JP2005235416A - Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery - Google Patents

Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery Download PDF

Info

Publication number
JP2005235416A
JP2005235416A JP2004039697A JP2004039697A JP2005235416A JP 2005235416 A JP2005235416 A JP 2005235416A JP 2004039697 A JP2004039697 A JP 2004039697A JP 2004039697 A JP2004039697 A JP 2004039697A JP 2005235416 A JP2005235416 A JP 2005235416A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
active material
lithium secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004039697A
Other languages
Japanese (ja)
Inventor
Fumihiro Yonekawa
文広 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2004039697A priority Critical patent/JP2005235416A/en
Priority to KR1020040108056A priority patent/KR20050082149A/en
Publication of JP2005235416A publication Critical patent/JP2005235416A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium manganate for lithium secondary battery cathode sub active material, which provides a lithium secondary battery with excellent overcharge characteristics and battery preservation characteristics, and also to provide a lithium secondary battery cathode active material as well as a lithium secondary battery using the same. <P>SOLUTION: The lithium manganate for the lithium secondary battery cathode sub active material is expressed in a formula: Li<SB>x</SB>MnO<SB>2</SB>, with a pH of 9.0 or more, provided x satisfies 0.9≤x≤1.1, and the lithium secondary battery cathode material as well as the lithium secondary battery contain the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム二次電池正極副活物質用マンガン酸リチウム、該マンガン酸リチウムを用いたリチウム二次電池正極活物質及びリチウム二次電池に関するものである。   The present invention relates to lithium manganate for a lithium secondary battery positive electrode secondary active material, a lithium secondary battery positive electrode active material using the lithium manganate, and a lithium secondary battery.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアルリサーチブレティン」vol15,P783-789(1980))がなされて以来、リチウム系複合酸化物に関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries ("Material Research Bulletin" vol15, P783-789 (1980)). Since then, research and development on lithium-based composite oxides has been actively promoted, and many proposals have been made so far.

しかしながら、リチウム系複合酸化物を正極活物質とするリチウム二次電池は、負極集電体として使用される銅箔が過放電時に電解液中に溶出し、さらにはその一部が正極に析出する結果、充放電特性が劣化しやすいという問題がある。このため、電池の外側に過放電を防止する電気回路を設けて過放電そのものを防止する方法が用いられているが過放電を防止する電気回路が存在することによって、電池を使用する機器または電池パックなどのコストが高くなる。   However, in a lithium secondary battery using a lithium-based composite oxide as a positive electrode active material, a copper foil used as a negative electrode current collector elutes in the electrolyte during overdischarge, and a part of it is deposited on the positive electrode. As a result, there is a problem that charge / discharge characteristics are easily deteriorated. For this reason, a method of preventing an overdischarge itself by providing an electric circuit for preventing overdischarge on the outside of the battery is used. Costs such as packs increase.

一方、LiCoO等のリチウム系複合酸化物を主活物質とし、これに副活物質としてLiMnOを添加して用いる方法も提案されている(例えば、特開平6−349493号公報)。特開平6−349493号公報で使用されているLiMnOは、市販の二酸化マンガン1モルと炭酸リチウム0.5モルとをよく混合し、窒素気流中にて800℃で8時間加熱処理して得られるものである。
特開平6−349493号公報(請求項1、実施例1)
On the other hand, a method has also been proposed in which a lithium-based composite oxide such as LiCoO 2 is used as a main active material and LiMnO 2 is added as a subsidiary active material thereto (for example, JP-A-6-349493). LiMnO 2 used in JP-A-6-349493 is obtained by thoroughly mixing 1 mol of commercially available manganese dioxide and 0.5 mol of lithium carbonate and heat-treating at 800 ° C. for 8 hours in a nitrogen stream. It is what
JP-A-6-349493 (Claim 1, Example 1)

しかしながら、特開平6−349493号公報の上記方法で製造されたLiMnOを正極副活性物質とするリチウム二次電池では、過放電特性はある程度改善されるものの、ガス発生による電池内圧の上昇という電池保存特性が低下するという問題がある。 However, in the lithium secondary battery using LiMnO 2 manufactured by the above method of JP-A-6-349493 as a cathode secondary active material, the overdischarge characteristics are improved to some extent, but the battery has an increase in the internal pressure of the battery due to gas generation. There is a problem that the storage characteristics deteriorate.

従って、本発明の目的は、リチウム二次電池に優れた過放電特性と電池保存特性を付与することができるリチウム二次電池正極副活物質用マンガン酸リチウム、それを用いたリチウム二次電池正極活物質及びリチウム二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a lithium secondary battery positive electrode side active material lithium manganate capable of imparting excellent overdischarge characteristics and battery storage characteristics to a lithium secondary battery, and a lithium secondary battery positive electrode using the same. An object is to provide an active material and a lithium secondary battery.

かかる実情において、本発明者らはリチウム二次電池に優れた性能、特に優れた過放電特性を付与することができる正極副活物質について鋭意研究を重ねた結果、特定式で表され、且つpHが9.0以上、11.0未満の層状のマンガン酸リチウムを副活物質として用いたリチウム二次電池は、過放電特性に優れ、更にガスの発生を抑制し電池保存特性も優れたものになることなどを知見し本発明を完成するに至った。   In such a situation, the present inventors have conducted extensive research on a positive electrode active material capable of imparting excellent performance to lithium secondary batteries, in particular, excellent overdischarge characteristics. A lithium secondary battery using a layered lithium manganate having a particle size of 9.0 or more and less than 11.0 as a secondary active material has excellent overdischarge characteristics, further suppresses gas generation, and has excellent battery storage characteristics. As a result, the present invention has been completed.

