルギー密度を持つた
め特に期待されている。リチウム二次電池の正極材料と
しては、コバルト酸リチウム(LiCoO2)、ニッケ
ル酸リチウム(LiNiO2)、マンガン酸リチウム
(LiMn2O4)等がある。これらの複合酸化物は、リ
チウムに対し4V以上の電圧を有していることから、高
エネルギー密度を有する電池となる。2. Description of the Related Art In recent years, portable personal computers and telephones have become portable.
With the rapid progress of cordless technology, the demand for secondary batteries as power sources for driving them is increasing. Among them, lithium secondary batteries are particularly expected because of their small size and high energy density. As the positive electrode material of the lithium secondary battery, there are lithium cobaltate (LiCoO2), lithium nickelate (LiNiO2), lithium manganate (LiMn2O4) and the like. Since these composite oxides have a voltage of 4 V or more with respect to lithium, a battery having a high energy density is obtained.
【0003】しかしながら、コバルト酸リチウムは、コ
バルトが高価である上、埋蔵量が少ない事から将来供給
不足になる可能性がある。これに対し最近、安価で埋蔵
量が豊富な上、コバルト酸リチウムと同等の高電圧での
リチウムの吸蔵・放出が可能な正極材料としてスピネル
系のマンガン酸リチウムが注目され、多くの研究がなさ
れている。しかし、通常の焼成方法で得られたスピネル
系のマンガン酸リチウムはpHが9以上と高く、電池ガ
ス発生の問題や高温特性が悪いという問題があった。こ
れを改善するために、混合・焼成を繰り返すことを行っ
ていた。しかし、この方法では製造コストが高くなると
いう問題があった。However, supply of lithium cobaltate may be short in the future due to the high cost of cobalt and the small reserves. On the other hand, recently, attention has been paid to spinel-based lithium manganate as a cathode material that is inexpensive, has abundant reserves, and can store and release lithium at the same high voltage as lithium cobalt oxide. ing. However, the spinel-based lithium manganate obtained by a normal calcination method has a high pH of 9 or more, and has problems of battery gas generation and poor high-temperature characteristics. In order to improve this, mixing and firing have been repeated. However, this method has a problem that the manufacturing cost is increased.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、高温
特性に優れたリチウム二次電池用正極材料及び安価な製
造方法、またこれを用いたリチウム二次電池を提供する
ことにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode material for a lithium secondary battery having excellent high-temperature characteristics, an inexpensive manufacturing method, and a lithium secondary battery using the same.
【0005】[0005]
【課題を解決するための手段】本発明者等は、製造方法
がリチウム二次電池用正極材料のpH低減へ与える影響
を鋭意検討した所、300〜400℃での温度条件がリ
チウム二次電池用正極材料のpH低減と密接な関係があ
ることを見出し、本発明に到達したものである。よっ
て、本発明は、リチウム化合物とマンガン化合物とを混
合して、900〜1200℃の温度範囲で加熱処理した
後、300〜400℃でアニールすることを特徴とする
リチウム二次電池用スピネル型正極材料の製造方法であ
る。また、リチウム化合物とマンガン化合物とを混合し
て、900〜1200℃の温度範囲で加熱処理し、得ら
れたリチウム二次電池用スピネル型正極材料を常温まで
冷却するリチウム二次電池用スピネル型正極材料の製造
方法において、500〜300℃の冷却速度を5℃/h
r以下とすることを特徴とするリチウム二次電池用スピ
ネル型正極材料の製造方法である。また、前記の製造方
法で得られた、pHが6〜9の範囲にあるリチウム二次
電池用スピネル型正極材料である。また、前記記載のリ
チウム二次電池用スピネル型正極材料を用いることを特
徴とするリチウム二次電池である。Means for Solving the Problems The present inventors diligently studied the influence of the manufacturing method on the pH reduction of the positive electrode material for a lithium secondary battery, and found that the temperature condition at 300 to 400 ° C. The present invention has been found to have a close relationship with the pH reduction of the positive electrode material for use in the present invention, and has reached the present invention. Therefore, the present invention provides a spinel-type positive electrode for a lithium secondary battery, comprising mixing a lithium compound and a manganese compound, performing heat treatment in a temperature range of 900 to 1200 ° C., and annealing at 300 to 400 ° C. It is a method of manufacturing a material. In addition, a lithium compound and a manganese compound are mixed, and the mixture is heated at a temperature of 900 to 1200 ° C., and the obtained spinel-type cathode material for a lithium secondary battery is cooled to room temperature. In the method for producing a material, a cooling rate of 500 to 300 ° C. is set to 5 ° C./h.
