JP2009167100A - Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery - Google Patents

Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
JP2009167100A
JP2009167100A JP2009110491A JP2009110491A JP2009167100A JP 2009167100 A JP2009167100 A JP 2009167100A JP 2009110491 A JP2009110491 A JP 2009110491A JP 2009110491 A JP2009110491 A JP 2009110491A JP 2009167100 A JP2009167100 A JP 2009167100A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium
active material
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110491A
Other languages
Japanese (ja)
Inventor
Fumihiro Yonekawa
文広 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2009110491A priority Critical patent/JP2009167100A/en
Publication of JP2009167100A publication Critical patent/JP2009167100A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/06Filters making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/18Heating or cooling the filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide lithium manganate useful as a positive electrode sub-active material for a lithium secondary battery showing no decrease in the capacity in normal use and capable of suppressing deterioration in performance due to over discharge, and to provide a method for manufacturing the same, a positive electrode sub-active material for the lithium secondary battery, a positive electrode active material for the lithium secondary battery, and the lithium secondary battery. <P>SOLUTION: The lithium manganate is expressed by general formula (1): Li<SB>x</SB>MnO<SB>2</SB>, wherein x is 0.9≤x≤1.1, and an X-ray diffraction analysis of the lithium manganate using a Cu-Kα ray as a ray source shows ≥0.25 of an intensity ratio (I<SB>24.6</SB>/I<SB>15.3</SB>) of a diffraction peak around 2θ=24.6°, and ≥0.70 of an intensity ratio (I<SB>45.0</SB>/I<SB>15.3</SB>) of a diffraction peak around 2θ=45.0°, each of which is with respect to a diffraction peak around 2θ=15.3°. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はマンガン酸リチウム、その製造方法、該マンガン酸リチウムを用いたリチウム二次電池正極副活物質、リチウム二次電池正極活物質及びリチウム二次電池に関するものである。   The present invention relates to lithium manganate, a method for producing the same, a lithium secondary battery positive electrode active material using the lithium manganate, a lithium secondary battery positive electrode active material, and a lithium secondary battery.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアルリサーチブレティン」vol15,P783-789(1980)))がなされて以来、リチウム系複合酸化物に関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries ("Material Research Bulletin" vol15, P783-789 (1980)). ) Has been actively researched and developed on lithium-based composite oxides, and many proposals have been made so far.

しかしながら、リチウム系複合酸化物を正極活物質とし、炭素材料等を負極とするリチウム二次電池は、充電によって放出したLiイオンが負極側に取り込まれ、以後の充放電に寄与しなくなる問題点がある。そのため、リチウム系複合酸化物は常にLiイオンが不足する充電状態に置かれており、結果として正極電位が高くなっている。そのため、リチウムイオン二次電池を過放電状態に置くと、負極集電体として使用される銅箔が電解液中に溶出し、さらにはその一部が正極に析出する結果、充放電特性が劣化しやすいという問題がある。このため、電池の外側に過放電を防止する電気回路を設けて過放電そのものを防止する方法が用いられているが過放電を防止する電気回路が存在することによって、電池を使用する機器または電池パックなどのコストが高くなる。また、回路が適切に作動しない場合にはもはや過放電による劣化を阻止することはできない。   However, a lithium secondary battery using a lithium-based composite oxide as a positive electrode active material and a carbon material or the like as a negative electrode has a problem that Li ions released by charging are taken into the negative electrode side and do not contribute to subsequent charge / discharge. is there. Therefore, the lithium-based composite oxide is always in a charged state in which Li ions are insufficient, and as a result, the positive electrode potential is high. Therefore, when the lithium ion secondary battery is placed in an overdischarged state, the copper foil used as the negative electrode current collector elutes in the electrolyte, and further, a part of it is deposited on the positive electrode, resulting in deterioration of charge / discharge characteristics. There is a problem that it is easy to do. For this reason, a method of preventing an overdischarge itself by providing an electric circuit for preventing overdischarge on the outside of the battery is used. However, since an electric circuit for preventing overdischarge exists, an apparatus or a battery using the battery Costs such as packs increase. Moreover, if the circuit does not operate properly, deterioration due to overdischarge can no longer be prevented.

一方、LiCoO等のリチウム系複合酸化物を主正極活物質とし、これに副活物質としてLiMnOを添加して用いる方法も提案されている(例えば、特許文献1、特許文献2参照;特開平6−349493号公報、特開2003−223898号公報)。この特許文献1及び特許文献2のLiMnOはMnOと炭酸リチウムとを不活性ガス雰囲気中で焼成して製造されているが、この特許文献1及び特許文献2の製法で得られるLiMnOを正極活物質とするリチウム二次電池では、過放電特性はある程度改善されるものの、電池容量の低下等の問題が生じやすく、優れた電池性能を付与することができるリチウム二次電池正極副活物質の開発が望まれていた。 On the other hand, a method of using a lithium-based composite oxide such as LiCoO 2 as a main positive electrode active material and adding LiMnO 2 as a secondary active material thereto has also been proposed (see, for example, Patent Document 1 and Patent Document 2; (Kaihei 6-349493, JP-A-2003-223898). The LiMnO 2 of Patent Document 1 and Patent Document 2 is manufactured by firing MnO 2 and lithium carbonate in an inert gas atmosphere, but LiMnO 2 obtained by the manufacturing method of Patent Document 1 and Patent Document 2 is used. Lithium secondary battery used as a positive electrode active material improves the overdischarge characteristics to some extent, but tends to cause problems such as a decrease in battery capacity, and can provide excellent battery performance. Development of was desired.

また、下記特許文献3にはMnOを加熱処理して得られるMnとリチウム化合物との混合物を焼成して生成されたLiMnOを正極活物質とするリチウム二次電池、或いは下記特許文献4にはLiOHとMnとの混合物を真空中にて600〜800℃で焼成して得られるLiMnOを正極活物質とするリチウム二次電池が提案されているが、この特許文献3や特許文献4のLiMnOを正極副活物質として用いても、電池容量の低下や十分な過放電安全性が得られない等の問題が残されていた。なお、特許文献4に開示されているLiMnOはX線回折図における、2θ=15.3°の回折ピークに対する2θ=24.6°の回折ピークの強度比(I24.6/I15.3)は0.11〜0.25であるが、2θ=15.3°の回折ピークに対する2θ=45.0°の回折ピークの強度比(I45.0/I15.3)は図から算出すると0.73以上のものである。 Patent Document 3 below discloses a lithium secondary battery using LiMnO 2 produced by baking a mixture of Mn 2 O 3 and a lithium compound obtained by heat-treating MnO 2 as a positive electrode active material, or the following patent: Reference 4 proposes a lithium secondary battery using LiMnO 2 obtained by firing a mixture of LiOH and Mn 2 O 3 in vacuum at 600 to 800 ° C. as a positive electrode active material. Even when LiMnO 2 of No. 3 or Patent Document 4 is used as a positive electrode secondary active material, there remain problems such as a decrease in battery capacity and insufficient overdischarge safety. In addition, LiMnO 2 disclosed in Patent Document 4 is an X-ray diffraction diagram in which the intensity ratio of the diffraction peak at 2θ = 24.6 ° to the diffraction peak at 2θ = 15.3 ° (I 24.6 / I 15. 3 ) is 0.11 to 0.25, but the intensity ratio of the diffraction peak at 2θ = 45.0 ° to the diffraction peak at 2θ = 15.3 ° (I 45.0 / I 15.3 ) is It is 0.73 or more when calculated.

ここで、リチウム二次電池正極副活物質は正極活物質とは種々の点で異なる特性が必要である。正極活物質は高い出力特性を達成するために高い放電電圧が必要であり、放電電圧が高いほど正極活物質として優れていると言える。それに対して正極副活物質はLiイオンを供給することが目的の材料であるため放電電圧は低いほどよい。放電電圧が高いと正極活物質と変わらず充放電に寄与することとなり、Liを供給することにならないためである。この点で正極活物質と正極副活物質に求められる性能は正反対である。   Here, the lithium secondary battery positive electrode secondary active material needs different characteristics from the positive electrode active material in various points. The positive electrode active material requires a high discharge voltage in order to achieve high output characteristics, and it can be said that the higher the discharge voltage, the better the positive electrode active material. On the other hand, since the positive electrode secondary active material is a material intended to supply Li ions, the lower the discharge voltage, the better. This is because when the discharge voltage is high, it contributes to charge and discharge without changing from the positive electrode active material, and Li is not supplied. In this respect, the performance required for the positive electrode active material and the positive electrode sub-active material is opposite.

また、正極活物質は放電容量が高いものほど優れていると言える。放電容量が高いほど長時間の使用が可能となるからである。それに対して正極副活物質はLiイオンを供給するために、放電容量は低いほどよい。放電容量が高いということは、Liイオンを挿入するということであり、Liイオンを供給することにはならないからである。この点でも正極活物質と正極副活物質に求められる性能は正反対である。   Moreover, it can be said that a positive electrode active material is so excellent that a discharge capacity is high. This is because the higher the discharge capacity, the longer it can be used. On the other hand, the positive electrode active material supplies Li ions, so the lower the discharge capacity, the better. A high discharge capacity means that Li ions are inserted, and Li ions are not supplied. In this respect as well, the performance required for the positive electrode active material and the positive electrode sub-active material is opposite.

さらに、正極活物質は充放電サイクルに伴う容量劣化や放電電圧低下が小さいもの程優れていると言える。繰り返し使用しても高い出力特性や容量特性を維持しているほど長期間使用可能となるからである。それに対して正極副活物質は、充電によりLiイオンを放出した後は、放電時にもほとんどLiイオンを取り込まないため、充放電サイクルに伴う容量劣化や放電電圧の低下を考慮する必要性が低い。逆に充放電サイクルに伴い、放電容量が増大する場合や放電電圧が上昇する場合にはそれらを抑える必要がある。この点でも正極活物質と正極副活物質に求められる性能は異なる。   Furthermore, it can be said that the positive electrode active material is more excellent as the capacity deterioration and the discharge voltage drop associated with the charge / discharge cycle are smaller. This is because the higher the output characteristics and capacity characteristics are maintained, the longer it can be used even after repeated use. On the other hand, since the positive electrode secondary active material hardly captures Li ions even after discharging after releasing Li ions by charging, it is less necessary to consider capacity deterioration and a decrease in discharge voltage due to charge / discharge cycles. Conversely, when the discharge capacity increases or the discharge voltage increases with the charge / discharge cycle, it is necessary to suppress them. Also in this respect, the performance required for the positive electrode active material and the positive electrode sub-active material is different.

以上のように、正極活物質に求められる性能と正極副活物質に求められる性能が大きく異なるため、従来知られている正極活物質としてのLiMnOを正極副活物質として用いても、電池容量の低下や十分な過放電安全性が得られなかったものと考えられる。そこで正極副活物質として適した特性を有するLiMnOの開発が求められていた。 As described above, since the performance required for the positive electrode active material and the performance required for the positive electrode secondary active material are greatly different, even if LiMnO 2 as a positive electrode active material known in the art is used as the positive electrode secondary active material, the battery capacity It is thought that the decrease in the temperature and sufficient overdischarge safety were not obtained. Therefore, development of LiMnO 2 having characteristics suitable as a positive electrode secondary active material has been demanded.

特開平6−349493号公報JP-A-6-349493 特開2003−223898号公報JP 2003-223898 A 特開2002−151079号公報JP 2002-151079 A 特開平8−37027号公報JP-A-8-37027

従って、本発明の目的は、通常使用において容量の低下もなく、過放電による性能の劣化を抑制することができるリチウム二次電池正極副活物質として有用なマンガン酸リチウム、その製造方法、それを用いたリチウム二次電池副正極活物質、リチウム二次電池正極活物質及び通常使用において容量の低下もなく、過放電による性能低下抑制効果に優れたリチウム二次電池を提供することにある。   Accordingly, an object of the present invention is to provide lithium manganate useful as a secondary active material for a positive electrode of a lithium secondary battery capable of suppressing deterioration in performance due to overdischarge without a decrease in capacity during normal use, a method for producing the same, and An object of the present invention is to provide a lithium secondary battery sub-positive electrode active material, a lithium secondary battery positive electrode active material used, and a lithium secondary battery excellent in performance deterioration suppression effect due to overdischarge without a decrease in capacity in normal use.

本発明者らは、これら課題を解決すべく鋭意研究を重ねた結果、(1)X線回折分析したときに2θ=15.3°付近の回折ピークに対する2θ=24.6°付近の回折ピークの強度比(I24.6/I15.3)が0.25以下、且つ2θ=45.0°付近の回折ピークの強度比(I45.0/I15.3)が0.70以下であるマンガン酸リチウムを正極副活物質とするリチウム二次電池は、通常使用において容量の低下もなく、過放電による性能低下抑制効果に優れたものになること、(2)上記マンガン酸リチウムは、MnOを特定温度以上で加熱処理して得られるMnとリチウム化合物との混合物を焼成して得られることなどを知見し本発明を完成するに至った。 As a result of intensive studies to solve these problems, the present inventors have (1) a diffraction peak near 2θ = 24.6 ° with respect to a diffraction peak near 2θ = 15.3 ° when X-ray diffraction analysis is performed. Intensity ratio (I 24.6 / I 15.3 ) of 0.25 or less, and the intensity ratio of diffraction peaks in the vicinity of 2θ = 45.0 ° (I 45.0 / I 15.3 ) of 0.70 or less. The lithium secondary battery using lithium manganate as a positive electrode secondary active material has no reduction in capacity during normal use, and is excellent in performance deterioration suppression effect due to overdischarge. (2) The lithium manganate is The present invention has been completed by finding out that it is obtained by firing a mixture of Mn 2 O 3 and a lithium compound obtained by heating MnO at a specific temperature or higher.

即ち、本発明が提供しようとする第1の発明は、一般式(1);LiMnO(1)
(式中、xは0.9≦x≦1.1を示す。)で表わされるマンガン酸リチウムであって、線源としてCu−Kα線を用いてX線回折分析したときに2θ=15.3°付近の回折ピークに対する2θ=24.6°付近の回折ピークの強度比(I24.6/I15.3)が0.25以下であり、且つ2θ=45.0°付近の回折ピークの強度比(I45.0/I15.3)が0.70以下であることを特徴とするマンガン酸リチウムである。
That is, the first invention to be provided by the present invention is the general formula (1); Li x MnO 2 (1)
(Wherein x represents 0.9 ≦ x ≦ 1.1), and when X-ray diffraction analysis is performed using Cu—Kα rays as a radiation source, 2θ = 15. The diffraction peak intensity ratio (I 24.6 / I 15.3 ) near 2θ = 24.6 ° with respect to the diffraction peak near 3 ° is 0.25 or less and the diffraction peak near 2θ = 45.0 ° The lithium manganate is characterized in that the intensity ratio (I 45.0 / I 15.3 ) is 0.70 or less.

また、本発明が提供しようとする第2の発明は、MnOを525℃以上で加熱処理してMnを得た後、次いで得られたMnとリチウム化合物とを混合し、該混合物を焼成して下記一般式(1);LiMnO(1)
(式中、xは0.9≦x≦1.1を示す。)で表わされるマンガン酸リチウムを製造する方法である。
In addition, according to a second invention to be provided by the present invention, MnO is heat-treated at 525 ° C. or higher to obtain Mn 2 O 3 , and then the obtained Mn 2 O 3 and a lithium compound are mixed, The mixture is fired to obtain the following general formula (1); Li x MnO 2 (1)
(Wherein x represents 0.9 ≦ x ≦ 1.1).

また、本発明が提供しようとする第3の発明は、前記第1の発明のマンガン酸リチウムからなることを特徴とするリチウム二次電池用正極副活物質である。   A third invention to be provided by the present invention is a positive electrode secondary active material for a lithium secondary battery, comprising the lithium manganate of the first invention.

また、本発明が提供しようとする第4の発明は、前記第3の発明のリチウム二次電池正極副活物質と、下記一般式(2);Li1−b(2)
(式中、MはCo、Niから選ばれる少なくとも1種以上の遷移金属元素、AはMg、Al、Mn、Ti、Zr、Fe、Cu、Zn、Sn、Inから選ばれる少なくとも1種以上の金属元素を示し、aは0.9≦a≦1.1、bは0≦b≦0.5、cは1.8≦c≦2.2を示す。)で表わされるリチウム複合酸化物を含有することを特徴とするリチウム二次電池正極活物質である。
In addition, the fourth invention to be provided by the present invention includes a lithium secondary battery positive electrode secondary active material of the third invention, the following general formula (2); Li a M 1-b A b O c (2 )
(Wherein M is at least one transition metal element selected from Co and Ni, A is at least one transition metal element selected from Mg, Al, Mn, Ti, Zr, Fe, Cu, Zn, Sn, In) A metal element, a is 0.9 ≦ a ≦ 1.1, b is 0 ≦ b ≦ 0.5, and c is 1.8 ≦ c ≦ 2.2.) It is a lithium secondary battery positive electrode active material characterized by containing.

また、本発明が提供しようとする第5の発明は、前記第4の発明の正極活物質を用いたことを特徴とするリチウム二次電池である。   A fifth invention to be provided by the present invention is a lithium secondary battery using the positive electrode active material of the fourth invention.

本発明のマンガン酸リチウムを正極副活物質とするリチウム二次電池は電池性能、特に通常使用において容量の低下もなく、過放電による性能低下抑制効果に優れたものになる。   The lithium secondary battery using the lithium manganate of the present invention as the positive electrode active material is excellent in battery performance, particularly in the effect of suppressing deterioration in performance due to overdischarge without a decrease in capacity during normal use.