すなわち、本発明に係る第1の発明は、下記一般式(1);   That is, the first invention according to the present invention is the following general formula (1);

LiMnO (1)
(式中、xは0.9≦x≦1.1を示す。)で表われ、且つpHが9.0以上、11未満であるリチウム二次電池正極副活物質用マンガン酸リチウムを提供するものである。
Li x MnO 2 (1)
(Wherein x represents 0.9 ≦ x ≦ 1.1), and a lithium manganate for a secondary active material for a positive electrode of a lithium secondary battery having a pH of 9.0 or more and less than 11 is provided. Is.

また、本発明に係る第2の発明は、前記第1の発明のリチウム二次電池正極副活物質用マンガン酸リチウムと、下記一般式(2);   Moreover, 2nd invention which concerns on this invention is lithium manganate for lithium secondary battery positive electrode side active materials of said 1st invention, following General formula (2);

Li1−b (2)
(式中、MはCo、Niから選ばれる少なくとも1種以上の遷移金属元素、AはMg、Al、Mn、Ti、Zr、Fe、Cu、Zn、Sn、Inから選ばれる少なくとも1種以上の金属元素を示し、aは0.9≦a≦1.1、bは0≦b≦0.4、cは1.8≦c≦2.2を示す。)で表わされるリチウム複合酸化物を含有するリチウム二次電池正極活物質を提供するものである。
Li a M 1- b AbO c (2)
(Wherein M is at least one transition metal element selected from Co and Ni, A is at least one transition metal element selected from Mg, Al, Mn, Ti, Zr, Fe, Cu, Zn, Sn, In) A metal element, a is 0.9 ≦ a ≦ 1.1, b is 0 ≦ b ≦ 0.4, and c is 1.8 ≦ c ≦ 2.2.) The present invention provides a positive electrode active material for a lithium secondary battery.

また、本発明に係る第3の発明は、前記リチウム二次電池正極活物質を用いたリチウム二次電池を提供するものである。   The third invention according to the present invention provides a lithium secondary battery using the lithium secondary battery positive electrode active material.

本発明のマンガン酸リチウムを副活物質として含有させた正極活物質を用いたリチウム二次電池は、過放電特性に優れ、更にガスの発生をも抑制し電池保存特性も優れたものになる。   The lithium secondary battery using the positive electrode active material containing the lithium manganate of the present invention as a secondary active material has excellent overdischarge characteristics, further suppresses gas generation, and has excellent battery storage characteristics.

本発明に係る第1の発明であるマンガン酸リチウムは、リチウム二次電池の正極活物質に添加して用いる副活物質用であって、該粉末を線源としてCu−Kα線を用いX線回折分析したときにLiMnOの単相を示す下記一般式(1); The lithium manganate according to the first aspect of the present invention is for a secondary active material used by being added to the positive electrode active material of a lithium secondary battery, and uses X-rays using Cu-Kα rays as the powder source. The following general formula (1) showing a single phase of LiMnO 2 when diffraction analysis is performed;

LiMnO (1)
(式中、xは0.9≦x≦1.1を示す。)で表わされる層状化合物である。従来のリチウム二次電池正極副活物質用マンガン酸リチウムとはそのpH値により区別される。すなわち、従来のマンガン酸リチウムはpHが11以上であるのに対して、本発明のマンガン酸リチウムはpHが9.0以上、11未満、好ましくは9.0〜10.8である。本発明のマンガン酸リチウムはpHが上記範囲にあるため、該マンガン酸リチウムを副活物質として用いたリチウム二次電池に、優れた過放電特性を付与し更にガス発生を抑制し電池保存特性を向上させることができる。
Li x MnO 2 (1)
(Wherein x represents 0.9 ≦ x ≦ 1.1). It is distinguished from the conventional lithium manganate for lithium secondary battery positive electrode side active material by its pH value. That is, the conventional lithium manganate has a pH of 11 or more, while the lithium manganate of the present invention has a pH of 9.0 or more and less than 11, preferably 9.0 to 10.8. Since the pH of the lithium manganate of the present invention is in the above-mentioned range, the lithium secondary battery using the lithium manganate as a secondary active material is provided with excellent overdischarge characteristics, and further suppresses gas generation and has battery storage characteristics. Can be improved.

なお、本発明において、このpHの値は該マンガン酸リチウム粉末5gに純水100gを加え、25℃で5分間攪拌後、上澄み液のpHをpHメーターにより測定して求めたものである。   In the present invention, this pH value is obtained by adding 100 g of pure water to 5 g of the lithium manganate powder, stirring the mixture at 25 ° C. for 5 minutes, and then measuring the pH of the supernatant with a pH meter.

更に、本発明のリチウム二次電池正極副活物質用マンガン酸リチウムは、上記pH特性に加え、レーザー回折法により求められる平均粒径が1〜50μm、好ましくは4〜20μm、特に好ましくは4〜10μmであると分極や導電不良が抑制できる点で好ましい。また、BET比表面積が0.1〜2.0m/g、好ましくは0.3〜1.0m/gであるとMnの溶出が抑制できる点で好ましい。 Furthermore, the lithium manganate for a secondary active material for a positive electrode of a lithium secondary battery of the present invention has an average particle size determined by a laser diffraction method of 1 to 50 μm, preferably 4 to 20 μm, particularly preferably 4 to 5 in addition to the above pH characteristics. A thickness of 10 μm is preferable in that polarization and poor conduction can be suppressed. Further, BET specific surface area of 0.1~2.0m 2 / g, preferably preferably in that it can suppress is the Mn elution with 0.3~1.0m 2 / g.

