JPH111323A - Lithium manganate particular composition, its production and lithium ion secondary cell - Google Patents

Lithium manganate particular composition, its production and lithium ion secondary cell

Info

Publication number
JPH111323A
JPH111323A JP10102307A JP10230798A JPH111323A JP H111323 A JPH111323 A JP H111323A JP 10102307 A JP10102307 A JP 10102307A JP 10230798 A JP10230798 A JP 10230798A JP H111323 A JPH111323 A JP H111323A
Authority
JP
Japan
Prior art keywords
particulate composition
manganese
particles
lithium
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10102307A
Other languages
Japanese (ja)
Other versions
JP2870741B2 (en
Inventor
Kiyoshi Fukai
清志 深井
Yoshiyuki Kira
義行 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26443022&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH111323(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP10102307A priority Critical patent/JP2870741B2/en
Publication of JPH111323A publication Critical patent/JPH111323A/en
Application granted granted Critical
Publication of JP2870741B2 publication Critical patent/JP2870741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particular composition having a narrow particle size distribution, a large specific surface area and a uniform composition, and useful as powder for a positive electrode active material for a lithium ion secondary cell, a method for producing it, and the lithium ion secondary cell using the composition. SOLUTION: This particular composition is composed of secondary particles comprising coalescence of primary particles, and the primary particles are expressed by the formula: LiMn1-x Ax Oy (x) is a rational number of 0-0.25; (y) is a rational number of 1.875-2.25; A is selected from the group of B, Mg, Al, Si, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La, Ce, Pr, Nd, Hf, Ta and Pb.} and each particle is substantially spherical, and the particles have 0.1-5 μm average particle diameter, and each of the secondary particles is substantially spherical and has 1-100 μm average particle diameter and 0.1-10 m<2> /g specific surface area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池の正極活物質用材料として用いることができる粒
子状組成物、及び、粒子状組成物の新規な製造方法、ま
た、それを用いてなるリチウムイオン二次電池に関す
る。
The present invention relates to a particulate composition which can be used as a material for a positive electrode active material of a lithium ion secondary battery, a novel method for producing the particulate composition, and a method for producing the same using the same. A lithium ion secondary battery.

【0002】[0002]

【従来の技術】リチウムマンガン複合酸化物は、高出
力、高エネルギー密度電池として、例えば、ノート型パ
ソコン、PHS、携帯電話等に使用されているリチウム
イオン二次電池に使用する正極活物質として近年注目さ
れている材料の1つである。このものは、例えば、「超
音波噴霧分解法による球状LiCoO2 微粉体の合成と
リチウム二次電池用活物質への応用」(荻原隆、斉藤善
彦、柳川昭明、小形信男、吉田幸吉、高島正之、米沢
晋、水野泰晴、永田憲史、小川賢治著;ジャーナル・オ
ブ・ザ・セラミック・ソサイエティ・オブ・ジャパン
(Journal ofthe Ceramic So
ciety of Japan)101巻、1159〜
1163頁(1993年)(以下、「文献1」とい
う。))に記載されているように、LiMO2 (式中、
Mは、Cr、Mn、Ni、Fe、Co又はVである。)
で表される一群の化合物にあって、LiCoO2 と同様
にとりわけ充電電圧が高いので、正極活物質として極め
て好適である。なかでも、LiMnO2 は、資源として
豊富で安価なマンガンを用いているのでコスト的に有利
と考えられる。
2. Description of the Related Art In recent years, lithium manganese composite oxides have recently been used as positive electrode active materials used in lithium ion secondary batteries used in notebook computers, PHSs, mobile phones, etc. as high power, high energy density batteries. This is one of the materials that are receiving attention. This is described, for example, in "Synthesis of Spherical LiCoO 2 Fine Powder by Ultrasonic Spray Decomposition Method and Application to Active Material for Lithium Secondary Battery" (Takashi Ogiwara, Yoshihiko Saito, Akiaki Yanagawa, Nobuo Ogata, Kokichi Yoshida, Masayuki Takashima , Yonezawa Susumu, Mizuno Yasuharu, Nagata Kenji, Ogawa Kenji; Journal of the Ceramic Society of Japan (Journal of the Ceramic So
city of Japan), 101, 1159-
As described on page 1163 (1993) (hereinafter, referred to as “Document 1”), LiMO 2 (wherein
M is Cr, Mn, Ni, Fe, Co or V. )
And a particularly high charge voltage like LiCoO 2 , which is very suitable as a positive electrode active material. Above all, LiMnO 2 is considered to be advantageous in terms of cost because manganese, which is abundant and inexpensive as a resource, is used.

【0003】LiMnO2 の製造方法として、特開平5
−242889号公報には、Li2 MnO3 とMnOを
等モル混合して不活性ガス中で焼成する方法、LiOH
とMnOOHを等モル混合して不活性ガス中で焼成する
方法が開示されている。しかしながら、これらの方法で
は、N2 気流中等の酸素のない雰囲気でのみ合成が可能
であり、雰囲気を限定し合成する必要があった。
A method for producing LiMnO 2 is disclosed in
JP-A-242889 discloses a method in which Li 2 MnO 3 and MnO are mixed in an equimolar amount and calcined in an inert gas.
And MnOOH mixed in an equimolar amount and calcined in an inert gas is disclosed. However, according to these methods, synthesis can be performed only in an oxygen-free atmosphere such as in an N 2 gas stream, and synthesis needs to be performed in a limited atmosphere.

【0004】また、タブチら著、ソリッドステート(S
olid State)、89巻、53−63頁(19
96年)には、LiOHとMnOOHをLiOHの大過
剰下で水熱反応することにより、LiMnO2 を得る方
法が記載されている。しかしながら、この方法では、仕
込みのLi/Mn比が50というLiOH大過剰下でな
いとLiMnO2 単相が得られず、経済性、操作性に問
題があった。
In addition, Tabuchi et al., Solid State (S
Solid State, Vol. 89, pp. 53-63 (19
1996) describes a method of obtaining LiMnO 2 by subjecting LiOH and MnOOH to a hydrothermal reaction in a large excess of LiOH. However, in this method, a LiMnO 2 single phase cannot be obtained unless the Li / Mn ratio of the raw material is in a large excess of LiOH of 50, and there is a problem in economy and operability.

【0005】特開平7−101728号公報には、粒径
5μm以下の粒子から成り、BET比表面積が10m2
/g以上の層状LiMnO2 及びその製造方法が開示さ
れている。しかしながらこのものは、単に粒径を規定す
るに止まるものであったので、粒子が凝集して分散性が
良くないため、実用電池において高密度充填することが
困難であるという欠点を有していた。
Japanese Patent Application Laid-Open No. 7-101728 discloses that particles having a particle size of 5 μm or less and having a BET specific surface area of 10 m 2.
/ G or more of layered LiMnO 2 and a method for producing the same. However, this method had a drawback that it was difficult to perform high-density filling in a practical battery because the particles only aggregated and did not have good dispersibility because the particle size was simply determined. .

【0006】ところで、リチウムイオン二次電池の正極
活物質として粉体を使用する場合には、例えば、文献1
の1159頁に記載されているように、負極に対する安
定性や内部抵抗、感度、充放電中の応答速度等の特性に
対して、高い信頼性と再現性とを得るために、粒度分布
が狭く、均一組成である粉体を高密度充填する必要があ
る。特に、実用電池においては、粉体を充填できる容積
は一定である。従って、正極活物質の単位重量当たりの
電池性能に差がないとすると、充填性が高く、かつ、粉
体の比表面積が大きいほど、多くの電気量を取り出すこ
とができる。このため、充填性が高く、比表面積が大き
い粉体であることが、諸特性に対して高い信頼性と再現
性とを有し、かつ、高出力のリチウムイオン二次電池を
製造するうえで極めて重要である。
When powder is used as a positive electrode active material of a lithium ion secondary battery, for example, reference 1
As described on page 1159, in order to obtain high reliability and reproducibility with respect to characteristics such as stability to the negative electrode, internal resistance, sensitivity, and response speed during charge / discharge, the particle size distribution is narrow. It is necessary to pack a powder having a uniform composition at a high density. In particular, in a practical battery, the volume that can be filled with the powder is constant. Therefore, assuming that there is no difference in battery performance per unit weight of the positive electrode active material, a larger amount of electricity can be extracted as the filling property is higher and the specific surface area of the powder is larger. For this reason, a powder having a high filling property and a large specific surface area has high reliability and reproducibility with respect to various characteristics, and is necessary for manufacturing a high-output lithium ion secondary battery. Very important.

【0007】しかしながら、上述のリチウムマンガン複
合酸化物は、いずれも、一次粒子が凝集し、分散性が悪
いため、実用電池において高密度充填するのが困難であ
った。
However, all of the above-mentioned lithium manganese composite oxides have difficulty in high-density filling in practical batteries because primary particles are agglomerated and poor in dispersibility.

【0008】LiMnO2 の製造方法として汎用されて
いるものに、仮焼法によるものがある。例えば、欧州特
許公開公報736918A1号公報には、粒径1〜10
0μmのLiMnO2 が二次電池の正極材として好適で
ある旨が開示されている。ソリッド・ステート・アイオ
ニックス(Solid State Ionics)8
9巻(1996)127〜137頁には、LiOHとM
23 の混合物を仮焼してLiMnO2 を合成する技
術が開示されており、そのTable−1には1〜10
μm、比表面積0.51〜0.77m2 /gのものが開
示されている。特開平8−37027号公報には、Li
OHとδ−MnOOH又はLiOHとMn 23 を仮焼
してLiMnO2 を製造する技術が開示されている。
LiMnOTwo Is widely used as a manufacturing method
Some are based on the calcining method. For example, Europe
Japanese Unexamined Patent Publication No. 736918A1 discloses a particle size of 1 to 10 particles.
0 μm LiMnOTwo Is suitable as a cathode material for secondary batteries.
That is disclosed. Solid state io
Knicks (Solid State Ionics) 8
9 (1996) pp. 127-137, LiOH and M
nTwo OThree Is calcined to obtain LiMnOTwo Technique to synthesize
Operation is disclosed, and the Table-1 has 1 to 10
μm, specific surface area 0.51-0.77mTwo / G is open
It is shown. JP-A-8-37027 discloses Li
OH and δ-MnOOH or LiOH and Mn Two OThree Calcined
LiMnOTwo Are disclosed.