This is a method for producing a spinel-type positive electrode material for a lithium secondary battery, characterized by being at most r. Further, the present invention is a spinel-type positive electrode material for a lithium secondary battery having a pH in the range of 6 to 9, which is obtained by the above manufacturing method. Further, there is provided a lithium secondary battery using the spinel-type positive electrode material for a lithium secondary battery described above.
【0006】[0006]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明では、リチウム原料としては、炭酸リチウム(L
i2CO3)、硝酸リチウム(Li2NO3)、水酸化リチ
ウム(LiOH)等が挙げられる。また、マンガン原料
としては二酸化マンガン(MnO2)等が挙げられる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, lithium carbonate (L
i2CO3), lithium nitrate (Li2NO3), lithium hydroxide (LiOH) and the like. Manganese raw materials include manganese dioxide (MnO2).
【0007】これらの原料は、より大きな反応面積を得
る為に、原料混合前あるいは後に粉砕することも好まし
い。秤量・混合された原料はそのままでも、あるいは造
粒して使用してもよい。造粒方法は、湿式でも乾式でも
よい。[0007] In order to obtain a larger reaction area, these raw materials are preferably ground before or after mixing the raw materials. The weighed and mixed raw materials may be used as they are or may be granulated and used. The granulation method may be wet or dry.
【0008】これらの原料を焼成炉内に投入し、900
℃〜1200℃の温度範囲で焼成する。ここで用いられ
る焼成炉としては、ロータリーキルン或いは静置炉等が
例示される。焼成時間は、均一な反応を得る為1時間以
上、好ましくは5〜20時間である。ここで合成された
マンガン酸リチウムは、4V級だけでなく5V級のリチ
ウム二次電池の正極材料として用いられる。[0008] These raw materials are put into a firing furnace, and 900
Baking is performed in a temperature range of 1 to 1200 ° C. Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours, to obtain a uniform reaction. The lithium manganate synthesized here is used as a positive electrode material for lithium secondary batteries of not only 4 V class but also 5 V class.
【0009】ここで、リチウム二次電池に関して、上記
正極材料とカーボンブラック等の導電材と、テフロン
(商品名:ポリテトラフルオロエチレン)バインダー等
の結着剤とを混合して正極合剤とし、また、負極にはリ
チウム合金、またはカーボン等のリチウムを脱・吸蔵で
きる材料が用いられ、非水系電解質としては、六フッ化
リン酸リチウム(LiPF6)等のリチウム塩をエチレ
ンカーボネート−ジメチルカーボネート等の混合溶媒に
溶解したもの、あるいはそれらをゲル電解質にしたもの
が用いられる。Here, with respect to the lithium secondary battery, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (trade name: polytetrafluoroethylene) are mixed to form a positive electrode mixture, For the negative electrode, a material capable of desorbing and occluding lithium such as lithium alloy or carbon is used. As the non-aqueous electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF6) is used such as ethylene carbonate-dimethyl carbonate. Those dissolved in a mixed solvent or those obtained by converting them into a gel electrolyte are used.
【0010】[0010]
【実施例】実施例1 二酸化マンガン100に対して、炭酸リチウム24.1
加え、ボールミルで混合した後、900℃で20時間焼
成した。その後、500℃まで30℃/hrで降温した
後、350℃まで大気放冷し、350℃で7時間アニー
ルした。EXAMPLE 1 Lithium carbonate 24.1 based on 100 manganese dioxide
After mixing with a ball mill, the mixture was fired at 900 ° C. for 20 hours. Thereafter, the temperature was lowered to 500 ° C. at a rate of 30 ° C./hr, then allowed to cool to 350 ° C. in the air, and annealed at 350 ° C. for 7 hours.