前記リチウム二次電池正極副活物質用マンガン酸リチウムを製造する方法としては、例えば、公知の方法により得られるLiMnOを水で洗浄処理する方法(水洗浄方法)、或いはリチウム化合物とマンガン化合物とを混合し、該混合物を酸素含有雰囲気中で第1の焼成を行い、次いで実質的に不活性雰囲気中、前記第1の焼成温度より高い温度で第2の焼成を行い製造する方法(多段焼成方法)が挙げられる。水洗浄方法は、pH11以上の公知のLiMnO中に含まれるアルカリ分を水で洗浄除去してpH9.0以上、11.0未満のものを得るものである。 Examples of a method for producing lithium manganate for a positive electrode secondary active material for a lithium secondary battery include a method of washing LiMnO 2 obtained by a known method with water (water washing method), or a lithium compound and a manganese compound. A first baking in an oxygen-containing atmosphere, and then a second baking at a temperature higher than the first baking temperature in a substantially inert atmosphere (multistage baking). Method). In the water washing method, an alkaline component contained in a known LiMnO 2 having a pH of 11 or more is washed away with water to obtain a pH of 9.0 or more and less than 11.0.

多段焼成方法の具体例としては、炭酸リチウム、水酸化リチウム等のリチウム化合物と酸化マンガン、炭酸マンガン等のマンガン化合物とをLi原子とMn原子のモル比(Li/Mn)で0.9〜1.1、好ましくは0.98〜1.02で混合し、次いで該混合物を、酸素或いは空気を焼成炉に供給しながら酸素含有量が1体積%以上、好ましくは5〜21体積%の雰囲気とし400〜750℃、好ましくは550〜650℃で1時間以上、好ましくは3時間以上、特に好ましくは5〜20時間で焼成を行って先にリチウム化合物との反応性に優れたLiMnOとLiMnのリチウムマンガン複合酸化物と、この際反応で不可逆的に生成されるMnO、Mn及びMnから選ばれる1種又は2種以上のマンガン酸化物との混合物(以下、「反応前駆体」と呼ぶ。)を生成させて、次いで、不活性ガス或いは真空のような酸素含有量が0.1体積%、好ましくは0.06体積%以下の雰囲気で800〜1100℃、好ましくは900〜1000℃で3時間以上、好ましくは5〜20時間焼成して前記反応前駆体を前記一般式(1)で表わされるマンガン酸リチウムへ転換する方法が挙げられる。本発明においては、これらマンガン酸リチウムを製造する方法中、多段焼成方法が、当該方法により得られるマンガン酸リチウムが吸着水分量の増加を引き起こさない点で安定したpH値のものが容易に得られる点で特に好ましい。 Specific examples of the multistage firing method include a lithium compound such as lithium carbonate and lithium hydroxide and a manganese compound such as manganese oxide and manganese carbonate in a molar ratio of Li atom to Mn atom (Li / Mn) of 0.9 to 1. .1, preferably 0.98 to 1.02, and then the mixture is brought to an atmosphere having an oxygen content of 1% by volume or more, preferably 5 to 21% by volume while supplying oxygen or air to the firing furnace. Li 2 MnO 3 having excellent reactivity with a lithium compound after firing at 400 to 750 ° C., preferably 550 to 650 ° C. for 1 hour or longer, preferably 3 hours or longer, particularly preferably 5 to 20 hours; a lithium-manganese composite oxide of LiMn 2 O 4, 1 or more kinds of man selected from MnO 2, Mn 2 O 3 and Mn 3 O 4 is irreversibly produced in this case the reaction A mixture with an oxide of oxide (hereinafter referred to as “reaction precursor”), and then an oxygen content such as inert gas or vacuum is 0.1% by volume, preferably 0.06% by volume. A method of converting the reaction precursor to lithium manganate represented by the general formula (1) by baking at 800 to 1100 ° C., preferably 900 to 1000 ° C. for 3 hours or more, preferably 5 to 20 hours in the following atmosphere: Is mentioned. In the present invention, among these methods for producing lithium manganate, a multi-stage firing method is easily obtained with a stable pH value in that lithium manganate obtained by the method does not cause an increase in the amount of adsorbed water. Particularly preferred in terms.

次いで、本発明に係る第2の発明であるリチウム二次電池正極活物質は、前記一般式(2)で表わされるリチウム複合酸化物と、前記副活物質を含有するものである。一般式(2)で表わされるリチウム複合酸化物としては、特に制限はないが、一般式(2)中、Mの好ましい金属は、Coであり、Aの好ましい金属は、Mnであり、具体的には、LiCoO2、LiNiO2、LiNi0.8Co0.2O2、LiNi0.8Co0.1Mn0.1O2等が挙げられ、これらのリチウム複合酸化物は1種又は2種以上で用いることができる。この中、LiCoO2が広く工業的に用いられ、また、本発明のマンガン酸リチウムとの相乗効果が高いので特に好ましい。 Next, the lithium secondary battery positive electrode active material according to the second invention of the present invention contains the lithium composite oxide represented by the general formula (2) and the secondary active material. The lithium composite oxide represented by the general formula (2) is not particularly limited. In the general formula (2), a preferable metal of M is Co, and a preferable metal of A is Mn. Examples include LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 and the like, and these lithium composite oxides can be used alone or in combination. Of these, LiCoO 2 is particularly preferred because it is widely used industrially and has a high synergistic effect with the lithium manganate of the present invention.

また、前記リチウム複合酸化物の物性等は特に制限されるものではないが、レーザー法により求められる平均粒径が1〜50μm、好ましくは3〜20μm、特に好ましくは3〜10μmである。平均粒径がこの範囲であると分極や導電不良を抑制できる点で好ましい。また、BET比表面積が0.1〜2.0m/g、好ましくは0.2〜1.0m/gである。BET比表面積がこの範囲であるとMnの溶出が抑制できる点で好ましい。 The physical properties and the like of the lithium composite oxide are not particularly limited, but the average particle size determined by the laser method is 1 to 50 μm, preferably 3 to 20 μm, particularly preferably 3 to 10 μm. An average particle size within this range is preferable in that polarization and poor conduction can be suppressed. Further, BET specific surface area of 0.1~2.0m 2 / g, preferably from 0.2~1.0m 2 / g. A BET specific surface area within this range is preferable in that elution of Mn can be suppressed.