【0009】しかしながら、これら仮焼法により製造さ
れたLiMnO2 は、製造後に粉砕する必要性があり、
また、粉砕した粒子は、実質的に球状の粒子ではないの
で充填性に劣り、充放電容量が低くなる欠点があった。
However, LiMnO 2 produced by these calcining methods needs to be ground after production,
In addition, since the pulverized particles are not substantially spherical particles, they have poor filling properties and have a drawback that the charge / discharge capacity is reduced.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記に鑑
み、リチウムイオン二次電池用の正極活物質用粉体とし
て好適な、粒度分布が狭く、比表面積が大きく、かつ、
均一組成である粒子状組成物及びその製造方法、並び
に、これを用いてなるリチウムイオン二次電池を提供す
ることを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention has a narrow particle size distribution, a large specific surface area, and is suitable as a powder for a positive electrode active material for a lithium ion secondary battery.
It is an object of the present invention to provide a particulate composition having a uniform composition, a method for producing the same, and a lithium ion secondary battery using the same.

【0011】[0011]

【課題を解決するための手段】本発明は、一次粒子が集
合してなる二次粒子からなる粒子状組成物であって、上
記一次粒子は、下記一般式(1); LiMn1-xxy (1) (式中、xは、0〜0.25の有理数を表す。yは、
1.875〜2.25の有理数を表す。Aは、B、M
g、Al、Si、Sc、Ti、V、Cr、Fe、Co、
Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、R
u、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta
及びPbからなる群より選択される少なくとも1種の元
素を表す。)で表されるリチウムマンガン複合酸化物か
らなるものであり、上記一次粒子は、実質的に球状であ
り、上記一次粒子の平均粒子径は、0.1〜5μmであ
り、上記二次粒子は、実質的に球状であり、上記二次粒
子の平均粒子径は、1〜100μmであり、上記二次粒
子の比表面積は、0.1〜10m2/gである粒子状組
成物である。また、本発明は、オキシ水酸化マンガンか
らなる粒子状組成物を水酸化リチウム水溶液中に分散さ
せた後、加熱処理を行う粒子状組成物の製造方法であ
る。更に、本発明は、上記粒子状組成物を正極活物質と
して用いてなるリチウムイオン二次電池である。以下に
本発明を詳述する。
According to the present invention, there is provided a particulate composition comprising secondary particles formed by assembling primary particles, wherein the primary particles have the following general formula (1): LiMn 1-x A x O y (1) (where x represents a rational number from 0 to 0.25; y is
Represents a rational number from 1.875 to 2.25. A is B, M
g, Al, Si, Sc, Ti, V, Cr, Fe, Co,
Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, R
u, Sn, Sb, La, Ce, Pr, Nd, Hf, Ta
And at least one element selected from the group consisting of Pb and Pb. ), Wherein the primary particles are substantially spherical, the average particle size of the primary particles is 0.1 to 5 μm, and the secondary particles are The secondary particles are substantially spherical, and the average particle diameter of the secondary particles is 1 to 100 μm, and the specific surface area of the secondary particles is 0.1 to 10 m 2 / g. Further, the present invention is a method for producing a particulate composition comprising dispersing a particulate composition composed of manganese oxyhydroxide in an aqueous solution of lithium hydroxide, followed by heat treatment. Further, the present invention is a lithium ion secondary battery using the above-mentioned particulate composition as a positive electrode active material. Hereinafter, the present invention will be described in detail.

【0012】本発明の粒子状組成物は、上記一般式
(1)で表されるリチウムマンガン複合酸化物よりな
る。上記xは、0〜0.25の有理数である。上記y
は、1.875〜2.25の有理数である。yはA元素
の価数により、また、xの値により上記範囲の値をとる
ものである。
The particulate composition of the present invention comprises a lithium manganese composite oxide represented by the above general formula (1). X is a rational number from 0 to 0.25. Y above
Is a rational number from 1.875 to 2.25. y takes a value in the above range depending on the valence of the element A and the value of x.

【0013】本発明の粒子状組成物は、上記一般式
(1)において、x=0、y=2に相当するLiMnO
2 で表される組成を有するリチウムマンガン複合酸化物
からなるものであってもよく、上記一般式(1)におい
て、0<x≦0.25、かつ、1.875≦y≦2.2
5に相当する組成を有するリチウムマンガン複合酸化物
からなるものであってもよい。
[0013] The particulate composition of the present invention has a LiMnO content corresponding to x = 0 and y = 2 in the general formula (1).
May be made of lithium-manganese composite oxide having a composition represented by 2, in the general formula (1), 0 <x ≦ 0.25 and,, 1.875 ≦ y ≦ 2.2
It may be composed of a lithium manganese composite oxide having a composition corresponding to 5.

【0014】上記一般式(1)において、0<x≦0.
25、かつ、1.875≦y≦2.25に相当する組成
を有するリチウムマンガン複合酸化物からなるものであ
る場合、本発明の粒子状組成物は、Mn原子以外に、
B、Mg、Al、Si、Sc、Ti、V、Cr、Fe、
Co、Ni、Cu、Zn、Ga、Y、Zr、Nb、M
o、Ru、Sn、Sb、La、Ce、Pr、Nd、H
f、Ta及びPbからなる群より選択される少なくとも
1種の原子を含むことができる。
In the above general formula (1), 0 <x ≦ 0.
25 and a lithium-manganese composite oxide having a composition corresponding to 1.875 ≦ y ≦ 2.25, the particulate composition of the present invention contains, in addition to the Mn atom,
B, Mg, Al, Si, Sc, Ti, V, Cr, Fe,
Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, M
o, Ru, Sn, Sb, La, Ce, Pr, Nd, H
It may contain at least one atom selected from the group consisting of f, Ta and Pb.

【0015】上記一般式(1)において、0<x≦0.
25、かつ、1.875≦y≦2.25に相当する組成
を有するリチウムマンガン複合酸化物としては、例え
ば、LiMn0.9 Co0.12 、LiMn0.950.05
2.05、LiMn0.980.022.02、LiMn0.85Fe
0.152 、LiMn0.95Ni0.052 、LiMn0.97
0. 032.015 、LiMn0.97Cu0.031.985 、Li
Mn0.98Sb0.022.02、LiMn0.900.102 、L
iMn0.95Mg0.051.975 、LiMn0.80Fe0.20
2 、LiMn0.99Ta0.012 等を挙げることができ
る。
In the above general formula (1), 0 <x ≦ 0.
Examples of the lithium manganese composite oxide having a composition corresponding to 25 and 1.875 ≦ y ≦ 2.25 include, for example, LiMn 0.9 Co 0.1 O 2 and LiMn 0.95 V 0.05 O
2.05 , LiMn 0.98 V 0.02 O 2.02 , LiMn 0.85 Fe
0.15 O 2 , LiMn 0.95 Ni 0.05 O 2 , LiMn 0.97 T
i 0. 03 O 2.015, LiMn 0.97 Cu 0.03 O 1.985, Li
Mn 0.98 Sb 0.02 O 2.02 , LiMn 0.90 B 0.10 O 2 , L
iMn 0.95 Mg 0.05 O 1.975 , LiMn 0.80 Fe 0.20 O
2 , LiMn 0.99 Ta 0.01 O 2 and the like.

【0016】上記リチウムマンガン複合酸化物の結晶構
造は、斜方晶であり、そのX線回折パターンは、JCP
DS(Joint Committee Powder
Diffraction Standards)カー
ドのNo.35−749に記載されているLiMnO2
と同様である。
The crystal structure of the lithium manganese composite oxide is orthorhombic, and its X-ray diffraction pattern is
DS (Joint Committee Powder)
Diffraction Standards) card No. LiMnO 2 described in 35-749
Is the same as

【0017】本発明の粒子状組成物は、上記一次粒子が
実質的に球状であり、上記一次粒子の平均粒子径が、
0.1〜5μmである。本明細書中、「実質的に球状」
とは、現実には形状が層状であったとしても、顕微鏡で
は球状として観察され、物理的性質が球状であるとした
性質と同一であるものをいう。上記一次粒子の平均粒子
径が0.1μm未満であると、リチウムイオン二次電池
の正極活物質として用いた場合、充填率が低く、従っ
て、電池の単位容積当たりの電気容量が低くなる。上記
一次粒子の平均粒子径が5μmを超えると、リチウムイ
オン二次電池の正極活物質として用いた場合、電気容量
が不充分であるため、上記範囲に限定される。好ましく
は、0.2〜3μmである。
In the particulate composition of the present invention, the primary particles are substantially spherical, and the average particle diameter of the primary particles is
0.1 to 5 μm. In the present specification, "substantially spherical"
This means that even if the shape is actually layered, it is observed as a sphere under a microscope and the physical property is the same as the property assumed to be a sphere. When the average particle diameter of the primary particles is less than 0.1 μm, when used as a positive electrode active material of a lithium ion secondary battery, the filling rate is low, and thus the electric capacity per unit volume of the battery is low. When the average particle diameter of the primary particles exceeds 5 μm, the electric capacity is insufficient when used as a positive electrode active material of a lithium ion secondary battery, so that the average particle diameter is limited to the above range. Preferably, it is 0.2 to 3 μm.

【0018】本発明の粒子状組成物は、上記一次粒子が
集合してなる上記一次粒子が実質的に球状であり、上記
二次粒子の平均粒子径が、1〜100μmであり、上記
二次粒子の比表面積が、0.1〜10m2 /gである。
上記二次粒子の平均粒子径が1μm未満であると、リチ
ウムイオン二次電池の正極活物質として用いた場合、充
填率が低く、従って、電池の単位容積当たりの電気容量
が低くなる。上記二次粒子の平均粒子径が、100μm
を超えると、その粒子がポリプロピレン等の高分子フィ
ルムからなる負極と正極のセパレーターを貫通し、短絡
を生じるおそれがあるので、上記範囲に限定される。好
ましくは、1〜30μmである。上記二次粒子の比表面
積が、0.1m2 /g未満であると、比表面積が小さす
ぎて、リチウムイオン二次電池の正極活物質として使用
した場合に、急速に多くの電気量を取り出すことができ
ず、上記二次粒子の比表面積が、10m2 /gを超える
と、安定性、安全性に問題が生じるおそれがあるので、
上記範囲に限定される。好ましくは0.1〜5m2 /g
である。
In the particulate composition according to the present invention, the primary particles obtained by assembling the primary particles are substantially spherical, the secondary particles have an average particle diameter of 1 to 100 μm, The specific surface area of the particles is from 0.1 to 10 m 2 / g.
When the average particle diameter of the secondary particles is less than 1 μm, when the secondary particles are used as a positive electrode active material of a lithium ion secondary battery, the filling rate is low, and the electric capacity per unit volume of the battery is low. The average particle diameter of the secondary particles is 100 μm
If it exceeds, the particles may penetrate the separator between the negative electrode and the positive electrode made of a polymer film such as polypropylene and cause a short circuit, so that it is limited to the above range. Preferably, it is 1 to 30 μm. When the specific surface area of the secondary particles is less than 0.1 m 2 / g, the specific surface area is too small, and when used as a positive electrode active material of a lithium ion secondary battery, a large amount of electricity is rapidly taken out. If the specific surface area of the secondary particles exceeds 10 m 2 / g, there may be a problem in stability and safety.
It is limited to the above range. Preferably 0.1 to 5 m 2 / g
It is.

【0019】本発明の粒子状組成物は、上記一次粒子の
平均粒子径が上記範囲内にあるので、リチウムイオン二
次電池の正極活物質として使用した際の負極に対する安
定性、内部抵抗、感度、充放電中の応答速度等の特性に
対して高い信頼性と再現性とを得ることができる。ま
た、上記二次粒子の平均粒子径が上記範囲内にあるの
で、リチウムイオン二次電池の正極活物質として使用し
た場合、高充填を実現でき、高い単位容積当たりの電気
容量の電池を得ることができ、上記二次粒子の比表面積
が上記範囲内にあるので、リチウムイオン二次電池の正
極活物質として使用した場合、安定して多くの電気量を
取り出すことができる。
Since the average particle diameter of the primary particles of the particulate composition of the present invention is within the above range, stability, internal resistance and sensitivity to the negative electrode when used as a positive electrode active material of a lithium ion secondary battery. In addition, high reliability and reproducibility can be obtained for characteristics such as a response speed during charging and discharging. Further, since the average particle diameter of the secondary particles is within the above range, when used as a positive electrode active material of a lithium ion secondary battery, high filling can be realized and a battery having a high electric capacity per unit volume can be obtained. Since the specific surface area of the secondary particles is within the above range, when used as a positive electrode active material of a lithium ion secondary battery, a large amount of electricity can be stably extracted.

【0020】本発明においては、オキシ水酸化マンガン
からなる粒子状組成物を、水酸化リチウム水溶液中に分
散させた後、加熱処理を行うことによりリチウムマンガ
ン複合酸化物からなる粒子状組成物を製造することがで
きる。
In the present invention, a particulate composition composed of a lithium manganese composite oxide is produced by dispersing a particulate composition composed of manganese oxyhydroxide in an aqueous solution of lithium hydroxide and then performing a heat treatment. can do.

【0021】本発明に使用される上記オキシ水酸化マン
ガンとしては特に限定されず、例えば、一次粒子が集合
してなる二次粒子の平均粒子径が、1〜100μmであ
る下記一般式(2); Mn1-xxy H (2) (式中、xは、0〜0.25の有理数を表す。yは、
1.875〜2.25の有理数を表す。Aは、B、M
g、Al、Si、Sc、Ti、V、Cr、Fe、Co、
Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、R
u、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta
及びPbからなる群より選択される少なくとも1種の元
素を表す。)で表され、上記一般式(2)のAは、B、
Mg、Al、Si、Sc、Ti、V、Cr、Fe、C
o、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、
Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、T
a及びPbからなる群より選択される少なくとも1種の
元素を、マンガン1g原子に対し、0〜1/3g原子含
有するものであるもの等を挙げることができる。上記マ
ンガン1g原子に対して上記含有される少なくとも1種
の元素の含有量が、1/3gを超えると、リチウムイオ
ン二次電池に使用した場合、充放電容量が著しく低下す
る。
The manganese oxyhydroxide used in the present invention is not particularly limited. For example, the following general formula (2) in which the average particle diameter of secondary particles formed by assembling primary particles is 1 to 100 μm. Mn 1-x A x O y H (2) (where x represents a rational number of 0 to 0.25; y is
Represents a rational number from 1.875 to 2.25. A is B, M
g, Al, Si, Sc, Ti, V, Cr, Fe, Co,
Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, R
u, Sn, Sb, La, Ce, Pr, Nd, Hf, Ta
And at least one element selected from the group consisting of Pb and Pb. A) in the above general formula (2) is B,
Mg, Al, Si, Sc, Ti, V, Cr, Fe, C
o, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo,
Ru, Sn, Sb, La, Ce, Pr, Nd, Hf, T
Examples thereof include those containing at least one element selected from the group consisting of a and Pb in an amount of 0 to 1/3 g atom based on 1 g of manganese atom. When the content of the at least one element contained in 1 g of the manganese exceeds 1/3 g, the charge / discharge capacity is significantly reduced when used in a lithium ion secondary battery.

【0022】ここで定義するオキシ水酸化マンガンと
は、x=0の場合、MnOOHで表されるが、これはM
23 ・H2 Oのことを指す。即ち、オキシ水酸化マ
ンガンは、一般に三二酸化マンガン(Mn23 )に―
分子の水分子を有しているものを指すが、水分子は1未
満でも1以上でもよい。もちろん本発明でいうオキシ水
酸化マンガンに相当する0<x≦0.25の場合も同様
である。上記一般式(2)では、オキシ水酸化マンガン
の代表として水分子1分子を有する場合を表記している
が、上記理由からこれに限定されるものではない。
The manganese oxyhydroxide defined here is represented by MnOOH when x = 0, and is represented by MnOOH.
Refers to n 2 O 3 .H 2 O. That is, manganese oxyhydroxide is generally converted to manganese trioxide (Mn 2 O 3 )
It refers to those having molecular water molecules, but the number of water molecules may be less than 1 or 1 or more. Of course, the same applies to the case of 0 <x ≦ 0.25 corresponding to manganese oxyhydroxide in the present invention. In the general formula (2), a case where one water molecule is represented as a representative of manganese oxyhydroxide is described.

【0023】上記オキシ水酸化マンガンは、例えば、硝
酸マンガン、塩化マンガン、硫酸マンガン等の2価のマ
ンガンを有する化合物をアルカリで中和したものを空
気、酸素、過酸化水素等の酸化剤で酸化することにより
得ることができる。また、上記オキシ水酸化マンガンの
製造方法としては特に限定されないが、例えば、上記2
価のマンガン化合物の水溶液、又は、2価のマンガン化
合物とA元素化合物の混合物水溶液を炭酸化した後、ア
リカリ処理し、最後に酸化処理する方法等を挙げること
ができる。更に、市販のオキシ水酸化マンガンを使用す
ることもできる。
The above-mentioned manganese oxyhydroxide is obtained by oxidizing a compound having divalent manganese such as manganese nitrate, manganese chloride, manganese sulfate or the like with an alkali using an oxidizing agent such as air, oxygen or hydrogen peroxide. Can be obtained. The method for producing the manganese oxyhydroxide is not particularly limited.
A method of carbonizing an aqueous solution of a bivalent manganese compound or an aqueous solution of a mixture of a bivalent manganese compound and an element A compound, subjecting the solution to an alkali treatment, and finally performing an oxidation treatment may be used. Further, commercially available manganese oxyhydroxide can be used.

【0024】本発明の製造方法においては、上記オキシ
水酸化マンガンを上記水酸化リチウム水溶液中に分散さ
せる。上記水酸化リチウム水溶液は、水溶液中にリチウ
ムイオンと水酸イオンとを含有するものである。このも
のは、水溶液中でリチウムイオンと水酸イオンを生成す
ることができる化合物、例えば、水酸化リチウム、酸化
リチウム、金属リチウム等を水に溶解して調製すること
ができる。本明細書中、「水酸化リチウム水溶液」と
は、上記水溶液中でリチウムイオンと水酸イオンとを生
成することができる化合物を水に溶解して調製したもの
を意味する。本発明においては、リチウム源として、上
記水溶液中でリチウムイオンと水酸イオンとを生成する
ことができる化合物を使用する。
In the production method of the present invention, the manganese oxyhydroxide is dispersed in the lithium hydroxide aqueous solution. The aqueous lithium hydroxide solution contains lithium ions and hydroxyl ions in the aqueous solution. This can be prepared by dissolving a compound capable of generating lithium ions and hydroxide ions in an aqueous solution, for example, lithium hydroxide, lithium oxide, lithium metal and the like in water. In the present specification, the term “aqueous lithium hydroxide solution” means a solution prepared by dissolving a compound capable of generating lithium ions and hydroxyl ions in water in the above aqueous solution. In the present invention, a compound capable of generating lithium ions and hydroxyl ions in the aqueous solution is used as a lithium source.

【0025】上記オキシ水酸化マンガンの分散液中の濃
度は特に限定されないが、通常、0.05〜10モル/
Lが好ましい。製造工程における操作性や経済性の点か
ら、より好ましくは、0.1〜5モル/Lである。
The concentration of the manganese oxyhydroxide in the dispersion is not particularly limited, but is usually 0.05 to 10 mol / mol.
L is preferred. From the viewpoints of operability and economy in the production process, it is more preferably 0.1 to 5 mol / L.

【0026】上記水酸化リチウム水溶液と上記オキシ水
酸化マンガンとのモル比は、反応後、残余のリチウム源
を回収することができるので、(水酸化リチウム)/
(オキシ水酸化マンガン)≧1であれば特に限定され
ず、製造工程における操作性や経済性の点から(水酸化
リチウム)/(オキシ水酸化マンガン)=1/1〜20
/1が好ましい。より好ましくは、(水酸化リチウム)
/(オキシ水酸化マンガン)=1/1〜10/1であ
り、更に好ましくは、(水酸化リチウム)/(オキシ水
酸化マンガン)=1/1〜5/1である。
The molar ratio between the aqueous lithium hydroxide solution and the manganese oxyhydroxide is such that after the reaction, the remaining lithium source can be recovered,
It is not particularly limited as long as (manganese oxyhydroxide) ≧ 1, and (lithium hydroxide) / (manganese oxyhydroxide) = 1/1 to 20 from the viewpoint of operability and economy in the production process.
/ 1 is preferred. More preferably, (lithium hydroxide)
/ (Manganese oxyhydroxide) = 1/1 to 10/1, and more preferably (lithium hydroxide) / (manganese oxyhydroxide) = 1/1 to 5/1.

【0027】本発明の製造方法においては、上記水酸化
リチウム水溶液と上記オキシ水酸化マンガンとのモル比
が、(水酸化リチウム)/(オキシ水酸化マンガン)<
1であると、得られる粒子状組成物中のマンガンとA元
素との合計の含有量をリチウムの含有量よりも多くする
ことができる。
In the production method of the present invention, the molar ratio of the aqueous lithium hydroxide solution to the manganese oxyhydroxide is (lithium hydroxide) / (manganese oxyhydroxide) <
When it is 1, the total content of manganese and element A in the obtained particulate composition can be larger than the content of lithium.

【0028】本発明の製造方法においては、上記分散液
に、更に、B、Mg、Al、Si、Sc、Ti、V、C
r、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、
Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、N
d、Hf、Ta及びPbからなる群より選択される少な
くとも1種の元素からなる化合物を分散させることによ
り、上記一般式(1)において、0<x≦0.25に相
当する組成を有する粒子状組成物を得ることができる。
上記化合物としては特に限定されず、例えば、上記元素
の単体、水酸化物、酸化物等を挙げることができる。こ
れらは単独でも2種以上併用して用いてもよい。上記化
合物の添加量は、分散液中、原子比で、マンガン原子と
上記化合物中の上記元素の原子との和に対して、上記元
素の原子の割合が0.25以下となる量とすることがで
きる。
In the production method of the present invention, B, Mg, Al, Si, Sc, Ti, V, C
r, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr,
Nb, Mo, Ru, Sn, Sb, La, Ce, Pr, N
particles having a composition corresponding to 0 <x ≦ 0.25 in the general formula (1) by dispersing a compound comprising at least one element selected from the group consisting of d, Hf, Ta and Pb. A composition can be obtained.
The compound is not particularly restricted but includes, for example, simple substances, hydroxides and oxides of the above elements. These may be used alone or in combination of two or more. The amount of the compound to be added should be such that the atomic ratio of the element in the dispersion is 0.25 or less with respect to the sum of the manganese atom and the atom of the element in the compound. Can be.

【0029】本発明の製造方法においては、上記分散液
中の水酸イオンの濃度が高いほうが反応性がよいので、
更に水酸イオンを生成することができる化合物を上記分
散液に添加してもよい。上記水酸イオンを生成すること
ができる化合物としては特に限定されず、例えば、水酸
化ナトリウム、水酸化カリウム、水酸化アンモニウム等
を挙げることができる。
In the production method of the present invention, the higher the concentration of hydroxyl ions in the dispersion, the better the reactivity.
Further, a compound capable of generating hydroxyl ions may be added to the dispersion. The compound capable of generating the hydroxyl ion is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, and ammonium hydroxide.

【0030】本発明においては、上記粒子状組成物は、
オキシ水酸化マンガン粒子粉末を水酸化リチウム水溶液
中に分散させた後、加熱処理を行うことによって製造す
ることができるが、上記加熱処理における加熱温度は、
100〜215℃が好ましい。100℃未満であると、
反応が完結するまでに長時間を要し、215℃を超える
と、水蒸気圧が極めて高くなり、反応容器の耐圧性を保
たなければならず、装置コストの点から経済性に問題が
ある。製造工程における操作性や経済性の点から、より
好ましくは、100〜200℃である。加熱温度が10
0℃を超える場合には、耐圧容器を反応容器として使用
し、上記水分散液の沸騰を抑制する必要がある。上記加
熱処理における反応時間は、加熱温度により異なるが、
数分〜数日である。上記加熱処理は、分散液を攪拌しな
がら行ってもよい。
In the present invention, the above-mentioned particulate composition comprises:
Manganese oxyhydroxide particles can be produced by dispersing the manganese oxyhydroxide particle powder in an aqueous solution of lithium hydroxide and then performing a heat treatment.
100-215 ° C is preferred. If it is less than 100 ° C.,
It takes a long time to complete the reaction, and if it exceeds 215 ° C., the water vapor pressure becomes extremely high, and the pressure resistance of the reaction vessel must be maintained, which is economically problematic in terms of equipment cost. From the viewpoint of operability and economy in the production process, the temperature is more preferably 100 to 200 ° C. Heating temperature is 10
When the temperature exceeds 0 ° C., it is necessary to use a pressure-resistant container as a reaction container to suppress the boiling of the aqueous dispersion. The reaction time in the heat treatment varies depending on the heating temperature,
A few minutes to a few days. The heat treatment may be performed while stirring the dispersion.

【0031】本発明の製造方法においては、上記加熱処
理後、分離操作が可能である温度まで反応液を冷却し、
濾過等の分離方法を用いて沈澱を分離し、充分に水洗、
乾燥することにより、目的の粒子状組成物の粉末を得る
ことができる。また、目的により、水洗せずに乾燥させ
ることもできる。上記乾燥の温度は、粒子状組成物の吸
着水分を充分除去することができれば特に限定されな
い。
In the production method of the present invention, after the heat treatment, the reaction solution is cooled to a temperature at which a separation operation is possible,
The precipitate is separated using a separation method such as filtration, and sufficiently washed with water.
By drying, a powder of the target particulate composition can be obtained. In addition, depending on the purpose, it can be dried without washing with water. The drying temperature is not particularly limited as long as the moisture adsorbed on the particulate composition can be sufficiently removed.

【0032】また、必要に応じて、乾燥後の生成物に乾
式焼成処理を施してもよい。上記乾式焼成処理により、
得られる粒子状組成物の結晶化度を更に高めることがで
き、また、一次粒子の大きさや二次粒子の大きさを調整
することができるので、所望の電池特性に合致した粒子
状組成物を得ることができる。上記乾式焼成処理は、乾
燥後、得られる粒子状組成物を回収した後に行ってもよ
く、乾燥工程と同時に行ってもよい。また、上記乾式焼
成処理は空気中、窒素中、アルゴン中等、任意にコント
ロールされた雰囲気中で行ってもよい。上記濾過等によ
り分離された液相は、回収して再利用することができ
る。また、処理後に廃棄することもできる。
Further, if necessary, the product after drying may be subjected to a dry baking treatment. By the dry baking process,
The degree of crystallinity of the obtained particulate composition can be further increased, and the size of the primary particles and the size of the secondary particles can be adjusted, so that the particulate composition that matches the desired battery characteristics can be obtained. Obtainable. The dry baking treatment may be performed after drying and after collecting the obtained particulate composition, or may be performed simultaneously with the drying step. Further, the dry baking treatment may be performed in an arbitrarily controlled atmosphere such as in air, nitrogen, or argon. The liquid phase separated by the filtration or the like can be collected and reused. Also, it can be discarded after processing.

【0033】本発明の製造方法は、粒子状組成物を製造
するのに従来用いられている高温での固相反応とは異な
り、粒子が融着することがなく、また、粒子の大きさの
よく揃った粒子状組成物を製造することができる。この
ため、従来行われていた粒子の粉砕処理の必要がなく、
粒径分布の狭い粒子状組成物を得ることができる。
The production method of the present invention is different from the solid phase reaction at a high temperature conventionally used for producing a particulate composition, in that the particles are not fused and the size of the particles is reduced. A well-formed particulate composition can be produced. For this reason, there is no need to perform the particle crushing process conventionally performed,
A particulate composition having a narrow particle size distribution can be obtained.

【0034】本発明の製造方法により、組成が均一であ
り、結晶構造の均一性に優れた粒子状組成物を得ること
ができる。上記粒子状組成物は、固相法に比して低温
で、しかも分散媒体中での反応で製造されるため、その
比表面積が高く保たれる。また、本発明の製造方法で使
用される上記オキシ水酸化マンガンとしては、一次粒子
が集合してなる球状の二次粒子の平均粒子径が1〜10
0μmである上記一般式(2)で表されるものを原料と
すれば、リチウムイオン二次電池の正極活物質として優
れたリチウムマンガン複合酸化物を得ることができる。
According to the production method of the present invention, it is possible to obtain a particulate composition having a uniform composition and excellent crystal structure uniformity. Since the above-mentioned particulate composition is produced by a reaction in a dispersion medium at a lower temperature than the solid-phase method, the specific surface area is kept high. Further, as the manganese oxyhydroxide used in the production method of the present invention, the average particle diameter of spherical secondary particles formed by aggregation of primary particles is 1 to 10
When the material represented by the general formula (2) having a thickness of 0 μm is used as a raw material, a lithium manganese composite oxide excellent as a positive electrode active material of a lithium ion secondary battery can be obtained.

【0035】上記正極活物質は、通常、上記粒子状組成
物に、導電材、結着材、フィラー等を添加し、混練して
得た混練ペーストとして使用される。上記導電材として
は、リチウムイオン二次電池において化学変化を起こさ
ない電子伝導性材料であれば特に限定されず、例えば、
天然黒鉛、人工黒鉛、カーボンブラック、アセチレンブ
ラック、ケッチェンブラック、炭素繊維、金属粉、金属
繊維、ポリフェニレン誘導体等を挙げることができる。
これらは、単独で使用してもよく、2種以上を併用して
もよい。上記導電材の添加量は特に限定されないが、通
常、上記混練ペースト中、1〜50重量%が好ましい。
より好ましくは、2〜30重量%である。
The positive electrode active material is usually used as a kneaded paste obtained by adding a conductive material, a binder, a filler, and the like to the particulate composition and kneading the mixture. The conductive material is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in a lithium ion secondary battery.
Examples include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder, metal fiber, and polyphenylene derivative.
These may be used alone or in combination of two or more. The amount of the conductive material to be added is not particularly limited, but is usually preferably 1 to 50% by weight in the kneading paste.
More preferably, it is 2 to 30% by weight.

【0036】上記結着材としては特に限定されず、例え
ば、デンプン、ポリビニルアルコール、カルボキシメチ
ルセルロース、ヒドロキシプロピルセルロース、再生セ
ルロース、ジアセチルセルロースポリビニルクロライ
ド、ポリビニルピロリドン、テトラフルオロエチレン、
ポリフッ化ビニリデン、ポリエチレン、ポリプロピレ
ン、エチレン−プロピレン−ジエン共重合体(EPD
M)、スルホン化EPDM、スチレン−ブタジエンゴ
ム、ポリブタジエン、フッ素ゴム、ポリエチレンオキサ
イド等を挙げることができる。これらは単独でも2種以
上併用して用いてもよい。上記結着材の添加量は特に限
定されないが、通常、上記混練ペースト中、1〜50重
量%が好ましい。より好ましくは、2〜30重量%であ
る。
The binder is not particularly restricted but includes, for example, starch, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose polyvinylchloride, polyvinylpyrrolidone, tetrafluoroethylene,
Polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-diene copolymer (EPD
M), sulfonated EPDM, styrene-butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and the like. These may be used alone or in combination of two or more. The amount of the binder added is not particularly limited, but is usually preferably 1 to 50% by weight in the kneaded paste. More preferably, it is 2 to 30% by weight.

【0037】上記フィラーとしては、リチウムイオン二
次電池において化学変化を起こさない繊維状材料であれ
ば特に限定されず、例えば、ポリプロピレン、ポリエチ
レン等のオレフィン系ポリマー;ガラス、炭素等の繊維
等を挙げることができる。上記フィラーの添加量は特に
限定されないが、通常、上記混練ペースト中、0〜30
重量%が好ましい。
The filler is not particularly limited as long as it is a fibrous material that does not cause a chemical change in a lithium ion secondary battery. Examples thereof include olefin polymers such as polypropylene and polyethylene; and fibers such as glass and carbon. be able to. The amount of the filler to be added is not particularly limited, but is usually 0 to 30 in the kneaded paste.
% By weight is preferred.

【0038】本発明のリチウムイオン二次電池におい
て、負極電極材料としては、通常のリチウムイオン二次
電池に使用されているものであれば特に限定されず、例
えば、ステンレス鋼、ニッケル、銅、チタン、アルミニ
ウム、焼成炭素等を挙げることができる。
In the lithium ion secondary battery of the present invention, the material of the negative electrode is not particularly limited as long as it is used for ordinary lithium ion secondary batteries. For example, stainless steel, nickel, copper, titanium , Aluminum, calcined carbon and the like.

【0039】本発明のリチウムイオン二次電池は、正極
活物質として、実質的に球状の一次粒子が集合してなる
実質的に球状粒子であり、上記一次粒子の平均粒子径
は、0.1〜5μmであり、上記二次粒子の平均粒子径
は、1〜100μmであり、比表面積は、0.1〜10
2 /gであって、粒径分布が狭い粒子状組成物を使用
しているので、負極に対する安定性、内部抵抗、感度、
充放電中の応答速度、電気容量等の特性に対して高い信
頼性と再現性とを得ることができる。
The lithium ion secondary battery of the present invention is a substantially spherical particle formed by assembling substantially spherical primary particles as the positive electrode active material, and the primary particles have an average particle diameter of 0.1%. 5 μm, the average particle diameter of the secondary particles is 1 to 100 μm, and the specific surface area is 0.1 to 10 μm.
m 2 / g and the use of the particulate composition having a narrow particle size distribution, the stability to the negative electrode, the internal resistance, the sensitivity,
High reliability and reproducibility can be obtained for characteristics such as response speed and electric capacity during charging and discharging.

【0040】本発明のリチウムイオン二次電池は、例え
ば、ノート型パソコン、携帯電話、コードレスフォン子
機、ビデオムービー、液晶テレビ、電気シェーバー、携
帯ラジオ、ヘッドホンステレオ、バックアップ電源、メ
モリーカード等の電子機器;ペースメーカー、補聴器等
の医療機器等に好適に使用することができる。
The lithium ion secondary battery of the present invention can be used for electronic devices such as a notebook computer, a mobile phone, a cordless phone handset, a video movie, a liquid crystal television, an electric shaver, a portable radio, a headphone stereo, a backup power supply, a memory card, and the like. Apparatus: It can be suitably used for medical equipment such as a pacemaker and a hearing aid.

【0041】[0041]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0042】実施例1 一次粒子が集合してなる二次粒子が平均粒子径2μmの
炭酸マンガンのスラリーに窒素気流下、水酸化ナトリウ
ム溶液を添加、中和して得られた水酸化マンガンを水ス
ラリー中、空気を吹き込みつつ酸化を行い、オキシ水酸
化マンガンのケーキを得た。このオキシ水酸化マンガン
の二次粒子の平均粒子径は、2μmであった。上記オキ
シ水酸化マンガン0.5モルに水酸化リチウム10モル
を混合し、この混合物にイオン交換水を加えて全量を1
Lとした。このスラリーをオートクレーブに仕込み、加
熱処理温度100℃、加熱処理時間96時間で水熱処理
した。上記処理の処理条件を表1にまとめた。反応終了
後、スラリーを濾過、水洗し、100℃で乾燥させた
後、得られた粉末のX線回折パターンを測定したとこ
ろ、リチウムマンガン複合酸化物と同様のパターンであ
ることが確認された。また、SEM像観察により球状の
二次粒子であることが確認された。本実施例の一次粒子
の平均粒子径及び二次粒子の形状、平均粒子径、比表面
積、粒子の状態を表2に示した。
Example 1 Secondary particles formed by aggregating primary particles were added to a slurry of manganese carbonate having an average particle diameter of 2 μm under a nitrogen stream by adding a sodium hydroxide solution to neutralize the manganese hydroxide obtained. The slurry was oxidized while blowing air into the slurry to obtain a manganese oxyhydroxide cake. The average particle size of the secondary particles of the manganese oxyhydroxide was 2 μm. 0.5 mol of the above manganese oxyhydroxide was mixed with 10 mol of lithium hydroxide, and ion-exchanged water was added to this mixture to make a total amount of 1 mol.
L. This slurry was charged into an autoclave and subjected to hydrothermal treatment at a heat treatment temperature of 100 ° C. and a heat treatment time of 96 hours. Table 1 summarizes the processing conditions of the above processing. After the completion of the reaction, the slurry was filtered, washed with water, and dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was similar to that of the lithium manganese composite oxide. In addition, it was confirmed by SEM image observation that the particles were spherical secondary particles. Table 2 shows the average particle size of the primary particles, the shape of the secondary particles, the average particle size, the specific surface area, and the state of the particles in this example.

【0043】上記平均粒子径及び上記比表面積は、下記
の方法により測定した。平均粒子径の測定 走査型電子顕微鏡(JSM−840F、日本電子社製)
を用いて撮影し、電子顕微鏡写真から、任意の200個
の一次粒子を選び出し、その長径の加重平均を平均粒径
とした。比表面積の測定 表面積測定装置(Monosorb、Quontach
rome社製)を用いて測定した。
The average particle size and the specific surface area are as follows:
Was measured according to the method described above.Measurement of average particle size  Scanning electron microscope (JSM-840F, manufactured by JEOL Ltd.)
, And from the electron micrograph, any 200
Primary particles and select the weighted average of their major diameters as the average particle size
AndMeasurement of specific surface area  Surface area measurement device (Monosorb, Quantach)
Rome).

【0044】実施例2 マンガンとコバルトをモル比で0.9:0.1の比率で
混合した炭酸塩を用いる他は実施例1と同様の方法で、
オキシ水酸化マンガン(Mn0.90Co0.10OOH)を得
た。得られたオキシ水酸化マンガンは―次粒子が集合し
た実質的に球状の二次粒子であり、二次粒子の平均粒子
径は5μmであった。上記オキシ水酸化マンガン1モル
に水酸化リチウム10モルを混合し、この混合物にイオ
ン交換水を加え全量を1Lとした。このスラリーをオー
トクレーブに仕込み、加熱処理温度120℃、加熱処理
時間48時間で水熱処理した。上記処理の処理条件を表
1にまとめた。反応終了後、スラリーを濾過、水洗し、
100℃で乾燥させた後、得られた粉末のX線回折パタ
ーンを測定したところ、リチウムマンガン複合酸化物と
同様のパターンであることが確認された。実施例1と同
様の測定を行い、結果を表2に示した。
Example 2 A method similar to that of Example 1 was used except that a carbonate in which manganese and cobalt were mixed at a molar ratio of 0.9: 0.1 was used.
Manganese oxyhydroxide (Mn 0.90 Co 0.10 OOH) was obtained. The obtained manganese oxyhydroxide was substantially spherical secondary particles in which -next particles were aggregated, and the average particle diameter of the secondary particles was 5 µm. One mole of the above manganese oxyhydroxide was mixed with 10 moles of lithium hydroxide, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged into an autoclave and subjected to hydrothermal treatment at a heat treatment temperature of 120 ° C. and a heat treatment time of 48 hours. Table 1 summarizes the processing conditions of the above processing. After the completion of the reaction, the slurry was filtered, washed with water,
After drying at 100 ° C., when the X-ray diffraction pattern of the obtained powder was measured, it was confirmed that the pattern was similar to that of the lithium manganese composite oxide. The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0045】実施例3 マンガンと鉄をモル比で0.8:0.2の比率で混合し
た炭酸塩を用いる他は実施例1と同様の方法で、オキシ
水酸化マンガン(Mn0.80Fe0.20OOH)を得た。得
られたオキシ水酸化マンガンは一次粒子が集合した実質
的に球状の二次粒子であり、二次粒子の平均粒子径は1
0μmであった。上記オキシ水酸化マンガン1モルに水
酸化リチウム5モルを混合し、この混合物にイオン交換
水を加え全量を1Lとした。このスラリーをオートクレ
ーブに仕込み、加熱処理温度150℃、加熱処理時間2
4時間で水熱処理した。上記処理の処理条件を表1にま
とめた。反応終了後、スラリーを濃過、水洗し、100
℃で乾燥させた後、得られた粉末のX線回折パターンを
測定したところ、リチウムマンガン複合酸化物と同様の
パターンであることが確認された。実施例1と同様の測
定を行い、結果を表2に示した。
Example 3 Manganese oxyhydroxide (Mn 0.80 Fe 0.20 OOH) was prepared in the same manner as in Example 1 except that a carbonate in which manganese and iron were mixed in a molar ratio of 0.8: 0.2 was used. ) Got. The obtained manganese oxyhydroxide is substantially spherical secondary particles in which primary particles are aggregated, and the average particle diameter of the secondary particles is 1
It was 0 μm. 5 mol of lithium hydroxide was mixed with 1 mol of the above manganese oxyhydroxide, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged into an autoclave, and the heat treatment temperature was 150 ° C.
Hydrothermal treatment was performed for 4 hours. Table 1 summarizes the processing conditions of the above processing. After the completion of the reaction, the slurry was concentrated and washed with water,
After drying at ℃, the obtained powder was measured for X-ray diffraction pattern, and it was confirmed that the pattern was similar to that of the lithium manganese composite oxide. The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0046】実施例4 マンガンとニッケルをモル比で0.95:0.05の比
率で混合した炭酸塩を用いる他は実施例1と同様の方法
で、オキシ水酸化マンガン(Mn0.95Ni0.05OOH)
を得た。得られたオキシ水酸化マンガンは一次粒子が集
合した実質的に球状の二次粒子であり、二次粒子の平均
粒子径は10μmであった。上記オキシ水酸化マンガン
3モルに水酸化リチウム6モルを混合し、この混合物に
イオン交換水を加え全量を1Lとした。このスラリーを
オートクレーブに仕込み、加熱処理温度200℃、加熱
処理時間4時間で水熱処理した。上記処理の処理条件を
表1にまとめた。反応終了後、スラリーを濾過、水洗
し、100℃で乾燥させた後、得られた粉末のX線回折
パターンを測定したところ、リチウムマンガン複合酸化
物と同様のパターンであることが確認された。実施例1
と同様の測定を行い、結果を表2に示した。
Example 4 Manganese oxyhydroxide (Mn 0.95 Ni 0.05 OOH) was prepared in the same manner as in Example 1 except that a carbonate in which manganese and nickel were mixed at a molar ratio of 0.95: 0.05 was used. )
I got The obtained manganese oxyhydroxide was substantially spherical secondary particles in which primary particles were aggregated, and the average particle diameter of the secondary particles was 10 μm. 6 mol of lithium hydroxide was mixed with 3 mol of the above manganese oxyhydroxide, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged into an autoclave and subjected to hydrothermal treatment at a heat treatment temperature of 200 ° C. and a heat treatment time of 4 hours. Table 1 summarizes the processing conditions of the above processing. After the completion of the reaction, the slurry was filtered, washed with water, and dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was similar to that of the lithium manganese composite oxide. Example 1
The same measurements as those described above were performed, and the results are shown in Table 2.

【0047】実施例5 マンガンとバナジウムをモル比で0.98:0.02の
比率で混合した炭酸塩を用いる他は実施例1と同様の方
法で、オキシ水酸化マンガン(Mn0.980.02OOH)
を得た。得られたオキシ水酸化マンガンは、一次粒子が
集合した実質的に球状の二次粒水酸化マンガンを得た。
得られたオキシ水酸化マンガンは一次粒子が集合した実
質的に球状の二次粒子であり、二次粒子の平均粒子径は
50μmであった。上記オキシ水酸化マンガン5モルに
水酸化リチウム6モルを混合し、この混合物にイオン交
換水を加え全量を1Lとした。このスラリーをオートク
レーブに仕込み、加熱処理温度200℃、加熱処理時間
24時間で水熱処理した。上記処理の処理条件を表1に
まとめた。反応終了後、スラリーを濾過、水洗し、10
0℃で乾燥させた後、得られた粉末のX線回折パターン
を測定したところ、リチウムマンガン複合酸化物と同様
のパターンであることが確認された。実施例1と同様の
測定を行い、結果を表2に示した。
Example 5 Manganese oxyhydroxide (Mn 0.98 V 0.02 OOH) was prepared in the same manner as in Example 1 except that a carbonate in which manganese and vanadium were mixed at a molar ratio of 0.98: 0.02 was used. )
I got The obtained manganese oxyhydroxide obtained a substantially spherical secondary particle manganese hydroxide in which primary particles were aggregated.
The obtained manganese oxyhydroxide was substantially spherical secondary particles in which primary particles were aggregated, and the average particle diameter of the secondary particles was 50 μm. 6 mol of lithium hydroxide was mixed with 5 mol of the above manganese oxyhydroxide, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged into an autoclave and subjected to hydrothermal treatment at a heat treatment temperature of 200 ° C. for a heat treatment time of 24 hours. Table 1 summarizes the processing conditions of the above processing. After completion of the reaction, the slurry was filtered, washed with water, and washed with water.
After drying at 0 ° C., the X-ray diffraction pattern of the obtained powder was measured, and it was confirmed that the powder had the same pattern as that of the lithium manganese composite oxide. The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0048】実施例6 実施例4で得られたリチウムマンガン複合酸化物粉末1
0gをアルミナルツボ中に入れ、電気炉中、空気雰囲気
で、150℃、10時間乾式加熱を行った。上記処理の
処理条件を表1にまとめた。得られた紛末は、融着のな
い粉末で、X線回折パターンを測定したところ、リチウ
ムマンガン複合酸化物と同様のパターンであることが確
認された。実施例1と同様の測定を行い、結果を表2に
示した。
Example 6 Lithium-manganese composite oxide powder 1 obtained in Example 4
0 g was placed in an alumina crucible, and was dry-heated in an electric furnace at 150 ° C. for 10 hours in an air atmosphere. Table 1 summarizes the processing conditions of the above processing. The obtained powder was a powder without fusion, and the X-ray diffraction pattern was measured. As a result, it was confirmed that the powder had the same pattern as that of the lithium manganese composite oxide. The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0049】実施例7 実施例1で得られたリチウムマンガン複合酸化物粉末1
0gをアルミナルツボ中に入れ、電気炉中、窒素雰囲気
で、450℃、15時間乾式加熱を行った。上記処理の
処理条件を表1にまとめた。得られた粉末は、融着のな
い粉末で、X線回折パターンを測定したところ、リチウ
ムマンガン複合酸化物と同様のパターンであることが確
認された。実施例1と同様の測定を行い、結果を表2に
示した。
Example 7 Lithium-manganese composite oxide powder 1 obtained in Example 1
0 g was placed in an alumina crucible, and was dry-heated at 450 ° C. for 15 hours in a nitrogen atmosphere in an electric furnace. Table 1 summarizes the processing conditions of the above processing. The X-ray diffraction pattern of the obtained powder without fusion was measured, and it was confirmed that the obtained powder had the same pattern as that of the lithium manganese composite oxide. The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0050】実施例8 実施例1と同様に方法で、オキシ水酸化マンガン(Mn
OOH)を得た。得られたオキシ水酸化マンガンは、一
次粒子が集合した実質的に球状の二次粒子であり、二次
粒子の平均粒径は、10μmであった。このオキシ水酸
化マンガン3モルに水酸化リチウム6モルを混合し、こ
の混合物にイオン交換水を加え、全量を1Lとした。こ
のスラリーをオートクレーブに仕込み、加熱処理温度2
00℃、加熱処理時間4時間で水熱処理した。上記処理
の処理条件を表1にまとめた。反応終了後、スラリーを
濾過後、水洗し、100℃で乾燥させた後、得られた粉
末のX線回折パターンを測定したところ、リチウムマン
ガン複合酸化物と同様のパターンであることが確認され
た。実施例1と同様の測定を行い、結果を表2に示し
た。
Example 8 Manganese oxyhydroxide (Mn) was prepared in the same manner as in Example 1.
OOH). The obtained manganese oxyhydroxide was substantially spherical secondary particles in which primary particles were aggregated, and the average particle size of the secondary particles was 10 μm. 6 mol of lithium hydroxide was mixed with 3 mol of this manganese oxyhydroxide, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged into an autoclave and heated at a heat treatment temperature of 2
Hydrothermal treatment was performed at 00 ° C. for 4 hours. Table 1 summarizes the processing conditions of the above processing. After the completion of the reaction, the slurry was filtered, washed with water, and dried at 100 ° C., and the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was similar to that of the lithium manganese composite oxide. . The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0051】実施例9 マンガンとアルミニウムをモル比で0.95:0.05
となるような割合で混合した炭酸塩を用いたこと以外
は、実施例1と同様にして、オキシ水酸化マンガン(M
0.95Al0.05OOH)を得た。得られたオキシ水酸化
マンガンは、一次粒子が集合した実質的に球状の二次粒
子であり、粒状物粒子の平均粒径は、30μmであっ
た。このオキシ水酸化マンガン5モルに水酸化リチウム
6モルを混合し、この混合物にイオン交換水を加え、全
量を1Lとした。このスラリーをオートクレーブに仕込
み、加熱温度200℃、加熱処理時間12時間で水熱処
理した。上記の処理条件を表1にまとめた。反応終了
後、スラリーを濾過、水洗し、100℃で乾燥させた
後、得られた粉末のX線回折パターンを測定したとこ
ろ、リチウムマンガン複合酸化物と同様のパターンであ
ることが確認された。実施例1と同様の測定を行い、結
果を表2に示した。
Example 9 Manganese and aluminum were mixed at a molar ratio of 0.95: 0.05.
Manganese oxyhydroxide (M) was prepared in the same manner as in Example 1 except that a carbonate mixed at a ratio such that
n 0.95 Al 0.05 OOH). The obtained manganese oxyhydroxide was substantially spherical secondary particles in which primary particles were aggregated, and the average particle diameter of the particulate particles was 30 μm. 6 mol of lithium hydroxide was mixed with 5 mol of the manganese oxyhydroxide, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged into an autoclave and subjected to hydrothermal treatment at a heating temperature of 200 ° C. for a heating time of 12 hours. Table 1 summarizes the above processing conditions. After the completion of the reaction, the slurry was filtered, washed with water, and dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was similar to that of the lithium manganese composite oxide. The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0052】実施例10 マンガンとクロムをモル比で0.95:0.05となる
ような割合で混合した炭酸塩を用いたこと以外は、実施
例1と同様にして、オキシ水酸化マンガン(Mn 0.95
0.05OOH)を得た。得られたオキシ水酸化マンガン
は、一次粒子が集合した実質的に球状の二次粒子であ
り、粒状物粒子の平均粒径は、80μmであった。この
オキシ水酸化マンガン5モルに水酸化リチウム6モルを
混合し、この混合物にイオン交換水を加え、全量を1L
とした。このスラリーをオートクレーブに仕込み、加熱
温度200℃、加熱処理時間12時間で水熱処理した。
上記の処理条件を表1にまとめた。反応終了後、スラリ
ーを濾過、水洗し、100℃で乾燥させた後、得られた
粉末のX線回折パターンを測定したところ、リチウムマ
ンガン複合酸化物と同様のパターンであることが確認さ
れた。実施例1と同様の測定を行い、結果を表2に示し
た。
Example 10 The molar ratio of manganese to chromium was 0.95: 0.05.
Except for using carbonates mixed in such proportions
Manganese oxyhydroxide (Mn) was prepared in the same manner as in Example 1. 0.95C
r0.05OOH). Manganese oxyhydroxide obtained
Is a substantially spherical secondary particle composed of aggregated primary particles.
The average particle size of the granular particles was 80 μm. this
6 moles of lithium hydroxide to 5 moles of manganese oxyhydroxide
Mix, add ion-exchanged water to this mixture, and add 1 L
And Charge this slurry in an autoclave and heat
Hydrothermal treatment was performed at a temperature of 200 ° C. and a heat treatment time of 12 hours.
Table 1 summarizes the above processing conditions. After the reaction, slurry
After filtration, washing with water and drying at 100 ° C., the obtained
When the X-ray diffraction pattern of the powder was measured,
It is confirmed that the pattern is similar to that of gangue composite oxide.
Was. The same measurement as in Example 1 was performed, and the results are shown in Table 2.
Was.

【0053】比較例1 (第33回電池討論会(1992)講演要旨集第15〜
16頁の追試)市販のオキシ水酸化マンガン1モルと水
酸化リチウム1モルを乾式で混合した。上記混合物をア
ルミナルツボ中に入れ、電気炉中、窒素雰囲気で、45
0℃、15時間乾式焼成処理を行った。上記処理の処理
条件を表1にまとめた。得られた粉末は、X線回折パタ
ーンを測定したところ、リチウムマンガン複合酸化物の
パターンであったが、この粉末は粒子同士が互いに融着
した固い塊状物であった。実施例1と同様の測定を行
い、結果を表2に示した。
Comparative Example 1 (Abstracts of the 33rd Battery Symposium (1992) Lectures, No. 15-
Additional test on page 16) 1 mol of commercially available manganese oxyhydroxide and 1 mol of lithium hydroxide were mixed in a dry system. The above mixture was placed in an alumina crucible and placed in an electric furnace in a nitrogen atmosphere at 45 ° C.
Dry baking treatment was performed at 0 ° C. for 15 hours. Table 1 summarizes the processing conditions of the above processing. When the obtained powder was measured for its X-ray diffraction pattern, it was found to be a lithium manganese composite oxide pattern. However, this powder was a solid mass in which particles were fused to each other. The same measurement as in Example 1 was performed, and the results are shown in Table 2.

【0054】比較例2 市販のオキシ水酸化マンガン3モルに水酸化リチウム6
モルを混合し、この混合物にイオン交換水を加え、全量
を1Lとした。このスラリーをオートクレーブに仕込
み、加熱処理温度250℃、加熱処理時間4時間で水熱
処理した。上記の処理条件を表1にまとめた。反応終了
後、スラリーを濾過、水洗し、100℃で乾燥させた
後、得られた粉末のX線回折パターンを測定したとこ
ろ、リチウムマンガン複合酸化物と同様のパターンであ
ることが確認されたが、粉末は二次粒子を形成していな
い一次粒子同士が互いにばらばらに存在する粉末状の粒
子であった。実施例1と同様の測定を行い、結果を表2
に示した。
Comparative Example 2 Lithium hydroxide 6 was added to 3 mol of commercially available manganese oxyhydroxide.
The moles were mixed, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged in an autoclave and subjected to hydrothermal treatment at a heat treatment temperature of 250 ° C. for a heat treatment time of 4 hours. Table 1 summarizes the above processing conditions. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was similar to that of the lithium manganese composite oxide. The powder was powdery particles in which primary particles that did not form secondary particles were present separately. The same measurement as in Example 1 was performed.
It was shown to.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】実施例6で得られたリチウムマンガン複合
酸化物の電子顕微鏡写真を図1に示した。また、実施例
6で得られたリチウムマンガン複合酸化物のX線回折チ
ャートを図2に示した。比較例1で得られたリチウムマ
ンガン複合酸化物の電子顕微鏡写真を図3に示した。
An electron micrograph of the lithium manganese composite oxide obtained in Example 6 is shown in FIG. FIG. 2 shows an X-ray diffraction chart of the lithium manganese composite oxide obtained in Example 6. An electron micrograph of the lithium manganese composite oxide obtained in Comparative Example 1 is shown in FIG.

【0058】実施例11 リチウムイオン二次電池の製
造(1) 実施例6で得られたリチウムマンガン複合酸化物、アセ
チレンブラック、及び、テフロンを、87:6.5:
6.5の重量比でよく混練し、清浄なステンレスメッシ
ュ(20mmφ)に均一に塗布し、その後、200kg
/cm2 で圧着した後、減圧下、150℃で約17時間
乾燥して、正極を作製した。負極として、金属リチウム
箔(20mmφ、0.2mm厚み)を、セパレーターと
して不織布及びポリプロピレンマイクロフィルムを用い
た。また、電解液は、1MのLiClO4 のプロピレン
カーボネート溶液と1,2−ジメトキシエタンとの混合
液(1:1)で水分を20ppm以下にしたものを、セ
パレーターに含浸して用いた。これらの構成要素を図4
に示した電池に組み込んだ。
Embodiment 11Manufacture of lithium ion secondary batteries
Construction (1)  The lithium manganese composite oxide obtained in Example 6
Tile black and Teflon, 87: 6.5:
Well kneaded at a weight ratio of 6.5, clean stainless steel mesh
(20mmφ) evenly, then 200kg
/ CmTwo After pressure bonding at 150 ° C under reduced pressure for about 17 hours
After drying, a positive electrode was prepared. Metallic lithium as negative electrode
Foil (20mmφ, 0.2mm thickness) is used as separator
Using nonwoven fabric and polypropylene microfilm
Was. The electrolyte is 1M LiClO.Four Propylene
Mixing carbonate solution with 1,2-dimethoxyethane
Liquid (1: 1) with water content of 20 ppm or less
It was used by impregnating in a parator. These components are shown in FIG.
Was assembled in the battery shown in (1).

【0059】上記方法により作製した電池を用いて、
0.2mA/cm2 の一定電流で、電池電圧が4.3〜
2.0Vの間で充放電を繰り返した。この正極材フィル
ムの正極活物質の密度、充放電サイクルの3回目の単位
体積当たりの放電容量、単位重量当たりの放電容量を表
3に示した。
Using the battery produced by the above method,
With a constant current of 0.2 mA / cm 2 , the battery voltage is 4.3 to
Charge and discharge were repeated between 2.0V. Table 3 shows the density of the positive electrode active material, the discharge capacity per unit volume in the third charge / discharge cycle, and the discharge capacity per unit weight of the positive electrode material film.

【0060】実施例12 リチウムイオン二次電池の製
造(2) 実施例8で得られたリチウムマンガン複合酸化物を用い
たこと以外は実施例11と同様にして、二次電池を製造
した。製造した電池を用いて、0.2mA/cm 2 の一
定電流で、電池電圧が4.3〜2.0Vの間で充放電を
繰り返した。結果を表3に示した。
Embodiment 12Manufacture of lithium ion secondary batteries
Construction (2)  Using the lithium-manganese composite oxide obtained in Example 8
A secondary battery was manufactured in the same manner as in Example 11 except that
did. Using the manufactured battery, 0.2 mA / cm Two One
Charge and discharge at a constant current when the battery voltage is between 4.3 and 2.0V
Repeated. The results are shown in Table 3.

【0061】比較例3 リチウムイオン二次電池の製
造(3) 比較例1で得られたリチウムマンガン複合酸化物を用い
たこと以外は実施例11と同様にして、二次電池を製造
した。製造した電池を用いて、0.2mA/cm 2 の一
定電流で、電池電圧が4.3〜2.0Vの間で充放電を
繰り返した。結果を表3に示した。
Comparative Example 3Manufacture of lithium ion secondary batteries
Construction (3)  Using the lithium manganese composite oxide obtained in Comparative Example 1
A secondary battery was manufactured in the same manner as in Example 11 except that
did. Using the manufactured battery, 0.2 mA / cm Two One
Charge and discharge at a constant current when the battery voltage is between 4.3 and 2.0V
Repeated. The results are shown in Table 3.

【0062】比較例4 リチウムイオン二次電池の製
造(4) 比較例2で得られたリチウムマンガン複合酸化物を用い
たこと以外は実施例11と同様にして、二次電池を製造
した。製造した電池を用いて、0.2mA/cm 2 の一
定電流で、電池電圧が4.3〜2.0Vの間で充放電を
繰り返した。結果を表3に示した。
Comparative Example 4Manufacture of lithium ion secondary batteries
Structure (4)  Using the lithium manganese composite oxide obtained in Comparative Example 2
A secondary battery was manufactured in the same manner as in Example 11 except that
did. Using the manufactured battery, 0.2 mA / cm Two One
Charge and discharge at a constant current when the battery voltage is between 4.3 and 2.0V
Repeated. The results are shown in Table 3.

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【発明の効果】本発明は上述のとおりであるので、粒度
分布が狭く、比表面積が大きく、かつ、均一組成であ
り、リチウムイオン二次電池の正極活物質として好適に
使用することができる粒子状組成物を効率よく得ること
ができる。また、本発明の粒子状組成物を正極活物質と
して用いたリチウムイオン二次電池は、多くの電気量を
取り出すことができ、電子機器、医療機器等に好適に使
用することができる。本発明は、仮焼法ではなく水熱法
を適用したことにより独特の効果を奏することができる
ようになったものである。
According to the present invention, as described above, the particles having a narrow particle size distribution, a large specific surface area, and a uniform composition can be suitably used as a positive electrode active material of a lithium ion secondary battery. The composition can be obtained efficiently. Further, a lithium ion secondary battery using the particulate composition of the present invention as a positive electrode active material can extract a large amount of electricity and can be suitably used for electronic devices, medical devices, and the like. In the present invention, a unique effect can be obtained by applying the hydrothermal method instead of the calcining method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例6の粒子状組成物の電子顕微鏡写真であ
る。
FIG. 1 is an electron micrograph of the particulate composition of Example 6.

【図2】実施例6の粒子状組成物のX線回折チャートで
ある。縦軸は、X線強度(cps)であり、横軸は、回
折角(2θ)である。
FIG. 2 is an X-ray diffraction chart of the particulate composition of Example 6. The vertical axis is the X-ray intensity (cps), and the horizontal axis is the diffraction angle (2θ).

【図3】比較例1で得られた塊状物粒子の電子顕微鏡写
真である。
FIG. 3 is an electron micrograph of the lump particles obtained in Comparative Example 1.

【図4】実施例11のリチウムイオン二次電池の構成を
表す断面図である。
FIG. 4 is a sectional view illustrating a configuration of a lithium ion secondary battery of Example 11.

【符号の説明】[Explanation of symbols]

1 リード線 2 正極集電用メッシュ 3 正極 4 セパレーター 5 負極 6 負極集電用メッシュ DESCRIPTION OF SYMBOLS 1 Lead wire 2 Positive electrode collector mesh 3 Positive electrode 4 Separator 5 Negative electrode 6 Negative electrode collector mesh

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子が集合してなる二次粒子からな
る粒子状組成物であって、前記一次粒子は、下記一般式
(1); LiMn1-xxy (1) (式中、xは、0〜0.25の有理数を表す。yは、
1.875〜2.25の有理数を表す。Aは、B、M
g、Al、Si、Sc、Ti、V、Cr、Fe、Co、
Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、R
u、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta
及びPbからなる群より選択される少なくとも1種の元
素を表す。)で表されるリチウムマンガン複合酸化物か
らなる粒子であり、前記一次粒子は、実質的に球状であ
り、前記一次粒子の平均粒子径は、0.1〜5μmであ
り、前記二次粒子は、実質的に球状であり、前記二次粒
子の平均粒子径は、1〜100μmであり、前記二次粒
子の比表面積は、0.1〜10m2 /gであることを特
徴とする粒子状組成物。
1. A particulate composition comprising secondary particles obtained by assembling primary particles, wherein the primary particles are represented by the following general formula (1): LiMn 1-x A x O y (1) (formula 1) Wherein x represents a rational number from 0 to 0.25, and y represents
Represents a rational number from 1.875 to 2.25. A is B, M
g, Al, Si, Sc, Ti, V, Cr, Fe, Co,
Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, R
u, Sn, Sb, La, Ce, Pr, Nd, Hf, Ta
And at least one element selected from the group consisting of Pb and Pb. ), Wherein the primary particles are substantially spherical, the average particle size of the primary particles is 0.1 to 5 μm, and the secondary particles are The secondary particles have an average particle diameter of 1 to 100 μm, and the specific surface area of the secondary particles is 0.1 to 10 m 2 / g. Composition.
【請求項2】 オキシ水酸化マンガンからなる粒子状組
成物を、水酸化リチウム水溶液中に分散させた後、加熱
処理を行うことよりなる請求項1記載の粒子状組成物の
製造方法であって、前記オキシ水酸化マンガンからなる
粒子状組成物は、一次粒子が集合してなる二次粒子から
なる粒子状組成物であり、前記一次粒子は、下記一般式
(2); Mn1-xxy H (2) (式中、xは、0〜0.25の有理数を表す。yは、
1.875〜2.25の有理数を表す。Aは、B、M
g、Al、Si、Sc、Ti、V、Cr、Fe、Co、
Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、R
u、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta
及びPbからなる群より選択される少なくとも1種の元
素を表す。)で表されるオキシ水酸化マンガンからなる
ものであり、前記オキシ水酸化マンガンからなる粒子状
組成物は、B、Mg、Al、Si、Sc、Ti、V、C
r、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、
Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、N
d、Hf、Ta及びPbからなる群より選択される少な
くとも1種の元素を、マンガン1g原子に対し、0〜1
/3g原子含有するものであることを特徴とする粒子状
組成物の製造方法。
2. The method for producing a particulate composition according to claim 1, wherein the particulate composition comprising manganese oxyhydroxide is dispersed in an aqueous solution of lithium hydroxide and then subjected to heat treatment. The particulate composition composed of manganese oxyhydroxide is a particulate composition composed of secondary particles obtained by assembling primary particles, and the primary particles have the following general formula (2): Mn 1-x A x O y H (2) (where x represents a rational number from 0 to 0.25; y is
Represents a rational number from 1.875 to 2.25. A is B, M
g, Al, Si, Sc, Ti, V, Cr, Fe, Co,
Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, R
u, Sn, Sb, La, Ce, Pr, Nd, Hf, Ta
And at least one element selected from the group consisting of Pb and Pb. ), And the particulate composition comprising manganese oxyhydroxide includes B, Mg, Al, Si, Sc, Ti, V, and C.
r, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr,
Nb, Mo, Ru, Sn, Sb, La, Ce, Pr, N
At least one element selected from the group consisting of d, Hf, Ta, and Pb is added in an amount of 0 to 1 with respect to 1 g of manganese.
A method for producing a particulate composition, characterized in that the composition contains 3 g atoms.
【請求項3】 水酸化リチウム水溶液中に分散されたオ
キシ水酸化マンガンからなる粒子状組成物の濃度が、
0.05〜10モル/Lである請求項2記載の粒子状組
成物の製造方法。
3. The concentration of a particulate composition comprising manganese oxyhydroxide dispersed in an aqueous lithium hydroxide solution,
The method for producing a particulate composition according to claim 2, wherein the amount is 0.05 to 10 mol / L.
【請求項4】 水酸化リチウムとオキシ水酸化マンガン
とのモル比が、(水酸化リチウム)/(オキシ水酸化マ
ンガン)=1/1〜20/1である請求項2又は3記載
の粒子状組成物の製造方法。
4. The particulate material according to claim 2, wherein the molar ratio of lithium hydroxide to manganese oxyhydroxide is (lithium hydroxide) / (manganese oxyhydroxide) = 1/1 to 20/1. A method for producing the composition.
【請求項5】 加熱処理の温度が、100〜215℃で
ある請求項2、3又は4記載の粒子状組成物の製造方
法。
5. The method for producing a particulate composition according to claim 2, wherein the temperature of the heat treatment is 100 to 215 ° C.
【請求項6】 請求項1記載の粒子状組成物の製造方法
であって、請求項2、3、4又は5により得られた粒子
状組成物を、更に、乾式焼成処理することを特徴とする
粒子状組成物の製造方法。
6. The method for producing a particulate composition according to claim 1, wherein the particulate composition obtained according to claim 2, 3, 4 or 5 is further subjected to a dry calcination treatment. A method for producing a particulate composition.
【請求項7】 請求項1記載の粒子状組成物を、正極活
物質として用いてなることを特徴とするリチウムイオン
二次電池。
7. A lithium ion secondary battery comprising the particulate composition according to claim 1 as a positive electrode active material.
JP10102307A 1997-04-14 1998-04-14 Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery Expired - Fee Related JP2870741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10102307A JP2870741B2 (en) 1997-04-14 1998-04-14 Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-113363 1997-04-14
JP11336397 1997-04-14
JP10102307A JP2870741B2 (en) 1997-04-14 1998-04-14 Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH111323A true JPH111323A (en) 1999-01-06
JP2870741B2 JP2870741B2 (en) 1999-03-17

Family

ID=26443022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10102307A Expired - Fee Related JP2870741B2 (en) 1997-04-14 1998-04-14 Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2870741B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2002208401A (en) * 2001-01-09 2002-07-26 Toshiba Electronic Engineering Corp Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
JP2003002654A (en) * 2001-06-21 2003-01-08 Naoaki Kumagai Method for producing layered lithium manganese complex oxide and lithium secondary battery
JP2003002664A (en) * 2001-06-13 2003-01-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese composite oxide
JP2003068299A (en) * 2001-08-24 2003-03-07 Yuasa Corp Positive electrode active material for use in lithium secondary battery and lithium secondary battery using the same
US6623890B2 (en) * 2000-03-03 2003-09-23 Nissan Motor Co., Ltd. Positive electrode material and battery for nonaqueous electrolyte secondary battery
JP2004259508A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2004538610A (en) * 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
EP1553645A1 (en) * 2002-07-23 2005-07-13 Nikko Materials Co., Ltd. Method for producing positive plate material for lithium secondary cell
WO2005081338A1 (en) * 2004-02-20 2005-09-01 Ferro Gmbh Positive active electrode material with improved cycling stability
JP2005235416A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
JP2006089320A (en) * 2004-09-22 2006-04-06 Univ Kanagawa Lithium manganese-based multiple oxide powder, method of manufacturing the same, positive electrode active material for lithium secondary cell and lithium secondary cell
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2009167100A (en) * 2005-03-22 2009-07-30 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
JP2011051855A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd Method for producing ceramic material
JP2011073963A (en) * 2009-09-03 2011-04-14 Ngk Insulators Ltd Ceramic material and use thereof
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2011225450A (en) * 2011-08-01 2011-11-10 Sakai Chem Ind Co Ltd Element-substituted lithium-manganese composite oxide particle composition, method for producing the composition, and secondary battery using the composition
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2013033698A (en) * 2010-09-02 2013-02-14 Sumitomo Chemical Co Ltd Method for manufacturing positive electrode active material, and positive electrode active material
US8841033B2 (en) 2009-09-03 2014-09-23 Ngk Insulators, Ltd. Ceramic material and preparation method therefor
US9287554B2 (en) 2010-09-02 2016-03-15 Sumitomo Chemical Company, Limited Positive electrode active material
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
CN107324403A (en) * 2017-08-03 2017-11-07 郑州科技学院 A kind of preparation method of submicron order sea urchin shape cobalt manganic acid lithium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611188B2 (en) 2000-03-03 2005-01-19 日産自動車株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001250550A (en) 2000-03-03 2001-09-14 Nissan Motor Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP3611190B2 (en) 2000-03-03 2005-01-19 日産自動車株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5051770B2 (en) * 2005-07-08 2012-10-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP4682388B2 (en) * 1999-11-05 2011-05-11 三菱化学株式会社 Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
US6623890B2 (en) * 2000-03-03 2003-09-23 Nissan Motor Co., Ltd. Positive electrode material and battery for nonaqueous electrolyte secondary battery
JP2002208401A (en) * 2001-01-09 2002-07-26 Toshiba Electronic Engineering Corp Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2002321920A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery
JP2003002664A (en) * 2001-06-13 2003-01-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese composite oxide
JP2003002654A (en) * 2001-06-21 2003-01-08 Naoaki Kumagai Method for producing layered lithium manganese complex oxide and lithium secondary battery
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP4955193B2 (en) * 2001-08-07 2012-06-20 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
JP2004538610A (en) * 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
JP2003068299A (en) * 2001-08-24 2003-03-07 Yuasa Corp Positive electrode active material for use in lithium secondary battery and lithium secondary battery using the same
JP4649801B2 (en) * 2001-08-24 2011-03-16 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
EP1553645A1 (en) * 2002-07-23 2005-07-13 Nikko Materials Co., Ltd. Method for producing positive plate material for lithium secondary cell
EP1553645A4 (en) * 2002-07-23 2008-04-09 Nikko Materials Co Ltd Method for producing positive plate material for lithium secondary cell
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004259508A (en) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP4710214B2 (en) * 2003-02-25 2011-06-29 新神戸電機株式会社 Lithium secondary battery
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
JP2005235416A (en) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery
WO2005081338A1 (en) * 2004-02-20 2005-09-01 Ferro Gmbh Positive active electrode material with improved cycling stability
JP2006089320A (en) * 2004-09-22 2006-04-06 Univ Kanagawa Lithium manganese-based multiple oxide powder, method of manufacturing the same, positive electrode active material for lithium secondary cell and lithium secondary cell
JP2009167100A (en) * 2005-03-22 2009-07-30 Nippon Chem Ind Co Ltd Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery
US9260320B2 (en) 2009-09-03 2016-02-16 Ngk Insulators, Ltd. Ceramic material and use thereof
JP2011073963A (en) * 2009-09-03 2011-04-14 Ngk Insulators Ltd Ceramic material and use thereof
US8841033B2 (en) 2009-09-03 2014-09-23 Ngk Insulators, Ltd. Ceramic material and preparation method therefor
JP2011051855A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd Method for producing ceramic material
JP2013033698A (en) * 2010-09-02 2013-02-14 Sumitomo Chemical Co Ltd Method for manufacturing positive electrode active material, and positive electrode active material
US9287554B2 (en) 2010-09-02 2016-03-15 Sumitomo Chemical Company, Limited Positive electrode active material
JP2011225450A (en) * 2011-08-01 2011-11-10 Sakai Chem Ind Co Ltd Element-substituted lithium-manganese composite oxide particle composition, method for producing the composition, and secondary battery using the composition
CN107324403A (en) * 2017-08-03 2017-11-07 郑州科技学院 A kind of preparation method of submicron order sea urchin shape cobalt manganic acid lithium

Also Published As

Publication number Publication date
JP2870741B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JP2870741B2 (en) Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
JP4161382B2 (en) Process for producing two-layer structured particulate composition
JPH101316A (en) Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
TWI322526B (en)
US7270797B2 (en) Process for producing positive electrode active material for lithium secondary battery
JPWO2007043665A1 (en) Mixture of lithium iron phosphate and carbon, electrode including the same, battery including the electrode, method for manufacturing the mixture, and method for manufacturing the battery
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
JPH1059725A (en) Particle-shaped composition, its production and lithium ion secondary battery
JP7498233B2 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery including positive electrode containing same
JP2020198195A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP4524821B2 (en) Lithium manganese composite oxide particulate composition, method for producing the same, and secondary battery
JP4441678B2 (en) Method for producing orthorhombic lithium manganese composite oxide particulate composition represented by LiMnO 2
JP7187896B2 (en) Lithium-nickel composite oxide precursor mixture and method for producing lithium-nickel composite oxide
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JP5076258B2 (en) Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries
KR101529951B1 (en) Spinel-type lithium-manganese composite oxide
JPH10162830A (en) Positive electrode active material for lithium secondary battery, and secondary battery using same
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
KR20180029735A (en) Cobalt oxide for lithium secondary battery, preparing method thereof, lithium cobalt oxide for lithium secondary battery formed from the cobalt oxide, and lithium secondary battery including positive electrode comprising the lithium cobalt oxide
JP3916119B2 (en) Lithium cobaltate and method for producing the same, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP4273568B2 (en) Lithium manganese composite oxide particulate composition and its production and application to lithium ion secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees