JP2008066028A - Lithium manganate for lithium secondary battery positive electrode secondary active material, and manufacturing method of lithium manganate, lithium secondary battery positive electrode active material, and lithium secondary battery - Google Patents

Lithium manganate for lithium secondary battery positive electrode secondary active material, and manufacturing method of lithium manganate, lithium secondary battery positive electrode active material, and lithium secondary battery Download PDF

Info

Publication number
JP2008066028A
JP2008066028A JP2006240241A JP2006240241A JP2008066028A JP 2008066028 A JP2008066028 A JP 2008066028A JP 2006240241 A JP2006240241 A JP 2006240241A JP 2006240241 A JP2006240241 A JP 2006240241A JP 2008066028 A JP2008066028 A JP 2008066028A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
active material
lithium manganate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006240241A
Other languages
Japanese (ja)
Other versions
JP5078113B2 (en
Inventor
Minoru Fukuchi
稔 福知
Fumihiro Yonekawa
文広 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2006240241A priority Critical patent/JP5078113B2/en
Priority to KR1020070089462A priority patent/KR20080022057A/en
Priority to CNA2007101498245A priority patent/CN101140987A/en
Publication of JP2008066028A publication Critical patent/JP2008066028A/en
Application granted granted Critical
Publication of JP5078113B2 publication Critical patent/JP5078113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent easy deterioration of discharge capacity at normal use, and to reduce deterioration of performance due to over discharge. <P>SOLUTION: This is lithium manganate for a lithium secondary battery positive electrode secondary active material which is expressed by a general formula (1) Li<SB>x</SB>MnO<SB>2</SB>(in the formula, 0.90≤x≤1.05), and L* value is 25.0-32.0, a* is -1.50 to -0.15, b* is 2.50-8.00 in an L*a*b* table color system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池の正極副活物質として用いられるマンガン酸リチウム及びそのマンガン酸リチウムの製造に用いられるマンガン酸リチウムの製造方法、そのマンガン酸リチウムを正極副活物質として含有するリチウム二次電池正極活物質、並びにリチウム二次電池に関する。   The present invention relates to a lithium manganate used as a positive electrode active material of a lithium secondary battery, a method for producing lithium manganate used for the production of the lithium manganate, and a lithium secondary battery containing the lithium manganate as a positive electrode active material. The present invention relates to a secondary battery positive electrode active material and a lithium secondary battery.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアルリサーチブレティン」vol15,P783-789(1980))がなされて以来、リチウム系複合酸化物に関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries ("Material Research Bulletin" vol15, P783-789 (1980)). Since then, research and development on lithium-based composite oxides has been actively promoted, and many proposals have been made so far.

しかしながら、リチウム系複合酸化物を正極活物質とするリチウム二次電池は、負極集電体として使用される銅箔が過放電時に電解液中に溶出し、さらにはその一部が正極に析出する結果、充放電特性が劣化し易いという問題がある。このため、電池の外側に過放電を防止する電気回路を設けて過放電そのものを防止する方法が用いられているが、過放電を防止する電気回路が存在することによって、電池を使用する機器または電池パックなどのコストが高くなる。   However, in a lithium secondary battery using a lithium-based composite oxide as a positive electrode active material, a copper foil used as a negative electrode current collector elutes in the electrolyte during overdischarge, and a part of it is deposited on the positive electrode. As a result, there is a problem that charge / discharge characteristics are easily deteriorated. For this reason, a method for preventing overdischarge itself by providing an electric circuit for preventing overdischarge on the outside of the battery is used. The cost of battery packs and the like increases.

上記リチウム二次電池の正極活物質は、主活物質としてリチウム系複合酸化物を含有し、副活物質を含有しない正極活物質である。一方、LiCoO等のリチウム系複合酸化物を主活物質とし、これに副活物質としてLiMnOを添加して用いる方法、すなわち、主活物質としてのLiCoO等のリチウム系複合酸化物と、副活物質としてのLiMnOとを含有するリチウム二次電池正極活物質が提案されている。例えば、特許文献1の特開平6−349493号公報には、LiCoO等のリチウム含有複合酸化物にLiMnOを混合したものを正極活物質として作成される非水電解液二次電池が開示されている。該特許文献1で使用されているLiMnOは、MnOと炭酸リチウムとを不活性ガス雰囲気中で焼成して製造されているが、該特許文献1で得られたLiMnOを正極副活物質とするリチウム二次電池では、過放電の問題については、ある程度改善されるものの、通常使用における放電容量の低下等の問題が生じ易かった。そのため、リチウム二次電池に、優れた電池性能を付与することができるリチウム二次電池正極副活物質の開発が望まれている。 The positive electrode active material of the lithium secondary battery is a positive electrode active material containing a lithium-based composite oxide as a main active material and not containing a secondary active material. On the other hand, the lithium composite oxide such as LiCoO 2 as a main active material, a method, i.e., lithium-based composite oxide such as LiCoO 2 as a main active material used was added thereto LiMnO 2 as a subsidiary active substance, A lithium secondary battery positive electrode active material containing LiMnO 2 as a secondary active material has been proposed. For example, Japanese Patent Application Laid-Open No. 6-349493 of Patent Document 1 discloses a non-aqueous electrolyte secondary battery prepared using a mixture of lithium-containing composite oxide such as LiCoO 2 and LiMnO 2 as a positive electrode active material. ing. LiMnO 2 used in Patent Document 1 is manufactured by firing MnO 2 and lithium carbonate in an inert gas atmosphere. LiMnO 2 obtained in Patent Document 1 is used as a positive electrode secondary active material. In the lithium secondary battery, although the problem of overdischarge was improved to some extent, problems such as a decrease in discharge capacity during normal use were likely to occur. Therefore, development of a lithium secondary battery positive electrode secondary active material capable of imparting excellent battery performance to the lithium secondary battery is desired.

また、特許文献2の特開2002−151079号公報には、MnOを加熱処理して得られるMnとリチウム化合物との混合物を焼成して得られるLiMnOを正極活物質とするリチウム二次電池が開示されているが、該特許文献2のLiMnOを正極副活物質として用いても、過放電の問題及び放電容量の低下等の問題の解決方法としては、不十分であった。 Japanese Patent Application Laid-Open No. 2002-151079 of Patent Document 2 discloses lithium using LiMnO 2 obtained by baking a mixture of Mn 2 O 3 obtained by heat treatment of MnO 2 and a lithium compound as a positive electrode active material. Although a secondary battery is disclosed, even if LiMnO 2 of Patent Document 2 is used as a positive electrode secondary active material, it is not sufficient as a solution for problems such as overdischarge and reduction in discharge capacity. .

また、本出願人らは、特許文献3の特開2005−235416号公報、又は特許文献4の特開2006−139945号公報に、リチウム二次電池正極副活物質に用いられるマンガン酸リチウムを提案している。特許文献3又は特許文献4のリチウム二次電池正極副活物質によれば、過放電の問題及び放電容量の低下等の問題を、ある程度改善できるものの、更なる改善が求められている。   Further, the present applicants proposed lithium manganate used as a positive electrode secondary active material of a lithium secondary battery in Japanese Patent Application Laid-Open No. 2005-235416 of Patent Document 3 or Japanese Patent Application Laid-Open No. 2006-139945 of Patent Document 4. is doing. According to the lithium secondary battery positive electrode secondary active material of Patent Document 3 or Patent Document 4, although problems such as overdischarge and a decrease in discharge capacity can be improved to some extent, further improvement is required.

特開平6−349493号公報(特許請求の範囲)JP-A-6-349493 (Claims) 特開2002−151079号公報(特許請求の範囲、実施例2)JP 2002-151079 A (Claims, Example 2) 特開2005−235416号公報(特許請求の範囲)Japanese Patent Laying-Open No. 2005-235416 (Claims) 特開2006−139945号公報(特許請求の範囲)JP 2006-139945 A (Claims)

従って、本発明の課題は、通常使用において放電容量が低下し難く且つ過放電による性能の劣化を少なくすることができるリチウム二次電池正極副活物質、その製造方法、該リチウム二次電池正極副活物質を用いたリチウム二次電池正極活物質を提供すること、及び通常使用において放電容量が低下し難く且つ過放電による性能の劣化が少ないリチウム二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a lithium secondary battery positive electrode secondary active material that is less likely to have a reduced discharge capacity during normal use and can reduce performance deterioration due to overdischarge, a method for producing the same, and a lithium secondary battery positive electrode secondary battery. An object of the present invention is to provide a positive electrode active material for a lithium secondary battery using an active material, and to provide a lithium secondary battery in which the discharge capacity is unlikely to decrease during normal use and the performance is not deteriorated due to overdischarge.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、L表色系における特定範囲の色を有するマンガン酸リチウムは、正極副活物質として優れた電池性能、具体的には、通常使用において容量が低下し難く且つ過放電抑制効果に優れるという電池性能を、リチウム二次電池に付与することができることを見出し本発明を完成するに至った。 As a result of intensive studies to solve the problems in the prior art, the present inventors have found that lithium manganate having a specific range of colors in the L * a * b * color system is excellent as a positive electrode secondary active material. The present inventors have found that the lithium secondary battery can be imparted with the battery performance, specifically, the battery performance in which the capacity does not easily decrease during normal use and the effect of suppressing overdischarge is excellent.

すなわち、本発明(1)は、下記一般式(1):
LiMnO (1)
(式中、0.90≦x≦1.05である。)
で表され、
表色系における、L値が25.0〜32.0、aが−1.50〜−0.15、bが2.50〜8.00であること、
を特徴とするリチウム二次電池正極副活物質用マンガン酸リチウムを提供するものである。
That is, the present invention (1) includes the following general formula (1):
Li x MnO 2 (1)
(In the formula, 0.90 ≦ x ≦ 1.05.)
Represented by
In the L * a * b * color system, it L * value from 25.0 to 32.0, a * is -1.50~-0.15, b * is 2.50 to 8.00,
A lithium manganate for a secondary active material of a positive electrode for a lithium secondary battery is provided.

また、本発明(2)は、非塩基性炭酸マンガンを、酸素濃度が1体積%以下の不活性ガス雰囲気中、500〜800℃で焼成して、MnOを得る第一工程と、
該第一工程を行ない得られるMnOを、酸素濃度が10体積%以上の雰囲気中、525〜950℃で焼成して、Mnを得る第二工程と、
該第二工程を行い得られるMnとリチウム化合物とを、マンガン原子に対するリチウム原子のモル比が0.90〜1.05となるように混合して、反応原料混合物を得、次いで、該反応原料混合物を、酸素濃度が1体積%以下の不活性ガス雰囲気中、600〜950℃で焼成して、マンガン酸リチウムを得る第三工程と、
を有することを特徴とするマンガン酸リチウムの製造方法を提供するものである。
In addition, the present invention (2) includes a first step of obtaining MnO by firing non-basic manganese carbonate at 500 to 800 ° C. in an inert gas atmosphere having an oxygen concentration of 1% by volume or less,
MnO obtained by performing the first step is baked at 525 to 950 ° C. in an atmosphere having an oxygen concentration of 10% by volume or more to obtain Mn 2 O 3 ;
Mn 2 O 3 obtained by performing the second step and a lithium compound are mixed so that the molar ratio of lithium atoms to manganese atoms is 0.90 to 1.05 to obtain a reaction raw material mixture, A third step in which the reaction raw material mixture is calcined at 600 to 950 ° C. in an inert gas atmosphere having an oxygen concentration of 1% by volume or less to obtain lithium manganate;
The present invention provides a method for producing lithium manganate characterized by comprising:

また、本発明(3)は、前記本発明(1)記載のリチウム二次電池正極副活物質用マンガン酸リチウムと、
下記一般式(2):
Li(a)(1−b)(b)(c) (2)
(式中、MはCo及びNiから選ばれる1種以上の金属元素を示し、AはMg、Al、Ti、Zr、Fe、Cu、Zn、Sn、In、Ca、Ba、Sr及びMnから選ばれる1種以上の金属元素を示し、0.9≦a≦1.1であり、0≦b≦0.5であり、1.8≦c≦2.2である。)
で表されるリチウム複合酸化物と、
を含有することを特徴とするリチウム二次電池正極活物質を提供するものである。
Further, the present invention (3) includes lithium manganate for a lithium secondary battery positive electrode side active material according to the present invention (1),
The following general formula (2):
Li (a) M (1-b) A (b) O (c) (2)
(In the formula, M represents one or more metal elements selected from Co and Ni, and A represents Mg, Al, Ti, Zr, Fe, Cu, Zn, Sn, In, Ca, Ba, Sr, and Mn. 1 or more kinds of metal elements, 0.9 ≦ a ≦ 1.1, 0 ≦ b ≦ 0.5, and 1.8 ≦ c ≦ 2.2.)
Lithium composite oxide represented by
The present invention provides a positive electrode active material for a lithium secondary battery characterized by containing

また、本発明(4)は、前記本発明(3)記載のリチウム二次電池正極活物質を、正極活物質として用いて得られることを特徴とするリチウム二次電池を提供するものである。   Moreover, this invention (4) provides the lithium secondary battery characterized by being obtained using the lithium secondary battery positive electrode active material of the said this invention (3) as a positive electrode active material.

本発明によれば、通常使用において放電容量が低下し難く且つ過放電による性能の劣化を抑制することができるリチウム二次電池正極副活物質、その製造方法、及びそのリチウム二次電池正極副活物質を用いたリチウム二次電池正極活物質を提供することができ、また、通常使用において放電容量が低下し難く且つ過放電による性能の劣化が少ないリチウム二次電池を提供することができる。   According to the present invention, a lithium secondary battery positive electrode side active material, a method for producing the same, and a lithium secondary battery positive electrode side active material that are less likely to have a reduced discharge capacity during normal use and can suppress deterioration in performance due to overdischarge. It is possible to provide a positive electrode active material for a lithium secondary battery using the substance, and to provide a lithium secondary battery in which the discharge capacity hardly decreases during normal use and the performance is not deteriorated due to overdischarge.

本発明のマンガン酸リチウムは、前記一般式(1)で表され、
表色系における、L値が25.0〜32.0、aが−1.50〜−0.15、bが2.50〜8.00である、
リチウム二次電池正極副活物質用マンガン酸リチウムである。つまり、本発明のマンガン酸リチウムは、リチウム二次電池正極活物質を構成するリチウム二次電池正極副活物質として用いられるマンガン酸リチウムである。
The lithium manganate of the present invention is represented by the general formula (1),
In the L * a * b * color system, the L * value is 25.0 to 32.0, a * is -1.50 to -0.15, and b * is 2.50 to 8.00.
It is a lithium manganate for a secondary active material of a lithium secondary battery positive electrode. That is, the lithium manganate of the present invention is lithium manganate used as a lithium secondary battery positive electrode secondary active material constituting the lithium secondary battery positive electrode active material.

前記一般式(1)中、xの値は、0.90≦x≦1.05、好ましくは0.95≦x≦1.01である。xの値が、上記範囲にあることにより、マンガン酸リチウムのLi供給能力が高くなる。   In the general formula (1), the value of x is 0.90 ≦ x ≦ 1.05, preferably 0.95 ≦ x ≦ 1.01. When the value of x is in the above range, the lithium supply capability of lithium manganate is increased.

本発明のマンガン酸リチウムは、X線回折分析において単相のマンガン酸リチウムである。   The lithium manganate of the present invention is a single-phase lithium manganate in X-ray diffraction analysis.

そして、本発明のマンガン酸リチウムは、前記一般式(1)で表されるマンガン酸リチウムのうち、従来よりリチウム二次電池正極副活物質として用いられてきたマンガン酸リチウム(以下、前記一般式(1)で表されるマンガン酸リチウムのうち、従来よりリチウム二次電池正極副活物質として用いられてきたマンガン酸リチウムを、単に従来のマンガン酸リチウムとも記載する。)とは、物体色が異なる。すなわち、本発明のマンガン酸リチウムのL表色系におけるL値は、25.0〜32.0、好ましくは26.0〜31.0であり、a値が−1.50〜−0.15、好ましくは−1.00〜−0.10であり、b値が2.50〜8.00、好ましくは3.50〜7.00である。本発明のマンガン酸リチウムのL表色系におけるL値、a値及びb値が、上記範囲にあることにより、リチウム二次電池に優れた電池性能を付与することができるので、放電容量が低下し難く且つ過放電による性能の劣化が少ないリチウムイオン二次電池を得ることができる。一方、従来のマンガン酸リチウムは、L表色系におけるL値が15〜40程度、a値が−10〜−5程度、b値が11〜18程度である。なお、本発明において、L表色系におけるL値、a値及びb値は、色差計によって測定される色差であり、日本工業規格JIS Z 8730に規定されている。 And the lithium manganate of this invention is lithium manganate conventionally used as a lithium secondary battery positive electrode side active material among lithium manganate represented by the said General formula (1) (henceforth the said general formula). Among lithium manganates represented by (1), lithium manganate that has been conventionally used as a secondary active material for positive electrodes of lithium secondary batteries is also simply referred to as conventional lithium manganate). Different. That is, the L * value in the L * a * b * color system of the lithium manganate of the present invention is 25.0 to 32.0, preferably 26.0 to 31.0, and the a * value is −1. .50 to -0.15, preferably -1.00 to -0.10, and b * value is 2.50 to 8.00, preferably 3.50 to 7.00. When the L * value, a * value, and b * value in the L * a * b * color system of the lithium manganate of the present invention are within the above ranges, excellent battery performance is imparted to the lithium secondary battery. Therefore, it is possible to obtain a lithium ion secondary battery in which the discharge capacity is hardly reduced and the performance is not deteriorated due to overdischarge. On the other hand, the conventional lithium manganate, L * a * b * color L * value of about 15 to 40 in the system, a * value of about -10 to-5, b * values of about 11 to 18. In the present invention, L * a * b * L * values in a color system, a * and b * values are the color difference measured by a color difference meter is defined in Japanese Industrial Standard JIS Z 8730 .

表色系におけるL値は明度を表し、値が大きいほど白く、100で完全な白となり、値が小さいほど黒く、0で完全な黒となる。また、a値及びb値は色相を表し、a値が大きいほど赤色が濃くなり、a値が小さいほど緑色が濃くなり、b値が大きいほど、黄色が濃くなり、b値が小さいほど青色が濃くなる。 The L * value in the L * a * b * color system represents lightness . The higher the value, the whiter the color, the 100 becomes perfect white, the smaller the value, the black, and 0 the complete black. The a value and the b value represent hues, and the larger the a value, the deeper the red color, the smaller the a value, the darker the green color, the larger the b value, the darker the yellow color, and the smaller the b value, the blue color. It becomes darker.

本発明のマンガン酸リチウムは、粉体であるが、粉体の色差測定としては、粉体試料をスラリー化する方法、ペレット化する方法、専用のシャーレに充填して測定する方法等が挙げられるが、本発明のマンガン酸リチウムにおいては、シャーレに充填して測定する方法が好ましい。これは、マンガン酸リチウムをスラリー化する方法だと、スラリー中でのLiの脱離等による組成変化が生じ、色変化を引き起こしてしまうため好ましくなく、また、ペレット化する方法だと、ペレット表面での反射や加圧等による色変化が生じてしまうため好ましくないからである。   Although the lithium manganate of the present invention is a powder, the color difference measurement of the powder includes a method of slurrying a powder sample, a method of pelletizing, a method of measuring by filling a dedicated petri dish, and the like. However, in the lithium manganate of the present invention, a method of measuring in a petri dish is preferable. This is not preferable because it is a method of slurrying lithium manganate, because it causes a change in composition due to Li desorption in the slurry and causes a color change. Also, if it is a method of pelletizing, the pellet surface This is because it is not preferable because color change occurs due to reflection or pressurization.

本発明のマンガン酸リチウムの平均粒子径は、均一な電極シートの塗布が可能となり、電流の集中等による電池性能の劣化等が抑制できる点で、1〜25μmであることが好ましく、4〜15μmであることが特に好ましい。なお、本発明において、平均粒子径はレーザー法粒度分布測定法により求められる値である。   The average particle diameter of the lithium manganate of the present invention is preferably from 1 to 25 μm from the viewpoint that a uniform electrode sheet can be applied and deterioration of battery performance due to current concentration can be suppressed. It is particularly preferred that In the present invention, the average particle size is a value determined by a laser particle size distribution measurement method.

本発明のマンガン酸リチウムのBET比表面積は、Mnの溶出によるリチウム二次電池の性能劣化を抑制したり、あるいは、ハイレートでのLiの供給が可能になる点で、0.2〜2.0m/gであることが好ましく、0.4〜1.0m/gであることが特に好ましい。 The BET specific surface area of the lithium manganate of the present invention is 0.2 to 2.0 m in that it can suppress the deterioration of the performance of the lithium secondary battery due to elution of Mn or supply Li at a high rate. 2 / g is preferable, and 0.4 to 1.0 m 2 / g is particularly preferable.

本発明のマンガン酸リチウムを水に分散させた時の分散液のpHは、ガス発生や正極合剤塗料のゲル化が抑えられる点で、12以下であることが好ましく、11.5以下であることが特に好ましい。また、本発明のマンガン酸リチウムを水に分散させた時の分散液のpHの下限値は、本発明のマンガン酸リチウム自身が弱塩基性であるため、pHが9.5であることが好ましい。なお、本発明において、マンガン酸リチウムを水に分散させた時のpHとは、マンガン酸リチウム試料5gに純水100gを加えて25℃で5分間攪拌した後、更に5分静置した後の上澄み液のpHをpHメーターで測定した値を示す。   The pH of the dispersion when the lithium manganate of the present invention is dispersed in water is preferably 12 or less, and preferably 11.5 or less from the viewpoint of suppressing gas generation and gelation of the positive electrode mixture paint. It is particularly preferred. The lower limit of the pH of the dispersion when the lithium manganate of the present invention is dispersed in water is preferably 9.5 because the lithium manganate of the present invention itself is weakly basic. . In the present invention, the pH when lithium manganate is dispersed in water means that after adding 100 g of pure water to 5 g of a lithium manganate sample and stirring at 25 ° C. for 5 minutes, the solution is further allowed to stand for 5 minutes. The value obtained by measuring the pH of the supernatant with a pH meter is shown.

本発明のマンガン酸リチウムは、リチウム二次電池正極活物質に含有されることにより、言い換えると、リチウム二次電池正極副活物質として、リチウム二次電池主活物質と併用されることにより、電池性能が優れる、つまり、通常使用において放電容量が低下し難く且つ過放電による性能の劣化が少ないリチウム二次電池を与える。   When the lithium manganate of the present invention is contained in a lithium secondary battery positive electrode active material, in other words, as a lithium secondary battery positive electrode secondary active material, it is used in combination with a lithium secondary battery main active material. A lithium secondary battery having excellent performance, that is, a discharge capacity that is difficult to decrease during normal use and little deterioration in performance due to overdischarge is provided.

本発明のマンガン酸リチウムは、MnOを525℃以上で焼成して得られるMnとリチウム化合物とを、Mn中のMn原子に対するリチウム化合物中のLi原子のモル比(Li/Mn)が0.90〜1.05となるように混合して得られる均一混合物を、600℃〜950℃で焼成することにより得られるが、特に下記本発明のマンガン酸リチウムの製造方法に係る第一工程〜第三工程を順次行って得られるマンガン酸リチウムが、Li供給能力が大きい点で好ましい。 The lithium manganate of the present invention comprises Mn 2 O 3 and a lithium compound obtained by firing MnO at 525 ° C. or more, and a molar ratio of Li atoms in the lithium compound to Mn atoms in Mn 2 O 3 (Li / Mn) can be obtained by firing at 600 ° C. to 950 ° C. to obtain a uniform mixture obtained by mixing so that 0.90 to 1.05, and particularly relates to the method for producing lithium manganate of the present invention described below. Lithium manganate obtained by sequentially performing the first step to the third step is preferable because of its large Li supply capability.

本発明のマンガン酸リチウムの製造方法は、非塩基性炭酸マンガンを、酸素濃度が1体積%以下の不活性ガス雰囲気中、500〜800℃で焼成して、MnOを得る第一工程と、
該第一工程を行ない得られるMnOを、酸素濃度が10体積%以上の雰囲気中、525〜950℃で焼成して、Mnを得る第二工程と、
該第二工程を行い得られるMnとリチウム化合物とを、マンガン原子に対するリチウム原子のモル比(Li/Mn)が0.90〜1.05となるように混合して、反応原料混合物を得、次いで、該反応原料混合物を、酸素濃度が1体積%以下の不活性ガス雰囲気中、600〜950℃で焼成して、マンガン酸リチウムを得る第三工程と、
を有する。
The method for producing lithium manganate of the present invention comprises a first step of obtaining MnO by firing non-basic manganese carbonate at 500 to 800 ° C. in an inert gas atmosphere having an oxygen concentration of 1% by volume or less,
MnO obtained by performing the first step is baked at 525 to 950 ° C. in an atmosphere having an oxygen concentration of 10% by volume or more to obtain Mn 2 O 3 ;
Mn 2 O 3 obtained by performing the second step and a lithium compound are mixed so that the molar ratio of lithium atom to manganese atom (Li / Mn) is 0.90 to 1.05, and a reaction raw material mixture Then, the reaction raw material mixture is fired at 600 to 950 ° C. in an inert gas atmosphere having an oxygen concentration of 1% by volume or less to obtain lithium manganate,
Have

第一工程は、非塩基性炭酸マンガンを焼成して、MnOを得る工程である。   The first step is a step of baking MnO to obtain MnO.

第一工程に係る非塩基性炭酸マンガンとは、炭酸マンガン10gを、超純水100gに加えて、25℃で5分間撹拌した後の水のpHが、6.0〜7.8、好ましくは6.5〜7.6となる炭酸マンガンを指す。そして、第一工程に係る非塩基性炭酸マンガンは、一般に、塩基性炭酸マンガンと呼ばれている炭酸マンガンとは異なる。塩基性炭酸マンガンの場合、塩基性炭酸マンガン10gを、超純水100gに加えて、25℃で5分間撹拌した後の水のpHは、8.0以上である。   The non-basic manganese carbonate according to the first step means that 10 g of manganese carbonate is added to 100 g of ultrapure water, and the pH of water after stirring at 25 ° C. for 5 minutes is 6.0 to 7.8, preferably The manganese carbonate which becomes 6.5-7.6 is pointed out. And the non-basic manganese carbonate which concerns on a 1st process differs from the manganese carbonate generally called basic manganese carbonate. In the case of basic manganese carbonate, the pH of water after adding 10 g of basic manganese carbonate to 100 g of ultrapure water and stirring at 25 ° C. for 5 minutes is 8.0 or more.

非塩基性炭酸マンガンは、工業的には、アンモニア水及び炭酸ガスによりアンモニウムカルバメイト溶液を調製し、これに一酸化マンガンを反応させる方法や、水に溶解させた硫酸マンガン、塩化マンガン等の二価のマンガン塩に、炭酸源として炭酸水素アンモニウムを反応させる方法により製造されており、非塩基性炭酸マンガンは、水酸化マンガン(Mn(OH))の含有量が少ない。そのため、非塩基性炭酸マンガン10gを、超純水100gに加えて、25℃で5分間撹拌した後の水のpHは、6.0〜7.8、好ましくは6.5〜7.6となる。 Industrially, non-basic manganese carbonate is prepared by preparing an ammonium carbamate solution with aqueous ammonia and carbon dioxide gas, and reacting it with manganese monoxide, or using two methods such as manganese sulfate and manganese chloride dissolved in water. It is produced by a method of reacting a valent manganese salt with ammonium hydrogen carbonate as a carbonic acid source. Nonbasic manganese carbonate has a low content of manganese hydroxide (Mn (OH) 2 ). Therefore, the pH of water after adding 10 g of non-basic manganese carbonate to 100 g of ultrapure water and stirring at 25 ° C. for 5 minutes is 6.0 to 7.8, preferably 6.5 to 7.6. Become.

一方、塩基性炭酸マンガンは、工業的には、水に溶解させた硫酸マンガン、塩化マンガン等の二価のマンガン塩に、炭酸源として炭酸ナトリウムを反応させる方法により製造されており、塩基性炭酸マンガンは、水酸化マンガン(Mn(OH))の含有量が多い。そのため、塩基性炭酸マンガン10gを、超純水100gに加えて、25℃で5分間撹拌した後の水のpHは、8.0以上となる。 On the other hand, basic manganese carbonate is industrially produced by reacting sodium carbonate as a carbonate source with a divalent manganese salt such as manganese sulfate or manganese chloride dissolved in water. Manganese has a high content of manganese hydroxide (Mn (OH) 2 ). Therefore, the pH of water after adding 10 g of basic manganese carbonate to 100 g of ultrapure water and stirring for 5 minutes at 25 ° C. is 8.0 or more.

第一工程に係る非塩基性炭酸マンガンの他の諸物性等は、特に制限されるものではないが、平均粒子径が1〜25μmのマンガン酸リチウムを得易くなる点で、第一工程に係る非塩基性炭酸マンガンの平均粒子径は、1〜30μmであることが好ましく、5〜20μmであることが特に好ましい。   Other physical properties of the non-basic manganese carbonate according to the first step are not particularly limited, but according to the first step in that it is easy to obtain lithium manganate having an average particle diameter of 1 to 25 μm. The average particle size of the non-basic manganese carbonate is preferably 1 to 30 μm, and particularly preferably 5 to 20 μm.