【0011】こうして得られたスピネル型正極材料10
gを50ccの水中で10分間攪拌し、ろ過した後にp
Hを測定したところ、pH=7.5であった。また、こ
こで得られたスピネル型正極材料を、アセチレンブラッ
ク、テフロンバインダーと混合して正極合剤を作製し
た。この正極合剤40mgを秤り取り、直径12mmの
ディスク状に成形し、真空下200℃で乾燥後、金属リ
チウム対極でリチウム二次電池のモデルセルを作製し
た。これを4.3Vまで充電した後、3.0Vまでの放
電容量(初期容量)を測定したところ105.2mAh
/gであった。また、この電池を充電状態で60℃で3
日間保存したところ、保存後の容量維持率は79%で比
較例1よりも優れていた。The spinel-type cathode material 10 thus obtained
g in 50 cc of water for 10 minutes.
When H was measured, it was pH = 7.5. Further, the obtained spinel-type positive electrode material was mixed with acetylene black and Teflon binder to prepare a positive electrode mixture. 40 mg of this positive electrode mixture was weighed, formed into a disk having a diameter of 12 mm, dried at 200 ° C. under vacuum, and a model cell of a lithium secondary battery was prepared using a metal lithium counter electrode. After charging this to 4.3 V, the discharge capacity (initial capacity) up to 3.0 V was measured and found to be 105.2 mAh.
/ G. The battery was charged at 60 ° C for 3 hours.
When stored for days, the capacity retention after storage was 79%, which was superior to Comparative Example 1.
【0012】実施例2 二酸化マンガン100に対して、炭酸リチウム24.1
加え、ボールミルで混合した後、900℃で20時間焼
成した。その後、500℃まで30℃/hrで降温し、
500〜300℃までの間は冷却速度を3℃/hrとし
た。Example 2 100 parts of manganese dioxide and 24.1 parts of lithium carbonate
After mixing in a ball mill, the mixture was fired at 900 ° C. for 20 hours. Thereafter, the temperature is lowered to 500 ° C. at 30 ° C./hr,
The cooling rate was 3 ° C / hr between 500 and 300 ° C.
【0013】こうして得られたスピネル型正極材料10
gを50ccの水中で10分間攪拌し、ろ過した後にp
Hを測定したところ、pH=7.3であった。また、こ
こで得られたスピネル型正極材料を、アセチレンブラッ
ク、テフロンバインダーと混合して正極合剤を作製し
た。この正極合剤40mgを秤り取り、直径12mmの
ディスク状に成形し、真空下200℃で乾燥後、金属リ
チウム対極でリチウム二次電池のモデルセルを作製し
た。これを4.3Vまで充電した後、3.0Vまでの放
電容量(初期容量)を測定したところ105.1mAh
/gであった。また、この電池を充電状態で60℃で3
日間保存したところ、保存後の容量維持率は80%で比
較例1よりも優れていた。The spinel-type cathode material 10 thus obtained
g in 50 cc of water for 10 minutes.
When H was measured, it was pH = 7.3. Further, the spinel-type positive electrode material obtained here was mixed with acetylene black and Teflon binder to prepare a positive electrode mixture. 40 mg of this positive electrode mixture was weighed, formed into a disk having a diameter of 12 mm, dried at 200 ° C. under vacuum, and a model cell of a lithium secondary battery was prepared using a metal lithium counter electrode. After charging this to 4.3 V, the discharge capacity (initial capacity) up to 3.0 V was measured and found to be 105.1 mAh.
/ G. The battery was charged at 60 ° C for 3 hours.
After storage for days, the capacity retention after storage was 80%, which was superior to Comparative Example 1.
【0014】実施例3 二酸化マンガン100に対して、炭酸リチウムを24.
1加え、ボールミルで混合した後、900℃で20時間
焼成した。その後、500℃まで30℃/hrで降温
し、その後、常温まで大気放冷した。こうして得られた
スピネル型正極材料を粉砕・混合して、再度300℃で
5時間アニールとした。Example 3 Lithium carbonate was added to 100 parts of manganese dioxide.
After adding 1 and mixing with a ball mill, the mixture was fired at 900 ° C. for 20 hours. Thereafter, the temperature was lowered to 500 ° C. at a rate of 30 ° C./hr, and then allowed to cool to room temperature in the air. The spinel-type positive electrode material thus obtained was pulverized and mixed, and annealed again at 300 ° C. for 5 hours.
【0015】こうして得られたスピネル型正極材料10
gを50ccの水中で10分間攪拌し、ろ過した後にp
Hを測定したところ、pH=6.7であった。また、こ
こで得られたスピネル型正極材料を、アセチレンブラッ
ク、テフロンバインダーと混合して正極合剤を作製し
た。この正極合剤40mgを秤り取り、直径12mmの
ディスク状に成形し、真空下200℃で乾燥後、金属リ
チウム対極でリチウム二次電池のモデルセルを作製し
た。これを4.3Vまで充電した後、3.0Vまでの放
電容量(初期容量)を測定したところ105.0mAh
/gであった。また、この電池を充電状態で60℃で3
日間保存したところ、保存後の容量維持率は82%で比
較例1よりも優れていた。The spinel-type cathode material 10 thus obtained
g in 50 cc of water for 10 minutes.
When H was measured, it was pH = 6.7. Further, the obtained spinel-type positive electrode material was mixed with acetylene black and Teflon binder to prepare a positive electrode mixture. 40 mg of this positive electrode mixture was weighed, formed into a disk having a diameter of 12 mm, dried at 200 ° C. under vacuum, and a model cell of a lithium secondary battery was prepared using a metal lithium counter electrode. After charging the battery to 4.3 V, the discharge capacity (initial capacity) up to 3.0 V was measured to be 105.0 mAh.
/ G. The battery was charged at 60 ° C for 3 hours.
After storage for days, the capacity retention after storage was 82%, which was superior to Comparative Example 1.
【0016】比較例1 二酸化マンガン100に対して、炭酸リチウムを24.
1加え、ボールミルで混合した後、900℃で20時間
焼成した。その後、500℃まで30℃/hrで降温
し、その後、常温まで大気放冷した。こうして得られた
スピネル型正極材料10gを50ccの水中で10分間
攪拌し、ろ過した後にpHを測定したところ、pH=
9.2であった。また、実施例1と同様に電池特性を評
価し、放電容量は105.7mAh/gであった。ま
た、保存後の容量維持率は75%であった。Comparative Example 1 Lithium carbonate was added to 100 parts of manganese dioxide.
After adding 1 and mixing with a ball mill, the mixture was fired at 900 ° C. for 20 hours. Thereafter, the temperature was lowered to 500 ° C. at a rate of 30 ° C./hr, and then allowed to cool to room temperature in the air. 10 g of the spinel-type cathode material thus obtained was stirred in 50 cc of water for 10 minutes, filtered, and the pH was measured.
9.2. The battery characteristics were evaluated in the same manner as in Example 1, and the discharge capacity was 105.7 mAh / g. The capacity retention after storage was 75%.
【0017】[0017]
【発明の効果】本発明では、高温特性に優れたリチウム
二次電池用スピネル型正極材料が安価に得られる。According to the present invention, a spinel-type positive electrode material for a lithium secondary battery having excellent high-temperature characteristics can be obtained at low cost.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ01 AJ14 AL06 AL12 AM03 AM05 AM07 AM16 CJ02 CJ08 DJ17 HJ00 HJ10 HJ14 5H050 AA05 AA19 BA16 BA17 CA09 CB07 CB12 FA19 GA02 GA10 HA00 HA10 HA14 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ01 AJ14 AL06 AL12 AM03 AM05 AM07 AM16 CJ02 CJ08 DJ17 HJ00 HJ10 HJ14 5H050 AA05 AA19 BA16 BA17 CA09 CB07 CB12 FA19 GA02 GA10 HA00 HA10 HA14
Claims (4)
合して、900〜1200℃の温度範囲で加熱処理した
後、300〜400℃でアニールすることを特徴とする
リチウム二次電池用スピネル型正極材料の製造方法。1. A spinel-type positive electrode material for a lithium secondary battery, comprising mixing a lithium compound and a manganese compound, performing heat treatment in a temperature range of 900 to 1200 ° C., and annealing at 300 to 400 ° C. Manufacturing method.
して、900〜1200℃の温度範囲で加熱処理し、得
られたリチウム二次電池用スピネル型正極材料を常温ま
で冷却するリチウム二次電池用スピネル型正極材料の製
造方法において、500〜300℃の冷却速度を5℃/
hr以下とすることを特徴とするリチウム二次電池用ス
ピネル型正極材料の製造方法。2. A lithium secondary battery, wherein a lithium compound and a manganese compound are mixed and heat-treated in a temperature range of 900 to 1200 ° C., and the obtained spinel cathode material for a lithium secondary battery is cooled to room temperature. In the method for producing a spinel-type positive electrode material, a cooling rate of 500 to 300 ° C is set to 5 ° C /
hr or less, a method for producing a spinel-type positive electrode material for a lithium secondary battery.