実施例4で得られたLiMnOのX線回折図である。6 is an X-ray diffraction diagram of LiMnO 2 obtained in Example 4. FIG.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明のマンガン酸リチウムは、下記一般式(1);LiMnO(1)
(式中、xは0.9≦x≦1.1を示す。)で表されるものであり、従来のマンガン酸リチウムとは、そのX線回折的特徴により区別される。即ち本発明のマンガン酸リチウムは、線源としてCu−Kα線を用いてX線回折分析したときに2θ=15.3°付近((010)面)の回折ピークに対する2θ=24.6°付近((011)面)の回折ピークの強度比(I24.6/I15.3)が0.25以下、好ましくは0.10〜0.25、更に好ましくは0.20〜0.25であり、且つ2θ=15.3°付近((010)面)の回折ピークに対する2θ=45.0°付近((120)面)の回折ピークの強度比(I45.0/I15.3)が0.70以下、好ましくは0.45〜0.70、更に好ましくは0.48〜0.70の値をとる。なお、前記回折面はASTMカード23−361のマンガン酸リチウム(LiMnO)の回折ピーク位置から求められる回折面を意味する。なお、ASTMカード(23−361)に示されるマンガン酸リチウム(LiMnO)の2θ、d値および面指数は表1に示す通りである。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The lithium manganate of the present invention has the following general formula (1); Li x MnO 2 (1)
(Where x represents 0.9 ≦ x ≦ 1.1) and is distinguished from conventional lithium manganate by its X-ray diffraction characteristics. That is, the lithium manganate of the present invention has 2θ = 14.6 ° with respect to the diffraction peak near 2θ = 15.3 ° ((010) plane) when X-ray diffraction analysis is performed using Cu—Kα ray as a radiation source. ((011) plane) diffraction peak intensity ratio (I 24.6 / I 15.3 ) is 0.25 or less, preferably 0.10 to 0.25, more preferably 0.20 to 0.25. And the intensity ratio of the diffraction peak around 2θ = 45.0 ° ((120) plane) to the diffraction peak around 2θ = 15.3 ° ((010) plane) (I 45.0 / I 15.3 ) Is 0.70 or less, preferably 0.45 to 0.70, and more preferably 0.48 to 0.70. Incidentally, the diffraction surface means the diffraction plane obtained from the diffraction peak position of the lithium manganate (LiMnO 2) of ASTM card 23-361. In addition, 2θ, d value, and plane index of lithium manganate (LiMnO 2 ) shown in the ASTM card (23-361) are as shown in Table 1.

本発明において、X線回折分析における3つのピークによる2つのピーク強度比で表すことの意義について以下に説明する。X線回折分析において、それぞれのピーク強度とピーク位置は結晶の空間群と消滅則および測定条件で変化するため、測定条件一定の下では構造の変化はピーク強度やピーク位置の変化として観測される。それぞれのピークは特定の面の情報を有しているのみであるため、特定のピークからは特定の面に関する情報しか得られない。したがって、結晶全体の3次元的な状態を知るためにはh、kおよびlのそれぞれについての情報を有するピークについて判断しなければならない。さらにh、kおよびlの相互の関係をも考慮するためには、それぞれの面情報を有するピーク相互間の関係を考慮する必要がある。   In the present invention, the significance of expressing the two peak intensity ratios of the three peaks in the X-ray diffraction analysis will be described below. In X-ray diffraction analysis, each peak intensity and peak position change depending on the crystal space group, extinction rule, and measurement conditions. Therefore, under constant measurement conditions, structural changes are observed as changes in peak intensity and peak position. . Since each peak only has information on a specific surface, only information on a specific surface can be obtained from the specific peak. Therefore, in order to know the three-dimensional state of the entire crystal, it is necessary to judge a peak having information about each of h, k, and l. Furthermore, in order to consider the mutual relationship between h, k and l, it is necessary to consider the relationship between the peaks having the respective plane information.

本発明のマンガン酸リチウムは、ASTMカード23−361に記載されているように15.3°、24.6°および45.0°付近にピークを有しており、当該ASTMカードではこれらのピークは3強線に相当する。したがって当該3強線に相当するピークを用いることが、測定による誤差を小さくでき、また、当該ピークは特定の軸に対して水平な面の情報を有しているため、特定の2軸間の関係ついて判断でき、したがって、構造の判定を的確にできる。また、リチウム二次電池の副活物質としての良否を決定している構造の安定性や電子の伝導性は、3次元的な元素のつながりによってもたらされており、それぞれの面に対してある一定の許容幅を超えて元素がずれている等欠陥を有する場合には構造の不安定性や電子伝導性の低下等、性能低下の原因となる。従って、上記ASTMカード上の3強線による2つのピーク強度比を求めれば、h、k、lのそれぞれの軸に対しての許容幅と構造状態を的確に把握できることになる。これに対して、例えば従来の特開平8−37027号公報に開示された24.6°のピークと15.3°の強度比では、h軸方向の情報が欠落しており、どのような3次元構造を有する材料がよいのか不明である。   The lithium manganate of the present invention has peaks near 15.3 °, 24.6 °, and 45.0 ° as described in ASTM card 23-361. Corresponds to 3 strong lines. Therefore, using the peak corresponding to the three strong lines can reduce the error due to the measurement, and the peak has information on a plane parallel to the specific axis. The relationship can be determined, and therefore the structure can be determined accurately. In addition, the stability of the structure and the conductivity of electrons, which determine the quality of the secondary secondary battery as a secondary active material, are brought about by the three-dimensional connection of elements, and there is a difference for each surface. If there is a defect such as an element deviating beyond a certain permissible width, it may cause performance degradation such as structural instability and a decrease in electronic conductivity. Therefore, by obtaining the two peak intensity ratios of the three strong lines on the ASTM card, the permissible width and the structural state with respect to the respective axes of h, k, and l can be accurately grasped. On the other hand, for example, in the peak ratio of 24.6 ° and the intensity ratio of 15.3 ° disclosed in the conventional Japanese Patent Laid-Open No. 8-37027, information in the h-axis direction is missing, It is unclear whether a material with a dimensional structure is good.

本発明において、回折ピークの強度比(I24.6/I15.3)は、k軸方向とl軸方向の構造情報を有しており、当該強度比が0.25を超える場合、h軸に水平な面の構造自体がリチウム二次電池の副活物質として、初期容量が低下し、充放電容量の容量差を小さくする構造である点で好ましくない。また、回折ピークの強度比(I45.0/I15.3)は、h軸方向とk軸方向の構造情報を有しており、当該強度比が0.70を超える場合、l軸に水平な面の構造自体がリチウム二次電池の副活物質として、初期容量が低下し、充放電容量の容量差を小さくする構造である点で好ましくない。 In the present invention, the intensity ratio (I 24.6 / I 15.3 ) of the diffraction peak has structural information in the k-axis direction and the l-axis direction, and when the intensity ratio exceeds 0.25, h The structure horizontal to the axis itself is not preferable in that the initial capacity is reduced as a secondary active material of the lithium secondary battery, and the capacity difference between the charge and discharge capacities is reduced. The diffraction peak intensity ratio (I 45.0 / I 15.3 ) has structural information in the h-axis direction and the k-axis direction, and when the intensity ratio exceeds 0.70, The horizontal surface structure itself is not preferable as a secondary active material of the lithium secondary battery in that the initial capacity is reduced and the capacity difference between the charge and discharge capacities is reduced.

本発明にかかるマンガン酸リチウムは前記構成を有することにより、該マンガン酸リチウムを正極副活物質とするリチウム二次電池において、容量の低下もなく、過放電による性能低下を抑制し、優れた電池性能を付与することができる。 更に、本発明のマンガン酸リチウムは、上記特性に加え、平均粒径が1.0〜20.0μm、好ましくは4〜15μmであると均一な電極シートの塗布が可能であり、電流の集中等による電池性能の劣化等が抑制できる点で好ましい。なお、平均粒径はレーザー法粒度分布測定法により求められるものである。以下、平均粒径という場合にはこの測定方法で求められた値をいう。   Since the lithium manganate according to the present invention has the above-described configuration, in a lithium secondary battery using the lithium manganate as a positive electrode secondary active material, there is no decrease in capacity, and an excellent battery that suppresses performance deterioration due to overdischarge. Performance can be imparted. Furthermore, in addition to the above characteristics, the lithium manganate of the present invention can apply a uniform electrode sheet when the average particle size is 1.0 to 20.0 μm, preferably 4 to 15 μm, and the concentration of current, etc. It is preferable at the point which can suppress the deterioration of the battery performance by, etc. The average particle diameter is determined by a laser particle size distribution measurement method. Hereinafter, the average particle diameter refers to a value obtained by this measurement method.

また、BET比表面積が0.2〜2.0m/g、好ましくは0.4〜1.0m/gであるとMnの溶出によるリチウム二次電池の性能劣化を抑制したり、或いはハイレートでのLiの供給が可能になる点で特に好ましい。 Further, when the BET specific surface area is 0.2 to 2.0 m 2 / g, preferably 0.4 to 1.0 m 2 / g, the performance deterioration of the lithium secondary battery due to elution of Mn is suppressed, or the high rate is increased. This is particularly preferable in that Li can be supplied.

本発明の前記特性と有するマンガン酸リチウムは、MnOを特定温度以上で加熱処理して得られるMnとリチウム化合物とを混合し、得られた均一混合物を焼成することにより得ることができる。 The lithium manganate having the above-mentioned properties of the present invention can be obtained by mixing Mn 2 O 3 obtained by heat-treating MnO at a specific temperature or higher and a lithium compound, and firing the resulting uniform mixture. .

本発明で使用する原料のMnOは、炭酸マンガン等の低温で加熱処理して得られるマンガン化合物が好ましい。この場合、加熱処理温度は用いるマンガン化合物の種類により異なるが、多くの場合、500〜800℃、好ましくは550〜700℃で窒素ガス、ヘリウムガス或いはアルゴンガス等の不活性ガス雰囲気下で1〜20時間、好ましくは2〜10時間加熱処理して得られるマンガン化合物を用いると、充電容量が大きく放電容量が小さい、すなわちLi供給量の大きいリチウム二次電池正極副活物質として有用なマンガン酸リチウムを得ることができる点で好ましい。   The raw material MnO used in the present invention is preferably a manganese compound such as manganese carbonate obtained by heat treatment at a low temperature. In this case, the heat treatment temperature varies depending on the type of manganese compound to be used, but in many cases, it is 500 to 800 ° C., preferably 550 to 700 ° C. in an inert gas atmosphere such as nitrogen gas, helium gas or argon gas. When a manganese compound obtained by heat treatment for 20 hours, preferably 2 to 10 hours is used, lithium manganate useful as a lithium secondary battery positive electrode side active material having a large charge capacity and a small discharge capacity, that is, a large Li supply amount Is preferable in that it can be obtained.

本発明において前記MnOの加熱処理は525℃以上、好ましくは550℃以上で行うことが必須要件となる。この理由は加熱処理温度が525℃未満ではMnOのMnへの転化が不十分となり、また、このようにして得られるマンガン酸リチウムを正極副活物質とするリチウム二次電池は通常使用において容量が低下するからである。加熱処理温度の上限値はMnOをMnへ十分に転換できる温度であれば特に制限されるものではないが、多くの場合950℃であり、また、加熱処理温度が750℃を超えると生成されるマンガン酸リチウムを正極副活物質として使用した場合に、Liが脱離する電圧(充電電圧)が高くなる傾向があることから、加熱処理温度は550〜750℃が特に好ましい。加熱処理の時間は通常1〜20時間、好ましくは2〜10時間である。 In the present invention, it is essential that the heat treatment of MnO be performed at 525 ° C. or higher, preferably 550 ° C. or higher. The reason for this is that when the heat treatment temperature is less than 525 ° C., the conversion of MnO to Mn 2 O 3 becomes insufficient, and lithium secondary batteries using the lithium manganate thus obtained as a cathode secondary active material are usually used. This is because the capacity is reduced. The upper limit of the heat treatment temperature is not particularly limited as long as it is a temperature that can sufficiently convert MnO to Mn 2 O 3 , but in many cases it is 950 ° C., and when the heat treatment temperature exceeds 750 ° C. When the generated lithium manganate is used as a positive electrode secondary active material, the voltage at which Li is desorbed (charge voltage) tends to increase, and therefore the heat treatment temperature is particularly preferably 550 to 750 ° C. The time for the heat treatment is usually 1 to 20 hours, preferably 2 to 10 hours.

加熱処理の雰囲気は酸素が不足するとMnOの酸化が不十分なため目的物以外に不純物が生成する可能性があり、このため加熱処理の雰囲気はMnOがMnへと転化するのに十分な酸素を含む雰囲気で行うことが好ましい。通常は大気中あるいは酸素雰囲気中で行うことが好ましい。なお、本発明では、必要により加熱処理は繰り返し行うことができる。 In the heat treatment atmosphere, if oxygen is insufficient, oxidation of MnO is insufficient and impurities may be generated in addition to the target product. Therefore, the heat treatment atmosphere is sufficient to convert MnO into Mn 2 O 3 . It is preferable to carry out in an atmosphere containing fresh oxygen. Usually, it is preferably performed in the air or in an oxygen atmosphere. In the present invention, the heat treatment can be repeated as necessary.

本発明では前記で調製したMnとリチウム化合物とを均一に混合し、得られる均一混合物を焼成して目的とする前記一般式(1)で表わされるマンガン酸リチウムを得る。 In the present invention, Mn 2 O 3 prepared above and a lithium compound are uniformly mixed, and the resulting uniform mixture is fired to obtain the target lithium manganate represented by the general formula (1).

前記原料のリチウム化合物としては、例えば、炭酸リチウム、水酸化リチウム等が挙げられ、これらのリチウム化合物は1種又は2種以上で用いることができる。使用するリチウム化合物の物性等は制限されるものではないが、平均粒径が20μm以下、好ましくは3〜10μmであると原料の混合を均一に行うことができることから好ましい。   Examples of the raw material lithium compound include lithium carbonate and lithium hydroxide. These lithium compounds can be used alone or in combination of two or more. The physical properties and the like of the lithium compound to be used are not limited, but it is preferable that the average particle diameter is 20 μm or less, preferably 3 to 10 μm, since the raw materials can be mixed uniformly.

前記Mnとリチウム化合物との混合割合は、リチウム化合物中のLi原子とMnのMn原子のモル比(Li/Mn)で0.95〜1.05、特に0.98〜1.01であるとLi供給能力の大きなマンガン酸リチウムを合成できることから特に好ましい。 The mixing ratio of the Mn 2 O 3 and the lithium compound is 0.95 to 1.05, particularly 0.98 to 0.3, in terms of the molar ratio (Li / Mn) of the Li atom in the lithium compound to the Mn atom of Mn 2 O 3. 1.01 is particularly preferable because lithium manganate having a large Li supply capability can be synthesized.

混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するようなブレンダー等を用いることが好ましい。   The mixing may be either a dry method or a wet method, but a dry method is preferred because the production is easy. In the case of dry mixing, it is preferable to use a blender or the like that uniformly mixes the raw materials.

前記焼成条件は、焼成温度が600〜1000℃、好ましくは700〜850℃である。この理由は焼成温度が600℃未満では反応が不十分で好適なマンガン酸リチウムが得られない結果となり、一方、1000℃を越えるとLi供給能力の低いマンガン酸リチウムへと変化してしまうからである。焼成雰囲気は、生成されるマンガン酸リチウムが酸素によって容易に酸化され、目的物以外にLiMn、LiMnO等の不純物を生成するため不活性ガス雰囲気とすることが好ましい。この際、使用する不活性ガスとしては、窒素ガス、ヘリウムガス或いはアルゴンガス等が使用できる。焼成時間は通常1〜20時間、好ましくは2〜10時間である。なお、本発明では、必要により焼成は繰り返し行ってもよい。 As for the firing conditions, the firing temperature is 600 to 1000 ° C, preferably 700 to 850 ° C. This is because if the calcination temperature is less than 600 ° C., the reaction is insufficient and a suitable lithium manganate cannot be obtained, while if it exceeds 1000 ° C., it changes to lithium manganate with a low Li supply capacity. is there. The firing atmosphere is preferably an inert gas atmosphere because the produced lithium manganate is easily oxidized by oxygen and generates impurities such as LiMn 2 O 4 and Li 2 MnO 3 in addition to the target product. At this time, as an inert gas to be used, nitrogen gas, helium gas, argon gas, or the like can be used. The firing time is usually 1 to 20 hours, preferably 2 to 10 hours. In the present invention, the firing may be repeated as necessary.

焼成後は適宜冷却し、必要に応じ粉砕して前記一般式(1)で表されるマンガン酸リチウムを得る。なお、必要に応じて行われる粉砕は、焼成して得られるマンガン酸リチウムがもろく結合したブロック状のものである場合等に適宜行うが、マンガン酸リチウムの粒子自体は特定の平均粒径、BET比表面積を有するものである。即ち、得られるマンガン酸リチウムは、平均粒径が1.0〜20.0μm、好ましくは4.0〜15.0μm、BET比表面積が0.2〜2.0m/g、好ましくは0.4〜1.0m/gである。また、該マンガン酸リチウムは、線源としてCu−Kα線を用いてX線回折分析したときに2θ=15.3°付近((010)面)の回折ピークに対する2θ=24.6°付近((011)面)の回折ピークの強度比(I24.6/I15.3)が0.25以下、好ましくは0.10〜0.25、更に好ましくは0.20〜0.25であり、且つ2θ=15.3°付近((010)面)の回折ピークに対する2θ=45.0°付近((120)面)の回折ピークの強度比(I45.0/I15.3)が0.70以下、好ましくは0.45〜0.70、更に好ましくは0.48〜0.7の値をとる前記一般式(1)で表されるマンガン酸リチウムであることが好ましい。 After firing, the mixture is appropriately cooled and pulverized as necessary to obtain lithium manganate represented by the general formula (1). The pulverization performed as necessary is appropriately performed when the lithium manganate obtained by baking is in a brittle and bonded block shape, and the lithium manganate particles themselves have a specific average particle diameter, BET It has a specific surface area. That is, the obtained lithium manganate has an average particle diameter of 1.0 to 20.0 μm, preferably 4.0 to 15.0 μm, and a BET specific surface area of 0.2 to 2.0 m 2 / g, preferably 0.8. 4 to 1.0 m 2 / g. Further, the lithium manganate is near 2θ = 24.6 ° with respect to the diffraction peak around 2θ = 15.3 ° ((010) plane) when X-ray diffraction analysis is performed using Cu—Kα ray as a radiation source ( (011) plane) diffraction peak intensity ratio (I 24.6 / I 15.3 ) is 0.25 or less, preferably 0.10 to 0.25, more preferably 0.20 to 0.25. And the intensity ratio (I 45.0 / I 15.3 ) of the diffraction peak near 2θ = 45.0 ° ((120) plane) to the diffraction peak near 2θ = 15.3 ° ((010) plane). Lithium manganate represented by the general formula (1) having a value of 0.70 or less, preferably 0.45 to 0.70, and more preferably 0.48 to 0.7 is preferable.

本発明にかかるマンガン酸リチウムは、後述するリチウム二次電池正極活物質と併用して用いるリチウム二次電池正極副活物質として好適に用いることができる。本発明のリチウム二次電池用正極副活物質は、前記マンガン酸リチウムからなり、また、本発明のリチウム二次電池正極活物質は、前記副活物質と下記一般式(2);Li1−b(2)
(式中、MはCo、Niから選ばれる少なくとも1種以上の遷移金属元素、AはMg、Al、Mn、Ti、Zr、Fe、Cu、Zn、Sn、Inから選ばれる少なくとも1種以上の金属元素を示し、aは0.9≦a≦1.1、bは0≦b≦0.5、cは1.8≦c≦2.2を示す。)で表わされるリチウム複合酸化物とを含有し、通常使用において容量の低下もなく、リチウム二次電池の過放電による性能低下抑制効果に優れたものである。
The lithium manganate concerning this invention can be used suitably as a lithium secondary battery positive electrode side active material used together with the lithium secondary battery positive electrode active material mentioned later. The positive electrode active material for a lithium secondary battery of the present invention comprises the lithium manganate, and the lithium secondary battery positive electrode active material of the present invention includes the auxiliary active material and the following general formula (2); Li a M 1-b A b O c (2)
(Wherein M is at least one transition metal element selected from Co and Ni, A is at least one transition metal element selected from Mg, Al, Mn, Ti, Zr, Fe, Cu, Zn, Sn, In) A metal element, a is 0.9 ≦ a ≦ 1.1, b is 0 ≦ b ≦ 0.5, and c is 1.8 ≦ c ≦ 2.2.) In the normal use, the capacity is not reduced, and the lithium secondary battery is excellent in the effect of suppressing the performance deterioration due to overdischarge.

前記一般式(2)で表わされるリチウム複合酸化物の種類としては、特に制限はないが、その一例を示せば、LiCoO,LiNiO,LiNi0.8Co0.2,LiNi0.8Co0.1Mn0.1,LiNi0.4Co0.3Mn0.3等が挙げられ、これらのリチウム複合酸化物は1種又は2種以上で用いることができる。この中、LiCoOが広く工業的に用いられ、また、本発明のリチウム二次電池正極副活物質との相乗効果が高い点で特に好ましい。 The type of the lithium composite oxide represented by the general formula (2) is not particularly limited, One example thereof, LiCoO 2, LiNiO 2, LiNi 0.8 Co 0.2 O 2, LiNi 0. 8 Co 0.1 Mn 0.1 O 2, LiNi 0.4 Co 0.3 Mn 0.3 O 2 and the like, these lithium composite oxides can be used singly or in combination. Among them, LiCoO 2 is particularly preferred because it is widely used industrially and has a high synergistic effect with the lithium secondary battery positive electrode side active material of the present invention.

また、前記リチウム複合酸化物の物性等としては、特に制限されるものではないが、平均粒径が1〜30μm、好ましくは3〜20μmであると分極や導電不良を抑制できる点で好ましい。また、BET比表面積が0.1〜2.0m/g、好ましくは0.2〜1.0m/gであると電池熱安定性が向上する点で好ましい。 Further, the physical properties and the like of the lithium composite oxide are not particularly limited, but an average particle size of 1 to 30 μm, preferably 3 to 20 μm is preferable in that polarization and poor conductivity can be suppressed. Further, a BET specific surface area of 0.1 to 2.0 m 2 / g, preferably 0.2 to 1.0 m 2 / g is preferable in terms of improving battery thermal stability.

本発明の前記正極副活物質の配合割合は、前記リチウム複合酸化物100重量部に対して5〜30重量部、好ましくは10〜20重量部である。この理由は前記正極副活物質の配合割合が30重量部より大きくなると電池の放電容量が小さくなり、一方、5重量部より小さくなると過放電抑制効果が十分に得られないことから好ましくない。本発明の副活物質がリチウム複合酸化物と比べて配合量が少ない方が好ましい理由は、充放電の終端電位が前記リチウム複合酸化物単独の場合と比べて、併用の場合は高いため、この範囲では副活物質は充放電にほとんど寄与せず、その配合量は少ない方が高容量の電池を作成することができるからである。   The mixing ratio of the positive electrode secondary active material of the present invention is 5 to 30 parts by weight, preferably 10 to 20 parts by weight with respect to 100 parts by weight of the lithium composite oxide. The reason for this is that if the proportion of the positive electrode sub-active material is greater than 30 parts by weight, the discharge capacity of the battery will be small, while if it is less than 5 parts by weight, the effect of suppressing overdischarge will not be sufficiently obtained. The reason why the amount of the secondary active material of the present invention is preferably smaller than that of the lithium composite oxide is preferable because the terminal potential of charge / discharge is higher in the combined use than in the case of the lithium composite oxide alone. This is because, in the range, the secondary active material hardly contributes to charging / discharging, and a battery with a smaller capacity can produce a battery with a higher capacity.

かかる正極活物質は所定量の前記副活物質と前記リチウム複合酸化物とを均一に混合し製造する。混合手段としては特に制限されるものではなく、上記割合に均一な組成配合となるように、湿式法或いは乾式法による強力な剪断力が作用する機械的手段にて調製される。湿式法は、ボールミル、ディスパーミル、ホモジナイザー、振動ミル、サンドグラインドミル、アトライター及び強力撹拌機等の装置にて操作される。一方、乾式法では、ハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、ヘンシェルミキサー、ナウターミキサー及びリボンブレンダー等の装置を用いることができる。なお、これら均一配合操作は、例示した機械的手段に限定されるものではない。また、所望によりジェットミル等で粉砕処理して粒度調整を行っても差し支えない。   Such a positive electrode active material is produced by uniformly mixing a predetermined amount of the secondary active material and the lithium composite oxide. The mixing means is not particularly limited, and the mixing means is prepared by a mechanical means in which a strong shearing force is applied by a wet method or a dry method so as to obtain a uniform composition in the above ratio. The wet method is operated by an apparatus such as a ball mill, a disper mill, a homogenizer, a vibration mill, a sand grind mill, an attritor, and a powerful stirrer. On the other hand, in the dry method, apparatuses such as a high speed mixer, a super mixer, a turbo sphere mixer, a Henschel mixer, a nauter mixer, and a ribbon blender can be used. These uniform blending operations are not limited to the illustrated mechanical means. If desired, the particle size may be adjusted by grinding with a jet mill or the like.

本発明に係るリチウム二次電池は、上記リチウム二次電池正極活物質を用いるものであり、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなる。正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものであり、正極合剤は正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。本発明に係るリチウム二次電池は、正極に正極活物質である前記のリチウム複合酸化物と副活物質のマンガン酸リチウムの混合物が均一に塗布されている。このため本発明に係るリチウム二次電池は、特に負荷特性とサイクル特性の低下が生じ難い。   The lithium secondary battery according to the present invention uses the above-described lithium secondary battery positive electrode active material, and includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt. The positive electrode is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of. In the lithium secondary battery according to the present invention, a mixture of the lithium composite oxide as a positive electrode active material and lithium manganate as a secondary active material is uniformly applied to a positive electrode. For this reason, especially the lithium secondary battery which concerns on this invention does not produce a fall of a load characteristic and cycling characteristics easily.

正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The positive electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum, and stainless steel Examples of the surface include carbon, nickel, titanium, and silver surface-treated. The surface of these materials may be oxidized and used, or the current collector surface may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば特に限定はない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、或いはポリフェニレン誘導体等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これらは、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1〜50重量%、好ましくは2〜30重量%である。   The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black, conductive fibers such as carbon fiber and metal fiber, Examples include metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive materials such as polyphenylene derivatives. Examples of graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more. The blending ratio of the conductive agent is 1 to 50% by weight, preferably 2 to 30% by weight in the positive electrode mixture.

結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体またはその(Na+)イオン架橋体、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。結着剤の配合比率は、正極合剤中、1〜50重量%、好ましくは5〜15重量%である。   Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, fluorinated Vinylidene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene Oroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra Fluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or its (Na +) ionic crosslinked product, ethylene-methacrylic acid copolymer or its (Na + ) Ionic crosslinked body, ethylene-methyl acrylate copolymer or its (Na +) ionic crosslinked body, ethylene-methyl methacrylate copolymer or its (Na +) ionic crosslinked body, polysaccharide such as polyethylene oxide, thermoplastic resin Polymers having rubber elasticity, and these may be used individually or in combination. In addition, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. The blending ratio of the binder is 1 to 50% by weight, preferably 5 to 15% by weight in the positive electrode mixture.

フィラーは正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0〜30重量%が好ましい。   The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added as necessary. As the filler, any fibrous material can be used as long as it does not cause a chemical change in the constructed battery. For example, olefinic polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 weight% is preferable in a positive electrode mixture.

負極は、負極集電体上に負極材料を塗布乾燥等して形成される。負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれは特に制限されるものでないが、銅あるいは銅合金などの過放電時に正極電位(約3.5Vvs.Li/Li+)にて酸化溶解するようなものに対して本発明は最も効果的である。また、材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The negative electrode is formed by applying and drying a negative electrode material on the negative electrode current collector. The negative electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery, but the positive electrode potential (about 3.5 V vs. Li / The present invention is most effective for those which are oxidized and dissolved by Li +). Further, the surface of the material may be oxidized and used, or the surface of the current collector may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

負極材料としては、特に制限されるものではないが、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li−Co−Ni系材料等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、Sn1 1−p2 (式中、M1 はMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、M2 はAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)、LixFe23 (0≦x≦1)、LixWO2(0≦x≦1)等の化合物が挙げられる。金属酸化物としては、GeO、GeO2、SnO、SnO2、PbO、PbO2、Pb23、Pb34、Sb23、Sb24、Sb25、Bi23、Bi24、Bi25等が挙げられる。導電性高分子としては、ポリアセチレン、ポリ−p−フェニレン等が挙げられる。 The negative electrode material is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon-based alloys, tin-based alloys, metal oxides, conductive polymers, and chalcogen compounds. And Li—Co—Ni-based materials. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include Sn p M 1 1-p M 2 q Or (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, and M 2 represents Al. , B, P, Si, one or more elements selected from Group 1, Group 2, Group 3 of the periodic table and halogen elements, 0 <p ≦ 1, 1 ≦ q ≦ 3, 1 ≦ r ≦ 8.), LixFe 2 O 3 (0 ≦ x ≦ 1), LixWO 2 (0 ≦ x ≦ 1) and the like. As the metal oxide, GeO, GeO 2, SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, Bi 2 O 3 Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.

セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μm である。セパレターの厚みとしては、一般的な電池用の範囲であればよく、例えば5〜300μm である。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレーターを兼ねるようなものであってもよい。   As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator may be in a range generally useful for batteries, for example, 0.01 to 10 μm. The thickness of the separator may be in a range for a general battery, for example, 5 to 300 μm. In addition, when a solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator.

リチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が用いられる。非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2
−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。
The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte is used. Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2
-Solvents obtained by mixing one or more aprotic organic solvents such as imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, 1,3-propane sultone, methyl propionate, ethyl propionate, etc. It is done.

有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキサイド誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を含むポリマー、イオン性解離基を含むポリマーと上記非水電解液の混合物等が挙げられる。   Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, Examples thereof include a polymer containing an ionic dissociation group such as polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the above non-aqueous electrolyte.

無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩等を用いることができ、例えば、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、LiSiO4、LiSiO4−LiI−LiOH、Li2SiS3、Li4SiO4、Li4SiO4−LiI−LiOH、Li3PO4−Li2S−SiS2、硫化リン化合物等が挙げられる。 As the inorganic solid electrolyte, a nitride, halide, oxyacid salt, or the like of Li can be used. For example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI—LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2, and the like phosphorus sulfide compound.

リチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiCl、LiBr、LiI、LiClO、LiBF 、LiB10Cl10、LiPF 、LiCFSO 、LiCFCO 、LiAsF 、LiSbF 、LiB10Cl10、LiAlCl、CH3SO3Li、CF3SO3Li、(CF3SO22NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等の1種または2種以上を混合した塩が挙げられる。 As the lithium salt, those dissolved in the non-aqueous electrolyte are used. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenylborate, Examples thereof include a salt obtained by mixing one or more of imides.

また、非水電解質には、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を添加することができる。例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2−メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化エチレンを電解液に含ませることができる。また、高温保存に適性を持たせるために電解液に炭酸ガスを含ませることができる。   Moreover, the compound shown below can be added to a nonaqueous electrolyte for the purpose of improving discharge, a charge characteristic, and a flame retardance. For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compounds with carbonyl group, hexamethylphosphine Examples include hollic triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, and carbonates. That. In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be included in the electrolyte. In addition, carbon dioxide gas can be included in the electrolytic solution in order to make it suitable for high-temperature storage.

このように構成されたリチウム二次電池は、電池性能、特に通常使用において容量の低下もなく、充放電時に連続的な電圧変化を示し、優れた耐過放電特性を有するリチウム二次電池となる。電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。また、本発明のリチウム二次電池は、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ゲーム機器等の民生用電子機器等に好適に用いることができる。   The lithium secondary battery configured in this manner is a lithium secondary battery having excellent overdischarge characteristics, showing battery performance, particularly no decrease in capacity during normal use, showing a continuous voltage change during charging and discharging. . The shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin shape. In addition, the lithium secondary battery of the present invention includes, for example, a notebook computer, a laptop computer, a pocket word processor, a mobile phone, a cordless cordless handset, a portable CD player, a radio, an LCD TV, a backup power supply, an electric shaver, a memory card, a video movie. It can be suitably used for consumer electronic devices such as electronic devices such as automobiles, electric vehicles, and game devices.

次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.

(MnOの調製)
平均粒径が8.1μmである市販のMnCOを窒素雰囲気中、650℃で10時間加熱処理した。得られた加熱処理物はXRD分析の結果、平均粒径7.6μmのMnOであることを確認した。
(Preparation of MnO)
Commercially available MnCO 3 having an average particle size of 8.1 μm was heat-treated at 650 ° C. for 10 hours in a nitrogen atmosphere. As a result of XRD analysis, the obtained heat-treated product was confirmed to be MnO having an average particle size of 7.6 μm.

実施例1〜8及び比較例1
前記で調製したMnOを大気中で表2に示した温度で10時間加熱処理し、表2に示す各マンガン酸化物試料を調製した。これらの加熱処理物のうち、加熱処理温度が500℃のもの以外は、XRD分析により全てMnであることを確認した。
Examples 1-8 and Comparative Example 1
The MnO prepared above was heat-treated at a temperature shown in Table 2 for 10 hours in the air to prepare each manganese oxide sample shown in Table 2. Among these heat-treated products, those having a heat treatment temperature of 500 ° C. were all confirmed to be Mn 2 O 3 by XRD analysis.

前記で調製した各マンガン酸化物試料を用いて、これと平均粒径5μmのLiCOとをLi原子とMn原子のモル比(Li/Mn)=1.00で混合し、次いで、該混合物を窒素雰囲気下800℃で10時間焼成して各LiMnO試料を調製した。なお、得られたLiMnO試料はASTMカード23−361の回折ピークパターンよりLiMnOであることを確認した。 Using each of the manganese oxide samples prepared above, this was mixed with Li 2 CO 3 having an average particle diameter of 5 μm at a molar ratio of Li atom to Mn atom (Li / Mn) = 1.00, Each mixture was calcined at 800 ° C. for 10 hours in a nitrogen atmosphere to prepare each LiMnO 2 sample. The obtained LiMnO 2 sample was confirmed to be LiMnO 2 from the diffraction peak pattern of ASTM card 23-361.

比較例2
平均粒径が3.5μmの市販のMnOと平均粒径が5μmのLiCOをLi/Mnのモル比=1.00となるように混合し、該混合物を窒素雰囲気下800℃で10時間焼成してLiMnO試料を調製した。なお、得られたLiMnO試料はASTMカード23−361の回折ピークパターンよりLiMnOであることを確認した。
Comparative Example 2
Commercially available MnO 2 having an average particle diameter of 3.5 μm and Li 2 CO 3 having an average particle diameter of 5 μm were mixed so that the molar ratio of Li / Mn was 1.00, and the mixture was mixed at 800 ° C. under a nitrogen atmosphere. A LiMnO 2 sample was prepared by firing for 10 hours. The obtained LiMnO 2 sample was confirmed to be LiMnO 2 from the diffraction peak pattern of ASTM card 23-361.

比較例3
平均粒径が3.5μmの市販のMnOを大気中1000℃で12時間焼成し、Mnを調製した。このMnを大気中650℃で10時間焼成し、Mnを得た。このMnと平均粒径が5μmのLiCOをLi/Mnのモル比=1.00となるように混合し、窒素雰囲気下800℃で10時間焼成してLiMnO試料を調製した。なお、得られたLiMnO試料はASTMカード23−361の回折ピークパターンよりLiMnOであることを確認した。
Comparative Example 3
Commercially available MnO 2 having an average particle size of 3.5 μm was fired at 1000 ° C. for 12 hours in the air to prepare Mn 3 O 4 . This Mn 3 O 4 was fired at 650 ° C. for 10 hours in the air to obtain Mn 2 O 3 . This Mn 2 O 3 and Li 2 CO 3 having an average particle diameter of 5 μm are mixed so that the molar ratio of Li / Mn is 1.00, and calcined at 800 ° C. for 10 hours in a nitrogen atmosphere to prepare a LiMnO 2 sample. did. The obtained LiMnO 2 sample was confirmed to be LiMnO 2 from the diffraction peak pattern of ASTM card 23-361.

比較例4
平均粒径が3.5μmの市販のMnOを大気中650℃で10時間焼成し、Mnを調製した。このMnと平均粒径が10μmの水酸化リチウムとをLi/Mnのモル比=1.00となるように混合し、真空中で800℃で12時間焼成してLiMnO試料を調製した。なお、得られたLiMnO試料はASTMカード23−361の回折ピークパターンよりLiMnOであることを確認した。
Comparative Example 4
Commercially available MnO 2 having an average particle size of 3.5 μm was fired in the atmosphere at 650 ° C. for 10 hours to prepare Mn 2 O 3 . This Mn 2 O 3 and lithium hydroxide having an average particle diameter of 10 μm are mixed so that the molar ratio of Li / Mn is 1.00, and calcined in vacuum at 800 ° C. for 12 hours to prepare a LiMnO 2 sample. did. The obtained LiMnO 2 sample was confirmed to be LiMnO 2 from the diffraction peak pattern of ASTM card 23-361.

<物性評価>
実施例1〜8及び比較例1〜4で得られたLiMnO試料について、平均粒径、BET比表面積及び線源としてCu−Kα線を用いてX線回折分析を行い、2θ=15.3°付近の回折ピークに対する2θ=24.6°付近の回折ピークの強度比(I24.6/I15.3)と2θ=45.0°付近の回折ピークの強度比(I45.0/I15.3)を測定した。その結果を表4に示す。また、実施例4で得られたLiMnOのX線回折図を図1に示す。図1中、符号aは、15.3°付近の回折ピークを示し、符号bは24.6°付近の回折ピークを示し、符号cは45.0°付近の回折ピークを示す。
<Physical property evaluation>
The LiMnO 2 samples obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were subjected to X-ray diffraction analysis using Cu—Kα rays as the average particle diameter, BET specific surface area, and radiation source, and 2θ = 15.3. The intensity ratio of the diffraction peak near 2θ = 24.6 ° (I 24.6 / I 15.3 ) and the intensity ratio of the diffraction peak near 2θ = 45.0 ° (I 45.0 / I 15.3 ) was measured. The results are shown in Table 4. An X-ray diffraction diagram of LiMnO 2 obtained in Example 4 is shown in FIG. In FIG. 1, the symbol a indicates a diffraction peak near 15.3 °, the symbol b indicates a diffraction peak near 24.6 °, and the symbol c indicates a diffraction peak near 45.0 °.

<リチウム二次電池の調製>
(1)リチウム二次電池の作製;
前記で調製した実施例1〜8及び比較例1〜4の各種のLiMnO試料のそれぞれについて、試料85重量%、黒鉛粉末10重量%、ポリフッ化ビニリデン5重量%を混合して正極材とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
<Preparation of lithium secondary battery>
(1) Production of lithium secondary battery;
For each of the various LiMnO 2 samples prepared in Examples 1 to 8 and Comparative Examples 1 to 4 described above, 85% by weight of the sample, 10% by weight of graphite powder, and 5% by weight of polyvinylidene fluoride were mixed to form a positive electrode material. This was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.

この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極はリチウム金属、集電体には銅を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF1モルを溶解したものを使用した。 Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Of these, lithium metal was used for the negative electrode, copper was used for the current collector, and 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate as the electrolyte.

(2)初期放電容量、初期充電容量、平均充電電圧
充電はCCCVモード、カットオフ電圧4.25V、1C相当の電流値でカットオフ電流は1C電流値の1/20、充電はCCCVモード、カットオフ電圧3.4V、1C相当の電流値でカットオフ電流は1C電流の1/20として初期放電容量と初期充電容量及び平均充電電圧を測定し、その結果を表5に示す。
(2) Initial discharge capacity, initial charge capacity, average charge voltage Charging is in CCCV mode, cutoff voltage is 4.25V, current value equivalent to 1C, cutoff current is 1/20 of 1C current value, charging is in CCCV mode, cut The initial discharge capacity, the initial charge capacity, and the average charge voltage were measured with an off voltage of 3.4 V and a current value equivalent to 1 C and a cut-off current of 1/20 of the 1 C current. The results are shown in Table 5.

なお、この試験では充電容量が大きく、且つ放電容量が小さい材料、即ち、充放電容量の差が大きいものほど正極副活物質としてのLi供給能力が高いことを示し、通常、正極活物質は、例えばLiCoOでは充電容量160mAH/gに対して、放電容量155mAH/g程度で充放電容量の容量差が小さい。また、平均充電電圧が低い方がLiの放出の際に抵抗が小さいことを示し、Li供給材料として優れていることを示す。そして、表5から明らかなように、本発明のLiMnOは初期充電容量が高く、また、充放電容量の容量差が大きく、さらに、平均充電電圧が低いことから、過放電時の安全性を向上させるための正極副活物質としての有用性において優れていることが分かる。 In this test, a material having a large charge capacity and a small discharge capacity, that is, a material having a large difference in charge / discharge capacity indicates that the Li supply capacity as a positive electrode secondary active material is high. For example, LiCoO 2 has a charge capacity of about 155 mAH / g with respect to a charge capacity of 160 mAH / g, and the capacity difference between the charge and discharge capacity is small. Moreover, the one where an average charging voltage is low shows that resistance is small at the time of discharge | release of Li, and shows that it is excellent as Li supply material. As is apparent from Table 5, the LiMnO 2 of the present invention has a high initial charge capacity, a large charge / discharge capacity difference, and a low average charge voltage. It turns out that it is excellent in the usefulness as a positive electrode secondary active material for improving.

実施例9〜16及び比較例5
(リチウム複合酸化物の調製)
平均粒径5μmのCo40.0gと平均粒径5μmのLiCO8.38gを秤量し、乾式で十分に混合した後1000℃で5時間焼成した。該焼成物を粉砕、分級してLiCoOを得た。このものの諸物性を表6に示した。
Examples 9 to 16 and Comparative Example 5
(Preparation of lithium composite oxide)
40.0 g of Co 3 O 4 having an average particle diameter of 5 μm and 8.38 g of Li 2 CO 3 having an average particle diameter of 5 μm were weighed, thoroughly mixed by a dry process, and then fired at 1000 ° C. for 5 hours. The fired product was pulverized and classified to obtain LiCoO 2 . Various physical properties of this product are shown in Table 6.

<リチウム二次電池の調製>
<電池性能試験>
(1)リチウム二次電池の作製;
LiMnO試料及び前記で調製したLiCoOを用いて表7に示す組成の正極活物質を調製した。次いで、正極活物質91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極材とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。なお、表7の配合量はLiCoO100重量部に対して、マンガン酸リチウム10重量部の配合であり、正極活物質などの配合割合は、正極材中、内掛けである。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は人造黒鉛、集電体には銅を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF1モルを溶解したものを使用した。
<Preparation of lithium secondary battery>
<Battery performance test>
(1) Production of lithium secondary battery;
Using the LiMnO 2 sample and the LiCoO 2 prepared above, a positive electrode active material having the composition shown in Table 7 was prepared. Next, 91% by weight of the positive electrode active material, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed to prepare a positive electrode material, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The amount of the table 7 with respect to LiCoO 2 100 parts by weight, the formulation of the lithium manganate, 10 parts by weight, the mixing ratio of such positive electrode active material, in a positive electrode material, it is the inner seat. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate. Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Of these, artificial graphite was used for the negative electrode, copper was used for the current collector, and 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate as the electrolyte.

<電池性能試験>
(1)リチウム二次電池の作製;
上記のように製造した実施例9〜16及び比較例5の正極活物質91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
<Battery performance test>
(1) Production of lithium secondary battery;
A positive electrode agent was prepared by mixing 91% by weight of the positive electrode active materials of Examples 9 to 16 and Comparative Example 5 prepared as described above, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride. A kneaded paste was prepared by dispersing in pyrrolidinone. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.

この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は人造黒鉛、集電体には銅を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。 Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Of these, artificial graphite was used for the negative electrode, copper was used for the current collector, and 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate as the electrolyte.

(2)過放電試験
実施例9〜16及び比較例5の正極活物質を用いた電池について、25℃において、1Cの電流で4.2Vまで充電し、4.2Vの定電圧で3時間充電した後、1Cの電流で2.0Vまで放電したときの放電容量(以下、「初期放電容量」と呼ぶ。)を測定した。次いで、0Vの定電圧で2日間放置し、過放電を行った。放置後、1Cで4.2Vで3時間定電流定電圧で再充電した後、1Cで2.0Vまで定電流放電を行い、放電容量(以下、「回復容量」と呼ぶ。)を測定した。
この回復容量について先の放電試験で測定した初期放電容量に対する回復容量の割合(以下、「容量回復率」と呼ぶ。)を求め、表8に示した。また、試験後の電池を解体して正極を観察し、負極集電体の銅が正極上に析出しているかを観察し、その結果を表8に示す。
(2) Overdischarge test About the battery using the positive electrode active material of Examples 9-16 and the comparative example 5, it charges to 4.2V with the electric current of 1C at 25 degreeC, and is charged for 3 hours with the constant voltage of 4.2V. After that, the discharge capacity when discharged to 2.0 V with a current of 1 C (hereinafter referred to as “initial discharge capacity”) was measured. Subsequently, it was left to stand at a constant voltage of 0 V for 2 days to perform overdischarge. After standing, the battery was recharged at a constant current and a constant voltage of 4.2 V at 1 C for 3 hours, and then a constant current discharge was performed at 1 C to 2.0 V, and the discharge capacity (hereinafter referred to as “recovery capacity”) was measured.
The ratio of the recovery capacity to the initial discharge capacity measured in the previous discharge test (hereinafter referred to as “capacity recovery rate”) was determined for this recovery capacity, and is shown in Table 8. Further, the battery after the test was disassembled and the positive electrode was observed to observe whether copper of the negative electrode current collector was deposited on the positive electrode. The results are shown in Table 8.

表8の結果より、本発明のマンガン酸リチウムを正極副活物質として用いることによりリチウム二次電池の過放電特性を改良することができることが分かる。   From the results of Table 8, it can be seen that the overdischarge characteristics of the lithium secondary battery can be improved by using the lithium manganate of the present invention as the positive electrode auxiliary active material.

Claims (9)

一般式(1); LiMnO (1)
(式中、xは0.9≦x≦1.1を示す。)で表わされるマンガン酸リチウムであって、
線源としてCu−Kα線を用いてX線回折分析したときに2θ=15.3°付近の回折ピークに対する2θ=24.6°付近の回折ピークの強度比(I24.6/I15.3)が0.25以下であり、且つ2θ=45.0°付近の回折ピークの強度比(I45.0/I15.3)が0.70以下であることを特徴とするマンガン酸リチウム。
General formula (1); Li x MnO 2 (1)
(Wherein x represents 0.9 ≦ x ≦ 1.1),
When the X-ray diffraction analysis is performed using Cu-Kα ray as a radiation source, the intensity ratio of the diffraction peak near 2θ = 24.6 ° to the diffraction peak near 2θ = 15.3 ° (I 24.6 / I 15. 3 ) is 0.25 or less, and the intensity ratio of diffraction peaks in the vicinity of 2θ = 45.0 ° (I 45.0 / I 15.3 ) is 0.70 or less. .
平均粒径が1〜20μmである請求項1記載のマンガン酸リチウム。   The lithium manganate according to claim 1, having an average particle diameter of 1 to 20 μm. BET比表面積が0.2〜2.0m/gである請求項1又は2記載のマンガン酸リチウム。 The lithium manganate according to claim 1, wherein the BET specific surface area is 0.2 to 2.0 m 2 / g. MnOを525℃以上で加熱処理してMnを得た後、次いで得られたMnとリチウム化合物とを混合し、該混合物を焼成して下記一般式(1);
LiMnO (1)
(式中、xは0.9≦x≦1.1を示す。)で表わされるマンガン酸リチウムを製造する方法。
MnO was heat-treated at 525 ° C. or higher to obtain Mn 2 O 3 , then, the obtained Mn 2 O 3 and a lithium compound were mixed, the mixture was baked, and the following general formula (1);
Li x MnO 2 (1)
(Wherein x represents 0.9 ≦ x ≦ 1.1).
前記焼成は600〜1000℃の温度で、且つ不活性ガス雰囲気下で行う請求項4記載のマンガン酸リチウムの製造方法。   The method for producing lithium manganate according to claim 4, wherein the baking is performed at a temperature of 600 to 1000 ° C. in an inert gas atmosphere. 請求項1乃至3の何れか1項に記載のマンガン酸リチウムからなることを特徴とするリチウム二次電池正極副活物質。   A lithium secondary battery positive electrode side active material comprising the lithium manganate according to any one of claims 1 to 3. 請求項6記載のリチウム二次電池正極副活物質と、下記一般式(2);Li1−b(2)
(式中、MはCo、Niから選ばれる少なくとも1種以上の遷移金属元素、AはMg、Al、Mn、Ti、Zr、Fe、Cu、Zn、Sn、Inから選ばれる少なくとも1種以上の金属元素を示し、aは0.9≦a≦1.1、bは0≦b≦0.5、cは1.8≦c≦2.2を示す。)で表わされるリチウム複合酸化物を含有することを特徴とするリチウム二次電池正極活物質。
And a lithium secondary battery positive electrode subsidiary active material of claim 6, wherein the following general formula (2); Li a M 1 -b A b O c (2)
(Wherein M is at least one transition metal element selected from Co and Ni, A is at least one transition metal element selected from Mg, Al, Mn, Ti, Zr, Fe, Cu, Zn, Sn, In) A metal element, a is 0.9 ≦ a ≦ 1.1, b is 0 ≦ b ≦ 0.5, and c is 1.8 ≦ c ≦ 2.2.) A positive electrode active material for a lithium secondary battery, comprising:
前記リチウム複合酸化物がLiCoOである請求項7記載のリチウム二次電池正極活物質。 The lithium secondary battery positive electrode active material according to claim 7, wherein the lithium composite oxide is LiCoO 2 . 請求項8記載のリチウム二次電池正極活物質を用いたことを特徴とするリチウム二次電池。   A lithium secondary battery comprising the lithium secondary battery positive electrode active material according to claim 8.
JP2009110491A 2005-03-22 2009-04-30 Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery Pending JP2009167100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110491A JP2009167100A (en) 2005-03-22 2009-04-30 Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005081143 2005-03-22
JP2009110491A JP2009167100A (en) 2005-03-22 2009-04-30 Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006078969A Division JP4319663B2 (en) 2005-03-22 2006-03-22 Lithium manganate, lithium secondary battery positive electrode secondary active material, lithium secondary battery positive electrode active material, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2009167100A true JP2009167100A (en) 2009-07-30

Family

ID=37633302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110491A Pending JP2009167100A (en) 2005-03-22 2009-04-30 Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP2009167100A (en)
KR (1) KR20060102522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000452A1 (en) * 2022-06-30 2024-01-04 宁德新能源科技有限公司 Positive electrode active material, electrochemical device and electrical device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349493A (en) * 1993-06-12 1994-12-22 Haibaru:Kk Secondary battery
JPH07230802A (en) * 1993-12-24 1995-08-29 Sharp Corp Nonaqueous secondary battery, and manufacture of positive electrode active material thereof
JPH0837027A (en) * 1994-07-22 1996-02-06 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JPH09259882A (en) * 1996-03-25 1997-10-03 Denso Corp Manufacture of positive electrode active material for lithium secondary battery
JPH111323A (en) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd Lithium manganate particular composition, its production and lithium ion secondary cell
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
JP2000149925A (en) * 1998-11-13 2000-05-30 Ube Ind Ltd Positive active material for lithium secondary battery, its manufacture, and its use
JP2000251886A (en) * 1999-02-24 2000-09-14 Sony Corp Nonaqueous electrolyte battery
JP2001093527A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
JP2001302245A (en) * 2000-04-20 2001-10-31 Toyota Central Res & Dev Lab Inc Method of producing lithium manganese complex oxide
JP2002510594A (en) * 1998-04-07 2002-04-09 リーデル−デ・ヘン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing lithium metal oxide
JP2002151079A (en) * 2000-11-15 2002-05-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous system electrolyte secondary battery, and its manufacturing method
JP2002167220A (en) * 2000-09-20 2002-06-11 Mitsubishi Chemicals Corp Lithium manganese compound oxide, cathode material for lithium secondary battery, cathode for lithium secondary battery, lithium secondary battery and manufacturing method for lithium manganese compound oxide
JP2003132885A (en) * 2001-10-26 2003-05-09 Japan Storage Battery Co Ltd Positive electrode active material for nonaqueous secondary battery
JP2003223898A (en) * 2002-01-29 2003-08-08 Sanyo Electric Co Ltd Nonaqueous electrolytic battery
JP2004115314A (en) * 2002-09-26 2004-04-15 Sony Corp Method for synthesizing spinel manganese
JP2005026218A (en) * 2003-06-09 2005-01-27 Nichia Chem Ind Ltd Positive electrode auxiliary active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2005235416A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349493A (en) * 1993-06-12 1994-12-22 Haibaru:Kk Secondary battery
JPH07230802A (en) * 1993-12-24 1995-08-29 Sharp Corp Nonaqueous secondary battery, and manufacture of positive electrode active material thereof
JPH0837027A (en) * 1994-07-22 1996-02-06 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JPH09259882A (en) * 1996-03-25 1997-10-03 Denso Corp Manufacture of positive electrode active material for lithium secondary battery
JPH111323A (en) * 1997-04-14 1999-01-06 Sakai Chem Ind Co Ltd Lithium manganate particular composition, its production and lithium ion secondary cell
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
JP2002510594A (en) * 1998-04-07 2002-04-09 リーデル−デ・ヘン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing lithium metal oxide
JP2000149925A (en) * 1998-11-13 2000-05-30 Ube Ind Ltd Positive active material for lithium secondary battery, its manufacture, and its use
JP2000251886A (en) * 1999-02-24 2000-09-14 Sony Corp Nonaqueous electrolyte battery
JP2001093527A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
JP2001302245A (en) * 2000-04-20 2001-10-31 Toyota Central Res & Dev Lab Inc Method of producing lithium manganese complex oxide
JP2002167220A (en) * 2000-09-20 2002-06-11 Mitsubishi Chemicals Corp Lithium manganese compound oxide, cathode material for lithium secondary battery, cathode for lithium secondary battery, lithium secondary battery and manufacturing method for lithium manganese compound oxide
JP2002151079A (en) * 2000-11-15 2002-05-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous system electrolyte secondary battery, and its manufacturing method
JP2003132885A (en) * 2001-10-26 2003-05-09 Japan Storage Battery Co Ltd Positive electrode active material for nonaqueous secondary battery
JP2003223898A (en) * 2002-01-29 2003-08-08 Sanyo Electric Co Ltd Nonaqueous electrolytic battery
JP2004115314A (en) * 2002-09-26 2004-04-15 Sony Corp Method for synthesizing spinel manganese
JP2005026218A (en) * 2003-06-09 2005-01-27 Nichia Chem Ind Ltd Positive electrode auxiliary active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2005235416A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000452A1 (en) * 2022-06-30 2024-01-04 宁德新能源科技有限公司 Positive electrode active material, electrochemical device and electrical device

Also Published As

Publication number Publication date
KR20060102522A (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP4245888B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5078113B2 (en) Lithium manganate for positive electrode secondary active material for lithium secondary battery, method for producing lithium manganate for positive electrode secondary active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5749650B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5172231B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2011065391A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
KR20160083227A (en) Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
JP2013182757A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
EP2506343A2 (en) Anode made by a combination of two components, and lithium secondary battery using same
KR101202143B1 (en) Lithium-Cobalt Based Composite Oxide Powder, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Battery and Lithium Secondary Battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2012074366A (en) Lithium cobaltate, production method therefor, cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014041710A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2020080211A1 (en) Positive-electrode active material for lithium secondary battery, manufacturing method for same, and lithium secondary battery
JP2013182758A (en) Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery and lithium secondary battery
KR101796344B1 (en) Positive electrode material for lithium secondary battery, preparation thereof, and lithium secondary battery comprising the same
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4562496B2 (en) Modified lithium-manganese composite oxide, method for producing the same, lithium secondary battery positive electrode active material composition, and lithium secondary battery
JP4319663B2 (en) Lithium manganate, lithium secondary battery positive electrode secondary active material, lithium secondary battery positive electrode active material, and lithium secondary battery
KR20160030784A (en) Positive electrode material for lithium secondary battery and method for manufacturing the same
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
KR20210071959A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2005235416A (en) Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
JP2009167100A (en) Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918