第一工程では、非塩基性炭酸マンガンの焼成を、酸素濃度が1体積%以下の不活性ガス雰囲気中、好ましくは酸素濃度が0〜0.5体積%の不活性ガス雰囲気中で行なう。非塩基性炭酸マンガンの焼成を、上記雰囲気中で行うことにより、緻密なMnOが得られる。一方、酸素濃度が1体積%を超えると、緻密なMnOが得られない。第一工程に係る不活性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。また、第一工程では、非塩基性炭酸マンガンの焼成の際に、酸素による酸化を防ぐために、雰囲気に、水素等の還元ガスを少量含ませることができる。   In the first step, the non-basic manganese carbonate is fired in an inert gas atmosphere having an oxygen concentration of 1% by volume or less, preferably in an inert gas atmosphere having an oxygen concentration of 0 to 0.5% by volume. By firing non-basic manganese carbonate in the above atmosphere, dense MnO can be obtained. On the other hand, if the oxygen concentration exceeds 1% by volume, dense MnO cannot be obtained. Nitrogen gas, helium gas, argon gas etc. are mentioned as an inert gas which concerns on a 1st process. In the first step, a small amount of a reducing gas such as hydrogen can be included in the atmosphere in order to prevent oxidation due to oxygen during firing of the non-basic manganese carbonate.

第一工程において、非塩基性炭酸マンガンの焼成温度は、500〜800℃、好ましくは550〜700℃である。非塩基性炭酸マンガンの焼成温度が、500℃未満だとMnOが得られず、また、800℃を超えると凝集が強くなり、マンガン酸リチウムの充填性が低下する。   In the first step, the firing temperature of the non-basic manganese carbonate is 500 to 800 ° C, preferably 550 to 700 ° C. When the firing temperature of the non-basic manganese carbonate is less than 500 ° C., MnO cannot be obtained, and when it exceeds 800 ° C., the aggregation becomes strong and the filling property of lithium manganate decreases.

第一工程において、非塩基性炭酸マンガンの焼成時間は、特に制限されないが、好ましくは1〜20時間、特に好ましくは5〜15時間である。非塩基性炭酸マンガンの焼成時間が1時間未満だと、MnOへの転換が不十分となり易く、一方、20時間以上焼成を行っても、MnOの品質に大きな差が見られないため非効率となり易い。   In the first step, the firing time of the non-basic manganese carbonate is not particularly limited, but is preferably 1 to 20 hours, particularly preferably 5 to 15 hours. If the firing time of the non-basic manganese carbonate is less than 1 hour, the conversion to MnO tends to be insufficient. On the other hand, even if firing for 20 hours or more, there is no significant difference in the quality of MnO, which is inefficient. easy.

第一工程を行い得られるMnOは、他のマンガン塩を焼成して得られるMnOや、他の焼成条件により得られるMnOに比べ、不純物含有量が少ない。   MnO obtained by performing the first step has a lower impurity content than MnO obtained by firing other manganese salts and MnO obtained by other firing conditions.

第二工程は、第一工程を行い得られるMnOを焼成し、Mnを得る工程である。 The second step, firing the MnO obtained performed a first step is a step of obtaining a Mn 2 O 3.

第二工程では、第一工程を行い得られるMnOの焼成を、酸素濃度が10体積%以上の雰囲気中、好ましくは酸素濃度が15体積%以上の雰囲気中、特に好ましくは20体積%以上の雰囲気中で行なう。第一工程を行ない得られるMnOを、上記雰囲気中で行うことにより、不純物が少ないMnが得られる。一方、酸素濃度が10%未満になると、酸素が不足するため、MnOのMnへの転換が不十分となり、不純物が生じ易くなる。通常は、第一工程を行い得られるMnOの焼成を、大気中あるいは酸素雰囲気中で行うことが好ましい。 In the second step, firing of MnO obtained by performing the first step is performed in an atmosphere having an oxygen concentration of 10% by volume or more, preferably in an atmosphere having an oxygen concentration of 15% by volume or more, and particularly preferably an atmosphere having 20% by volume or more. Do in. By performing MnO obtained by performing the first step in the above atmosphere, Mn 2 O 3 with few impurities can be obtained. On the other hand, when the oxygen concentration is less than 10%, oxygen is insufficient, so conversion of MnO to Mn 2 O 3 becomes insufficient, and impurities are likely to be generated. Usually, it is preferable to calcinate MnO obtained in the first step in the air or in an oxygen atmosphere.

第二工程において、第一工程を行ない得られるMnOの焼成温度は、525〜950℃、好ましくは550〜750℃である。第一工程を行い得られるMnOの焼成温度が、525℃未満だと、MnOのMnへの転換が不十分となるため、マンガン酸リチウムを正極副活物質として用いるリチウム二次電池の放電容量が低下し、また、950℃を超えると、MnからMnへの転換が生じてしまい、その結果、Li供給能力の低いマンガン酸リチウムしか得られないため、正極副活物質としての性能が低くなる。また、第一工程を行い得られるMnOの焼成温度が、750℃を超えると、マンガン酸リチウムを正極副活物質として用いるリチウム二次電池において、Liが脱離する電圧(充電電圧)が高くなる傾向があることから、第一工程を行い得られるMnOの焼成温度は、550〜750℃であることが好ましい。 In the second step, the firing temperature of MnO obtained by performing the first step is 525 to 950 ° C, preferably 550 to 750 ° C. When the firing temperature of MnO obtained by performing the first step is less than 525 ° C., the conversion of MnO to Mn 2 O 3 becomes insufficient, so that the lithium secondary battery using lithium manganate as the positive electrode secondary active material When the discharge capacity decreases and the temperature exceeds 950 ° C., conversion from Mn 2 O 3 to Mn 3 O 4 occurs, and as a result, only lithium manganate having a low Li supply capability can be obtained. The performance as an active material is lowered. In addition, when the firing temperature of MnO obtained by performing the first step exceeds 750 ° C., in a lithium secondary battery using lithium manganate as a positive electrode secondary active material, the voltage at which Li is desorbed (charge voltage) increases. Since there exists a tendency, it is preferable that the baking temperature of MnO obtained by performing a 1st process is 550-750 degreeC.

第二工程において、第一工程を行い得られるMnOの焼成時間は、特に制限されないが、好ましくは1〜20時間、特に好ましくは5〜15時間である。第一工程を行い得られるMnOの焼成時間が1時間未満だと、Mnへの転換が不十分となり易く、一方、20時間以上焼成を行っても、MnOの品質に大きな差が見られないため非効率となり易い。 In the second step, the firing time of MnO obtained by performing the first step is not particularly limited, but is preferably 1 to 20 hours, particularly preferably 5 to 15 hours. When the firing time of MnO obtained by performing the first step is less than 1 hour, conversion to Mn 2 O 3 tends to be insufficient, and on the other hand, even if firing for 20 hours or more, there is a large difference in the quality of MnO. It is easy to become inefficient.

第三工程は、第二工程を行い得られるMnとリチウム化合物とを混合して得られる反応原料混合物を、焼成して、マンガン酸リチウムを得る工程である。 The third step is a step of obtaining lithium manganate by firing a reaction raw material mixture obtained by mixing Mn 2 O 3 obtained by performing the second step and a lithium compound.

第三工程では、先ず、第二工程を行い得られるMnとリチウム化合物とを混合する。 In the third step, first, Mn 2 O 3 obtained by performing the second step and a lithium compound are mixed.

第三工程に係るリチウム化合物としては、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム等が挙げられ、リチウム化合物は、1種単独又は2種以上の組み合わせのいずれでもよい。第三工程に係るリチウム化合物のうち、炭酸リチウムが、潮解性を有さず、反応副生物として水分を発生させず、且つマンガン酸リチウムを水に分散させた時の分散液のpH値が小さくなる点で好ましい。第三工程に係るリチウム化合物の物性等は、制限されるものではないが、反応原料混合物の混合を均一に行うことができる点で、第三工程に係るリチウム化合物の平均粒子径が、20μm以下であることが好ましく、3〜10μmであることが特に好ましい。   As a lithium compound which concerns on a 3rd process, lithium carbonate, lithium hydroxide, lithium nitrate etc. are mentioned, for example, Any of single type or a combination of 2 or more types may be sufficient as a lithium compound. Of the lithium compounds in the third step, lithium carbonate does not have deliquescence, does not generate moisture as a reaction byproduct, and the pH value of the dispersion when lithium manganate is dispersed in water is small. This is preferable. The physical properties and the like of the lithium compound according to the third step are not limited, but the average particle size of the lithium compound according to the third step is 20 μm or less in that the reaction raw material mixture can be uniformly mixed. It is preferable that it is 3-10 micrometers.

第二工程を行い得られるMnと第三工程に係るリチウム化合物との混合割合は、第二工程を行い得られるMn中のMn原子に対する第三工程に係るリチウム化合物中のLi原子のモル比(Li/Mn)で、0.90〜1.05であり、そして、両者の混合割合が、0.95〜1.01であることが、Li供給能力の大きなマンガン酸リチウムが得られる点で好ましい。一方、第二工程を行い得られるMnと第三工程に係るリチウム化合物との混合割合が、0.90未満だと、未反応のMnが残存して、Mn溶出の原因となったり、あるいは、マンガン酸リチウムのLi供給能力が小さくなり、また、1.05を超えると、Liを多く含むマンガン酸リチウムが生成するため、水に分散させてた時の分散液のpHが高くなり、ガス発生等電池安全性の低下の原因となる。 The mixing ratio of the lithium compound and Mn 2 O 3 obtained performed a second step according to the third step, the lithium compound according to the third step to Mn atoms in the Mn 2 O 3 obtained performed a second step Lithium manganate having a large Li supply capacity is a molar ratio of Li atoms (Li / Mn) of 0.90 to 1.05 and the mixing ratio of both is 0.95 to 1.01. Is preferable in that it is obtained. On the other hand, if the mixing ratio of Mn 2 O 3 obtained in the second step and the lithium compound in the third step is less than 0.90, unreacted Mn 2 O 3 remains, causing Mn elution. Or the Li supply capacity of lithium manganate becomes small, and if it exceeds 1.05, lithium manganate containing a large amount of Li is produced. Therefore, the pH of the dispersion when dispersed in water is Becomes higher, which causes a decrease in battery safety such as gas generation.

第二工程を行い得られるMnとリチウム化合物とを混合する際の混合方法は、乾式又は湿式のいずれの方法でもよいが、製造が容易である点で、乾式が好ましい。乾式混合の場合は、反応原料混合物が均一に混合できるブレンダー等を用いることが好ましい。 The mixing method for mixing the Mn 2 O 3 obtained by performing the second step and the lithium compound may be either a dry method or a wet method, but the dry method is preferable because it is easy to manufacture. In the case of dry mixing, it is preferable to use a blender or the like that can uniformly mix the reaction raw material mixture.

そして、第二工程を行い得られるMnとリチウム化合物とを混合して、反応原料混合物を得る。 Then, by mixing and Mn 2 O 3 obtained performs the second step and a lithium compound to obtain a reaction feed mixture.

第三工程では、次いで、反応原料混合物を焼成するが、反応原料混合物の焼成を、酸素濃度が1体積%以下の不活性ガス雰囲気中、好ましくは酸素濃度が1000ppm以下の不活性ガス雰囲気中、特に好ましくは100ppm以下の不活性ガス雰囲気中で行なう。反応原料混合物の焼成を、上記雰囲気中で行うことにより、放電容量が低下し難く且つ過放電による性能の劣化が少ないリチウム二次電池正極副活物質用のマンガン酸リチウムが得られる。一方、酸素濃度が1体積%を超えると、LiMn、LiMnO等も生成してしまうため、得られるマンガン酸リチウムのリチウム二次電池正極副活物質としての性能が低くなる。第三工程に係る不活性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。 In the third step, the reaction raw material mixture is then calcined. The reaction raw material mixture is calcined in an inert gas atmosphere having an oxygen concentration of 1% by volume or less, preferably in an inert gas atmosphere having an oxygen concentration of 1000 ppm or less. Particularly preferably, it is carried out in an inert gas atmosphere of 100 ppm or less. By firing the reaction raw material mixture in the above atmosphere, lithium manganate for the secondary active material of the positive electrode of the lithium secondary battery, in which the discharge capacity is hardly reduced and the performance deterioration due to overdischarge is small, is obtained. On the other hand, when the oxygen concentration exceeds 1% by volume, LiMn 2 O 4 , Li 2 MnO 3, and the like are also generated, so the performance of the obtained lithium manganate as a secondary active material for the positive electrode of the lithium secondary battery is lowered. Nitrogen gas, helium gas, argon gas etc. are mentioned as an inert gas which concerns on a 3rd process.

第三工程において、反応原料混合物の焼成温度は、600〜950℃、好ましくは700〜850℃である。反応原料混合物の焼成温度が、600℃未満だと、反応が不十分となるため、良好なマンガン酸リチウムが得られず、また、950℃を超えると、Li供給能力が低いマンガン酸リチウムが得られる。   In the third step, the firing temperature of the reaction raw material mixture is 600 to 950 ° C, preferably 700 to 850 ° C. When the firing temperature of the reaction raw material mixture is less than 600 ° C., the reaction becomes insufficient, so that good lithium manganate cannot be obtained, and when it exceeds 950 ° C., lithium manganate with low Li supply ability is obtained. It is done.

第三工程において、反応原料混合物の焼成時間は、特に制限されないが、好ましくは1〜20時間、特に好ましくは5〜15時間である。反応原料混合物の焼成時間が1時間未満だと、反応が不十分となり易く、一方、20時間以上焼成を行っても、マンガン酸リチウムの品質に大きな差が見られないため非効率となり易い。   In the third step, the firing time of the reaction raw material mixture is not particularly limited, but is preferably 1 to 20 hours, particularly preferably 5 to 15 hours. When the firing time of the reaction raw material mixture is less than 1 hour, the reaction tends to be insufficient, and on the other hand, even if the firing is performed for 20 hours or more, there is no significant difference in the quality of lithium manganate, which tends to be inefficient.

また、第三工程では、必要により焼成を繰り返し行ってもよく、繰り返し焼成を行う場合には、上記焼成温度範囲より低温で、焼成を行ってもよい。   Further, in the third step, the firing may be repeated as necessary. In the case of repeated firing, the firing may be performed at a temperature lower than the above firing temperature range.

第三工程では、焼成を行った後、焼成物を適宜冷却し、必要に応じ粉砕して、マンガン酸リチウムを得る。なお、必要に応じて行われる粉砕は、第三工程での焼成を行い得られるマンガン酸リチウムが、もろく結合したブロック状のものである場合等に適宜行う。   In the third step, after firing, the fired product is appropriately cooled and pulverized as necessary to obtain lithium manganate. In addition, the grinding | pulverization performed as needed is suitably performed, for example, when the lithium manganate obtained by baking in the third step is in the form of a brittlely bonded block.

第三工程を行い得られるマンガン酸リチウムは、平均粒径が、1〜25μm、好ましくは4〜15μmであり、BET比表面積が、0.2〜2.0m/g、好ましくは0.4〜1.0m/gである。また、第三工程を行い得られるマンガン酸リチウムは、L表色系における、L値は、25.0〜32.0、好ましくは26.0〜31.0であり、a値が−1.50〜−0.15、好ましくは−1.00〜−0.10であり、b値が2.50〜8.00、好ましくは3.50〜7.00である。 The lithium manganate obtained by performing the third step has an average particle diameter of 1 to 25 μm, preferably 4 to 15 μm, and a BET specific surface area of 0.2 to 2.0 m 2 / g, preferably 0.4. -1.0 m < 2 > / g. Further, the lithium manganate obtained performed a third step, in the L * a * b * color system, L * value, 25.0 to 32.0, preferably 26.0 to 31.0, a * value is -1.50 to -0.15, preferably -1.00 to -0.10, and b * value is 2.50 to 8.00, preferably 3.50 to 7.00. is there.

そして、本発明のマンガン酸リチウムの製造方法における製造条件を種々選択することにより、得られるマンガン酸リチウムのL表色系における、L値、a値及びb値を選択することができる。そのような製造条件としては、
(i)第一工程の原料として非塩基性炭酸マンガンを用いること、
(ii)第一工程での焼成の際の雰囲気の酸素濃度を選択すること、
(iii)第一工程での焼成の際の焼成温度を選択すること、
(iv)第二工程での焼成の際の雰囲気の酸素濃度を選択すること、
(v)第二工程での焼成の際の焼成温度を選択すること、
(vi)第三工程に係るリチウム化合物の種類又は純度を選択すること、
(vii)第三工程に係る反応原料混合物中のリチウム原子/マンガン原子のモル比を選択すること、
(viii)第三工程での焼成の際の雰囲気の酸素濃度を選択すること、
(ix)第三工程での焼成の際の焼成温度を選択すること、
が挙げられる。
And by selecting various manufacturing conditions in the manufacturing method of the lithium manganate of the present invention, the L * value, a * value and b * value in the L * a * b * color system of the obtained lithium manganate You can choose. Such manufacturing conditions include:
(I) using non-basic manganese carbonate as a raw material for the first step;
(Ii) selecting the oxygen concentration of the atmosphere during firing in the first step;
(Iii) selecting a firing temperature at the time of firing in the first step;
(Iv) selecting the oxygen concentration of the atmosphere during firing in the second step;
(V) selecting a firing temperature at the time of firing in the second step;
(Vi) selecting the type or purity of the lithium compound according to the third step;
(Vii) selecting a molar ratio of lithium atom / manganese atom in the reaction raw material mixture according to the third step;
(Viii) selecting the oxygen concentration of the atmosphere during firing in the third step;
(Ix) selecting a firing temperature at the time of firing in the third step;
Is mentioned.

本発明のリチウム二次電池正極活物質は、本発明のマンガン酸リチウムと、
下記一般式(2):
Li(a)(1−b)(b)(c) (2)
(式中、MはCo及びNiから選ばれる1種以上の金属元素を示し、AはMg、Al、Ti、Zr、Fe、Cu、Zn、Sn、In、Ca、Ba、Sr及びMnから選ばれる1種以上の金属元素を示し、0.9≦a≦1.1であり、0≦b≦0.5であり、1.8≦c≦2.2である。)
で表されるリチウム複合酸化物と、
を含有するリチウム二次電池正極活物質である。つまり、本発明のリチウム二次電池正極活物質は、副活物質として本発明のマンガン酸リチウムを含有し、主活物質として前記一般式(2)で表されるリチウム複合酸化物を含有する。
The lithium secondary battery positive electrode active material of the present invention, the lithium manganate of the present invention,
The following general formula (2):
Li (a) M (1-b) A (b) O (c) (2)
(In the formula, M represents one or more metal elements selected from Co and Ni, and A represents Mg, Al, Ti, Zr, Fe, Cu, Zn, Sn, In, Ca, Ba, Sr, and Mn. 1 or more kinds of metal elements, 0.9 ≦ a ≦ 1.1, 0 ≦ b ≦ 0.5, and 1.8 ≦ c ≦ 2.2.)
Lithium composite oxide represented by
It is a lithium secondary battery positive electrode active material containing. That is, the lithium secondary battery positive electrode active material of the present invention contains the lithium manganate of the present invention as a secondary active material, and the lithium composite oxide represented by the general formula (2) as a main active material.

本発明のリチウム二次電池正極活物質に含有される本発明のマンガン酸リチウムは、前述した通りであり、下記一般式(1):
LiMnO (1)
(式中、0.90≦x≦1.05、好ましくは0.95≦x≦1.01である。)
で表され、
表色系における、L値は、25.0〜32.0、好ましくは26.0〜31.0であり、a値が−1.50〜−0.15、好ましくは−1.00〜−0.10であり、b値が2.50〜8.00、好ましくは3.50〜7.00であるリチウム二次電池正極副活物質用マンガン酸リチウムである。そして、本発明のリチウム二次電池正極活物質に含有される本発明のマンガン酸リチウムは、好ましくは、平均粒子径が1〜25μm、特に好ましくは4〜15μmあり、また、好ましくは、BET比表面積が0.2〜2.0m/g、特に好ましくは0.4〜1.0m/gであり、また、好ましくは、水に分散させた時の分散液のpHが、12以下、特に好ましくは11.5以下である。
The lithium manganate of the present invention contained in the lithium secondary battery positive electrode active material of the present invention is as described above, and the following general formula (1):
Li x MnO 2 (1)
(In the formula, 0.90 ≦ x ≦ 1.05, preferably 0.95 ≦ x ≦ 1.01.)
Represented by
In the L * a * b * color system, L * value, 25.0 to 32.0, preferably 26.0-31.0, a * value -1.50~-0.15, Preferably it is -1.00--0.10, and b * value is 2.50-8.00, Preferably it is 3.50-7.00 Lithium manganate for lithium secondary battery positive electrode side active materials is there. The lithium manganate of the present invention contained in the lithium secondary battery positive electrode active material of the present invention preferably has an average particle diameter of 1 to 25 μm, particularly preferably 4 to 15 μm, and preferably a BET ratio. The surface area is 0.2 to 2.0 m 2 / g, particularly preferably 0.4 to 1.0 m 2 / g, and preferably, the pH of the dispersion when dispersed in water is 12 or less, Especially preferably, it is 11.5 or less.

前記一般式(2)で表わされるリチウム複合酸化物としては、特に制限はないが、その一例を示せば、LiCoO、LiNiO、LiNi0.8Co0.2、LiNi0.8Co0.1Mn0.1、LiNi0.4Co0.3Mn0.3等が挙げられ、これらのリチウム複合酸化物は、1種単独又は2種以上の組み合わせのいずれでもよい。これらのうち、LiCoOが広く工業的に用いられ、また、本発明のリチウム二次電池正極副活物質用マンガン酸リチウムとの相乗効果が高い点で好ましい。 The lithium composite oxide represented by the general formula (2) is not particularly limited, One example thereof, LiCoO 2, LiNiO 2, LiNi 0.8 Co 0.2 O 2, LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.4 Co 0.3 Mn 0.3 O 2 and the like may be mentioned, and these lithium composite oxides may be used alone or in combination of two or more. . Among these, LiCoO 2 is widely used industrially, and is preferable in that it has a high synergistic effect with the lithium manganate for a positive electrode secondary active material of the lithium secondary battery of the present invention.

前記一般式(2)で表わされるリチウム複合酸化物の物性等は、特に制限されないが、分極や導電不良を抑制できる点で、前記一般式(2)で表わされるリチウム複合酸化物の平均粒子径が、1〜30μmであることが好ましく、3〜25μmであることが特に好ましい。また、電池熱安定性が向上する点で、前記一般式(2)で表されるリチウム複合酸化物のBET比表面積が、0.1〜2.0m/gであることが好ましく、0.2〜1.0m/gであることが特に好ましい。 The physical properties and the like of the lithium composite oxide represented by the general formula (2) are not particularly limited, but the average particle diameter of the lithium composite oxide represented by the general formula (2) is that it can suppress polarization and poor conductivity. However, it is preferable that it is 1-30 micrometers, and it is especially preferable that it is 3-25 micrometers. Moreover, it is preferable that the BET specific surface area of the lithium composite oxide represented by the general formula (2) is 0.1 to 2.0 m 2 / g in terms of improving the thermal stability of the battery. It is especially preferable that it is 2-1.0 m < 2 > / g.

本発明のリチウム二次電池正極活物質中、本発明のマンガン酸リチウム(副活物質)と、前記一般式(2)で表わされるリチウム複合酸化物(主活物質)の含有割合は、前記一般式(2)で表されるリチウム複合酸化物100質量部に対して、本発明のマンガン酸リチウムが、好ましくは5〜30質量部、特に好ましくは10〜20質量部となる割合である。前記一般式(2)で表わされるリチウム複合酸化物の含有割合が、上記範囲にあることにより、リチウム二次電池の放電容量が低下し難く且つ過放電による性能の劣化が少なくなる。一方、前記一般式(2)で表されるリチウム複合酸化物100質量部に対して、本発明のマンガン酸リチウムが、5質量部未満であると、過放電による性能の劣化が多くなり易く、また、30質量部を超えると、電池の放電容量が小さくなり易い。   In the lithium secondary battery positive electrode active material of the present invention, the content ratio of the lithium manganate (subactive material) of the present invention and the lithium composite oxide (main active material) represented by the general formula (2) is The lithium manganate of the present invention is preferably 5 to 30 parts by mass, particularly preferably 10 to 20 parts by mass with respect to 100 parts by mass of the lithium composite oxide represented by the formula (2). When the content ratio of the lithium composite oxide represented by the general formula (2) is in the above range, the discharge capacity of the lithium secondary battery is hardly reduced and the performance deterioration due to overdischarge is reduced. On the other hand, when the lithium manganate of the present invention is less than 5 parts by mass with respect to 100 parts by mass of the lithium composite oxide represented by the general formula (2), performance deterioration due to overdischarge tends to increase. Moreover, when it exceeds 30 mass parts, the discharge capacity of a battery will become small easily.

そして、本発明のマンガン酸リチウムと、前記一般式(2)で表わされるリチウム複合酸化物を、均一に混合し、本発明のリチウム二次電池正極活物質を製造する。本発明のマンガン酸リチウムと、前記一般式(2)で表わされるリチウム複合酸化物との混合方法は、特に制限されるものではなく、湿式法又は乾式法で、強力な剪断力が作用する機械的手段を用いて調製される。湿式法では、ボールミル、ディスパーミル、ホモジナイザー、振動ミル、サンドグラインドミル、アトライター及び強力撹拌機等の装置を用いて、混合を行なう。一方、乾式法では、ハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、ヘンシェルミキサー、ナウターミキサー及びリボンブレンダー等の装置を用いて、混合を行なう。なお、混合方法は、例示した機械的手段を用いる方法に限定されない。また、混合後、所望によりジェットミル等で粉砕処理して粒度調整を行っても差し支えない。   And the lithium manganate of this invention and the lithium complex oxide represented by the said General formula (2) are mixed uniformly, and the lithium secondary battery positive electrode active material of this invention is manufactured. The mixing method of the lithium manganate of the present invention and the lithium composite oxide represented by the general formula (2) is not particularly limited, and is a machine on which a strong shearing force acts by a wet method or a dry method. Prepared using conventional means. In the wet method, mixing is performed using apparatuses such as a ball mill, a disper mill, a homogenizer, a vibration mill, a sand grind mill, an attritor, and a powerful stirrer. On the other hand, in the dry method, mixing is performed using apparatuses such as a high speed mixer, a super mixer, a turbo sphere mixer, a Henschel mixer, a nauter mixer, and a ribbon blender. The mixing method is not limited to the method using the illustrated mechanical means. Further, after mixing, if necessary, the particle size may be adjusted by pulverizing with a jet mill or the like.

本発明のリチウム二次電池は、本発明のリチウム二次電池正極活物質を、正極活物質として用いて得られるリチウム二次電池であり、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなる。   The lithium secondary battery of the present invention is a lithium secondary battery obtained by using the positive electrode active material of the lithium secondary battery of the present invention as a positive electrode active material, and contains a positive electrode, a negative electrode, a separator, and a lithium salt. Made of electrolyte.

本発明のリチウム二次電池に係る正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものである。   The positive electrode according to the lithium secondary battery of the present invention is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector.

本発明のリチウム二次電池に係る正極合剤は、本発明のリチウム二次電池正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。つまり、本発明のリチウム二次電池は、正極に、正極活物質として、本発明のマンガン酸リチウムと前記一般式(2)で表されるリチウム複合酸化物との混合物が、均一に塗布されている。このため、本発明に係るリチウム二次電池は、負荷特性が低下し難く且つサイクル特性が低下し難い。   The positive electrode mixture according to the lithium secondary battery of the present invention is composed of the positive electrode active material of the lithium secondary battery of the present invention, a conductive agent, a binder, a filler added as necessary. That is, in the lithium secondary battery of the present invention, a mixture of the lithium manganate of the present invention and the lithium composite oxide represented by the general formula (2) is uniformly applied to the positive electrode as the positive electrode active material. Yes. For this reason, in the lithium secondary battery according to the present invention, the load characteristics are hardly lowered and the cycle characteristics are hardly lowered.

本発明のリチウム二次電池に係る正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば、特に制限されず、例えば、ステンレス鋼;ニッケル;アルミニウム;チタン;焼成炭素;カーボン、ニッケル、チタン、銀を、アルミニウムやステンレス鋼の表面に表面処理させたもの等が挙げられる。これらの材料は、表面を酸化処理した酸化処理物であってもよく、また、表面処理により集電体表面に凹凸を付けた表面処理物であってもよい。また、正極集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体等が挙げられる。本発明のリチウム二次電池に係る正極集電体の厚さは、特に制限されないが、1〜500μmが好ましい。   The positive electrode current collector according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel; nickel; aluminum; titanium; Carbon: Carbon, nickel, titanium, silver, and the like that are surface-treated on the surface of aluminum or stainless steel. These materials may be oxidized products whose surfaces have been oxidized, or may be surface-treated products having irregularities on the surface of the current collector by surface treatment. Examples of the form of the positive electrode current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the positive electrode current collector according to the lithium secondary battery of the present invention is not particularly limited, but is preferably 1 to 500 μm.

本発明のリチウム二次電池に係る導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば、特に限定されず、例えば、天然黒鉛、人工黒鉛等の黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;炭素繊維、金属繊維等の導電性繊維類;フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類;酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物;又はポリフェニレン誘導体等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等が挙げられる。これらは、1種単独又は2種以上の組み合わせのいずれでもよい。本発明のリチウム二次電池に係る正極合剤中、導電剤の含有比率は、1〜50質量%、好ましくは2〜30質量%である。   The conductive agent according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. For example, graphite such as natural graphite and artificial graphite; carbon black, Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; conductive fibers such as carbon fiber and metal fiber; metal powders such as carbon fluoride, aluminum and nickel powder; Examples include conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; and conductive materials such as polyphenylene derivatives. Natural graphite includes, for example, scaly graphite, scaly graphite, earth And graphite. These may be used alone or in combination of two or more. In the positive electrode mixture according to the lithium secondary battery of the present invention, the content ratio of the conductive agent is 1 to 50% by mass, preferably 2 to 30% by mass.

本発明のリチウム二次電池に係る結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体又はそのイオン架橋体(Na+イオン等)、エチレン−メタクリル酸共重合体又はそのイオン架橋体(Na+イオン等)、エチレン−アクリル酸メチル共重合体又はそのイオン架橋体(Na+イオン等)、エチレン−メタクリル酸メチル共重合体又はそのイオン架橋体(Na+イオン等)、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種単独又は2種以上組み合わせのいずれでもよい。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。本発明のリチウム二次電池に係る正極合剤中、結着剤の配合比率は、1〜50質量%、好ましくは5〜15質量%である。 Examples of the binder according to the lithium secondary battery of the present invention include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene. , Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-par Fluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene Copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or an ionic cross-linked product thereof (Na + ion, etc.), ethylene -Methacrylic acid copolymer or ionic cross-linked product thereof (Na + ion, etc.), ethylene-methyl acrylate copolymer or ionic cross-linked product thereof (Na + ion, etc.), ethylene-methyl methacrylate copolymer or ionic cross-linked product thereof Body (Na + ion Etc.), polysaccharides such as polyethylene oxide, thermoplastic resins, polymers having rubber elasticity, and the like, and these may be used alone or in combination of two or more. In addition, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. In the positive electrode mixture according to the lithium secondary battery of the present invention, the blending ratio of the binder is 1 to 50% by mass, preferably 5 to 15% by mass.

本発明のリチウム二次電池に係るフィラーは、正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー;ガラス、炭素等の繊維が挙げられる。本発明のリチウム二次電池に係る正極合剤中、フィラーの含有量は、特に限定されないが、0〜30質量%が好ましい。   The filler according to the lithium secondary battery of the present invention suppresses the volume expansion of the positive electrode and is added as necessary. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constituted battery, and examples thereof include olefin polymers such as polypropylene and polyethylene; and fibers such as glass and carbon. Although content of a filler is not specifically limited in the positive mix which concerns on the lithium secondary battery of this invention, 0-30 mass% is preferable.

本発明のリチウム二次電池に係る負極は、負極集電体上に負極材料を塗布乾燥等して形成される。   The negative electrode according to the lithium secondary battery of the present invention is formed by applying and drying a negative electrode material on a negative electrode current collector.

本発明のリチウム二次電池に係る負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば、特に制限されず、銅、銅合金、ニッケル等が挙げられる。特に、銅又は銅合金は、過放電時に正極電位が3.5Vvs.Li/Li程度になると、酸化溶解するが、本発明のリチウム二次電池は、充放電に寄与するリチウムイオンが多いため、過放電時に正極電位が3.5Vvs.Li/Liより低くなる。そのため、本発明のリチウム二次電池に銅又は銅合金を負極に用いた時の安全性が、従来のリチウム二次電池に銅又は銅合金を負極に用いた時の安全性に比べ、格段に高くなる。また、これらの材料は、表面を酸化処理した酸化処理物であってもよく、また、表面処理により集電体表面に凹凸を付けた表面処理物であってもよい。また、本発明のリチウム二次電池に係る負極集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。本発明のリチウム二次電池に係る負極集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。 The negative electrode current collector according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery, and includes copper, copper alloy, nickel, and the like. In particular, copper or a copper alloy has a positive electrode potential of 3.5 Vvs. Becomes the Li / Li + extent, although oxide dissolved, the lithium secondary battery of the present invention, since Lithium ions contributing to charge and discharge is large, the positive electrode potential during overdischarge 3.5Vvs. It becomes lower than Li / Li + . Therefore, the safety when using copper or a copper alloy for the negative electrode in the lithium secondary battery of the present invention is significantly higher than the safety when using copper or a copper alloy for the negative electrode in a conventional lithium secondary battery. Get higher. In addition, these materials may be oxidized products whose surfaces are oxidized, or may be surface-treated products having irregularities on the current collector surface by surface treatment. The form of the negative electrode current collector according to the lithium secondary battery of the present invention is, for example, a foil, a film, a sheet, a net, a punched one, a lath body, a porous body, a foamed body, a fiber group, a non-woven fabric, or the like. A molded body etc. are mentioned. The thickness of the negative electrode current collector according to the lithium secondary battery of the present invention is not particularly limited, but is preferably 1 to 500 μm.

本発明のリチウム二次電池に係る負極材料としては、特に制限されず、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li−Co−Ni系材料等が挙げられる。負極材料に係る炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。負極材料に係る金属複合酸化物としては、例えば、Sn(p) (1−p) (q)(r)(式中、DはMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、DはAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8である。);Li(s)Fe(式中、0≦s≦1);Li(t)WO(式中0≦t≦1)等の化合物が挙げられる。負極材料に係る金属酸化物としては、GeO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Sb、Sb、Sb、Bi、Bi、Biが挙げられる。負極材料に係る導電性高分子としては、ポリアセチレン、ポリ−p−フェニレン等が挙げられる。 The negative electrode material according to the lithium secondary battery of the present invention is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon alloys, tin alloys, metal oxides, and conductivity. Examples thereof include a polymer, a chalcogen compound, and a Li—Co—Ni-based material. Examples of the carbonaceous material related to the negative electrode material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide according to the negative electrode material include Sn (p) D 1 (1-p) D 2 (q) O (r) (wherein D 1 is selected from Mn, Fe, Pb, and Ge). One or more elements, D 2 represents one or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3 and halogen elements of the periodic table, and 0 <p ≦ 1, 1 ≦ q ≦ 3, 1 ≦ r ≦ 8); Li (s) Fe 2 O 3 (where 0 ≦ s ≦ 1); Li (t) WO 2 (where 0 ≦ t) ≦ 1) and the like. Examples of the metal oxide according to the negative electrode material include GeO, GeO 2 , SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 may be mentioned. Examples of the conductive polymer according to the negative electrode material include polyacetylene and poly-p-phenylene.

本発明のリチウム二次電池に係るセパレータは、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜である。そして、セパレータとしては、耐有機溶剤性と疎水性の観点から、ポリプロピレン等のオレフィン系ポリマー、ガラス繊維又はポリエチレン等から作成されたシート又は不織布が用いられる。本発明のリチウム二次電池に係るセパレータの孔径は、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μmである。本発明のリチウム二次電池に係るセパレータの厚みは、一般的な電池用の範囲であればよく、例えば、5〜300μmである。なお、後述する電解質としてポリマー等の固体電解質が用いられる場合には、固体電解質がセパレータを兼ねる。   The separator according to the lithium secondary battery of the present invention is an insulating thin film having a large ion permeability and a predetermined mechanical strength. And as a separator, the sheet | seat or nonwoven fabric created from olefin type polymers, such as a polypropylene, glass fiber, polyethylene, etc. are used from an organic-solvent resistance and hydrophobic viewpoint. The pore diameter of the separator according to the lithium secondary battery of the present invention is generally in a range useful for batteries, and is, for example, 0.01 to 10 μm. The thickness of the separator according to the lithium secondary battery of the present invention may be in a range for a general battery, and is, for example, 5 to 300 μm. In addition, when solid electrolytes, such as a polymer, are used as electrolyte mentioned later, a solid electrolyte serves as a separator.

本発明のリチウム二次電池に係るリチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなる。本発明のリチウム二次電池に係る非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が挙げられる。非水電解質に係る非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒が挙げられ、これらは、1種単独又は2種以上の組合わせのいずれでもよい。   The nonaqueous electrolyte containing a lithium salt according to the lithium secondary battery of the present invention comprises a nonaqueous electrolyte and a lithium salt. Examples of the non-aqueous electrolyte according to the lithium secondary battery of the present invention include a non-aqueous electrolyte, an organic solid electrolyte, and an inorganic solid electrolyte. Examples of the non-aqueous electrolyte related to the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxy Furan, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methyl Sulfolane, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether Ether, 1,3-propane sultone, methyl propionate, aprotic organic solvents such as ethyl propionate, and these may be either singly or combination.

非水電解質に係る有機固体電解質としては、例えば、ポリエチレン誘導体;ポリエチレンオキサイド誘導体又はポリエチレンオキサイド基を有するポリマー;ポリプロピレンオキサイド誘導体又はポリプロピレンオキサイド基を有するポリマー;リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を有するポリマー;イオン性解離基を有するポリマーと、上記非水電解質に係る非水電解液との混合物等が挙げられる。   Examples of organic solid electrolytes related to non-aqueous electrolytes include polyethylene derivatives; polyethylene oxide derivatives or polymers having polyethylene oxide groups; polypropylene oxide derivatives or polymers having polypropylene oxide groups; phosphate ester polymers, polyphosphazenes, polyaziridines, polyethylenes Examples thereof include polymers having an ionic dissociation group such as sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene; a mixture of a polymer having an ionic dissociation group and the nonaqueous electrolyte solution related to the nonaqueous electrolyte.

非水電解質に係る無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩等が挙げられ、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、LiPO−LiS−SiS、硫化リン化合物等が挙げられる。 Examples of the inorganic solid electrolyte related to the non-aqueous electrolyte include Li nitride, halide, oxyacid salt, and the like. For example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI-LiOH, LiSiO 4. , LiSiO 4 —LiI—LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 —LiI—LiOH, Li 3 PO 4 —Li 2 S—SiS 2 , phosphorus sulfide compounds, and the like.

本発明のリチウム二次電池に係るリチウム塩としては、上記本発明のリチウム二次電池に係る非水電解質に溶解するリチウム塩が挙げられ、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、CHSOLi、CFSOLi、(CFSONLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等が挙げられ、これらは、1種単独又は2種以上の組合わせのいずれでもよい。 Examples of the lithium salt according to the lithium secondary battery of the present invention include lithium salts that dissolve in the non-aqueous electrolyte according to the lithium secondary battery of the present invention. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylic acids, lithium tetraphenylborate, imides, and the like. these may be either singly or combination.

本発明のリチウム二次電池に係る非水電解質は、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を含有することができる。このような化合物としては、例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2−メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。特に、本発明のリチウム二次電池に係る非水電解質電解液を不燃性にするために、本発明のリチウム二次電池に係る非水電解質は、例えば、四塩化炭素、三フッ化エチレン等の含ハロゲン溶媒を含有することができる。また、本発明のリチウム二次電池の高温保存に適性を持たせるために、本発明のリチウム二次電池に係る非水電解質は、炭酸ガスを含有することができる。   The nonaqueous electrolyte according to the lithium secondary battery of the present invention can contain the following compounds for the purpose of improving discharge, charging characteristics, and flame retardancy. Such compounds include, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric triamide, nitrobenzene derivatives, sulfur, quinoneimine dyes, N-substituted oxazolidinones and N, N-substituted. Imidazolidine, ethylene glycol dialkyl ether, ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, carbonyl group Aryl compounds, hexamethylphosphoric triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphases , And carbonate and the like. In particular, in order to make the non-aqueous electrolyte electrolyte according to the lithium secondary battery of the present invention nonflammable, the non-aqueous electrolyte according to the lithium secondary battery of the present invention is, for example, carbon tetrachloride, ethylene trifluoride or the like. A halogen-containing solvent can be contained. Moreover, in order to give the lithium secondary battery of the present invention suitable for high-temperature storage, the nonaqueous electrolyte according to the lithium secondary battery of the present invention can contain carbon dioxide gas.

このように構成された本発明のリチウム二次電池は、電池性能に優れており、特に通常使用において放電容量が低下し難く、充放電時に連続的な電圧変化を示し、且つ過放電による性能の劣化が少ないリチウム二次電池である。   The lithium secondary battery of the present invention configured as described above has excellent battery performance, particularly, the discharge capacity is less likely to decrease during normal use, shows a continuous voltage change during charging and discharging, and the performance due to overdischarge. It is a lithium secondary battery with little deterioration.

本発明のリチウム二次電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。また、本発明のリチウム二次電池は、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ゲーム機器等の民生用電子機器等に好適に用いられる。   The shape of the lithium secondary battery of the present invention may be any shape such as a button, a sheet, a cylinder, a corner, or a coin shape. In addition, the lithium secondary battery of the present invention includes, for example, a notebook computer, a laptop computer, a pocket word processor, a mobile phone, a cordless handset, a portable CD player, a radio, an LCD TV, a backup power supply, an electric shaver, a memory card, a video movie It is suitably used for electronic devices such as automobiles, electric vehicles, consumer electronic devices such as game machines.

以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

(実施例1)
(マンガン酸リチウムの製造)
<炭酸マンガンの焼成>
市販の非塩基性炭酸マンガン(MnCO、平均粒径8.1μm)を、窒素雰囲気(酸素濃度0.01体積%)中、550℃で10時間焼成し、焼成物A(MnO)を得た。得られた焼成物Aを、XRD分析により分析し、MnOであることを確認した。
(Example 1)
(Manufacture of lithium manganate)
<Calcination of manganese carbonate>
Commercially available non-basic manganese carbonate (MnCO 3 , average particle size 8.1 μm) was fired at 550 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01 vol%) to obtain a fired product A (MnO). . The obtained fired product A was analyzed by XRD analysis and confirmed to be MnO.

また、上記市販の非塩基性炭酸マンガン10gを200mLビーカーに計りとり、超純水100gを加えて、25℃で5分間撹拌した。次いで、ろ過し、ろ液のpHをpHメーター(堀場製作所社製、F−14)で測定した。その結果、ろ液のpHは7.14であった。   Further, 10 g of the above commercially available non-basic manganese carbonate was weighed into a 200 mL beaker, 100 g of ultrapure water was added, and the mixture was stirred at 25 ° C. for 5 minutes. Next, the mixture was filtered, and the pH of the filtrate was measured with a pH meter (H-14, manufactured by Horiba, Ltd.). As a result, the pH of the filtrate was 7.14.

<MnOの焼成>
上記のようにして得た焼成物A(MnO)を、大気雰囲気(酸素濃度21.0体積%)中、650℃で10時間焼成し、焼成物B(Mn)を得た。得られた焼成物Bを、XRD分析により分析し、Mnであることを確認した。
<Firing of MnO>
The fired product A (MnO) obtained as described above was fired at 650 ° C. for 10 hours in an air atmosphere (oxygen concentration 21.0% by volume) to obtain a fired product B (Mn 2 O 3 ). The obtained fired product B was analyzed by XRD analysis and confirmed to be Mn 2 O 3 .

<反応原料混合物の焼成>
上記のようにして得られた焼成物B(Mn)と、LiCO(平均粒径5μm)とを、Mn原子に対するLi原子のモル比(Li/Mn)が、0.99となるように混合し、反応原料混合物C1を得た。次いで、得られた反応原料混合物C1を、窒素雰囲気(酸素濃度0.01体積%)中、700℃で10時間焼成して、マンガン酸リチウムD1を得た。なお、得られたマンガン酸リチウムD1が、ASTMカード23−361の回折ピークパターンを示す単相のLiMnOであることを確認した。
<Baking of reaction raw material mixture>
The calcined product B (Mn 2 O 3 ) and Li 2 CO 3 (average particle size 5 μm) obtained as described above had a molar ratio of Li atoms to Mn atoms (Li / Mn) of 0.99. The reaction raw material mixture C1 was obtained. Subsequently, the obtained reaction raw material mixture C1 was baked at 700 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01 vol%) to obtain lithium manganate D1. Incidentally, the obtained lithium manganate D1 was confirmed to be LiMnO 2 single phase having a diffraction peak pattern of ASTM card 23-361.

(マンガン酸リチウムの物性)
<色差測定>
上記のようにして得られたマンガン酸リチウムD1を、専用のシャーレに充填して、分光式色差計(日本電色社製、SE2000)を用いてL値、a値、b値を3回測定し、その平均値を求めた。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement>
The lithium manganate D1 obtained as described above is filled into a special petri dish, and the L * value, a * value, and b * value are measured using a spectroscopic color difference meter (manufactured by Nippon Denshoku Co., Ltd., SE2000). Three measurements were taken and the average value was determined. The results are shown in Table 2.

<物性評価>
上記のようにして得られたマンガン酸リチウムD1の平均粒子径及びBET比表面積を測定した。その結果を表2に示す。
<Physical property evaluation>
The average particle diameter and BET specific surface area of the lithium manganate D1 obtained as described above were measured. The results are shown in Table 2.

<pH測定>
上記のようにして得られたマンガン酸リチウムD1 5gに対し、純水100gを加え、25℃で5分間攪拌した。更に5分間静置後、上澄み液のpHをpHメーター(堀場製作所社製、F−14)で測定した。その測定結果を表2に示す。
<PH measurement>
100 g of pure water was added to 5 g of lithium manganate D1 obtained as described above, and the mixture was stirred at 25 ° C. for 5 minutes. Furthermore, after leaving still for 5 minutes, pH of the supernatant liquid was measured with the pH meter (Horiba, Ltd. make, F-14). The measurement results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製>
上記のようにして得られたマンガン酸リチウムD1 85質量%、黒鉛粉末10質量%、ポリフッ化ビニリデン5質量%を混合して正極合剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。得られた混練ペーストを、アルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell>
85% by mass of lithium manganate D1 obtained as described above, 10% by mass of graphite powder and 5% by mass of polyvinylidene fluoride were mixed to form a positive electrode mixture, which was dispersed in N-methyl-2-pyrrolidinone. A kneaded paste was prepared. The obtained kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.

次いで、得られた正極板に、セパレーター、負極、集電板、取り付け金具、外部端子、電解液等の各部材を組み合わせて、試験セルE1を製作した。このうち、負極にはリチウム金属、集電板には銅を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルに、LiPF 1モルを溶解したものを用いた。 Next, a test cell E1 was manufactured by combining each member such as a separator, a negative electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution with the obtained positive electrode plate. Among these, lithium metal was used for the negative electrode, copper was used for the current collector, and 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used as the electrolyte solution, in which 1 mol of LiPF 6 was dissolved.

<試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
充電はCCCVモード、カットオフ電圧4.25V、2.5mA/cmの電流密度で、カットオフ電流は1C電流値の1/20とし、放電はCCCVモード、カットオフ電圧3.4V、2.5mA/cmの電流密度で、カットオフ電流は1C電流の7/200として、初期充電容量、初期放電容量及びCC領域の平均充電電圧を測定した。その結果を表3に示す。
<Measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
Charging is CCCV mode, cutoff voltage 4.25V, current density of 2.5 mA / cm 2 , cutoff current is 1/20 of 1C current value, discharging is CCCV mode, cutoff voltage 3.4V, 2. The initial charge capacity, initial discharge capacity, and average charge voltage in the CC region were measured with a current density of 5 mA / cm 2 and a cut-off current of 7/200 of 1 C current. The results are shown in Table 3.

(実施例2〜12)
(マンガン酸リチウムの製造)
焼成物Bと、LiCOとを、Mn原子に対するLi原子のモル比(Li/Mn)が、0.99となるように混合することに代えて、焼成物Bと、LiCOとを、Mn原子に対するLi原子のモル比(Li/Mn)が、表1に示すモル比となるように混合すること、及び得られた反応原料混合物C1を、窒素雰囲気(酸素濃度0.01体積%)中、700℃で10時間焼成することに代えて、得られた反応原料混合物(C2〜C12)を、窒素雰囲気(酸素濃度0.01体積%)中、表1に示す焼成温度で10時間焼成すること以外は、実施例1と同様の方法で行い、マンガン酸リチウムD2〜D12を得た。なお、得られたマンガン酸リチウムD2〜12が、いずれも、ASTMカード23−361の回折ピークパターンを示す単相のLiMnOであることを確認した。
(Examples 2 to 12)
(Manufacture of lithium manganate)
A calcined product B, and the Li 2 CO 3, the molar ratio of Li atoms to Mn atoms (Li / Mn) is, instead of mixing so that 0.99, and the calcined product B, Li 2 CO 3 Are mixed so that the molar ratio of Li atom to Mn atom (Li / Mn) is the molar ratio shown in Table 1, and the obtained reaction raw material mixture C1 is mixed with nitrogen atmosphere (oxygen concentration 0.01). In place of firing at 700 ° C. for 10 hours in volume%), the obtained reaction raw material mixture (C2 to C12) was fired at the firing temperature shown in Table 1 in a nitrogen atmosphere (oxygen concentration 0.01 volume%). Except baking for 10 hours, it carried out by the method similar to Example 1, and obtained lithium manganate D2-D12. In addition, it was confirmed that all of the obtained lithium manganates D2 to 12 were single-phase LiMnO 2 showing the diffraction peak pattern of ASTM card 23-361.

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD2〜12とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
It replaced with lithium manganate D1 obtained in Example 1, and it carried out by the method similar to Example 1 except setting it as lithium manganate D2-12 obtained as mentioned above. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD2〜12とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
It replaced with lithium manganate D1 obtained in Example 1, and it carried out by the method similar to Example 1 except setting it as lithium manganate D2-12 obtained as mentioned above. The results are shown in Table 3.

(比較例1)
(マンガン酸リチウムの製造)
<炭酸マンガンの焼成>
実施例1と同様の方法で行ない、焼成物Aを得た。
(Comparative Example 1)
(Manufacture of lithium manganate)
<Calcination of manganese carbonate>
It carried out by the method similar to Example 1, and the baked material A was obtained.

<MnOの焼成>
実施例1と同様の方法で行ない、焼成物Bを得た。
<Firing of MnO>
It carried out by the method similar to Example 1, and the baked material B was obtained.

<反応原料混合物の焼成>
上記のようにして得られた焼成物Bと、LiCO(平均粒径5μm)とを、Mn原子に対するLi原子のモル比(Li/Mn)が、0.85となるように混合し、反応原料混合物C13を得た。次いで、得られた反応原料混合物C13を、窒素雰囲気(酸素濃度0.01体積%)中、750℃で10時間焼成して、マンガン酸リチウムD13を得た。なお、得られたマンガン酸リチウムD13が、ASTMカード23−361の回折ピークパターンを示すLiMnOと、Mn及びMnの混合物であることを確認した。
<Baking of reaction raw material mixture>
The fired product B obtained as described above and Li 2 CO 3 (average particle diameter 5 μm) were mixed so that the molar ratio of Li atoms to Mn atoms (Li / Mn) was 0.85. The reaction raw material mixture C13 was obtained. Subsequently, the obtained reaction raw material mixture C13 was baked at 750 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01 vol%) to obtain lithium manganate D13. In addition, it was confirmed that the obtained lithium manganate D13 was a mixture of LiMnO 2 showing the diffraction peak pattern of ASTM card 23-361, Mn 2 O 3 and Mn 3 O 4 .

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD13とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
The same procedure as in Example 1 was performed except that lithium manganate D13 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD13とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
The same procedure as in Example 1 was performed except that lithium manganate D13 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 3.

(比較例2)
(マンガン酸リチウムの製造)
焼成物Bと、LiCOとを、Mn原子に対するLi原子のモル比が、0.85となるように混合することに代えて、焼成物Bと、LiCOとを、Mn原子に対するLi原子のモル比が、1.10となるように混合すること以外は、比較例1と同様の方法で行い、マンガン酸リチウムD14を得た。なお、得られたマンガン酸リチウムD14が、ASTMカード23−361の回折ピークパターンで示されるLiMnOと、LiMnO及びLiMn12との混合物であることを確認した。
(Comparative Example 2)
(Manufacture of lithium manganate)
A calcined product B, and the Li 2 CO 3, the molar ratio of Li atoms to Mn atoms, instead of mixing to 0.85, and the calcined product B, and the Li 2 CO 3, Mn atoms A lithium manganate D14 was obtained in the same manner as in Comparative Example 1 except that the mixing was performed so that the molar ratio of Li atom to 1 was 1.10. Incidentally, lithium manganate D14 was obtained, and LiMnO 2 as indicated by the diffraction peak pattern of ASTM card 23-361, was confirmed to be a mixture of Li 2 MnO 3 and Li 4 Mn 5 O 12.

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD14とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
The same procedure as in Example 1 was performed except that lithium manganate D14 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD14とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
The same procedure as in Example 1 was performed except that lithium manganate D14 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 3.

(比較例3)
(マンガン酸リチウムの製造)
<炭酸マンガンの焼成>
実施例1と同様の方法で行ない、焼成物Aを得た。
(Comparative Example 3)
(Manufacture of lithium manganate)
<Calcination of manganese carbonate>
It carried out by the method similar to Example 1, and the baked material A was obtained.

<MnOの焼成>
実施例1と同様の方法で行ない、焼成物Bを得た。
<Firing of MnO>
It carried out by the method similar to Example 1, and the baked material B was obtained.

<反応原料混合物の焼成>
上記のようにして得られた焼成物Bと、LiCO(平均粒径5μm)とを、Mn原子に対するLi原子とのモル比が、1.00となるように混合し、反応原料混合物C15を得た。次いで、得られた反応原料混合物C15を、窒素雰囲気(酸素濃度0.01体積%)中、1000℃で10時間焼成して、マンガン酸リチウムD15を得た。なお、得られたマンガン酸リチウムD15が、ASTMカード72−0411の回折ピークパターンで示される単相のLiMnOであることを確認した。
<Baking of reaction raw material mixture>
The fired product B obtained as described above and Li 2 CO 3 (average particle size 5 μm) were mixed so that the molar ratio of Li atoms to Mn atoms was 1.00, and the reaction raw material mixture C15 was obtained. Subsequently, the obtained reaction raw material mixture C15 was baked at 1000 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01 vol%) to obtain lithium manganate D15. In addition, it was confirmed that the obtained lithium manganate D15 was a single-phase LiMnO 2 shown by the diffraction peak pattern of ASTM card 72-0411.

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD15とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
The same procedure as in Example 1 was performed except that lithium manganate D15 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD15とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
The same procedure as in Example 1 was performed except that lithium manganate D15 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 3.

(比較例4)
(マンガン酸リチウムの製造)
市販のMnO(平均粒径3.5μm)とLiCO(平均粒径5μm)とを、Mn原子に対するLi原子とのモル比が、1.00となるように混合し、反応原料混合物C16を得た。次いで、得られた反応原料混合物C16を、窒素雰囲気(酸素濃度0.01体積%)中、800℃で10時間焼成してマンガン酸リチウムD16を得た。なお、得られたマンガン酸リチウムD16が、ASTMカード72−0411の回折ピークパターンを示す単相のLiMnOであることを確認した。
(Comparative Example 4)
(Manufacture of lithium manganate)
Commercially available MnO 2 (average particle size 3.5 μm) and Li 2 CO 3 (average particle size 5 μm) were mixed so that the molar ratio of Li atoms to Mn atoms was 1.00, and the reaction raw material mixture C16 was obtained. Next, the obtained reaction raw material mixture C16 was baked at 800 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01% by volume) to obtain lithium manganate D16. Incidentally, lithium manganate D16 obtained was confirmed to be LiMnO 2 single phase having a diffraction peak pattern of ASTM card 72-0411.

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD16とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
The same procedure as in Example 1 was performed except that lithium manganate D16 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD16とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
The same procedure as in Example 1 was performed except that lithium manganate D16 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 3.

(比較例5)
市販のMnO(平均粒径3.5μm)を、大気雰囲気(酸素濃度21.0体積%)中、1000℃で12時間焼成し、焼成物F17(Mn)を得た。次いで、得られた焼成物F17を、大気雰囲気(酸素濃度21.0体積%)中、650℃で10時間焼成し、焼成物G17(Mn)を得た。得られた焼成物G17とLiCO(平均粒径5μm)とを、Mn原子に対するLi原子とのモル比が、1.00となるように混合し、反応原料混合物C17を得た。次いで、得られた反応原料混合物C17を、窒素雰囲気(酸素濃度0.01体積%)中、750℃で10時間焼成して、マンガン酸リチウムD17を得た。なお、得られたマンガン酸リチウムD17が、ASTMカード23−361の回折ピークパターンを示す単相のLiMnOであることを確認した。
(Comparative Example 5)
Commercially available MnO 2 (average particle size 3.5 μm) was fired at 1000 ° C. for 12 hours in an air atmosphere (oxygen concentration 21.0% by volume) to obtain a fired product F17 (Mn 3 O 4 ). Next, the obtained fired product F17 was fired at 650 ° C. for 10 hours in an air atmosphere (oxygen concentration 21.0% by volume) to obtain a fired product G17 (Mn 2 O 3 ). The obtained fired product G17 and Li 2 CO 3 (average particle size 5 μm) were mixed so that the molar ratio of Li atoms to Mn atoms was 1.00 to obtain a reaction raw material mixture C17. Next, the obtained reaction raw material mixture C17 was baked at 750 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01% by volume) to obtain lithium manganate D17. The obtained lithium manganate D17 was confirmed to be single-phase LiMnO 2 showing the diffraction peak pattern of ASTM card 23-361.

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD17とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
The same procedure as in Example 1 was performed except that lithium manganate D17 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD17とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
The same procedure as in Example 1 was performed except that lithium manganate D17 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 3.

(比較例6)
市販のMnO(平均粒径3.5μm)を、大気雰囲気(酸素濃度21.0体積%)中、600℃で10時間焼成し、焼成物H18(Mn)を得た。次いで、得られた焼成物H18とLiCO(平均粒径5μm)とを、Mn原子に対するLi原子とのモル比が、1.00となるように混合し、反応原料混合物C18を得た。次いで、得られた反応原料混合物C18を、窒素雰囲気(酸素濃度0.01体積%)中、800℃で10時間焼成して、マンガン酸リチウムD18を得た。なお、得られたマンガン酸リチウムD18が、ASTMカード23−361の回折ピークパターンを示す単相のLiMnOであることを確認した。
(Comparative Example 6)
Commercially available MnO 2 (average particle size 3.5 μm) was fired at 600 ° C. for 10 hours in an air atmosphere (oxygen concentration 21.0% by volume) to obtain a fired product H18 (Mn 2 O 3 ). Next, the obtained fired product H18 and Li 2 CO 3 (average particle size 5 μm) were mixed so that the molar ratio of Li atoms to Mn atoms was 1.00 to obtain a reaction raw material mixture C18. . Subsequently, the obtained reaction raw material mixture C18 was baked at 800 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01 vol%) to obtain lithium manganate D18. In addition, it was confirmed that the obtained lithium manganate D18 was single phase LiMnO 2 showing the diffraction peak pattern of ASTM card 23-361.

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD18とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
The same procedure as in Example 1 was performed except that lithium manganate D18 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD18とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
The same procedure as in Example 1 was performed except that lithium manganate D18 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 3.

(比較例7)
市販のMnO(平均粒径3.5μm)を、大気雰囲気(酸素濃度21.0体積%)中、600℃で5時間焼成して、焼成物I19(Mn)を得た。次いで、焼成物I19とLiCO(平均粒径5μm)とを、Mn原子に対するLi原子とのモル比が、1.00となるように混合し、反応原料混合物C19を得た。次いで、得られた反応原料混合物C19をアルミナ坩堝に入れ、空気を1L/分の供給速度でアルミナ坩堝中に供給しながら、200℃/hの昇温速度で600℃まで昇温を行い、次いで、空気を窒素ガスに切り替えて1L/分の供給速度でアルミナ坩堝中に供給しながら200℃/hの昇温速度で800℃まで昇温し、そのまま800℃で10時間保持した。次いで、アルミナ坩堝中に1L/分の供給速度で窒素ガスを導入しながら200℃/hの降温速度で室温まで冷却した。次いで、生成物を粉砕してマンガン酸リチウムD19を得た。なお、得られたマンガン酸リチウムD19が、ASTMカード72−0411の回折ピークパターンを示す単相のLiMnOであることを確認した。
(Comparative Example 7)
Commercially available MnO 2 (average particle size 3.5 μm) was fired at 600 ° C. for 5 hours in an air atmosphere (oxygen concentration 21.0% by volume) to obtain a fired product I19 (Mn 2 O 3 ). Next, the fired product I19 and Li 2 CO 3 (average particle diameter 5 μm) were mixed so that the molar ratio of Li atoms to Mn atoms was 1.00 to obtain a reaction raw material mixture C19. Next, the obtained reaction raw material mixture C19 was put in an alumina crucible, and heated to 600 ° C. at a temperature rising rate of 200 ° C./h while supplying air into the alumina crucible at a supply rate of 1 L / min, The air was switched to nitrogen gas and the temperature was raised to 800 ° C. at a temperature rising rate of 200 ° C./h while being supplied into the alumina crucible at a supply rate of 1 L / min, and kept at 800 ° C. for 10 hours. Subsequently, it was cooled to room temperature at a temperature decreasing rate of 200 ° C./h while introducing nitrogen gas into the alumina crucible at a supply rate of 1 L / min. The product was then pulverized to obtain lithium manganate D19. It was confirmed that the obtained lithium manganate D19 was single-phase LiMnO 2 showing the diffraction peak pattern of ASTM card 72-0411.

(マンガン酸リチウムの物性)
<色差測定、物性評価及びpH測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD19とする以外は、実施例1と同様の方法で行なった。その結果を表2に示す。
(Physical properties of lithium manganate)
<Color difference measurement, physical property evaluation and pH measurement>
The same procedure as in Example 1 was performed except that lithium manganate D19 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 2.

(リチウム二次電池正極副活物質としての性能評価)
<試験セルの作製並びに試験セルの初期充電容量、初期放電容量及び平均充電電圧の測定>
実施例1で得られたマンガン酸リチウムD1に代えて、上記のようにして得られたマンガン酸リチウムD19とする以外は、実施例1と同様の方法で行なった。その結果を表3に示す。
(Performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
<Production of test cell and measurement of initial charge capacity, initial discharge capacity and average charge voltage of test cell>
The same procedure as in Example 1 was performed except that lithium manganate D19 obtained as described above was used instead of lithium manganate D1 obtained in Example 1. The results are shown in Table 3.

Figure 2008066028
Figure 2008066028

Figure 2008066028
Figure 2008066028

Figure 2008066028
Figure 2008066028

なお、上記試験セルの初期放電容量、初期充電容量及び平均充電電圧の測定では、試験セルの充電容量が大きく且つ放電容量が小さい材料、即ち、充放電容量の差が大きいものほど、正極副活物質としてのLi供給能力が高いことを示す。通常、正極活物質を構成する正極主活物質、例えば、LiCoOは、充電容量165mAH/gに対して、放電容量160mAH/g程度であるので、充放電容量の差が小さい。 In the measurement of the initial discharge capacity, the initial charge capacity and the average charge voltage of the test cell, a material having a large charge capacity and a small discharge capacity of the test cell, that is, a material having a large difference in charge and discharge capacity, It shows that Li supply ability as a substance is high. Usually, the positive electrode main active material constituting the positive electrode active material, for example, LiCoO 2 has a discharge capacity of about 160 mAH / g with respect to the charge capacity of 165 mAH / g, and therefore the difference in charge / discharge capacity is small.

また、試験セルの平均充電電圧が低い方が、低電圧時からLiを供給することができることを示し、Li供給材料として優れていることを示す。   Moreover, the one where the average charge voltage of a test cell is low shows that Li can be supplied from the time of a low voltage, and shows that it is excellent as a Li supply material.

実施例1〜12では、充放電容量の差が、いずれも140mAh/g以上と極めて大きく、また、平均充電電圧も3.86V以下と低く、得られたマンガン酸リチウムが、正極副活物質として優れていることがわかる。一方、比較例1及び2では、単相のLiMnOが得られず、充放電容量の差が小さいことから、Li供給能力が低いことが分かる。また、比較例3〜7では、充放電容量の差が小さく、平均充電電圧が高いことから、Li供給能力が低いことが分かる。 In Examples 1 to 12, the difference in charge / discharge capacity was as extremely large as 140 mAh / g or more, the average charge voltage was as low as 3.86 V or less, and the obtained lithium manganate was used as the positive electrode secondary active material. It turns out that it is excellent. On the other hand, in Comparative Examples 1 and 2, single-phase LiMnO 2 was not obtained, and the difference in charge / discharge capacity was small, indicating that the Li supply capability was low. Moreover, in Comparative Examples 3-7, since the difference of charging / discharging capacity | capacitance is small and an average charging voltage is high, it turns out that Li supply capability is low.

このように、表3から明らかなように、本発明のマンガン酸リチウムは、初期充電容量が高く、充放電容量の差が大きく、且つ平均充電電圧が低い。そして、このような、マンガン酸リチウムは、過放電時の安全性を向上させる効果が高い。   Thus, as is apparent from Table 3, the lithium manganate of the present invention has a high initial charge capacity, a large charge / discharge capacity difference, and a low average charge voltage. Such lithium manganate has a high effect of improving safety during overdischarge.

(実施例13〜15及び比較例8〜9)
(リチウム複合酸化物の調製)
Co(平均粒径5μm)40.0gとLiCO(平均粒径5μm)8.38gとを秤量し、乾式で十分に混合した後、1000℃で5時間焼成した。焼成後、得られた焼成物を粉砕、分級してコバルト酸リチウムJ(LiCoO)得た。得られたコバルト酸リチウムJの平均粒子径は7.4μmであり、BET比表面積は0.38m/gであった。
(Examples 13-15 and Comparative Examples 8-9)
(Preparation of lithium composite oxide)
40.0 g of Co 3 O 4 (average particle size 5 μm) and 8.38 g of Li 2 CO 3 (average particle size 5 μm) were weighed and mixed thoroughly in a dry process, and then calcined at 1000 ° C. for 5 hours. After firing, the obtained fired product was pulverized and classified to obtain lithium cobaltate J (LiCoO 2 ). The obtained lithium cobalt oxide J had an average particle size of 7.4 μm and a BET specific surface area of 0.38 m 2 / g.

(リチウム二次電池の製造)
正極副活物質として表4に示すマンガン酸リチウムと、正極主活物質として上記のようにして得られたコバルト酸リチウムJを、表4に示す配合割合で混合し、正極活物質K20〜24を得た。次いで、正極活物質K20〜24 91質量%、黒鉛粉末6質量%、ポリフッ化ビニリデン3質量%を混合して正極合剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。得られた混練ペーストをアルミ箔に塗布した後、乾燥、プレスして、直径15mmの円盤に打ち抜いて正極板を得た。得られた正極板と、セパレーター、負極、集電板、取り付け金具、外部端子、電解液等の各部材を組み合わせて、リチウム二次電池P20〜24を製造した。このうち、負極には人造黒鉛を、集電板には銅を用い、電解液にはエチレンカーボネートとエチルメチルカーボネートの1:1混練液1リットルに、LiPF 1モルを溶解したものを用いた。
(Manufacture of lithium secondary batteries)
Lithium manganate shown in Table 4 as a positive electrode secondary active material and lithium cobaltate J obtained as described above as a positive electrode main active material were mixed in a blending ratio shown in Table 4 to obtain positive electrode active materials K20 to 24. Obtained. Next, positive electrode active material K20-2491% by mass, graphite powder 6% by mass, and polyvinylidene fluoride 3% by mass are mixed to form a positive electrode mixture, which is dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. did. The obtained kneaded paste was applied to an aluminum foil, dried and pressed, and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate. Lithium secondary batteries P20 to 24 were manufactured by combining the obtained positive electrode plate and each member such as a separator, a negative electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, artificial graphite was used for the negative electrode, copper was used for the current collector, and 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and ethyl methyl carbonate as the electrolyte. .

<過放電試験>
上記のようにして製造したリチウム二次電池P20〜24について、25℃において、1CmAの電流で4.2Vまで定電流で充電し、次いで、4.2Vの定電圧で3時間充電した後、1CmAの定電流で3.0Vまで放電したときの放電容量(以下、「過放電試験前放電容量」と記載する。)を測定した。次いで、0Vの定電圧で2日間放置し、過放電を行った。放置後、1CmAの電流で4.2Vまで定電流で充電し、次いで、4.2Vの定電圧で3時間充電した後、1CmAの定電流で3.0Vまで放電したときの放電容量(以下、「過放電試験後放電容量」と記載する。)を測定した。そして、下記式(3):
容量回復率(%)=(過放電試験後放電容量/過放電試験前放電容量)×100 (3)
により、過放電試験前放電容量に対する過放電試験後放電容量の割合を計算し、容量回復率を求めた。その結果を、表4に示す。また、過放電試験後の電池を解体して、負極集電体の銅が正極上に析出しているか否かを観察した。その結果を表4に示す。
<Overdischarge test>
The lithium secondary batteries P20 to 24 manufactured as described above were charged at a constant current of up to 4.2 V at a current of 1 CmA at 25 ° C., then charged at a constant voltage of 4.2 V for 3 hours, and then 1 CmA. The discharge capacity (hereinafter referred to as “discharge capacity before overdischarge test”) when discharged to 3.0 V at a constant current of was measured. Subsequently, it was left to stand at a constant voltage of 0 V for 2 days to perform overdischarge. After standing, the battery was charged at a constant current of up to 4.2 V at a current of 1 CmA, then charged at a constant voltage of 4.2 V for 3 hours, and then discharged to 3.0 V at a constant current of 1 CmA (hereinafter, It is described as “discharge capacity after overdischarge test”). And the following formula (3):
Capacity recovery rate (%) = (discharge capacity after overdischarge test / discharge capacity before overdischarge test) × 100 (3)
By calculating the ratio of the discharge capacity after the overdischarge test to the discharge capacity before the overdischarge test, the capacity recovery rate was obtained. The results are shown in Table 4. Further, the battery after the overdischarge test was disassembled, and it was observed whether or not copper of the negative electrode current collector was deposited on the positive electrode. The results are shown in Table 4.

Figure 2008066028
Figure 2008066028

表4の結果より、本発明のマンガン酸リチウムを正極副活物質として用いることにより、過放電による性能の劣化を少なくすることができることがわかる。   From the results in Table 4, it can be seen that the use of the lithium manganate of the present invention as the positive electrode secondary active material can reduce the deterioration of performance due to overdischarge.

(比較例10)
(マンガン酸リチウムの製造)
<炭酸マンガンの焼成>
市販の塩基性炭酸マンガン(MnCO、平均粒径27.0μm)を、窒素雰囲気(酸素濃度0.01体積%)中、550℃で10時間焼成し、焼成物A20(MnO)を得た。得られた焼成物A20を、XRD分析により分析し、MnOであることを確認した。
(Comparative Example 10)
(Manufacture of lithium manganate)
<Calcination of manganese carbonate>
Commercially available basic manganese carbonate (MnCO 3 , average particle size 27.0 μm) was fired at 550 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01 vol%) to obtain a fired product A20 (MnO). The obtained fired product A20 was analyzed by XRD analysis and confirmed to be MnO.