が6〜9の範囲にあるリチウム二次電池用スピネル型正
極材料。3. The pH obtained by the production method according to claim 1 or 2,
Is a spinel-type positive electrode material for a lithium secondary battery in the range of 6 to 9.
ピネル型正極材料を用いることを特徴とするリチウム二
次電池。4. A lithium secondary battery comprising the spinel-type positive electrode material for a lithium secondary battery according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001043784A JP2002260654A (en) | 2000-12-28 | 2001-02-20 | Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-399920 | 2000-12-28 | ||
JP2000399920 | 2000-12-28 | ||
JP2001043784A JP2002260654A (en) | 2000-12-28 | 2001-02-20 | Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002260654A true JP2002260654A (en) | 2002-09-13 |
Family
ID=26606989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001043784A Pending JP2002260654A (en) | 2000-12-28 | 2001-02-20 | Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002260654A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005235416A (en) * | 2004-02-17 | 2005-09-02 | Nippon Chem Ind Co Ltd | Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery |
CN100355121C (en) * | 2004-08-31 | 2007-12-12 | 中国科学院青海盐湖研究所 | Method for preparnig spherical spinel Li-Mn-oxide lithium ion cell anode material |
EP3162764A1 (en) * | 2015-11-02 | 2017-05-03 | IMEC vzw | Methods for forming lithium manganese oxide layers |
-
2001
- 2001-02-20 JP JP2001043784A patent/JP2002260654A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005235416A (en) * | 2004-02-17 | 2005-09-02 | Nippon Chem Ind Co Ltd | Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery |
CN100355121C (en) * | 2004-08-31 | 2007-12-12 | 中国科学院青海盐湖研究所 | Method for preparnig spherical spinel Li-Mn-oxide lithium ion cell anode material |
EP3162764A1 (en) * | 2015-11-02 | 2017-05-03 | IMEC vzw | Methods for forming lithium manganese oxide layers |
US10374218B2 (en) | 2015-11-02 | 2019-08-06 | Imec Vzw | Methods for forming lithium manganese oxide layers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018503238A (en) | Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery | |
JPH11292542A (en) | Production of li-mn double oxide | |
KR100378005B1 (en) | Cathode active material for lithium ion battery having high capacity and stability, and method for producing the same | |
KR100300334B1 (en) | Positive active material for lithium secondary battery and method of preparing the same | |
CN109755530B (en) | Surface coating method for titanium barium bimetallic oxide of high-pressure lithium cobalt oxide positive electrode material | |
JP4274630B2 (en) | Method for producing spinel type lithium manganate | |
JP3048352B1 (en) | Method for producing lithium manganate | |
JP2002124258A (en) | Lithium manganate particle powder and its manufacturing method | |
CN100530779C (en) | Preparing method for spinel potassium manganate as lithium ion battery anode of electric vehicle | |
JP3441652B2 (en) | Method for producing positive electrode material for lithium secondary battery | |
CN112490436B (en) | Preparation method of nickel-doped spinel lithium manganate serving as lithium ion battery anode material | |
JP2001064020A (en) | Production of lithium manganate | |
JP2002308627A (en) | Method of manufacturing spinel type lithium manganate | |
JP2002251995A (en) | Spinel type positive electrode material for lithium secondary battery and manufacturing method | |
JP2002260654A (en) | Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method | |
JP3274993B2 (en) | Cathode materials for lithium secondary batteries | |
JP4306868B2 (en) | Method for producing spinel type lithium manganate | |
JP2001196062A (en) | Lithium manganate mixture and lithium secondary battery using the same | |
JP3407880B2 (en) | Spinel-type positive electrode material for lithium secondary battery and manufacturing method | |
JP2002033101A (en) | Lithium-manganese oxide and lithium secondary battery using it | |
JP4473362B2 (en) | Method for producing spinel type lithium manganate | |
JPH11157841A (en) | Lithium-manganese multiple oxide, its production and non-aqueous electrolyte accumulator | |
JP2002187722A (en) | Non-aqueous electrolyte secondary cell, positive electrode active material thereof and manufacturing method thereof | |
JPWO2018043302A1 (en) | Lithium-nickel based composite oxide and method for producing the same | |
JP2001110413A (en) | Material for positive electrode of lithium secondary battery and the lithium secondary battery using the material |