更に、前記リチウム複合酸化物は該リチウム複合酸化物粉末5gに純水100gを加え、25℃で5分間攪拌後、上澄み液のpHをpHメーターにより測定して求めたpH値が11未満、好ましくは9〜10.8であると、高温保存時におけるガス発生を一層抑制できる点で好ましい。   Further, the lithium composite oxide is obtained by adding 100 g of pure water to 5 g of the lithium composite oxide powder, stirring for 5 minutes at 25 ° C., and then measuring the pH of the supernatant with a pH meter, preferably less than 11. 9 to 10.8 is preferable in that gas generation during high-temperature storage can be further suppressed.

本発明の前記副活物質の配合割合は、前記リチウム複合酸化物100重量部に対して5〜30重量部、好ましくは10〜20重量部である。副活物質の配合割合が30重量部より大きくなると放電容量が小さくなり、一方、5重量部より小さくなると過放電抑制効果が十分に得られないことから好ましくない。   The mixing ratio of the secondary active material of the present invention is 5 to 30 parts by weight, preferably 10 to 20 parts by weight with respect to 100 parts by weight of the lithium composite oxide. When the content ratio of the secondary active material is larger than 30 parts by weight, the discharge capacity is decreased. On the other hand, when the content is smaller than 5 parts by weight, the effect of suppressing overdischarge cannot be obtained sufficiently.

本発明のリチウム二次電池正極活物質は所定量の前記リチウム複合酸化物と前記副活物質とを均一に混合し製造する。混合手段としては特に制限されるものではなく、上記割合に均一な組成配合となるように、湿式法或いは乾式法による強力な剪断力が作用する機械的手段にて調製される。湿式法は、ボールミル、ディスパーミル、ホモジナイザー、振動ミル、サンドグラインドミル、アトライター及び強力撹拌機等の装置にて操作される。一方、乾式法では、ハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、ヘンシェルミキサー、ナウターミキサー及びリボンブレンダー等の装置を用いることができる。なお、これら均一配合操作は、例示した機械的手段に限定されるものではない。また、所望によりジェットミル等で粉砕処理して粒度調整を行っても差し支えない。   The lithium secondary battery positive electrode active material of the present invention is produced by uniformly mixing a predetermined amount of the lithium composite oxide and the secondary active material. The mixing means is not particularly limited, and the mixing means is prepared by a mechanical means in which a strong shearing force is applied by a wet method or a dry method so as to obtain a uniform composition in the above ratio. The wet method is operated by an apparatus such as a ball mill, a disper mill, a homogenizer, a vibration mill, a sand grind mill, an attritor, and a powerful stirrer. On the other hand, in the dry method, apparatuses such as a high speed mixer, a super mixer, a turbo sphere mixer, a Henschel mixer, a nauter mixer, and a ribbon blender can be used. These uniform blending operations are not limited to the illustrated mechanical means. If desired, the particle size may be adjusted by grinding with a jet mill or the like.

本発明に係る第3の発明のリチウム二次電池は、上記リチウム二次電池正極活物質を用いるものであり、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなる。正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものであり、正極合剤は正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。本発明に係るリチウム二次電池は、正極に正極活物質である前記のリチウム複合酸化物と副活物質のマンガン酸リチウムが均一に塗布されたものであるため、特に負荷特性とサイクル特性の低下が生じ難い。   A lithium secondary battery according to a third aspect of the present invention uses the above-described lithium secondary battery positive electrode active material, and includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte containing a lithium salt. The positive electrode is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of. The lithium secondary battery according to the present invention is obtained by uniformly applying the lithium composite oxide as the positive electrode active material and the lithium manganate as the secondary active material to the positive electrode. Is unlikely to occur.

正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The positive electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum, and stainless steel Examples of the surface include carbon, nickel, titanium, and silver surface-treated. The surface of these materials may be oxidized and used, or the current collector surface may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば特に制限されず、例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、或いはポリフェニレン誘導体等の導電性材料が挙げられる。天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これら導電剤は、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1〜50重量%、好ましくは2〜30重量%である。   The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in a configured battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, Carbon blacks such as furnace black, lamp black and thermal black, conductive fibers such as carbon fiber and metal fiber, metal powders such as carbon fluoride, aluminum and nickel powder, conductivity such as zinc oxide and potassium titanate Examples thereof include conductive materials such as whiskers, conductive metal oxides such as titanium oxide, and polyphenylene derivatives. Examples of natural graphite include scaly graphite, scaly graphite, and earthy graphite. These conductive agents can be used alone or in combination of two or more. The blending ratio of the conductive agent is 1 to 50% by weight, preferably 2 to 30% by weight in the positive electrode mixture.

結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体またはその(Na+)イオン架橋体、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。結着剤の配合比率は、正極合剤中、1〜50重量%、好ましくは5〜15重量%である。   Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, fluorinated Vinylidene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene Oroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra Fluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or its (Na +) ionic crosslinked product, ethylene-methacrylic acid copolymer or its (Na + ) Ionic crosslinked body, ethylene-methyl acrylate copolymer or its (Na +) ionic crosslinked body, ethylene-methyl methacrylate copolymer or its (Na +) ionic crosslinked body, polysaccharide such as polyethylene oxide, thermoplastic resin Polymers having rubber elasticity, and these may be used individually or in combination. In addition, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. The blending ratio of the binder is 1 to 50% by weight, preferably 5 to 15% by weight in the positive electrode mixture.

フィラーは正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば特に制限されないが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0〜30重量%が好ましい。   The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added as necessary. The filler is not particularly limited as long as it is a fibrous material that does not cause a chemical change in the constructed battery. For example, olefinic polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 weight% is preferable in a positive mix.

負極は、負極集電体上に負極材料を塗布乾燥等して形成される。負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれは特に制限されるものでないが、銅あるいは銅合金などの過放電時に正極電位(約3.5Vvs.Li/Li+)にて酸化溶解するようなものに対して本発明は最も効果的である。また、材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The negative electrode is formed by applying and drying a negative electrode material on the negative electrode current collector. The negative electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery, but the positive electrode potential (about 3.5 V vs. Li / The present invention is most effective for those which are oxidized and dissolved by Li +). Further, the surface of the material may be oxidized and used, or the surface of the current collector may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

負極材料としては、特に制限されるものではないが、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li−Co−Ni系材料等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、Sn1 1−p2 (式中、M1 はMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、M2 はAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)、LixFe23 (0≦x≦1)、LixWO2(0≦x≦1)等の化合物が挙げられる。金属酸化物としては、GeO、GeO2、SnO、SnO2、PbO、PbO2、Pb23、Pb34、Sb23、Sb24、Sb25、Bi23、Bi24、Bi25等が挙げられる。導電性高分子としては、ポリアセチレン、ポリ−p−フェニレン等が挙げられる。 The negative electrode material is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon-based alloys, tin-based alloys, metal oxides, conductive polymers, and chalcogen compounds. And Li—Co—Ni-based materials. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include Sn p M 1 1-p M 2 q Or (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, and M 2 represents Al. , B, P, Si, one or more elements selected from Group 1, Group 2, Group 3 of the periodic table and halogen elements, 0 <p ≦ 1, 1 ≦ q ≦ 3, 1 ≦ r ≦ 8.), LixFe 2 O 3 (0 ≦ x ≦ 1), LixWO 2 (0 ≦ x ≦ 1) and the like. As the metal oxide, GeO, GeO 2, SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, Bi 2 O 3 Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.

セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレータの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μm である。セパレータの厚みとしては、一般的な電池用の範囲であればよく、例えば5〜300μm である。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレータを兼ねるようなものであってもよい。   As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator may be in a range generally useful for batteries, for example, 0.01 to 10 μm. The thickness of the separator may be in a range for a general battery, for example, 5 to 300 μm. In addition, when solid electrolytes, such as a polymer, are used as electrolyte mentioned later, a solid electrolyte may serve as a separator.

リチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が用いられる。非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。   The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte is used. Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3- Ropansaruton, methyl propionate, and a solvent obtained by mixing one or more aprotic organic solvents such as ethyl propionate.

有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキサイド誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を含むポリマー、イオン性解離基を含むポリマーと上記非水電解液の混合物等が挙げられる。   Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, Examples thereof include a polymer containing an ionic dissociation group such as polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the above non-aqueous electrolyte.

無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩等を用いることができ、例えば、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、LiSiO4、LiSiO4−LiI−LiOH、Li2SiS3、Li4SiO4、Li4SiO4−LiI−LiOH、Li3PO4−Li2S−SiS2、硫化リン化合物等が挙げられる。 As the inorganic solid electrolyte, a nitride, halide, oxyacid salt, or the like of Li can be used. For example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI—LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2, and the like phosphorus sulfide compound.

リチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiCl、LiBr、LiI、LiClO 、LiBF 、LiB10Cl10、LiPF 、LiCFSO 、LiCFCO 、LiAsF 、LiSbF 、LiB10Cl10、LiAlCl 、CH3SO3Li、CF3SO3Li、(CF3SO22NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等の1種または2種以上を混合した塩が挙げられる。 As the lithium salt, those dissolved in the non-aqueous electrolyte are used. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenylborate, Examples thereof include salts in which one kind or two or more kinds such as imides are mixed.

また、非水電解質には、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を添加することができる。例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2−メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化エチレンを電解液に含ませることができる。また、高温保存に適性を持たせるために電解液に炭酸ガスを含ませることができる。   Moreover, the compound shown below can be added to a nonaqueous electrolyte for the purpose of improving discharge, a charge characteristic, and a flame retardance. For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compounds with carbonyl group, hexamethylphosphine Examples include hollic triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, and carbonates. That. In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be included in the electrolyte. In addition, carbon dioxide gas can be included in the electrolytic solution in order to make it suitable for high-temperature storage.

このように構成されたリチウム二次電池は、過放電特性に優れ、更にガスの発生をも抑制し電池保存特性も優れたリチウム二次電池となる。電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。また、本発明のリチウム二次電池は、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ゲーム機器等の民生用電子機器等に好適に用いることができる。   The lithium secondary battery configured in this manner is a lithium secondary battery that has excellent overdischarge characteristics, further suppresses gas generation, and has excellent battery storage characteristics. The shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin shape. In addition, the lithium secondary battery of the present invention includes, for example, a notebook computer, a laptop computer, a pocket word processor, a mobile phone, a cordless handset, a portable CD player, a radio, an LCD TV, a backup power supply, an electric shaver, a memory card, a video movie It can be suitably used for consumer electronic devices such as electronic devices such as automobiles, electric vehicles, and game devices.

次に実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

<LiMnOの調製>
・試料A,B,C
電解二酸化マンガン(FMH、平均粒径6μm;東ソー社製)を大気中600℃で5時間焼成してMn(平均粒径6μm)を調製した。次いで、前記で調製したMn40.0gと炭酸リチウム(平均粒径5μm;SQM社製)18.7gを家庭用コーヒーミルで乾式混合し、窒素を1L/minの供給速度でアルミナ坩堝中に供給しながら200℃/hの昇温速度で600℃まで昇温を行い、次いで、窒素ガスを1L/minの供給速度でアルミナ坩堝中に供給しながら200℃/hの昇温速度で800℃まで昇温し、そのまま800℃で12時間保持した。次いで、アルミナ坩堝中に1L/minの供給速度で窒素ガスを導入しながら200℃/hの降温速度で室温まで冷却し、次いで粉砕して緑褐色粉末を得た。得られた緑褐色粉末をXRDによる結晶相の同定を行ったところLiMnO単相であることが確認された(試料A)。
<Preparation of LiMnO 2 >
・ Samples A, B, C
Electrolytic manganese dioxide (FMH, average particle size 6 μm; manufactured by Tosoh Corporation) was calcined in the atmosphere at 600 ° C. for 5 hours to prepare Mn 2 O 3 (average particle size 6 μm). Next, 40.0 g of Mn 2 O 3 prepared above and 18.7 g of lithium carbonate (average particle size 5 μm; manufactured by SQM) were dry-mixed in a household coffee mill, and an alumina crucible at a feed rate of 1 L / min. The temperature is raised to 600 ° C. at a temperature rising rate of 200 ° C./h while being fed into the inside, and then at a temperature rising rate of 200 ° C./h while feeding nitrogen gas into the alumina crucible at a feeding rate of 1 L / min. The temperature was raised to 800 ° C. and kept at 800 ° C. for 12 hours. Next, while introducing nitrogen gas into the alumina crucible at a supply rate of 1 L / min, the mixture was cooled to room temperature at a temperature decrease rate of 200 ° C./h and then pulverized to obtain a greenish brown powder. When the obtained green-brown powder was identified by a crystal phase by XRD, it was confirmed to be a LiMnO 2 single phase (sample A).

次いで、LiMnO粉末5gに純水100gを加え、25℃で5分間、120rpmで攪拌後、上澄み液のpHをpHメーターにより測定した結果、pHは11.5であった。更にこのLiMnO粉末を水で洗浄処理してpH10.9(試料C)、11.2(試料B)のLiMnO粉末を調製し、これらのLiMnO試料の諸物性を表1に示した。 Next, 100 g of pure water was added to 5 g of LiMnO 2 powder, and after stirring at 120 rpm for 5 minutes at 25 ° C., the pH of the supernatant was measured with a pH meter. As a result, the pH was 11.5. Further, this LiMnO 2 powder was washed with water to prepare LiMnO 2 powder having a pH of 10.9 (sample C) and 11.2 (sample B), and various physical properties of these LiMnO 2 samples are shown in Table 1.

・試料D
電解二酸化マンガン(FMH、平均粒径6μm;東ソー社製)を大気中600℃で5時間焼成してMn(平均粒径6μm)を調製した。次いで、前記で調製したMn40.0gと炭酸リチウム(平均粒径5μm;SQM社製)18.7gを家庭用コーヒーミルで乾式混合し、空気を1L/minの供給速度でアルミナ坩堝中に供給しながら200℃/hの昇温速度で600℃まで昇温を行い、次いで、空気を窒素ガスに切り替えて1L/minの供給速度でアルミナ坩堝中に供給しながら200℃/hの昇温速度で800℃まで昇温し、そのまま800℃で12時間保持した。次いで、アルミナ坩堝中に1L/minの供給速度で窒素ガスを導入しながら200℃/hの降温速度で室温まで冷却し、次いで粉砕して緑褐色粉末を得た。得られた緑褐色粉末をXRDによる結晶相の同定を行ったところLiMnO単相であることが確認された(試料D)。得られたLiMnOの主物性を表1に示した。pHは前記と同様の方法で測定した。
・ Sample D
Electrolytic manganese dioxide (FMH, average particle size 6 μm; manufactured by Tosoh Corporation) was calcined in the atmosphere at 600 ° C. for 5 hours to prepare Mn 2 O 3 (average particle size 6 μm). Next, 40.0 g of Mn 2 O 3 prepared above and 18.7 g of lithium carbonate (average particle size 5 μm; manufactured by SQM) were dry-mixed in a household coffee mill, and the alumina crucible was fed at a feed rate of 1 L / min. The temperature is increased to 600 ° C. at a temperature increase rate of 200 ° C./h while being supplied into the inside, and then the air is switched to nitrogen gas and 200 ° C./h is supplied while being supplied into the alumina crucible at a supply rate of 1 L / min. The temperature was raised to 800 ° C. at a rate of temperature rise, and kept at 800 ° C. for 12 hours. Next, while introducing nitrogen gas into the alumina crucible at a supply rate of 1 L / min, the mixture was cooled to room temperature at a temperature decrease rate of 200 ° C./h and then pulverized to obtain a greenish brown powder. When the obtained green-brown powder was identified by a crystal phase by XRD, it was confirmed to be a LiMnO 2 single phase (sample D). The main physical properties of the obtained LiMnO 2 are shown in Table 1. The pH was measured by the same method as described above.

Figure 2005235416
Figure 2005235416

<リチウム複合酸化物(主活物質の調製)>
Co3O4(平均粒径5μm)40.0gとLi2CO3(平均粒径5μm)8.38gを秤量し、乾式で十分に混合した後1000℃で5時間焼成した。該焼成物を粉砕、分級してLiCoO2を得た。このものの諸物性を表2に示した。なおpHは前記の方法により測定した。
<Lithium composite oxide (preparation of main active material)>
40.0 g of Co 3 O 4 (average particle size 5 μm) and 8.38 g of Li 2 CO 3 (average particle size 5 μm) were weighed, thoroughly mixed by a dry process, and calcined at 1000 ° C. for 5 hours. The fired product was pulverized and classified to obtain LiCoO 2 . Various physical properties of this product are shown in Table 2. The pH was measured by the above method.

Figure 2005235416
Figure 2005235416

実施例1〜2及び比較例1〜3
前記で調製した各種のLiMnO(副活物質)と前記で調製したリチウム複合酸化物(主活物質)とを表3に示す配合割合で家庭用コーヒーミルで十分に混合して各種の正極活物質を調製した。
Examples 1-2 and Comparative Examples 1-3
The various LiMnO 2 (sub-active material) prepared above and the lithium composite oxide (main active material) prepared above were sufficiently mixed in a household coffee mill at the blending ratios shown in Table 3 to produce various positive electrode actives. The material was prepared.

Figure 2005235416
Figure 2005235416

<リチウム二次電池の調製>
<電池性能試験>
(1)リチウム二次電池の作製;
上記のように調製した実施例1〜2及び比較例1〜3の正極活物質(主活物質+副活物質)91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。この正極板を用いて、セパレータ、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は人造黒鉛、集電体には銅を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。
<Preparation of lithium secondary battery>
<Battery performance test>
(1) Production of lithium secondary battery;
91% by weight of the positive electrode active material (main active material + secondary active material) of Examples 1-2 and Comparative Examples 1-3 prepared as described above, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed. A kneading paste was prepared by dispersing in N-methyl-2-pyrrolidinone as a positive electrode agent. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate. Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Of these, artificial graphite was used for the negative electrode, copper was used for the current collector, and 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate as the electrolyte.

(2)過放電試験
実施例1〜2及び比較例1〜3の電池について、25℃において、1CmAの電流で4.2Vまで充電し、4.2Vの定電圧で3時間充電した後、1CmAの電流で2.0Vまで放電したときの放電容量(以下、「初期放電容量」と呼ぶ。)を測定した。次いで、電池電圧0Vの定電圧で2日間放置し、過放電を行った。放置後、1CmA、4.2Vで3時間定電流定電圧で再充電した後、1CmAで2.0Vまで定電流放電を行い、放電容量(以下、「回復容量」と呼ぶ。)を測定した。この回復容量について先の放電試験で測定した初期放電容量に対する回復容量の割合(以下、「容量回復率」と呼ぶ。)を求め、表4に示した。また、試験後の電池を解体して正極を観察し、負極集電体の銅が正極上に析出しているかを観察し、その結果を表4に示す。
(2) Overdischarge test For the batteries of Examples 1 and 2 and Comparative Examples 1 to 3, the battery was charged to 4.2 V at a current of 1 CmA at 25 ° C., charged at a constant voltage of 4.2 V for 3 hours, and then 1 CmA. The discharge capacity (hereinafter referred to as “initial discharge capacity”) when discharged to 2.0 V at a current of 1 mm was measured. Next, the battery was allowed to stand for 2 days at a constant voltage of 0 V and overdischarged. After being left standing, it was recharged at a constant current and a constant voltage at 1 CmA and 4.2 V for 3 hours, and then a constant current was discharged at 1 CmA to 2.0 V, and a discharge capacity (hereinafter referred to as “recovery capacity”) was measured. For this recovery capacity, the ratio of the recovery capacity to the initial discharge capacity measured in the previous discharge test (hereinafter referred to as “capacity recovery rate”) was determined and shown in Table 4. Further, the battery after the test was disassembled and the positive electrode was observed to observe whether copper of the negative electrode current collector was deposited on the positive electrode. The results are shown in Table 4.

(3)ガス発生試験
また、前記で調製したリチウム二次電池を25℃において、1CmAの電流で4.2Vまで充電した後、4.2Vの定電圧で保持したまま80℃の恒温槽中で10日間保持した。次いで、電池を分解し、発生したガスをシリンダー中に水中捕集してガス発生量を測定し、その結果を表4に示す。
(3) Gas generation test In addition, after charging the lithium secondary battery prepared above to 4.2 V at a current of 1 CmA at 25 ° C., it was kept in a constant temperature bath at 4.2 ° C. while being held at a constant voltage of 4.2 V. Hold for 10 days. Next, the battery was disassembled, and the generated gas was collected in water in a cylinder and the amount of gas generated was measured. The results are shown in Table 4.

Figure 2005235416
Figure 2005235416

表4の結果より、本発明のマンガン酸リチウムを副活物質として用いたリチウム二次電池は、過放電特性が向上し、更にガス発生量も抑制され電池保存特性が向上していることが分かる。   From the results of Table 4, it can be seen that the lithium secondary battery using the lithium manganate of the present invention as a secondary active material has improved overdischarge characteristics, further reduced gas generation, and improved battery storage characteristics. .

Claims (9)

下記一般式(1);
LiMnO (1)
(式中、xは0.9≦x≦1.1を示す。)で表われ、且つpHが9.0以上、11未満であることを特徴とするリチウム二次電池正極副活物質用マンガン酸リチウム。
The following general formula (1);
Li x MnO 2 (1)
(Wherein x represents 0.9 ≦ x ≦ 1.1) and the pH is 9.0 or more and less than 11, manganese for lithium secondary battery positive electrode side active material Lithium acid.
平均粒径が1〜50μmである請求項1記載のリチウム二次電池正極副活物質用マンガン酸リチウム。 The lithium manganate for a secondary active material for a positive electrode of a lithium secondary battery according to claim 1, wherein the average particle size is 1 to 50 µm. BET比表面積が0.1〜2.0m/gである請求項1又は2記載のリチウム二次電池正極副活物質用マンガン酸リチウム。 The lithium manganate for a secondary active material for a positive electrode of a lithium secondary battery according to claim 1, wherein the BET specific surface area is 0.1 to 2.0 m 2 / g. 請求項1乃至3の何れか1項に記載のリチウム二次電池正極副活物質用マンガン酸リチウムと、下記一般式(2);
Li1−b (2)
(式中、MはCo、Niから選ばれる少なくとも1種以上の遷移金属元素、AはMg、Al、Mn、Ti、Zr、Fe、Cu、Zn、Sn、Inから選ばれる少なくとも1種以上の金属元素を示し、aは0.9≦a≦1.1、bは0≦b≦0.4、cは1.8≦c≦2.2を示す。)で表わされるリチウム複合酸化物を含有することを特徴とするリチウム二次電池正極活物質。
The lithium manganate for a lithium secondary battery positive electrode side active material according to any one of claims 1 to 3, and the following general formula (2);
Li a M 1- b AbO c (2)
(Wherein M is at least one transition metal element selected from Co and Ni, A is at least one transition metal element selected from Mg, Al, Mn, Ti, Zr, Fe, Cu, Zn, Sn, In) A metal element, a is 0.9 ≦ a ≦ 1.1, b is 0 ≦ b ≦ 0.4, and c is 1.8 ≦ c ≦ 2.2.) A positive electrode active material for a lithium secondary battery, comprising:
前記リチウム複合酸化物は平均粒径が1〜50μmである請求項4記載のリチウム二次電池正極活物質。 The lithium secondary oxide positive electrode active material according to claim 4, wherein the lithium composite oxide has an average particle diameter of 1 to 50 μm. 前記リチウム複合酸化物はBET比表面積が0.1〜2.0m/gである請求項4又は5記載のリチウム二次電池正極活物質。 The lithium secondary oxide positive electrode active material according to claim 4 or 5, wherein the lithium composite oxide has a BET specific surface area of 0.1 to 2.0 m 2 / g. 前記リチウム複合酸化物はpHが9.0以上、11未満である請求項4乃至6記載のリチウム二次電池正極活物質。 The lithium secondary oxide positive electrode active material according to any one of claims 4 to 6, wherein the lithium composite oxide has a pH of 9.0 or more and less than 11. 前記リチウム複合酸化物はLiCoOである請求項4乃至7記載のリチウム二次電池正極活物質。 The lithium secondary battery positive electrode active material according to claim 4, wherein the lithium composite oxide is LiCoO 2 . 請求項4乃至8の何れか1記載に記載のリチウム二次電池正極活物質を用いたことを特徴とするリチウム二次電池。 A lithium secondary battery using the lithium secondary battery positive electrode active material according to any one of claims 4 to 8.
JP2004039697A 2004-02-17 2004-02-17 Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery Pending JP2005235416A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004039697A JP2005235416A (en) 2004-02-17 2004-02-17 Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
KR1020040108056A KR20050082149A (en) 2004-02-17 2004-12-17 Lithium manganate for lithium secondary cell positive electrode sub-active material, lithium secondary cell positive electrode active material and lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039697A JP2005235416A (en) 2004-02-17 2004-02-17 Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2005235416A true JP2005235416A (en) 2005-09-02

Family

ID=35018166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039697A Pending JP2005235416A (en) 2004-02-17 2004-02-17 Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP2005235416A (en)
KR (1) KR20050082149A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066028A (en) * 2006-09-05 2008-03-21 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery positive electrode secondary active material, and manufacturing method of lithium manganate, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2009167100A (en) * 2005-03-22 2009-07-30 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
US10026961B2 (en) * 2014-02-06 2018-07-17 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2022118545A1 (en) * 2020-12-02 2022-06-09 パナソニックIpマネジメント株式会社 Positive electrode active material, lithium secondary battery, and method for producing positive electrode active material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265167A (en) * 1989-04-03 1990-10-29 Sony Corp Nonaqueous electrolyte secondary battery
JPH07142093A (en) * 1993-11-22 1995-06-02 Yuasa Corp Lithium secondary battery
JPH111323A (en) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd Lithium manganate particular composition, its production and lithium ion secondary cell
JPH1186845A (en) * 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH11219730A (en) * 1998-02-03 1999-08-10 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2001006661A (en) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002260654A (en) * 2000-12-28 2002-09-13 Mitsui Mining & Smelting Co Ltd Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method
JP2004014405A (en) * 2002-06-10 2004-01-15 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265167A (en) * 1989-04-03 1990-10-29 Sony Corp Nonaqueous electrolyte secondary battery
JPH07142093A (en) * 1993-11-22 1995-06-02 Yuasa Corp Lithium secondary battery
JPH111323A (en) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd Lithium manganate particular composition, its production and lithium ion secondary cell
JPH1186845A (en) * 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH11219730A (en) * 1998-02-03 1999-08-10 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2001006661A (en) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002260654A (en) * 2000-12-28 2002-09-13 Mitsui Mining & Smelting Co Ltd Spinel-type positive electrode material for lithium secondary battery, and its manufacturing method
JP2004014405A (en) * 2002-06-10 2004-01-15 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167100A (en) * 2005-03-22 2009-07-30 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2008066028A (en) * 2006-09-05 2008-03-21 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery positive electrode secondary active material, and manufacturing method of lithium manganate, lithium secondary battery positive electrode active material, and lithium secondary battery
US10026961B2 (en) * 2014-02-06 2018-07-17 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2022118545A1 (en) * 2020-12-02 2022-06-09 パナソニックIpマネジメント株式会社 Positive electrode active material, lithium secondary battery, and method for producing positive electrode active material
CN116490466A (en) * 2020-12-02 2023-07-25 松下知识产权经营株式会社 Positive electrode active material, lithium secondary battery, and method for producing positive electrode active material

Also Published As

Publication number Publication date
KR20050082149A (en) 2005-08-22

Similar Documents

Publication Publication Date Title
JP5225708B2 (en) Lithium nickel manganese cobalt composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery
JP5078113B2 (en) Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5749650B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5172231B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2011065391A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP2003221234A (en) Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery
JP2013182757A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
KR101202143B1 (en) Lithium-Cobalt Based Composite Oxide Powder, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Battery and Lithium Secondary Battery
JP4963532B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2003020229A (en) Lithium cobalt composite oxide, method for preparing the same, positive pole active substance of lithium secondary cell, and lithium secondary cell
JP2014041710A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2013182758A (en) Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery and lithium secondary battery
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4562496B2 (en) Modified lithium-manganese composite oxide, method for producing the same, lithium secondary battery positive electrode active material composition, and lithium secondary battery
JP6935380B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
CN111587501A (en) Positive active material for rechargeable lithium battery, positive electrode including the same, and rechargeable lithium battery including the same
JP4319663B2 (en) Lithium manganate, lithium secondary battery positive electrode secondary active material, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2005235416A (en) Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
KR20210071959A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
JP4748706B2 (en) Lithium manganese based composite oxide powder, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2009167100A (en) Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090716