また、上記市販の塩基性炭酸マンガン10gを200mLビーカーに計りとり、超純水100gを加えて、25℃で5分間撹拌した。次いで、ろ過し、ろ液のpHをpHメーターで測定した。その結果、ろ液のpHは8.11であった。   Moreover, 10 g of the above-mentioned commercially available basic manganese carbonate was weighed into a 200 mL beaker, 100 g of ultrapure water was added, and the mixture was stirred at 25 ° C. for 5 minutes. Subsequently, it filtered and the pH of the filtrate was measured with the pH meter. As a result, the pH of the filtrate was 8.11.

<MnOの焼成>
上記のようにして得た焼成物A20(MnO)を、大気雰囲気(酸素濃度21.0体積%)中、650℃で10時間焼成し、焼成物B20(Mn)を得た。得られた焼成物B20を、XRD分析により分析し、Mnであることを確認した。
<Firing of MnO>
The fired product A20 (MnO) obtained as described above was fired at 650 ° C. for 10 hours in an air atmosphere (oxygen concentration 21.0% by volume) to obtain a fired product B20 (Mn 2 O 3 ). The obtained fired product B20 was analyzed by XRD analysis, and confirmed to be Mn 2 O 3 .

<反応原料混合物の焼成>
上記のようにして得られた焼成物B20(Mn)と、LiCO(平均粒径5μm)とを、Mn原子に対するLi原子のモル比(Li/Mn)が、1.00となるように混合し、反応原料混合物C20を得た。次いで、得られた反応原料混合物C20を、窒素雰囲気(酸素濃度0.01体積%)中、800℃で10時間焼成して、マンガン酸リチウムD20を得た。なお、得られたマンガン酸リチウムD20が、ASTMカード72−0411の回折ピークパターンを示す単相のLiMnOであることを確認した。
<Baking of reaction raw material mixture>
The calcined product B20 (Mn 2 O 3 ) obtained as described above and Li 2 CO 3 (average particle size 5 μm) had a molar ratio of Li atoms to Li atoms (Li / Mn) of 1.00. To obtain a reaction raw material mixture C20. Subsequently, the obtained reaction raw material mixture C20 was baked at 800 ° C. for 10 hours in a nitrogen atmosphere (oxygen concentration 0.01 vol%) to obtain lithium manganate D20. It was confirmed that the obtained lithium manganate D20 was single-phase LiMnO 2 showing the diffraction peak pattern of ASTM card 72-0411.

(マンガン酸リチウムの物性及びリチウム二次電池正極副活物質としての性能評価)
マンガン酸リチウムD1に代えて、マンガン酸リチウムD20とする以外は、実施例1と同様の方法で行なった。その結果を、表2及び表3に示す。
(Physical properties of lithium manganate and performance evaluation as a secondary active material for positive electrode of lithium secondary battery)
The same procedure as in Example 1 was performed except that lithium manganate D20 was used instead of lithium manganate D1. The results are shown in Tables 2 and 3.

Claims (8)

下記一般式(1):
LiMnO (1)
(式中、0.90≦x≦1.05である。)
で表され、
表色系における、L値が25.0〜32.0、aが−1.50〜−0.15、bが2.50〜8.00であること、
を特徴とするリチウム二次電池正極副活物質用マンガン酸リチウム。
The following general formula (1):
Li x MnO 2 (1)
(In the formula, 0.90 ≦ x ≦ 1.05.)
Represented by
In the L * a * b * color system, it L * value from 25.0 to 32.0, a * is -1.50~-0.15, b * is 2.50 to 8.00,
A lithium manganate for a secondary active material of a positive electrode for a lithium secondary battery.
平均粒子径が1〜25μmであることを特徴とする請求項1記載のリチウム二次電池正極副活物質用マンガン酸リチウム。   2. The lithium manganate for a secondary active material for a positive electrode of a lithium secondary battery according to claim 1, wherein the average particle size is 1 to 25 μm. BET比表面積が0.2〜2.0m/gであることを特徴とする請求項1又は2いずれか1項記載のリチウム二次電池正極副活物質用マンガン酸リチウム。 BET specific surface area is 0.2-2.0 m < 2 > / g, The lithium manganate for lithium secondary battery positive electrode side active materials of any one of Claim 1 or 2 characterized by the above-mentioned. 水に分散させた時の分散液のpHが、12以下であることを特徴とする請求項1〜3いずれか1項記載のリチウム二次電池正極副活物質用マンガン酸リチウム。   The lithium manganate for a lithium secondary battery positive electrode secondary active material according to any one of claims 1 to 3, wherein the pH of the dispersion when dispersed in water is 12 or less. 非塩基性炭酸マンガンを、酸素濃度が1体積%以下の不活性ガス雰囲気中、500〜800℃で焼成して、MnOを得る第一工程と、
該第一工程を行ない得られるMnOを、酸素濃度が10体積%以上の雰囲気中、525〜950℃で焼成して、Mnを得る第二工程と、
該第二工程を行い得られるMnとリチウム化合物とを、マンガン原子に対するリチウム原子のモル比が0.90〜1.05となるように混合して、反応原料混合物を得、次いで、該反応原料混合物を、酸素濃度が1体積%以下の不活性ガス雰囲気中、600〜950℃で焼成して、マンガン酸リチウムを得る第三工程と、
を有することを特徴とするマンガン酸リチウムの製造方法。
A first step of obtaining MnO by firing non-basic manganese carbonate at 500 to 800 ° C. in an inert gas atmosphere having an oxygen concentration of 1% by volume or less;
MnO obtained by performing the first step is baked at 525 to 950 ° C. in an atmosphere having an oxygen concentration of 10% by volume or more to obtain Mn 2 O 3 ;
Mn 2 O 3 obtained by performing the second step and a lithium compound are mixed so that the molar ratio of lithium atoms to manganese atoms is 0.90 to 1.05 to obtain a reaction raw material mixture, A third step in which the reaction raw material mixture is calcined at 600 to 950 ° C. in an inert gas atmosphere having an oxygen concentration of 1% by volume or less to obtain lithium manganate;
A method for producing lithium manganate, comprising:
請求項1〜4いずれか1項記載のリチウム二次電池正極副活物質用マンガン酸リチウムと、
下記一般式(2):
Li(a)(1−b)(b)(c) (2)
(式中、MはCo及びNiから選ばれる1種以上の金属元素を示し、AはMg、Al、Ti、Zr、Fe、Cu、Zn、Sn、In、Ca、Ba、Sr及びMnから選ばれる1種以上の金属元素を示し、0.9≦a≦1.1であり、0≦b≦0.5であり、1.8≦c≦2.2である。)
で表されるリチウム複合酸化物と、
を含有することを特徴とするリチウム二次電池正極活物質。
Lithium manganate for a lithium secondary battery positive electrode side active material according to any one of claims 1 to 4,
The following general formula (2):
Li (a) M (1-b) A (b) O (c) (2)
(In the formula, M represents one or more metal elements selected from Co and Ni, and A represents Mg, Al, Ti, Zr, Fe, Cu, Zn, Sn, In, Ca, Ba, Sr, and Mn. 1 or more kinds of metal elements, 0.9 ≦ a ≦ 1.1, 0 ≦ b ≦ 0.5, and 1.8 ≦ c ≦ 2.2.)
Lithium composite oxide represented by
A positive electrode active material for a lithium secondary battery, comprising:
前記リチウム複合酸化物が、LiCoOであることを特徴とする請求項6記載のリチウム二次電池正極活物質。 The lithium secondary battery positive electrode active material according to claim 6, wherein the lithium composite oxide is LiCoO 2 . 請求項6又は7いずれか1項記載のリチウム二次電池正極活物質を、正極活物質として用いて得られることを特徴とするリチウム二次電池。   A lithium secondary battery obtained by using the lithium secondary battery positive electrode active material according to claim 6 as a positive electrode active material.
JP2006240241A 2006-09-05 2006-09-05 Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery Expired - Fee Related JP5078113B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006240241A JP5078113B2 (en) 2006-09-05 2006-09-05 Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
KR1020070089462A KR20080022057A (en) 2006-09-05 2007-09-04 Lithium manganate for positive electrode sub-active material of lithium secondary battery, method for preparing lithium manganate, positive electrode active material of lithium secondary battery and lithium secondary battery
CNA2007101498245A CN101140987A (en) 2006-09-05 2007-09-05 Lithium manganese oxide and manufacturing method thereof, lithium secondary cell and positive active materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240241A JP5078113B2 (en) 2006-09-05 2006-09-05 Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008066028A true JP2008066028A (en) 2008-03-21
JP5078113B2 JP5078113B2 (en) 2012-11-21

Family

ID=39192812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240241A Expired - Fee Related JP5078113B2 (en) 2006-09-05 2006-09-05 Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Country Status (3)

Country Link
JP (1) JP5078113B2 (en)
KR (1) KR20080022057A (en)
CN (1) CN101140987A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157361A (en) * 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2010260733A (en) * 2009-04-30 2010-11-18 Murata Mfg Co Ltd Manganese-containing lithium transition metal multiple oxide and method for producing the same
JP2011154928A (en) * 2010-01-28 2011-08-11 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012046735A1 (en) 2010-10-06 2012-04-12 東ソー株式会社 Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
CN102646824A (en) * 2012-01-31 2012-08-22 西安汇杰实业有限公司 Lithium ion battery anode material and preparation method thereof
JP2013501316A (en) * 2009-12-27 2013-01-10 シェンヅェン ヅェンファ ニュー マテリアル カンパニー リミテッド High manganese polycrystalline cathode material, method for producing the same, and power lithium ion battery
JP6288338B1 (en) * 2017-03-24 2018-03-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP2023521003A (en) * 2020-04-13 2023-05-23 エルジー エナジー ソリューション リミテッド Electrode quality evaluation method and electrode manufacturing method
US11971344B2 (en) 2020-04-13 2024-04-30 Lg Energy Solution, Ltd. Electrode quality evaluation method and electrode manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447216A2 (en) * 2009-06-25 2012-05-02 NGK Insulators, Ltd. Positive electrode active material and lithium secondary battery
CN101807686A (en) * 2010-03-30 2010-08-18 兰州金里能源科技有限公司 Preparation method of spinel type lithium manganate with high crystallinity used in lithium ion battery
CN101964428B (en) * 2010-08-05 2013-02-20 深圳市贝特瑞新能源材料股份有限公司 Preparation method of lamellar lithium manganese battery
JP2013218875A (en) * 2012-04-09 2013-10-24 Sony Corp Positive-electrode active material, positive electrode, secondary battery, battery pack, electrically-powered vehicle, electric power storage system, electric motor-driven tool and electronic device
CN110190277B (en) * 2019-06-06 2022-05-03 电子科技大学 Lithium ion battery anode material LiMnO2@ C and preparation method thereof
CN111816869A (en) * 2020-08-07 2020-10-23 深圳先进技术研究院 Negative electrode material, negative electrode, potassium ion battery and preparation method thereof
CN112968166A (en) * 2021-03-22 2021-06-15 安徽博石高科新材料股份有限公司 Preparation method of lithium manganate positive electrode material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
JP2000021405A (en) * 1998-07-01 2000-01-21 Sanyo Electric Co Ltd Lithium secondary battery
JP2000281351A (en) * 1999-03-29 2000-10-10 Japan Energy Corp Fine-particulate high-density manganese oxide and its production
JP2005235416A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
JP2005231914A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Method for manufacturing lithium manganate
JP2006298750A (en) * 2005-03-22 2006-11-02 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
JP2000021405A (en) * 1998-07-01 2000-01-21 Sanyo Electric Co Ltd Lithium secondary battery
JP2000281351A (en) * 1999-03-29 2000-10-10 Japan Energy Corp Fine-particulate high-density manganese oxide and its production
JP2005235416A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
JP2005231914A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Method for manufacturing lithium manganate
JP2006298750A (en) * 2005-03-22 2006-11-02 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157361A (en) * 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US8455385B2 (en) 2008-12-26 2013-06-04 Tdk Corporation Method of manufacturing lithium-ion secondary battery positive electrode, method of manufacturing lithium-ion secondary battery, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
JP2010260733A (en) * 2009-04-30 2010-11-18 Murata Mfg Co Ltd Manganese-containing lithium transition metal multiple oxide and method for producing the same
JP2013501316A (en) * 2009-12-27 2013-01-10 シェンヅェン ヅェンファ ニュー マテリアル カンパニー リミテッド High manganese polycrystalline cathode material, method for producing the same, and power lithium ion battery
JP2011154928A (en) * 2010-01-28 2011-08-11 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012046735A1 (en) 2010-10-06 2012-04-12 東ソー株式会社 Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
US9150427B2 (en) 2010-10-06 2015-10-06 Tosoh Corporation Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
CN102646824A (en) * 2012-01-31 2012-08-22 西安汇杰实业有限公司 Lithium ion battery anode material and preparation method thereof
JP6288338B1 (en) * 2017-03-24 2018-03-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP2018163746A (en) * 2017-03-24 2018-10-18 住友大阪セメント株式会社 Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, and lithium ion secondary battery
US10897044B2 (en) 2017-03-24 2021-01-19 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2023521003A (en) * 2020-04-13 2023-05-23 エルジー エナジー ソリューション リミテッド Electrode quality evaluation method and electrode manufacturing method
US11971344B2 (en) 2020-04-13 2024-04-30 Lg Energy Solution, Ltd. Electrode quality evaluation method and electrode manufacturing method

Also Published As

Publication number Publication date
CN101140987A (en) 2008-03-12
JP5078113B2 (en) 2012-11-21
KR20080022057A (en) 2008-03-10

Similar Documents

Publication Publication Date Title
JP5078113B2 (en) Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5225708B2 (en) Lithium nickel manganese cobalt composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery
JP4197002B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP5100024B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR101184851B1 (en) Positive Electrode Active Material of Lithium Secondary Battery, Process for Preparing the Same and Lithium Secondary Battery
KR20170046921A (en) Precursor for Preparation of Positive Electrode Active Material Comprising Layered Metal Oxides and Electrode Active Material Prepared with the Same
JP2006278341A (en) Lithium ion nonaqueous electrolyte secondary cell
JP2013182757A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
KR101202143B1 (en) Lithium-Cobalt Based Composite Oxide Powder, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Battery and Lithium Secondary Battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
WO2020149244A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5897357B2 (en) Lithium secondary battery positive electrode active material manufacturing method, lithium secondary battery positive electrode active material, and lithium secondary battery
JP6935380B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4562496B2 (en) Modified lithium-manganese composite oxide, method for producing the same, lithium secondary battery positive electrode active material composition, and lithium secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
TWI826549B (en) Cathode active material for lithium secondary batteries, manufacturing method thereof and lithium secondary battery
JP4319663B2 (en) Lithium manganate, lithium secondary battery positive electrode secondary active material, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2005235416A (en) Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
JP4748706B2 (en) Lithium manganese based composite oxide powder, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2009167100A (en) Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees