JP2003221234A - Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery - Google Patents

Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery

Info

Publication number
JP2003221234A
JP2003221234A JP2002290015A JP2002290015A JP2003221234A JP 2003221234 A JP2003221234 A JP 2003221234A JP 2002290015 A JP2002290015 A JP 2002290015A JP 2002290015 A JP2002290015 A JP 2002290015A JP 2003221234 A JP2003221234 A JP 2003221234A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
oxide
cobalt
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290015A
Other languages
Japanese (ja)
Other versions
JP4245888B2 (en
Inventor
Fumihiro Yonekawa
文広 米川
Hirokuni Ota
洋邦 太田
Nobuyuki Yamazaki
信幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002290015A priority Critical patent/JP4245888B2/en
Publication of JP2003221234A publication Critical patent/JP2003221234A/en
Application granted granted Critical
Publication of JP4245888B2 publication Critical patent/JP4245888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-cobalt composite oxide having excellent properties as a battery, especially as to a load, a cycling use and a safety, when used as a cathode active material for a lithium secondary battery. <P>SOLUTION: The lithium-cobalt composite oxide is prepared by dry-mixing a composite oxide represented by the general formula: Li<SB>x</SB>Co<SB>1-y</SB>Me<SB>y</SB>O<SB>2-a</SB>[wherein, Me is one or more metal elements selected from V, Cu, Zr, Zn, Mg, Al and Fe; 0.9≤x≤1.1; 0≤y≤0.01; -0.1≤a≤0.1.] and one or more metal oxides selected from Mg, Ti and Zr and heating at 200-700°C to bond the metal oxide on the surface of particles of the composite oxide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム二次電池
の正極活物質として有用なリチウムコバルト系複合酸化
物、その製造方法、これを含有するリチウム二次電池正
極活物質及び、特に負荷特性、サイクル特性及び安全性
に優れたリチウム二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a lithium cobalt-based composite oxide useful as a positive electrode active material for a lithium secondary battery, a method for producing the same, a lithium secondary battery positive electrode active material containing the same, and particularly load characteristics. The present invention relates to a lithium secondary battery having excellent cycle characteristics and safety.

【0002】[0002]

【従来の技術】近年、家庭電器においてポータブル化、
コードレス化が急速に進むに従い、ラップトップ型パソ
コン、携帯電話、ビデオカメラ等の小型電子機器の電源
としてリチウムイオン二次電池が実用化されている。こ
のリチウムイオン二次電池については、1980年に水
島等によりコバルト酸リチウムがリチウムイオン二次電
池の正極活物質として有用であるとの報告(非特許文献
1参照。)がなされて以来、リチウム系複合酸化物に関
する研究開発が活発に進められており、これまで多くの
提案がなされている。
2. Description of the Related Art In recent years, portable electric appliances have been made portable.
With the rapid progress of cordless technology, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium-ion secondary battery, since lithium cobalt oxide was reported to be useful as a positive electrode active material for a lithium-ion secondary battery by Mizushima et al. In 1980 (see Non-Patent Document 1), a lithium-based secondary battery was used. Research and development on complex oxides have been actively promoted, and many proposals have been made so far.

【0003】従来、正極活物質の高エネルギー密度化を
図る技術としては、例えばコバルト酸リチウムの組成を
Lix CoO2 (但し、1.05≦x≦1.3 )とすることに
よりリチウムリッチにしたもの(特許文献1参照。)、
逆にLix CoO2 (但し0<x≦1)とすることによ
ってコバルトリッチにしたもの(特許文献2参照。)、
Mn、W、Ni、Laなどの金属イオンをドープさせた
もの(例えば、特許文献3、特許文献4及び特許文献5
参照。)、コバルト酸リチウム中の残留Li2CO3 を1
0重量%以下とするもの(特許文献6参照。) 、Lix
CoO2(但し、0<x≦1.25)で表され、かつ電
子スピン共鳴装置によるg=2.15におけるスピン濃
度が1×1018個/g以下とするもの(特許文献7参
照。)などが提案されている。
Conventionally, as a technique for increasing the energy density of the positive electrode active material, for example, lithium cobalt oxide is made to be rich in lithium by setting the composition of lithium cobalt oxide to Lix CoO 2 (where 1.05 ≦ x ≦ 1.3) (Patent Document 1). 1)),
On the contrary, Lix CoO 2 (where 0 <x ≦ 1) is cobalt-rich (see Patent Document 2),
Those doped with metal ions such as Mn, W, Ni, and La (for example, Patent Documents 3, 4, and 5).
reference. ), The residual Li 2 CO 3 in lithium cobalt oxide is 1
Not more than 0% by weight (see Patent Document 6), Lix
CoO 2 (where 0 <x ≦ 1.25) and the spin concentration at g = 2.15 by an electron spin resonance device is 1 × 10 18 spins / g or less (see Patent Document 7). Have been proposed.

【0004】また、コバルト酸リチウム系正極活物質の
物理的特徴として粒子径を要件とするものとしては、例
えばLiCoO2 の平均粒子径10〜150μm (特許
文献8参照。)、一次粒子の平均粒径0.5μm 以下
(特許文献9参照。)、平均粒子径が2〜10μm 、粒
度分布D(25%)0.5〜10μm 、D(50%)2
〜10μm 、D(75%)3.5〜30μm (特許文献
10参照。)、10%累積粒子径3〜15μm 、50%
累積粒子径8〜35μm 、90%累積粒子径30〜80
μm の粒度分布(特許文献11参照。) 、平均粒子径2
〜9μm 、そのうち1〜9μm が全体積の60%以上
(特許文献12参照。) 等のものが提案されている。
Further, as a physical feature of the lithium cobalt oxide-based positive electrode active material, the particle diameter is required, for example, the average particle diameter of LiCoO 2 is 10 to 150 μm (see Patent Document 8), the average particle of the primary particles. Diameter 0.5 μm or less (see Patent Document 9), average particle diameter 2 to 10 μm, particle size distribution D (25%) 0.5 to 10 μm, D (50%) 2
-10 μm, D (75%) 3.5-30 μm (see Patent Document 10), 10% cumulative particle diameter 3-15 μm, 50%
Cumulative particle size 8 to 35 μm, 90% cumulative particle size 30 to 80
Particle size distribution of μm (see Patent Document 11), average particle size 2
.About.9 .mu.m, of which 1 to 9 .mu.m is 60% or more of the total volume (see Patent Document 12).

【0005】また、特許文献13(特開平8−2361
14号公報)には、リチウム遷移金属複合酸化物を活物
質とする正極を備えるリチウム二次電池において、前記
正極の表面がBeO、MgO、CaO、SrO、Ba
O、ZnO、Al23、CeO 2、As23又はこれら
の2種以上の混合物からなる被覆が形成されたものを正
極とするリチウム二次電池が提案されている。しかしな
がら、特許文献13(特開平8−236114号公報)
は、リチウム遷移金属複合酸化物、導電剤、結着剤とを
混合した正極合剤を加熱処理して得られる正極を前記金
属酸化物で被覆処理するものであり、正極活物質自体を
被覆処理したものではない。
Further, Patent Document 13 (Japanese Patent Laid-Open No. 8-2361)
14), a lithium-transition metal composite oxide is used as an active material.
In a lithium secondary battery provided with a positive electrode having
The surface of the positive electrode is BeO, MgO, CaO, SrO, Ba
O, ZnO, Al2O3, CeO 2, As2O3Or these
If a coating consisting of a mixture of two or more of
A lithium secondary battery having a pole has been proposed. But
Gara, Patent Document 13 (JP-A-8-236114)
Contains a lithium-transition metal composite oxide, a conductive agent, and a binder.
The positive electrode obtained by heating the mixed positive electrode mixture is treated with the gold
The positive electrode active material itself is coated with a group oxide.
It is not coated.

【0006】また、特許文献14(特開平11−165
66号公報)には、正極活物質の周りにスパッタ法、無
電解めっき法、或いは、機械的な混合により融合させて
Ti、Al、Sn、Bi、Cu、Si、Ga、W、Z
r、B、Moから選ばれる少なくとも1種を含む金属及
びまたはこれらの複数個の組み合わせにより得られる金
属間化合物、及びまたは酸化物を被覆したものを正極活
物質として用いた電池が提案されている。しかしなが
ら、特許文献14(特開平11−16566号公報)の
機械的な混合により溶融させて得られるものを正極活物
質として用いたリチウム二次電池に至っても、未だ十分
に満足できる負荷特性、サイクル特性、更には安全性を
実現することができない。
Further, Patent Document 14 (Japanese Patent Laid-Open No. 11-165)
No. 66), Ti, Al, Sn, Bi, Cu, Si, Ga, W, and Z are formed by fusion around the positive electrode active material by a sputtering method, an electroless plating method, or mechanical mixing.
A battery has been proposed in which a metal containing at least one selected from r, B, and Mo and / or an intermetallic compound obtained by combining a plurality of these and / or an oxide-coated one is used as a positive electrode active material. . However, even if a lithium secondary battery using a material obtained by melting by mechanical mixing of Patent Document 14 (JP-A-11-16566) is used as a positive electrode active material, the load characteristics and cycle are still sufficiently satisfactory. It is not possible to realize characteristics and even safety.

【0007】[0007]

【特許文献1】特開平3−127454号公報[Patent Document 1] Japanese Patent Laid-Open No. 3-127454

【特許文献2】特開平3−134969号公報[Patent Document 2] Japanese Patent Laid-Open No. 3-134969

【特許文献3】特開平3−201368号公報[Patent Document 3] Japanese Patent Laid-Open No. 3-201368

【特許文献4】特開平4−328277号公報[Patent Document 4] JP-A-4-328277

【特許文献5】特開平4−319259号公報[Patent Document 5] Japanese Patent Laid-Open No. 4-319259

【特許文献6】特開平4−56064 号公報[Patent Document 6] Japanese Unexamined Patent Publication No. 4-56064

【特許文献7】特開2000−12022号公報[Patent Document 7] Japanese Patent Laid-Open No. 2000-12022

【特許文献8】特開平1−304664号公報[Patent Document 8] Japanese Unexamined Patent Publication No. 1-304664

【特許文献9】特開平4−33260号公報[Patent Document 9] Japanese Patent Laid-Open No. 4-33260

【特許文献10】特開平5−94822号公報[Patent Document 10] Japanese Patent Laid-Open No. 5-94822

【特許文献11】特開平5−151998号公報[Patent Document 11] JP-A-5-151998

【特許文献12】特開平6−243897号公報[Patent Document 12] Japanese Patent Laid-Open No. 6-243897

【特許文献13】特開平8−236114号公報[Patent Document 13] Japanese Unexamined Patent Publication No. 8-236114

【特許文献14】特開平11−16566号公報[Patent Document 14] Japanese Patent Laid-Open No. 11-16566

【非特許文献1】水島ら,「マテリアル リサーチブレ
ティン」,1980年,vol.15,p783-789
[Non-Patent Document 1] Mizushima et al., "Material Research Bulletin", 1980, vol.15, p783-789.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の目的
は、リチウム二次電池の正極活物質として用いたとき
に、特に負荷特性、サイクル特性、更には安全性に優れ
たリチウム二次電池の正極活物質として有用なリチウム
コバルト系複合酸化物、その製造方法、これを含有する
正極活物質および該正極活物質を用いるリチウム二次電
池を提供することにある。
Therefore, an object of the present invention is to provide a lithium secondary battery having excellent load characteristics, cycle characteristics, and safety when used as a positive electrode active material of a lithium secondary battery. A lithium cobalt-based composite oxide useful as a positive electrode active material, a method for producing the same, a positive electrode active material containing the same, and a lithium secondary battery using the positive electrode active material.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意研究を重ねた結果、コバルト酸リチ
ウム又はコバルト酸リチウムのコバルトの一部を特定の
金属元素で特定量置換した複合酸化物と、Mg、Ti又
はZrから選ばれる少なくとも1種以上の金属酸化物と
を乾式混合し、特定の温度範囲で加熱処理することによ
り前記複合酸化物の粒子表面に前記金属酸化物を密着性
よく付着せしめたリチウムコバルト系複合酸化物を正極
活物質として用いたリチウム二次電池は、特に、負荷特
性、サイクル特性、更には安全性に優れたものとなるこ
とを見出し本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies for achieving the above object, the present inventors have replaced lithium cobalt oxide or a part of cobalt of lithium cobalt oxide with a specific metal element in a specific amount. The composite oxide and at least one or more kinds of metal oxides selected from Mg, Ti or Zr are dry-mixed and subjected to heat treatment in a specific temperature range to form the metal oxides on the surface of the particles of the composite oxide. Completed the present invention by discovering that a lithium secondary battery using a lithium cobalt-based composite oxide adhered with good adhesion as a positive electrode active material will be particularly excellent in load characteristics, cycle characteristics, and safety. Came to do.

【0010】即ち、本発明の第1の発明は、一般式;L
xCo1-yMey2-a(Meは、V、Cu、Zr、Z
n、Mg、Al又はFeから選ばれる1種又は2種以上
の金属元素を表す。xは、0.9≦x≦1.1、yは0
≦y≦0.01、aは−0.1≦a≦0.1の値をと
る。)で表される複合酸化物と、Mg、Ti又はZrか
ら選ばれる少なくとも1種以上の金属酸化物とを乾式混
合し、200〜700℃で加熱処理して前記複合酸化物
の粒子表面に前記金属酸化物を付着させてなることを特
徴とするリチウムコバルト系複合酸化物を提供するもの
である。また、前記金属酸化物の付着量が0.05〜1
重量%であることが好ましく、また、前記リチウムコバ
ルト系複合酸化物はBET比表面積が0.1〜2.0m
2/gであることが特に好ましい。
That is, the first invention of the present invention is represented by the general formula: L
ixCo1-yMeyO2-a(Me is V, Cu, Zr, Z
One or more selected from n, Mg, Al or Fe
Represents the metal element of. x is 0.9 ≦ x ≦ 1.1, y is 0
≦ y ≦ 0.01, a has a value of −0.1 ≦ a ≦ 0.1
It ) And a complex oxide represented by Mg, Ti or Zr
Dry blending with at least one metal oxide selected from
And heat treated at 200 to 700 ° C. to obtain the composite oxide.
The metal oxide is attached to the particle surface of
What provides a lithium-cobalt-based composite oxide
Is. Further, the amount of the metal oxide attached is 0.05 to 1
% By weight, and the lithium
Rut-based composite oxide has a BET specific surface area of 0.1 to 2.0 m.
2/ G is particularly preferable.

【0011】また、本発明の第2の発明は、下記の第一
〜第ニ工程を含むことを特徴とするリチウムコバルト系
複合酸化物の製造方法を提供するものである。 第一工程;一般式;LixCo1-yMey2-a(Meは、
V、Cu、Zr、Zn、Mg、Al又はFeから選ばれ
る1種又は2種以上の金属元素を表す。xは、0.9≦
x≦1.1、yは0≦y≦0.01、aは−0.1≦a
≦0.1の値をとる。)で表される複合酸化物と、M
g、Ti又はZrから選ばれる少なくとも1種以上の金
属酸化物とを乾式混合し前記複合酸化物の粒子表面に前
記金属酸化物の粒子を付着させる工程。 第二工程;第一工程で得られる金属酸化物を付着させた
複合酸化物を200〜700℃で加熱処理してリチウム
コバルト系複合酸化物を得る工程。また、前記第一工程
で用いる金属酸化物が平均粒径が1.0μm以下のもの
を用いることが好ましい。
A second invention of the present invention provides a method for producing a lithium-cobalt complex oxide, which comprises the following first to second steps. First step; formula; Li x Co 1-y Me y O 2-a (Me is
It represents one or more metal elements selected from V, Cu, Zr, Zn, Mg, Al or Fe. x is 0.9 ≦
x ≦ 1.1, y is 0 ≦ y ≦ 0.01, and a is −0.1 ≦ a
It takes a value of ≦ 0.1. ) A complex oxide represented by
a step of dry-mixing at least one metal oxide selected from g, Ti, and Zr to deposit the metal oxide particles on the surface of the composite oxide particles. Second step: a step of heat-treating the composite oxide to which the metal oxide obtained in the first step is attached at 200 to 700 ° C. to obtain a lithium cobalt-based composite oxide. Further, it is preferable to use a metal oxide having an average particle size of 1.0 μm or less as the metal oxide used in the first step.

【0012】また、本発明の第3の発明は、前記リチウ
ムコバルト系複合酸化物を含むことを特徴とするリチウ
ム二次電池正極活物質を提供するものである。
The third invention of the present invention is to provide a positive electrode active material for a lithium secondary battery, comprising the lithium cobalt-based composite oxide.

【0013】また、本発明の第4の発明は、前記リチウ
ム二次電池正極活物質を用いることを特徴とするリチウ
ム二次電池を提供するものである。
A fourth invention of the present invention is to provide a lithium secondary battery characterized by using the positive electrode active material for the lithium secondary battery.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係るリチウムコバルト系複合酸化物は、一般
式;LixCo1-yMey2-a(Meは、V、Cu、Z
r、Zn、Mg、Al又はFeから選ばれる1種又は2
種以上の金属元素を表す。xは、0.9≦x≦1.1、
yは0≦y≦0.01、aは−0.1≦a≦0.1の値
をとる。)で表される複合酸化物と、Mg、Ti又はZ
rから選ばれる少なくとも1種以上の金属酸化物とを乾
式混合し、特定の温度範囲で加熱処理して前記複合酸化
物の粒子表面に前記金属酸化物を密着性よく付着させた
ものであり、本発明に係るリチウムコバルト系複合酸化
物は、前記複合酸化物と金属酸化物とを機械的な混合に
より単に複合酸化物の粒子表面に金属酸化物を付着させ
たものとは異なるものである。即ち、機械的な混合によ
る複合酸化物の粒子表面への金属酸化物粒子の付着は、
複合酸化物の粒子表面と金属酸化物粒子とが静電気によ
り脆い弱い結合で接触面積が小さい状態で付着している
のに対して、本発明のリチウムコバルト系複合酸化物
は、複合酸化物と金属酸化物とを機械的に乾式混合し、
静電気により複合酸化物の粒子表面に金属酸化物粒子を
一旦付着させ、更にこのものを特定の温度範囲で加熱処
理して、微細な金属酸化物を複合酸化物の粒子表面に密
着性よく付着せしめたものであり、このため、本発明の
リチウムコバルト系複合酸化物を正極活物質とするリチ
ウム二次電池は、特に優れた負荷特性、サイクル特性及
び安全性を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The lithium cobalt-based composite oxide according to the present invention has a general formula: Li x Co 1-y Me y O 2-a (Me is V, Cu, Z.
1 or 2 selected from r, Zn, Mg, Al or Fe
Represents one or more metal elements. x is 0.9 ≦ x ≦ 1.1,
The value of y is 0 ≦ y ≦ 0.01, and the value of a is −0.1 ≦ a ≦ 0.1. ) And a complex oxide represented by Mg, Ti or Z
dry mixing with at least one or more metal oxides selected from r, heat treatment in a specific temperature range to adhere the metal oxides to the particle surface of the composite oxide with good adhesion, The lithium-cobalt-based composite oxide according to the present invention is different from one in which the metal oxide is simply attached to the particle surface of the composite oxide by mechanically mixing the composite oxide and the metal oxide. That is, the adhesion of the metal oxide particles to the particle surface of the composite oxide by mechanical mixing is
Whereas the particle surface of the composite oxide and the metal oxide particles adhere to each other in a state where the contact area is small due to weak bonds that are brittle due to static electricity, the lithium cobalt-based composite oxide of the present invention is composed of the composite oxide and the metal. Mechanically dry mix with oxides,
Metal oxide particles are once attached to the surface of the composite oxide particles by static electricity, and this is further heat-treated in a specific temperature range to adhere fine metal oxides to the surface of the composite oxide particles with good adhesion. Therefore, the lithium secondary battery using the lithium cobalt-based composite oxide of the present invention as the positive electrode active material can obtain particularly excellent load characteristics, cycle characteristics, and safety.

【0015】本発明において、前記加熱処理温度は、2
00〜700℃、好ましくは300〜600℃であり、
本発明においてこの温度範囲で加熱処理することにより
複合酸化物の粒子表面に金属酸化物をより密着させて付
着させることできる。即ち、この加熱処理により、金属
酸化物の粒子表面のエネルギーが低下し、該金属酸化物
の粒子表面がなめらかになることで複合酸化物粒子と金
属酸化物粒子とがより接近しやすくなって密着性が高ま
るものと考えられる。このことは、加熱処理する前に比
べて、加熱処理後のものは、BET比表面積が減少して
いることからも確認することができる。
In the present invention, the heat treatment temperature is 2
0 to 700 ° C, preferably 300 to 600 ° C,
In the present invention, the heat treatment in this temperature range allows the metal oxide to be more closely adhered to the surface of the particles of the composite oxide. That is, by this heat treatment, the energy of the particle surface of the metal oxide is lowered, and the particle surface of the metal oxide becomes smooth, so that the composite oxide particle and the metal oxide particle are more easily brought into close contact with each other and adhere to each other. It is thought that the nature will increase. This can be confirmed from the fact that the BET specific surface area after the heat treatment is smaller than that before the heat treatment.

【0016】本発明のリチウムコバルト系複合酸化物に
おいて、複合酸化物の粒子表面とは、一次粒子或いは一
次粒子が集合した凝集粒子の表面をも包含するものであ
る。
In the lithium-cobalt composite oxide of the present invention, the particle surface of the composite oxide includes the surface of primary particles or aggregated particles of primary particles.

【0017】また、本発明のリチウムコバルト系複合酸
化物において、前記複合酸化物は、 一般式;LixCo1-yMey2-aで表される。即ち、一
般式(1);LixCoO2-a(以下、「の複合酸化
物」と呼ぶ)又は一般式(2);LixCo1-yMey
2-a(以下、「の複合酸化物」と呼ぶ)で示されるも
のである。
In the lithium-cobalt composite oxide of the present invention, the composite oxide is represented by the general formula: Li x Co 1-y Me y O 2-a . That is, general formula (1); Li x CoO 2-a (hereinafter referred to as “composite oxide”) or general formula (2); Li x Co 1 -y Me y O
2-a (hereinafter referred to as "composite oxide").

【0018】前記の複合酸化物において、リチウム原
子の量を示す式中のxの値は、0.9〜1.1、好まし
くは0.95〜1.05である。また、該複合酸化物の
酸素原子の量を示す式中のaの値は−0.1〜0.1、
好ましくは−0.05〜0.05である。
In the above composite oxide, the value of x in the formula showing the amount of lithium atoms is 0.9 to 1.1, preferably 0.95 to 1.05. The value of a in the formula showing the amount of oxygen atoms of the composite oxide is -0.1 to 0.1,
It is preferably −0.05 to 0.05.

【0019】また、前記の複合酸化物は、前記の複
合酸化物のコバルト原子の一部を他の金属元素で置換し
た複合酸化物である。なお、本発明において、前記の
複合酸化物の製造過程で不可逆的にLiサイトに下記の
他の金属元素が置換されたものであってもよい。この式
中のMeは、V、Cu、Zr、Zn、Mg、Al又はF
eから選ばれる1種又は2種以上の金属元素を表し、こ
れらの金属原子の量を示す式中のyの値は、0より大き
く0.01以下、好ましくは0.001〜0.005で
ある。また、前記の複合酸化物において、リチウム原
子の量を示す式中のxの値は、0.9〜1.1、好まし
くは0.95〜1.05である。また、該複合酸化物の
酸素原子の量を示す式中のaの値は−0.1〜0.1、
好ましくは−0.05〜0.05である。
The above-mentioned composite oxide is a composite oxide in which part of the cobalt atoms of the above-mentioned composite oxide is replaced with another metal element. In the present invention, the Li site may be irreversibly replaced with another metal element described below in the process of producing the composite oxide. Me in this formula is V, Cu, Zr, Zn, Mg, Al or F.
The value of y in the formula showing the amount of these metal atoms, which represents one or more metal elements selected from e, is greater than 0 and 0.01 or less, preferably 0.001 to 0.005. is there. Further, in the above composite oxide, the value of x in the formula showing the amount of lithium atoms is 0.9 to 1.1, preferably 0.95 to 1.05. The value of a in the formula showing the amount of oxygen atoms of the composite oxide is -0.1 to 0.1,
It is preferably −0.05 to 0.05.

【0020】本発明において、前記の複合酸化物の粒
子表面に前記金属酸化物を付着させたリチウムコバルト
系複合酸化物をリチウム二次電池の正極活物質として用
いることにより、前記の複合酸化物の粒子表面に前記
金属酸化物を付着させたリチウムコバルト系複合酸化物
を用いたものと比べ、更に、リチウム二次電池の負荷特
性、サイクル特性又は安全性を向上させることができ
る。
In the present invention, by using a lithium cobalt-based composite oxide having the metal oxide adhered to the particle surface of the composite oxide as a positive electrode active material of a lithium secondary battery, The load characteristics, cycle characteristics, or safety of the lithium secondary battery can be further improved as compared with the case where the lithium cobalt-based composite oxide in which the metal oxide is attached to the particle surface is used.

【0021】前記の複合酸化物及びの複合酸化物の
物性としては特に制限はないが、レーザー回折法により
求められる平均粒径が1〜20μm,好ましくは1〜1
5μm,特に好ましくは2〜10μmである。
The physical properties of the complex oxide and the complex oxide are not particularly limited, but the average particle size determined by the laser diffraction method is 1 to 20 μm, preferably 1 to 1.
It is 5 μm, particularly preferably 2 to 10 μm.

【0022】平均粒径が上記範囲であることに加え、更
に、平均粒子径0.1〜2.5μmの一次粒子が集合し
てなる平均粒子径1.0〜20μmの一次粒子集合体で
あると、得られるリチウムコバルト系複合酸化物を正極
活物質として用いるときに、Liの脱挿入が速やかに行
われるため好ましい。さらに、上記一次集合体は全体積
の70%以上、好ましくは80%以上が粒径1〜20μ
mであると、得られるリチウムコバルト系複合酸化物の
均一な厚さの塗膜の形成が可能となるためより望まし
い。また、前記の複合酸化物及びの複合酸化物のB
ET比表面積は0.1〜2m2/g,好ましくは0.2
〜1.5m2/g,特に好ましくは0.3〜1.0m2
gである。BET比表面積が該範囲内にあると、得られ
るリチウムコバルト系複合酸化物を正極活物質として用
いたリチウム二次電池の安全性が良好であるため好まし
い。
In addition to the average particle size being in the above range, the primary particle aggregate has an average particle size of 1.0 to 20 μm, which is an aggregate of primary particles having an average particle size of 0.1 to 2.5 μm. When the obtained lithium cobalt-based composite oxide is used as a positive electrode active material, Li is rapidly inserted and removed, which is preferable. Furthermore, 70% or more, preferably 80% or more of the total volume of the above primary aggregate has a particle size of 1 to 20 μm.
A value of m is more desirable because it allows formation of a coating film having a uniform thickness of the obtained lithium cobalt-based composite oxide. In addition, B of the above-mentioned composite oxide and
ET specific surface area is 0.1 to 2 m 2 / g, preferably 0.2
~1.5m 2 / g, particularly preferably 0.3~1.0m 2 /
It is g. When the BET specific surface area is within the range, the lithium secondary battery using the obtained lithium cobalt-based composite oxide as a positive electrode active material has good safety, which is preferable.

【0023】前記の複合酸化物及びの複合酸化物に
付着させる金属酸化物粒子は、Mg、Ti又はZrのか
ら選ばれる少なくとも1種以上の金属酸化物であり、具
体的には、MgO、TiO2又はZrO2である。前記
の複合酸化物及びの複合酸化物の粒子表面に付着させ
る金属酸化物の量は、0.05〜1重量%、好ましくは
0.1〜0.5重量%であることが好ましい。この理由
は、0.05重量%未満では、複合酸化物の粒子表面に
存在する金属酸化物による相対的な被覆面積が不足する
ことから、これを正極活物質として用いたリチウム二次
電池は好ましい負荷特性、サイクル特性又は安全性が得
られない傾向があり、一方、1重量%を超えても、本発
明にかかる上記効果も飽和するだけで、逆に重量当たり
の放電容量が減少するため好ましくない。前記の複合
酸化物及びの複合酸化物に付着した金属酸化物の粒径
は、電子顕微鏡写真から求められる粒径が1μm以下、
好ましくは0.005〜1μm、特に好ましくは0.0
1〜0.25μmである。
The above-mentioned composite oxide and the metal oxide particles attached to the composite oxide are at least one kind of metal oxide selected from Mg, Ti or Zr, and specifically, MgO and TiO. 2 or ZrO 2 . The amount of the above-mentioned composite oxide and the metal oxide attached to the surface of the particles of the composite oxide is 0.05 to 1% by weight, preferably 0.1 to 0.5% by weight. The reason for this is that if the amount is less than 0.05% by weight, the relative coverage area of the metal oxide existing on the surface of the particles of the composite oxide is insufficient, so a lithium secondary battery using this as a positive electrode active material is preferable. There is a tendency that load characteristics, cycle characteristics or safety cannot be obtained. On the other hand, even if it exceeds 1% by weight, the above-mentioned effects according to the present invention are only saturated, and conversely the discharge capacity per weight decreases, which is preferable. Absent. Regarding the particle size of the above-mentioned composite oxide and the metal oxide attached to the composite oxide, the particle size obtained from an electron micrograph is 1 μm or less,
Preferably 0.005-1 μm, particularly preferably 0.0
It is 1 to 0.25 μm.

【0024】本発明にかかるリチウムコバルト系複合酸
化物の他の物性としては、BET比表面積が0.1〜
2.0m2/g、好ましくは0.1〜1.0m2/gであ
る。BET比表面積が該範囲内にあると、安全性が更に
向上するため好ましい。
Another physical property of the lithium-cobalt composite oxide according to the present invention is that the BET specific surface area is 0.1 to 0.1.
2.0 m 2 / g, preferably from 0.1~1.0m 2 / g. When the BET specific surface area is within this range, safety is further improved, which is preferable.

【0025】次いで、本発明にかかる上記物性を有する
リチウムコバルト系複合酸化物の製造方法について説明
する。本発明のリチウムコバルト系複合酸化物は、下記
の第一〜第ニ工程を実施することにより製造することが
できる。第一工程;前記の複合酸化物又はの複合酸
化物と、Mg、Ti又はZrから選ばれる少なくとも1
種以上の金属酸化物とを乾式混合し前記の複合酸化物
又はの複合酸化物の粒子表面に前記金属酸化物の粒子
を付着させる工程。第二工程;第一工程で得られる前記
の複合酸化物又はの複合酸化物粒子表面に前記金属
酸化物を付着させたものを200〜700℃で加熱処理
してリチウムコバルト系複合酸化物を得る工程。
Next, a method for producing the lithium-cobalt composite oxide having the above-mentioned physical properties according to the present invention will be described. The lithium cobalt-based composite oxide of the present invention can be manufactured by carrying out the following first to second steps. First step; at least one selected from the complex oxides or complex oxides thereof and Mg, Ti or Zr.
A step of dry-mixing one or more kinds of metal oxides and adhering the particles of the metal oxides to the surface of the particles of the composite oxides or the composite oxides thereof. Second step: The composite oxide obtained in the first step or the composite oxide particles having the metal oxide adhered to the surface thereof is heat-treated at 200 to 700 ° C. to obtain a lithium cobalt-based composite oxide. Process.

【0026】第一工程で用いる原料のの複合酸化物及
びの複合酸化物の物性としては特に制限はないが、レ
ーザー回折法により求められる平均粒径が1〜20μ
m,好ましくは1〜15μm,特に好ましくは2〜10μ
mであり,平均粒径が前記範囲であることに加え、更
に、平均粒径0.1〜2.5μmの一次粒子が集合して
なる平均粒径1.0〜20μmの一次粒子集合体である
と、得られるリチウムコバルト系複合酸化物を正極活物
質として用いるときに、Liの脱挿入が速やかに行われ
るため好ましい。さらに、上記一次集合体は全体積の7
0%以上、好ましくは80%以上が粒径1〜20μmで
あると、均一な厚さの塗膜の形成が可能となるためより
望ましい。また、前記原料の複合酸化物は、BET比表
面積が0.1〜2m2/g,好ましくは0.2〜1.5
2/g,特に好ましくは0.3〜1.0m2/gであ
る。BET比表面積が該範囲内にあると、得られるリチ
ウムコバルト系複合酸化物を正極活物質として用いると
きに、安全性が良好であるため好ましい。
There are no particular restrictions on the physical properties of the raw material composite oxide and the composite oxide used in the first step, but the average particle size determined by the laser diffraction method is 1 to 20 μm.
m, preferably 1 to 15 μm, particularly preferably 2 to 10 μm
In addition to the average particle size of m, the average particle size is in the above range, and in addition, a primary particle aggregate having an average particle size of 1.0 to 20 μm, which is an aggregate of primary particles having an average particle size of 0.1 to 2.5 μm. It is preferable that when the obtained lithium cobalt-based composite oxide is used as a positive electrode active material, Li is rapidly inserted and removed. Furthermore, the above-mentioned primary aggregate has a total volume of 7
It is more desirable for 0% or more, preferably 80% or more, to have a particle size of 1 to 20 μm because a coating film having a uniform thickness can be formed. The raw material composite oxide has a BET specific surface area of 0.1 to 2 m 2 / g, preferably 0.2 to 1.5.
m 2 / g, particularly preferably 0.3~1.0m 2 / g. When the BET specific surface area is within the range, safety is good when the obtained lithium cobalt-based composite oxide is used as a positive electrode active material, which is preferable.

【0027】上記物性を有する原料の前記の複合酸化
物又はの複合酸化物は、如何なる製造方法により得ら
れるものであってもよく、その一例を示せば、前記の
複合酸化物はリチウム化合物とコバルト化合物とを混合
し焼成すればよい。また、前記の複合酸化物はリチウ
ム化合物、コバルト化合物及びV、Cu、Zr、Zn、
Mg、Al又はFeから選ばれる1種又は2種以上の金
属元素を含有する遷移金属化合物とを混合し焼成すれば
よい。
The composite oxide or the composite oxide of the raw material having the above physical properties may be obtained by any manufacturing method. As an example, the composite oxide may be a lithium compound and cobalt. The compound may be mixed and fired. Further, the composite oxide is a lithium compound, a cobalt compound and V, Cu, Zr, Zn,
It suffices to mix and fire a transition metal compound containing one or more metal elements selected from Mg, Al or Fe.

【0028】より具体的には、前記の複合酸化物は、
リチウム化合物及びコバルト化合物とを該化合物中のC
o原子とLi原子のモル比(Li/Co)で、0.95
〜1.1、好ましくは0.98〜1.05とし、ブレン
ダー等を用いて均一に混合し、次に、混合物を焼成す
る。焼成条件は、複合酸化物を製造可能な温度で行えば
よく、焼成温度は600〜1100℃、好ましくは80
0〜1050℃で、焼成時間は、2〜24時間とするこ
とが好ましい。この原料のリチウム化合物とコバルト化
合物は、これらの酸化物、水酸化物、炭酸塩、硝酸塩又
は有機酸塩を用いることができる。焼成の雰囲気は、例
えば、大気中又は酸素雰囲気中又は不活性雰囲気中のい
ずれで行ってもよく、特に制限されるものではなく、ま
た、これらの焼成は必要により何度でも行ってもよい。
More specifically, the above composite oxide is
A lithium compound and a cobalt compound are used as C in the compound.
Molar ratio (Li / Co) of o atom and Li atom is 0.95.
To 1.1, preferably 0.98 to 1.05, and uniformly mixed using a blender or the like, and then the mixture is fired. The firing conditions may be such that the composite oxide can be produced, and the firing temperature is 600 to 1100 ° C., preferably 80.
The firing time is preferably 0 to 1050 ° C. and the firing time is 2 to 24 hours. As the lithium compound and cobalt compound as the raw materials, these oxides, hydroxides, carbonates, nitrates or organic acid salts can be used. The firing atmosphere may be, for example, in the air, an oxygen atmosphere, or an inert atmosphere, and is not particularly limited, and these firings may be performed as many times as necessary.

【0029】一方、前記の複合酸化物は、前記の複
合酸化物の製造方法において、リチウム化合物とコバル
ト化合物およびV、Cu、Zr、Zn、Mg、Al又は
Feから選ばれる1種又は2種以上の遷移金属化合物と
を、前記コバルト化合物中のCo原子に対する遷移金属
化合物中のV、Cu、Zr、Zn、Mg、Al又はFe
から選ばれる1種又は2種以上の金属原子(Me)のモ
ル比(Me/Co)で0より大きく0.01以下となる
ようにリチウム化合物、コバルト化合物及び遷移金属化
合物とを混合し、600〜1100℃、好ましくは80
0〜1050℃で、2〜24時間焼成を行うことにより
製造することができる。このの複合酸化物の原料の
V、Cu、Zr、Zn、Mg、Al又はFeから選ばれ
る1種又は2種以上の金属元素を含有する遷移金属化合
物は、これらの金属元素の酸化物、水酸化物、炭酸塩、
硝酸塩又は有機酸塩を用いることができる。焼成の雰囲
気は、例えば、大気中又は酸素雰囲気中又は不活性雰囲
気中のいずれで行ってもよく、特に制限されるものでは
なく、また、これらの焼成は必要により何度でも行って
もよい。
On the other hand, the above-mentioned composite oxide is one or more selected from the lithium compound and the cobalt compound and V, Cu, Zr, Zn, Mg, Al or Fe in the method for producing the composite oxide. And a transition metal compound of V, Cu, Zr, Zn, Mg, Al or Fe in the transition metal compound with respect to the Co atom in the cobalt compound.
A lithium compound, a cobalt compound and a transition metal compound are mixed so that the molar ratio (Me / Co) of one or more metal atoms (Me) selected from ~ 1100 ° C, preferably 80
It can be produced by performing firing at 0 to 1050 ° C. for 2 to 24 hours. The transition metal compound containing one or more kinds of metal elements selected from V, Cu, Zr, Zn, Mg, Al or Fe as the raw material of the composite oxide is an oxide of these metal elements or water. Oxides, carbonates,
Nitrate or organic acid salt can be used. The firing atmosphere may be, for example, in the air, an oxygen atmosphere, or an inert atmosphere, and is not particularly limited, and these firings may be performed as many times as necessary.

【0030】焼成後は、適宜冷却し、必要に応じ粉砕し
て前記の複合酸化物又はの複合酸化物を得る。な
お、前記との複合酸化物の製造方法において必要に
応じて行われる粉砕は、焼成して得られる複合酸化物が
もろく結合したブロック状のものである場合等に適宜行
うが、複合酸化物の粒子自体は上記特定の平均粒径、B
ET比表面積を有するものである。即ち、得られる前記
の複合酸化物又はの複合酸化物は、平均粒子径が
1.0〜20μm、好ましくは1.0〜15μm、さら
に好ましくは2.0〜10μmであり、BET比表面積
が0.1〜2.0m2/g、好ましくは0.2〜1.5
2/g、さらに好ましくは0.3〜1.0m2/gであ
る。
After calcination, the mixture is appropriately cooled and, if necessary, pulverized to obtain the above complex oxide or the complex oxide thereof. The pulverization that is performed as necessary in the above-described method for producing a composite oxide is appropriately performed when the composite oxide obtained by firing is a brittle block-shaped compound oxide. The particles themselves have the above specified average particle size, B
It has an ET specific surface area. That is, the obtained composite oxide or a composite oxide thereof has an average particle diameter of 1.0 to 20 μm, preferably 1.0 to 15 μm, more preferably 2.0 to 10 μm, and a BET specific surface area of 0. .1 to 2.0 m 2 / g, preferably 0.2 to 1.5
m 2 / g, more preferably from 0.3~1.0m 2 / g.

【0031】一方の原料のMg、Ti又はZrから選ば
れる金属酸化物は、一般式;MgO、TiO2又はZr
2から選ばれるものが好ましく、これらは1種又は2
種以上で用いることができる。また、これらの金属酸化
物は前記の複合酸化物粒子又は前記の複合酸化物粒
子表面に均一且つ密着性よく付着させるため微細なもの
を用いることが好ましく、レーザー回折法により求めら
れる平均粒径が1μm以下である。この理由は、金属酸
化物の平均粒径が1μmを超えると、複合酸化物の粒子
表面に金属酸化物が付着しにくく、また、単なるこれら
の混合粉末となる傾向があり、一方、金属酸化物の粒径
が0.005μm未満では、複合酸化物の粒子表面で付
着した金属酸化物粒子が凝集し、複合酸化物の粒子表面
と接触のない一次粒子は、返って不純物として作用する
傾向があることから、金属酸化物の平均粒径は、好まし
くは0.005〜1μm、特に好ましくは0.01〜
0.25μmのものを用いることが好ましい。
The metal oxide selected from Mg, Ti or Zr as one of the starting materials has the general formula: MgO, TiO 2 or Zr.
Those selected from O 2 are preferable, and these are 1 type or 2 types.
It can be used in more than one species. In addition, it is preferable to use fine metal oxides in order to adhere the composite oxide particles or the composite oxide particles to the surface of the composite oxide particles uniformly and with good adhesion. It is 1 μm or less. The reason for this is that when the average particle size of the metal oxide exceeds 1 μm, the metal oxide is less likely to adhere to the surface of the particles of the composite oxide, and the powder tends to be a mixed powder thereof. When the particle size of the metal oxide is less than 0.005 μm, the metal oxide particles adhered on the particle surface of the composite oxide are aggregated, and the primary particles not in contact with the particle surface of the composite oxide tend to return and act as impurities. Therefore, the average particle size of the metal oxide is preferably 0.005 to 1 μm, particularly preferably 0.01 to 1 μm.
It is preferable to use those having a thickness of 0.25 μm.

【0032】また、これらの原料の金属酸化物の配合量
は、0.05〜1重量%、好ましくは0.1〜0.5重
量%であることが好ましい。この理由は、上記したとお
り、金属酸化物の配合量が0.05重量%未満では、複
合酸化物の粒子表面に存在する金属酸化物の相対的な被
覆面積が不足することから、これを正極活物質として用
いたリチウム二次電池は好ましい負荷特性、サイクル特
性又は安全性が得られない傾向があり、一方、1重量%
を超えても、本発明にかかる上記効果も飽和するだけ
で、逆に重量当たりの放電容量が減少するため好ましく
ない。
The amount of the metal oxide as the raw material to be blended is preferably 0.05 to 1% by weight, more preferably 0.1 to 0.5% by weight. The reason for this is that, as described above, when the compounding amount of the metal oxide is less than 0.05% by weight, the relative coating area of the metal oxide existing on the surface of the particles of the composite oxide is insufficient. Lithium secondary batteries used as active materials tend not to have favorable load characteristics, cycle characteristics or safety, while 1% by weight
Even if it exceeds, the above effect according to the present invention is saturated, and the discharge capacity per weight is decreased, which is not preferable.

【0033】次に、前記した原料の複合酸化物と金属酸
化物とを所定量ブレンダー等により均一に混合し、該複
合酸化物の粒子表面に微細なMg、Ti又はZrから選
ばれる少なくとも1種以上の金属酸化物を均一に付着さ
せる。
Next, the above-mentioned raw material composite oxide and metal oxide are uniformly mixed in a predetermined amount by a blender or the like, and at least one kind of fine Mg, Ti or Zr is selected on the particle surface of the composite oxide. The above metal oxide is uniformly attached.

【0034】第二工程は、前記第一工程で得られた金属
酸化物を付着させた複合酸化物を加熱処理して目的とす
るリチウムコバルト系複合酸化物を得る工程である。
The second step is a step of heat-treating the composite oxide to which the metal oxide obtained in the first step is attached to obtain a target lithium-cobalt-based composite oxide.

【0035】加熱処理する温度は、200〜700℃、
好ましくは300〜600℃である。この理由は、加熱
処理温度が200℃未満では、前記金属酸化物と複合酸
化物との密着性が弱くなり、一方、700℃を超えると
金属酸化物が複合酸化物の粒子内部まで固溶するため、
これを正極活物質として用いたリチウム二次電池は好ま
しい負荷特性、サイクル特性又は安全性が得られないこ
とから好ましくない。
The heat treatment temperature is 200 to 700 ° C.
It is preferably 300 to 600 ° C. The reason for this is that if the heat treatment temperature is lower than 200 ° C., the adhesion between the metal oxide and the composite oxide becomes weak, while if it exceeds 700 ° C., the metal oxide forms a solid solution even inside the particles of the composite oxide. For,
A lithium secondary battery using this as a positive electrode active material is not preferable because favorable load characteristics, cycle characteristics or safety cannot be obtained.

【0036】第二工程終了後、必要に応じ粉砕、分級し
て本発明に係る前記の複合酸化物の粒子表面又はの
複合酸化物の粒子表面にMg、Ti又はZrから選ばれ
る少なくとも1種以上の金属酸化物を密着性よく付着さ
せたリチウムコバルト系複合酸化物を得る。なお、粉砕
は、リチウムコバルト系複合酸化物がもろくブロック状
のものである場合等に適宜行う。
After the completion of the second step, if necessary, pulverization and classification may be carried out on the particle surface of the complex oxide according to the present invention or on the particle surface of the complex oxide of at least one selected from Mg, Ti or Zr. A lithium-cobalt-based composite oxide having the above metal oxide adhered thereto with good adhesion is obtained. The pulverization is appropriately performed when the lithium cobalt-based composite oxide is brittle and block-shaped.

【0037】このようにして得られる本発明のリチウム
コバルト系複合酸化物は、正極、負極、セパレータ、及
びリチウム塩を含有する非水電解質からなるリチウム二
次電池の正極活物質として好適に用いることができる。
The lithium cobalt-based composite oxide of the present invention thus obtained is preferably used as a positive electrode active material of a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt. You can

【0038】本発明に係るリチウム二次電池正極活物質
は、上記リチウムコバルト系複合酸化物が用いられる。
正極活物質は、後述するリチウム二次電池の正極合剤、
すなわち、正極活物質、導電剤、結着剤、及び必要に応
じてフィラー等とからなる混合物の一原料である。本発
明に係るリチウム二次電池正極活物質は、上記リチウム
コバルト系複合酸化物で、上述したような好ましい粒度
特性を有するものを用いることにより、他の原料と共に
混合して正極合剤を調製する際に混練が容易であり、ま
た、得られた正極合剤を正極集電体に塗布する際の塗工
性が容易になる。
As the positive electrode active material for a lithium secondary battery according to the present invention, the above lithium cobalt composite oxide is used.
The positive electrode active material is a positive electrode mixture for a lithium secondary battery described later,
That is, it is one raw material of a mixture of a positive electrode active material, a conductive agent, a binder, and optionally a filler. The lithium secondary battery positive electrode active material according to the present invention is a lithium cobalt-based composite oxide having the preferable particle size characteristics as described above, and is mixed with other raw materials to prepare a positive electrode mixture. At that time, kneading is easy, and coatability at the time of applying the obtained positive electrode mixture to the positive electrode current collector becomes easy.

【0039】本発明に係るリチウム二次電池は、上記リ
チウム二次電池正極活物質を用いるものであり、正極、
負極、セパレータ、及びリチウム塩を含有する非水電解
質からなる。正極は、例えば、正極集電体上に正極合剤
を塗布乾燥等して形成されるものであり、正極合剤は正
極活物質、導電剤、結着剤、及び必要により添加される
フィラー等からなる。本発明に係るリチウム二次電池
は、正極に正極活物質である前記のリチウムコバルト系
複合酸化物が均一に塗布されている。このため本発明に
係るリチウム二次電池は、特に負荷特性、サイクル特性
又は安全性の低下が生じ難い。
The lithium secondary battery according to the present invention uses the positive electrode active material for the lithium secondary battery described above,
It is composed of a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt. The positive electrode is formed by, for example, applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture is a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of. In the lithium secondary battery according to the present invention, the positive electrode is uniformly coated with the lithium cobalt-based composite oxide as the positive electrode active material. Therefore, the lithium secondary battery according to the present invention is unlikely to cause deterioration in load characteristics, cycle characteristics, or safety.

【0040】正極集電体としては、構成された電池にお
いて化学変化を起こさない電子伝導体であれば特に制限
されるものでないが、例えば、ステンレス鋼、ニッケ
ル、アルミニウム、チタン、焼成炭素、アルミニウムや
ステンレス鋼の表面にカーボン、ニッケル、チタン、銀
を表面処理させたもの等が挙げられる。これらの材料の
表面を酸化して用いてもよく、表面処理により集電体表
面に凹凸を付けて用いてもよい。また、集電体の形態と
しては、例えば、フォイル、フィルム、シート、ネッ
ト、パンチングされたもの、ラス体、多孔質体、発砲
体、繊維群、不織布の成形体などが挙げられる。集電体
の厚さは特に制限されないが、1〜500μmとするこ
とが好ましい。
The positive electrode current collector is not particularly limited as long as it is an electron conductor that does not cause a chemical change in the constructed battery, and examples thereof include stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum and the like. Examples include stainless steel whose surface is treated with carbon, nickel, titanium, or silver. The surface of these materials may be oxidized and used, or the surface of the current collector may be made uneven by surface treatment. Examples of the form of the current collector include a foil, a film, a sheet, a net, a punched product, a lath body, a porous body, a foam body, a fiber group, and a non-woven fabric molded body. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

【0041】導電剤としては、構成された電池において
化学変化を起こさない電子伝導材料であれば特に限定は
ない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボ
ンブラック、アセチレンブラック、ケッチェンブラッ
ク、チャンネルブラック、ファーネスブラック、ランプ
ブラック、サーマルブラック等のカーボンブラック類、
炭素繊維や金属繊維等の導電性繊維類、フッ化カーボ
ン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜
鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チ
タン等の導電性金属酸化物、或いはポリフェニレン誘導
体等の導電性材料が挙げられ、天然黒鉛としては、例え
ば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられ
る。これらは、1種又は2種以上組み合わせて用いるこ
とができる。導電剤の配合比率は、正極合剤中、1〜5
0重量%、好ましくは2〜30重量%である。
The conductive agent is not particularly limited as long as it is an electron conductive material that does not chemically change in the constructed battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black,
Conductive fibers such as carbon fibers and metal fibers, metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, or A conductive material such as a polyphenylene derivative may be used, and examples of natural graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more. The compounding ratio of the conductive agent is 1 to 5 in the positive electrode mixture.
It is 0% by weight, preferably 2 to 30% by weight.

【0042】結着剤としては、例えば、デンプン、ポリ
フッ化ビニリデン、ポリビニルアルコール、カルボキシ
メチルセルロース、ヒドロキシプロピルセルロース、再
生セルロース、ジアセチルセルロース、ポリビニルピロ
リドン、テトラフロオロエチレン、ポリエチレン、ポリ
プロピレン、エチレン−プロピレン−ジエンターポリマ
ー(EPDM)、スルホン化EPDM、スチレンブタジ
エンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキ
サフルオロエチレン共重合体、テトラフルオロエチレン
−ヘキサフルオロプロピレン共重合体、テトラフルオロ
エチレン−パーフルオロアルキルビニルエーテル共重合
体、フッ化ビニリデン−ヘキサフルオロプロピレン共重
合体、フッ化ビニリデン−クロロトリフルオロエチレン
共重合体、エチレン−テトラフルオロエチレン共重合
体、ポリクロロトリフルオロエチレン、フッ化ビニリデ
ン−ペンタフルオロプロピレン共重合体、プロピレン−
テトラフルオロエチレン共重合体、エチレン−クロロト
リフルオロエチレン共重合体、フッ化ビニリデン−ヘキ
サフルオロプロピレン−テトラフルオロエチレン共重合
体、フッ化ビニリデン−パーフルオロメチルビニルエー
テル−テトラフルオロエチレン共重合体、エチレン−ア
クリル酸共重合体またはその(Na+)イオン架橋体、
エチレン−メタクリル酸共重合体またはその(Na+)
イオン架橋体、エチレン−アクリル酸メチル共重合体ま
たはその(Na+)イオン架橋体、エチレン−メタクリ
ル酸メチル共重合体またはその(Na+)イオン架橋
体、ポリエチレンオキシドなどの多糖類、熱可塑性樹
脂、ゴム弾性を有するポリマー等が挙げられ、これらは
1種または2種以上組み合わせて用いることができる。
なお、多糖類のようにリチウムと反応するような官能基
を含む化合物を用いるときは、例えば、イソシアネート
基のような化合物を添加してその官能基を失活させるこ
とが好ましい。結着剤の配合比率は、正極合剤中、1〜
50重量%、好ましくは5〜15重量%である。
Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene. Enter polymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluororubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer , Vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene - tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride - pentafluoro propylene copolymer, a propylene -
Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene- Acrylic acid copolymer or its (Na +) ion cross-linked product,
Ethylene-methacrylic acid copolymer or its (Na +)
Ion cross-linked product, ethylene-methyl acrylate copolymer or its (Na +) ion cross-linked product, ethylene-methyl methacrylate copolymer or its (Na +) ion cross-linked product, polysaccharides such as polyethylene oxide, thermoplastic resin, rubber Examples thereof include polymers having elasticity, and these can be used alone or in combination of two or more.
When a compound containing a functional group that reacts with lithium, such as a polysaccharide, is used, it is preferable to add a compound such as an isocyanate group to deactivate the functional group. The compounding ratio of the binder is 1 to 1 in the positive electrode mixture.
It is 50% by weight, preferably 5 to 15% by weight.

【0043】フィラーは正極合剤において正極の体積膨
張等を抑制するものであり、必要により添加される。フ
ィラーとしては、構成された電池において化学変化を起
こさない繊維状材料であれば何でも用いることができる
が、例えば、ポリプロピレン、ポリエチレン等のオレフ
ィン系ポリマー、ガラス、炭素等の繊維が用いられる。
フィラーの添加量は特に限定されないが、正極合剤中、
0〜30重量%が好ましい。
The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added if necessary. As the filler, any fibrous material that does not cause a chemical change in the constructed battery can be used. For example, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used.
The addition amount of the filler is not particularly limited, in the positive electrode mixture,
0 to 30% by weight is preferable.

【0044】負極は、負極集電体上に負極材料を塗布乾
燥等して形成される。負極集電体としては、構成された
電池において化学変化を起こさない電子伝導体であれは
特に制限されるものでないが、例えば、ステンレス鋼、
ニッケル、銅、チタン、アルミニウム、焼成炭素、銅や
ステンレス鋼の表面にカーボン、ニッケル、チタン、銀
を表面処理させたもの、及び、アルミニウム−カドミウ
ム合金等が挙げられる。また、これらの材料の表面を酸
化して用いてもよく、表面処理により集電体表面に凹凸
を付けて用いてもよい。また、集電体の形態としては、
例えば、フォイル、フィルム、シート、ネット、パンチ
ングされたもの、ラス体、多孔質体、発砲体、繊維群、
不織布の成形体などが挙げられる。集電体の厚さは特に
制限されないが、1〜500μmとすることが好まし
い。
The negative electrode is formed by applying a negative electrode material on the negative electrode current collector and drying it. The negative electrode current collector is not particularly limited as long as it is an electron conductor that does not undergo a chemical change in the constructed battery, but, for example, stainless steel,
Examples thereof include nickel, copper, titanium, aluminum, calcined carbon, copper or stainless steel whose surface is treated with carbon, nickel, titanium and silver, and an aluminum-cadmium alloy. Further, the surface of these materials may be used after being oxidized, or the surface of the current collector may be made uneven by surface treatment. In addition, as the form of the current collector,
For example, foil, film, sheet, net, punched material, lath, porous body, foam, fiber group,
Examples include non-woven fabric moldings. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

【0045】負極材料としては、特に制限されるもので
はないが、例えば、炭素質材料、金属複合酸化物、リチ
ウム金属、リチウム合金、ケイ素系合金、錫系合金、金
属酸化物、導電性高分子、カルコゲン化合物、Li−C
o−Ni系材料等が挙げられる。炭素質材料としては、
例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げら
れる。金属複合酸化物としては、例えば、Snp M1
−pM2 q Or (式中、M1 はMn、Fe、Pb及び
Geから選ばれる1種以上の元素を示し、M2はAl、
B、P、Si、周期律表第1族、第2族、第3族及びハ
ロゲン元素から選ばれる1種以上の元素を示し、0<p
≦1、1≦q≦3、1≦r≦8を示す。)、LixFe
23 (0≦x≦1)、LixWO2(0≦x≦1)等の
化合物が挙げられる。金属酸化物としては、GeO、G
eO2、SnO、SnO2、PbO、PbO2、Pb
23、Pb34、Sb23、Sb24、Sb25、Bi
23、Bi24、Bi25等が挙げられる。導電性高分
子としては、ポリアセチレン、ポリ−p−フニレン等が
挙げられる。
The negative electrode material is not particularly limited, but for example, carbonaceous materials, metal composite oxides, lithium metal, lithium alloys, silicon alloys, tin alloys, metal oxides, conductive polymers. , Chalcogen compounds, Li-C
Examples include o-Ni-based materials. As a carbonaceous material,
For example, a non-graphitizable carbon material, a graphite-based carbon material and the like can be mentioned. As the metal complex oxide, for example, Snp M 1 1
-PM 2 q Or (In the formula, M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, M 2 represents Al,
B, P, Si, one or more kinds of elements selected from Group 1, Group 2 and Group 3 of the periodic table and a halogen element, and 0 <p
≦ 1, 1 ≦ q ≦ 3, 1 ≦ r ≦ 8 are shown. ), LixFe
Examples thereof include compounds such as 2 O 3 (0 ≦ x ≦ 1) and LixWO 2 (0 ≦ x ≦ 1). As the metal oxide, GeO, G
eO 2 , SnO, SnO 2 , PbO, PbO 2 , Pb
2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi
2 O 3, Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.

【0046】セパレータとしては、大きなイオン透過度
を持ち、所定の機械的強度を持った絶縁性の薄膜が用い
られる。耐有機溶剤性と疎水性からポリプロピレンなど
のオレフィン系ポリマーあるいはガラス繊維あるいはポ
リエチレンなどからつくられたシートや不織布が用いら
れる。セパレーターの孔径としては、一般的に電池用と
して有用な範囲であればよく、例えば、0.01〜10
μm である。セパレーターの厚みとしては、一般的な電
池用の範囲であればよく、例えば5〜300μm であ
る。なお、後述する電解質としてポリマーなどの固体電
解質が用いられる場合には、固体電解質がセパレーター
を兼ねるようなものであってもよい。
As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. A sheet or non-woven fabric made of an olefin polymer such as polypropylene or glass fiber or polyethylene is used because of its resistance to organic solvents and hydrophobicity. The pore size of the separator may be in a range generally useful for batteries, and for example, 0.01 to 10
μm. The thickness of the separator may be in the range for general batteries, and is, for example, 5 to 300 μm. When a solid electrolyte such as a polymer is used as the electrolyte described below, the solid electrolyte may also serve as the separator.

【0047】リチウム塩を含有する非水電解質は、非水
電解質とリチウム塩とからなるものである。非水電解質
としては、非水電解液、有機固体電解質、無機固体電解
質が用いられる。非水電解液としては、例えば、N−メ
チル−2−ピロリジノン、プロピレンカーボネート、エ
チレンカーボネート、ブチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、γ−ブチロラク
トン、1,2−ジメトキシエタン、テトラヒドロキシフ
ラン、2−メチルテトラヒドロフラン、ジメチルスルフ
ォキシド、1,3−ジオキソラン、ホルムアミド、ジメ
チルホルムアミド、ジオキソラン、アセトニトリル、ニ
トロメタン、蟻酸メチル、酢酸メチル、リン酸トリエス
テル、トリメトキシメタン、ジオキソラン誘導体、スル
ホラン、メチルスルホラン、3−メチル−2−オキサゾ
リジノン、1,3−ジメチル−2−イミダゾリジノン、
プロピレンカーボネート誘導体、テトラヒドロフラン誘
導体、ジエチルエーテル、1,3−プロパンサルトン、
プロピオン酸メチル、プロピオン酸エチル等の非プロト
ン性有機溶媒の1種または2種以上を混合した溶媒が挙
げられる。
The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolytic solution, an organic solid electrolyte, or an inorganic solid electrolyte is used. Examples of the non-aqueous electrolytic solution include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone,
Propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propane sultone,
An aprotic organic solvent such as methyl propionate or ethyl propionate may be used, or a mixture of two or more aprotic organic solvents may be mentioned.

【0048】有機固体電解質としては、例えば、ポリエ
チレン誘導体、ポリエチレンオキサイド誘導体又はこれ
を含むポリマー、ポリプロピレンオキサイド誘導体又は
これを含むポリマー、リン酸エステルポリマー、ポリホ
スファゼン、ポリアジリジン、ポリエチレンスルフィ
ド、ポリビニルアルコール、ポリフッ化ビニリデン、ポ
リヘキサフルオロプロピレン等のイオン性解離基を含む
ポリマー、イオン性解離基を含むポリマーと上記非水電
解液の混合物等が挙げられる。
Examples of the organic solid electrolyte include polyethylene derivatives, polyethylene oxide derivatives or polymers containing them, polypropylene oxide derivatives or polymers containing them, phosphoric ester polymers, polyphosphazenes, polyaziridines, polyethylene sulfides, polyvinyl alcohols, polyfluorides. Examples thereof include polymers containing an ionic dissociative group such as vinylidene chloride and polyhexafluoropropylene, and a mixture of the polymer containing an ionic dissociative group and the above non-aqueous electrolyte.

【0049】無機固体電解質としては、Liの窒化物、
ハロゲン化物、酸素酸塩等を用いることができ、例え
ば、Li3N、LiI、Li5NI2、Li3N−LiI−
LiOH、LiSiO4、LiSiO4−LiI−LiO
H、Li2SiS3、Li4SiO4、Li4SiO4−Li
I−LiOH、Li3PO4−Li2S−SiS2、硫化リ
ン化合物等が挙げられる。
As the inorganic solid electrolyte, Li nitride,
Can be used a halide, salt oxygen acid, for example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-
LiOH, LiSiO 4 , LiSiO 4 -LiI-LiO
H, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -Li
I-LiOH, Li 3 PO 4 -Li 2 S-SiS 2, and the like phosphorus sulfide compound.

【0050】リチウム塩としては、上記非水電解質に溶
解するものが用いられ、例えば、LiCl、LiBr、
LiI、LiClO4 、LiBF4 、LiB10Cl10
LiPF6 、LiCF3 SO3 、LiCF3 CO2 、L
iAsF6 、LiSbF6 、LiB10Cl10、LiAl
Cl4 、CH3SO3Li、CF3SO3Li、(CF3
22NLi、クロロボランリチウム、低級脂肪族カル
ボン酸リチウム、四フェニルホウ酸リチウム、イミド類
等の1種または2種以上を混合した塩が挙げられる。
As the lithium salt, one which is soluble in the above non-aqueous electrolyte is used, and examples thereof include LiCl, LiBr,
LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 ,
LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , L
iAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAl
Cl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 S
O 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carboxylate, lithium tetraphenylborate, imides, and the like, and salts of one kind or a mixture of two or more kinds thereof may be mentioned.

【0051】また、非水電解質には、放電、充電特性、
難燃性を改良する目的で、以下に示す化合物を添加する
ことができる。例えば、ピリジン、トリエチルホスファ
イト、トリエタノールアミン、環状エーテル、エチレン
ジアミン、n−グライム、ヘキサリン酸トリアミド、ニ
トロベンゼン誘導体、硫黄、キノンイミン染料、N−置
換オキサゾリジノンとN,N−置換イミダゾリジン、エ
チレングリコールジアルキルエーテル、アンモニウム
塩、ポリエチレングルコール、ピロール、2−メトキシ
エタノール、三塩化アルミニウム、導電性ポリマー電極
活物質のモノマー、トリエチレンホスホンアミド、トリ
アルキルホスフィン、モルフォリン、カルボニル基を持
つアリール化合物、ヘキサメチルホスホリックトリアミ
ドと4−アルキルモルフォリン、二環性の三級アミン、
オイル、ホスホニウム塩及び三級スルホニウム塩、ホス
ファゼン、炭酸エステル等が挙げられる。また、電解液
を不燃性にするために含ハロゲン溶媒、例えば、四塩化
炭素、三弗化エチレンを電解液に含ませることができ
る。また、高温保存に適性を持たせるために電解液に炭
酸ガスを含ませることができる。
Further, the non-aqueous electrolyte contains the discharge, charge characteristics,
The following compounds can be added for the purpose of improving flame retardancy. For example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether. , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compound having carbonyl group, hexamethylphosphine Holic triamide and 4-alkylmorpholine, bicyclic tertiary amine,
Examples thereof include oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, carbonates and the like. Further, in order to make the electrolytic solution nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be contained in the electrolytic solution. Further, the electrolytic solution may contain carbon dioxide gas in order to have suitability for high temperature storage.

【0052】本発明に係るリチウム二次電池は、電池性
能、特に負荷特性、サイクル特性の優れたリチウム二次
電池となる。電池の形状はボタン、シート、シリンダ
ー、角、コイン型等いずれの形状であってもよい。
The lithium secondary battery according to the present invention is a lithium secondary battery having excellent battery performance, particularly load characteristics and cycle characteristics. The shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin shape.

【0053】従来のLiCoO2を用いたリチウム二次
電池は、充放電の際、LiCoO2表面で電解液が分解
したり、被膜が生成することが知られており、この結果
サイクル特性、負荷特性及び安全性が低くなると言われ
ている。これに対して、本発明のリチウムコバルト系複
合酸化物は、前記の複合酸化物又は前記の複合酸化
物の粒子表面をMg、Ti又はZrから選ばれる少なく
とも1種以上の金属酸化物を密着性よく付着せしめるこ
とにより、該複合酸化物結晶の表面を安定化し、接触す
る電解液の分解を抑制するとともに、表面被膜の生成を
押さえ、また、複合酸化物の粒子表面が適度に露出して
いるので該複合酸化物結晶の表面からのLiの脱挿入を
よりスムーズにする。このため、本発明のリチウムコバ
ルト系複合酸化物を正極活物質として用いたリチウム二
次電池は、電池性能、特に負荷特性、サイクル特性及び
安全性が優れたものとなると考えられる。
[0053] Conventional lithium secondary battery using LiCoO 2 is the time of charging and discharging, the electrolytic solution or decomposed by LiCoO 2 surface, it is known that the film is produced, the result cycle characteristic, load characteristic And it is said that safety will be reduced. On the other hand, the lithium-cobalt composite oxide of the present invention adheres at least one metal oxide selected from Mg, Ti or Zr to the surface of the composite oxide or the particle surface of the composite oxide. By adhering well, the surface of the complex oxide crystal is stabilized, the decomposition of the electrolytic solution in contact is suppressed, the formation of a surface coating is suppressed, and the particle surface of the complex oxide is appropriately exposed. Therefore, the insertion and removal of Li from the surface of the composite oxide crystal is made smoother. Therefore, it is considered that the lithium secondary battery using the lithium-cobalt composite oxide of the present invention as the positive electrode active material has excellent battery performance, particularly load characteristics, cycle characteristics, and safety.

【0054】本発明に係るリチウム二次電池の用途は、
特に限定されないが、例えば、ノートパソコン、ラップ
トップパソコン、ポケットワープロ、携帯電話、コード
レス子機、ポータブルCDプレーヤー、ラジオ、液晶テ
レビ、バックアップ電源、電気シェーバー、メモリーカ
ード、ビデオムービー等の電子機器、自動車、電動車
両、ゲーム機器等の民生用電子機器が挙げられる。
The use of the lithium secondary battery according to the present invention is as follows.
For example, a laptop computer, a laptop computer, a pocket word processor, a mobile phone, a cordless handset, a portable CD player, a radio, an LCD TV, a backup power supply, an electric shaver, a memory card, an electronic device such as a video movie, an automobile, etc. , Electric vehicles, game machines, and other consumer electronic devices.

【0055】[0055]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto.

【0056】本発明の実施例で用いた原料の金属酸化物
の諸物性を表1に示した。
Table 1 shows the physical properties of the raw material metal oxides used in the examples of the present invention.

【表1】 注)MgO;宇部マテリアルズ社製、ZrO2;第一稀
元素化学工業社製、TiO2;昭和タイタニウム社製、
ZnO;正同化学社製
[Table 1] Note) MgO; Ube Materials Co., Ltd., ZrO 2 ; Daiichi Rare Element Chemical Industry Co., Ltd., TiO 2 ; Showa Titanium Co., Ltd.,
ZnO; manufactured by Shodo Kagaku

【0057】<コバルト酸リチウムの調製>Co3
4(平均粒径2μm)40gとLi2CO3(平均粒径7
μm)19gを秤量し、乾式で十分に混合した後100
0℃で5時間焼成した。該焼成物を粉砕、分級してLi
CoO2を得た。このものの諸物性を表2に示した。
<Preparation of Lithium Cobaltate> Co 3 O
4 (average particle size 2 μm) 40 g and Li 2 CO 3 (average particle size 7
(μm) 19 g is weighed and thoroughly mixed in a dry system, and then 100
It was baked at 0 ° C. for 5 hours. The fired product was crushed and classified to obtain Li
CoO 2 was obtained. The physical properties of this product are shown in Table 2.

【表2】 [Table 2]

【0058】実施例1〜2及び比較例1〜2 <第一工程>前記で調製したLiCoO2 に、表3に示
した量の金属酸化物試料1(MgO)を0.2重量%と
なるよう加え、家庭用ミキサーを用いて60秒間十分混
合することによりLiCoO2粒子表面にMgOを付着
させた。また、第一工程後のBET比表面積を測定し、
その結果を表3に示した。 <第二工程>次に、第一工程で得られたMgOを付着さ
せたLiCoO2 を4つに分けて表3に示す温度にて各
試料を5時間加熱処理し、分級して各種のリチウムコバ
ルト系複合酸化物を得た。また、得られたリチウムコバ
ルト系複合酸化物の諸物性を表3に示した。
Examples 1 and 2 and Comparative Examples 1 and 2 <First Step> The amount of the metal oxide sample 1 (MgO) shown in Table 3 was 0.2% by weight in the LiCoO 2 prepared above. In addition, MgO was adhered to the surface of the LiCoO 2 particles by thoroughly mixing for 60 seconds using a household mixer. In addition, the BET specific surface area after the first step is measured,
The results are shown in Table 3. <Second Step> Next, the LiCoO 2 to which the MgO obtained in the first step is attached is divided into four, and each sample is heat-treated at the temperature shown in Table 3 for 5 hours and classified to obtain various types of lithium. A cobalt-based composite oxide was obtained. In addition, Table 3 shows the physical properties of the obtained lithium cobalt-based composite oxide.

【表3】 [Table 3]

【0059】表3の結果より、第一工程後と第二工程後
の実施例1、実施例2と比較例1のリチウムコバルト系
複合酸化物のBET比表面積を比較すると、実施例1、
2の方が第二工程後のBET比表面積(m2/g)の減
少率が大きい。このことから、比較例1のものと比べて
MgOが複合酸化物の粒子表面に密着性よく付着してい
ることが分かる。また、比較例2の900℃で処理した
ものは、実施例1〜2のリチウムコバルト系複合酸化物
と比べ、この比表面積の減少率が大きい。これはMgO
が一部LiCoO2の粒子内部まで固溶したためと考え
られる。また、実施例1で得られたリチウムコバルト系
複合酸化物の電子顕微鏡写真を図1に,更にそれを拡大
したものを図2に示す。
From the results in Table 3, comparing the BET specific surface areas of the lithium cobalt-based composite oxides of Example 1 after the first step and after the second step, Example 2 and Comparative Example 1,
No. 2 has a larger decrease rate of the BET specific surface area (m 2 / g) after the second step. From this, it can be seen that MgO adheres to the surface of the particles of the composite oxide with good adhesiveness as compared with that of Comparative Example 1. Further, the sample treated at 900 ° C. of Comparative Example 2 has a larger reduction rate of this specific surface area than the lithium cobalt-based composite oxides of Examples 1 and 2. This is MgO
It is considered that this is because part of the solid solution was formed inside the LiCoO 2 particles. Further, an electron micrograph of the lithium-cobalt composite oxide obtained in Example 1 is shown in FIG. 1, and an enlarged one thereof is shown in FIG.

【0060】実施例3〜4及び比較例3 <第一工程>前記で調製したLiCoO2に、表4に示
した金属酸化物とを0.2重量%となるように家庭用ミ
キサーを用いて60秒間十分に混合することによりLi
CoO2粒子表面に金属酸化物を付着させた。 <第二工程>次に、第一工程で得られた各種の金属酸化
物を付着させた複合酸化物を表4に示す温度にて5時間
加熱処理し、分級して各種のリチウムコバルト系複合酸
化物を得た。また、得られたリチウムコバルト系複合酸
化物の諸物性を表4に示した。
Examples 3 to 4 and Comparative Example 3 <First Step> Using LiCoO 2 prepared above, the metal oxides shown in Table 4 were mixed at 0.2% by weight using a household mixer. By mixing thoroughly for 60 seconds, Li
A metal oxide was attached to the surface of the CoO 2 particles. <Second Step> Next, the composite oxide obtained by adhering various metal oxides obtained in the first step is heat-treated at a temperature shown in Table 4 for 5 hours, and classified to obtain various lithium cobalt-based composites. An oxide was obtained. In addition, various physical properties of the obtained lithium cobalt-based composite oxide are shown in Table 4.

【表4】 [Table 4]

【0061】実施例5 <V置換複合酸化物の調製>Co34(平均粒径2μ
m)40gとLiCO3(平均粒径7μm)19.5g及
びV25(平均粒径8μm)0.05gを秤量し、乾式
で十分に混合した後1000℃で5時間焼成した。該焼
成物を粉砕、分級してLiCo0.9990.001 2を得
た。このものの諸物性を表5に示した。
Example 5 <Preparation of V-substituted complex oxide> Co3OFour(Average particle size 2μ
m) 40g and LiCO3(Average particle size 7μm) 19.5g
And V2OFive(Average particle size 8μm) Weigh 0.05g and dry
After being thoroughly mixed with, the mixture was baked at 1000 ° C. for 5 hours. The grill
Grind and classify the product into LiCo0.999V0.001O 2Got
It was Various physical properties of this product are shown in Table 5.

【表5】 <第一工程>前記で調製したV置換複合酸化物に、金属
酸化物を0.2重量%となるように家庭用ミキサーを用
いて60秒間十分に混合することによりV置換複合酸化
物の粒子表面に金属酸化物を付着させた。また、第一工
程後のBET比表面積を測定し、その結果を表10に示
した。 <第二工程>次に、第一工程で得られた金属酸化物を付
着させた複合酸化物を300℃で5時間加熱処理し、分
級してリチウムコバルト系複合酸化物を得た。また、得
られたリチウムコバルト系複合酸化物の主物性を表10
に示した。
[Table 5] <First Step> V-substituted complex oxide particles are prepared by thoroughly mixing the V-substituted complex oxide prepared above with a metal oxide in an amount of 0.2% by weight using a household mixer for 60 seconds. A metal oxide was attached to the surface. The BET specific surface area after the first step was measured, and the results are shown in Table 10. <Second Step> Next, the composite oxide to which the metal oxide obtained in the first step was attached was heated at 300 ° C. for 5 hours and classified to obtain a lithium cobalt-based composite oxide. In addition, Table 10 shows the main physical properties of the obtained lithium cobalt-based composite oxide.
It was shown to.

【0062】実施例6 <Cu置換複合酸化物の調製>Co34(平均粒径2μ
m)40gとLi2CO3(平均粒径7μm)19.5g
及びCuCO3(平均粒径7μm)0.06gを秤量
し、乾式で十分に混合した後1000℃で5時間焼成し
た。該焼成物を粉砕、分級してLiCo0.999Cu0.001
2を得た。このものの諸物性を表6に示した。
Example 6 <Preparation of Cu-substituted complex oxide> Co 3 O 4 (average particle size 2 μm
m) 40 g and Li 2 CO 3 (average particle size 7 μm) 19.5 g
And 0.06 g of CuCO 3 (average particle size 7 μm) were weighed, sufficiently mixed in a dry system, and then calcined at 1000 ° C. for 5 hours. The fired product was crushed and classified to obtain LiCo 0.999 Cu 0.001
O 2 was obtained. Table 6 shows the physical properties of this product.

【表6】 <第一工程>前記で調製したCu置換複合酸化物に、金
属酸化物を0.2重量%となるように家庭用ミキサーを
用いて60秒間十分に混合することによりCu置換複合
酸化物の粒子表面に金属酸化物を付着させた。また、第
一工程後のBET比表面積を測定し、その結果を表10
に示した。 <第二工程>次に、第一工程で得られた金属酸化物を付
着させた複合酸化物を300℃で5時間加熱処理し、分
級してリチウムコバルト系複合酸化物を得た。また、得
られたリチウムコバルト系複合酸化物の諸物性を表10
に示した。
[Table 6] <First Step> Cu-substituted composite oxide particles are prepared by sufficiently mixing the Cu-substituted composite oxide prepared above with a metal oxide in an amount of 0.2% by weight using a household mixer for 60 seconds. A metal oxide was attached to the surface. In addition, the BET specific surface area after the first step was measured, and the result is shown in Table 10.
It was shown to. <Second Step> Next, the composite oxide to which the metal oxide obtained in the first step was attached was heated at 300 ° C. for 5 hours and classified to obtain a lithium cobalt-based composite oxide. In addition, various physical properties of the obtained lithium cobalt-based composite oxide are shown in Table 10.
It was shown to.

【0063】実施例7 <Fe置換複合酸化物の調製>Co34(平均粒径2μ
m)40gとLi2CO3(平均粒径7μm)19.5g
及びFe34(平均粒径5μm)0.04gを秤量し、
乾式で十分に混合した後1000℃で5時間焼成した。
該焼成物を粉砕、分級してLiCo0.999Fe0 .0012
を得た。このものの諸物性を表7に示した。
Example 7 <Preparation of Fe-substituted composite oxide> Co 3 O 4 (average particle size 2 μ
m) 40 g and Li 2 CO 3 (average particle size 7 μm) 19.5 g
And Fe 3 O 4 (average particle size 5 μm) 0.04 g are weighed,
After thoroughly dry-mixed, the mixture was baked at 1000 ° C. for 5 hours.
Calcination was pulverized and classified LiCo 0.999 Fe 0 .001 O 2
Got Various physical properties of this product are shown in Table 7.

【表7】 <第一工程>前記で調製したFe置換複合酸化物に、金
属酸化物を0.2重量%となるように家庭用ミキサーを
用いて60秒間十分に混合することによりFe置換複合
酸化物の粒子表面に金属酸化物を付着させた。また、第
一工程後のBET比表面積を測定し、その結果を表10
に示した。 <第二工程>次に、第一工程で得られた金属酸化物を付
着させた複合酸化物を300℃にて5時間加熱処理し、
分級してリチウムコバルト系複合酸化物を得た。また、
得られたリチウムコバルト系複合酸化物の諸物性を表1
0に示した。
[Table 7] <First Step> Fe-substituted composite oxide particles are prepared by thoroughly mixing the Fe-substituted composite oxide prepared above with a metal oxide in an amount of 0.2% by weight for 60 seconds using a domestic mixer. A metal oxide was attached to the surface. In addition, the BET specific surface area after the first step was measured, and the result is shown in Table 10.
It was shown to. <Second Step> Next, the composite oxide to which the metal oxide obtained in the first step is attached is heat-treated at 300 ° C. for 5 hours,
Classification was performed to obtain a lithium cobalt-based composite oxide. Also,
Table 1 shows the physical properties of the obtained lithium cobalt-based composite oxide.
It was shown at 0.

【0064】実施例8 <Zn置換複合酸化物の調製>Co34(平均粒径2μ
m)40gとLi2CO3(平均粒径7μm)19.5g
及びZnO(平均粒径5μm)0.04gを秤量し、乾
式で十分に混合した後1000℃で5時間焼成した。該
焼成物を粉砕、分級してLiCo0.999Zn0.0 012
得た。このものの諸物性を表8に示した。
Example 8 <Preparation of Zn-substituted composite oxide> Co 3 O 4 (average particle size 2 μm)
m) 40 g and Li 2 CO 3 (average particle size 7 μm) 19.5 g
And ZnO (average particle size 5 μm) 0.04 g were weighed, sufficiently mixed in a dry system, and then baked at 1000 ° C. for 5 hours. The calcined product was crushed and classified to obtain LiCo 0.999 Zn 0.0 01 O 2 . Various physical properties of this product are shown in Table 8.

【表8】 <第一工程>前記で調製したZn置換複合酸化物に、金
属酸化物を0.2重量%となるように家庭用ミキサーを
用いて60秒間十分に混合することによりZn置換複合
酸化物の粒子表面に金属酸化物を付着させた。また、第
一工程後のBET比表面積を測定し、その結果を表10
に示した。 <第二工程>次に、第一工程で得られた金属酸化物を付
着させた複合酸化物を300℃にて5時間加熱処理し、
分級してリチウムコバルト系複合酸化物を得た。また、
得られたリチウムコバルト系複合酸化物の諸物性を表1
0に示した。
[Table 8] <First Step> Particles of the Zn-substituted composite oxide prepared by thoroughly mixing the Zn-substituted composite oxide prepared above with a metal oxide in an amount of 0.2% by weight for 60 seconds using a domestic mixer. A metal oxide was attached to the surface. In addition, the BET specific surface area after the first step was measured, and the result is shown in Table 10.
It was shown to. <Second Step> Next, the composite oxide to which the metal oxide obtained in the first step is attached is heat-treated at 300 ° C. for 5 hours,
Classification was performed to obtain a lithium cobalt-based composite oxide. Also,
Table 1 shows the physical properties of the obtained lithium cobalt-based composite oxide.
It was shown at 0.

【0065】実施例9 <Zr置換複合酸化物の調製>Co34(平均粒径2μ
m)40gとLi2CO3(平均粒径7μm)19.5g
及びZrO2(平均粒径1μm)0.06gを秤量し、
乾式で十分に混合した後1000℃で5時間焼成した。
該焼成物を粉砕、分級してLiCo0.999Zr0 .0012
を得た。このものの諸物性を表9に示した。
Example 9 <Preparation of Zr-substituted composite oxide> Co 3 O 4 (average particle diameter 2 μm)
m) 40 g and Li 2 CO 3 (average particle size 7 μm) 19.5 g
And 0.06 g of ZrO 2 (average particle size 1 μm) are weighed,
After thoroughly dry-mixed, the mixture was baked at 1000 ° C. for 5 hours.
Calcination was pulverized and classified LiCo 0.999 Zr 0 .001 O 2
Got Various physical properties of this product are shown in Table 9.

【表9】 <第一工程>前記で調製したZr置換複合酸化物に、金
属酸化物を0.2重量%となるように家庭用ミキサーを
用いて60秒間十分に混合することによりZr置換複合
酸化物の粒子表面に金属酸化物を付着させた。また、第
一工程後のBET比表面積を測定し、その結果を表10
に示した。 <第二工程>次に、第一工程で得られた金属酸化物を付
着させた複合酸化物を300℃にて5時間加熱処理し、
分級してリチウムコバルト系複合酸化物を得た。また、
得られたリチウムコバルト系複合酸化物の主物性を表1
0に示した。
[Table 9] <First step> Zr-substituted composite oxide particles are prepared by thoroughly mixing the Zr-substituted composite oxide prepared above with a metal oxide in an amount of 0.2% by weight using a household mixer for 60 seconds. A metal oxide was attached to the surface. In addition, the BET specific surface area after the first step was measured, and the result is shown in Table 10.
It was shown to. <Second Step> Next, the composite oxide to which the metal oxide obtained in the first step is attached is heat-treated at 300 ° C. for 5 hours,
Classification was performed to obtain a lithium cobalt-based composite oxide. Also,
Table 1 shows the main physical properties of the obtained lithium cobalt-based composite oxide.
It was shown at 0.

【表10】 [Table 10]

【0066】<電池性能試験> (I)リチウム2次電池の作製;上記のように製造した
実施例1〜9、比較例1〜3で得られたリチウムコバル
ト系複合酸化物及び実施例1で用いたLiCoO2(比
較例4)91重量%、黒鉛粉末6重量%、ポリフッ化ビ
ニリデン3重量%を混合して正極剤とし、これをN−メ
チル−2−ピロリジノンに分散させて混練ペーストを調
製した。該混練ペーストをアルミ箔に塗布したのち乾
燥、プレスして直径15mmの円盤に打ち抜いて正極板
を得た。この正極板を用いて、セパレーター、負極、正
極、集電板、取り付け金具、外部端子、電解液等の各部
材を使用してリチウム二次電池を製作した。このうち、
負極は金属リチウム箔を用い、電解液にはエチレンカー
ボネートとメチルエチルカーボネートの1:1混練液1
リットルにLiPF6 1モルを溶解したものを使用し
た。
<Battery Performance Test> (I) Preparation of Lithium Secondary Battery; In the lithium cobalt-based composite oxides obtained in Examples 1 to 9 and Comparative Examples 1 to 3 and Example 1 as described above. 91 wt% of the used LiCoO 2 (Comparative Example 4), 6 wt% of graphite powder, and 3 wt% of polyvinylidene fluoride were mixed as a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneading paste. did. The kneading paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate. Using this positive electrode plate, a lithium secondary battery was manufactured by using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a fitting, an external terminal, and an electrolytic solution. this house,
Metallic lithium foil was used for the negative electrode, and 1: 1 kneading liquid 1 of ethylene carbonate and methyl ethyl carbonate was used as the electrolytic solution.
Using a solution obtained by dissolving LiPF 6 1 mol liter.

【0067】(1)電池の性能評価 作製したリチウム二次電池を室温で作動させ、下記の電
池性能を評価した。 ・容量維持率、エネルギー維持率の測定 室温にて正極に対して定電流電圧(CCCV)0.5C
で4.3V まで充電した後、0.2Cで2.7Vまで放
電させる充放電を1サイクルとして、放電容量およびエ
ネルギー密度を測定した。次いで、上記放電容量及びエ
ネルギー密度の測定における充放電を20サイクル行
い、下記式(1)により容量維持率を算出し、また、下
記式(2)によりエネルギー維持率を算出した。その結
果を表11及び表12に示す。また、実施例1、実施例
3、実施例4、比較例1、比較例3及び比較例4で調製
したリチウムコバルト系複合酸化物を正極活物質として
用いたリチウム二次電池のこの条件下での放電特性図を
図3〜8にそれぞれ示した。
(1) Evaluation of Battery Performance The prepared lithium secondary battery was operated at room temperature and the following battery performance was evaluated.・ Measurement of capacity retention rate and energy retention rate Constant current voltage (CCCV) 0.5C to the positive electrode at room temperature
The discharge capacity and the energy density were measured with one cycle of charging / discharging in which the battery was charged to 4.3 V and then discharged to 0.2 V at 0.2 C. Next, 20 cycles of charge and discharge in the measurement of the discharge capacity and energy density were performed, the capacity retention rate was calculated by the following equation (1), and the energy retention rate was calculated by the following equation (2). The results are shown in Tables 11 and 12. In addition, under the conditions of the lithium secondary battery using the lithium cobalt-based composite oxide prepared in Example 1, Example 3, Example 4, Comparative Example 1, Comparative Example 3 and Comparative Example 4 as the positive electrode active material. The discharge characteristic diagrams of are shown in FIGS.

【数1】 [Equation 1]

【数2】 [Equation 2]

【0068】・負荷特性の評価 まず、正極に対して定電流電圧(CCCV)充電により
0.5Cで5時間かけて、4.3Vまで充電した後、放
電レート0.2C、0.5C、1.0Cで2.7Vまで
放電させる充放電を行い、これらの操作を1サイクルと
して1サイクル毎に放電容量とエネルギー密度を測定し
た。このサイクルを3サイクル繰り返し、3サイクル目
の放電容量とエネルギー密度を求めた。その結果を表1
1及び表12に示す。また、実施例1、実施例3、実施
例4、比較例1、比較例3及び比較例4で調製したリチ
ウムコバルト系複合酸化物を正極活物質として用いたリ
チウム二次電池について上記操作を放電レート0.2C
でも同様に行い、0.2C、0.5C、1Cでの放電特
性図を図9〜図14にそれぞれ示した。なお、エネルギ
ー密度の値が高い方が、高負荷放電時でもより多くのエ
ネルギーを利用でき、同じ放電容量の場合にはより高電
圧での放電が可能である事を示し、即ち、負荷特性が優
れていることを示す。
Evaluation of load characteristics First, the positive electrode was charged by constant current voltage (CCCV) charging at 0.5C for 5 hours to 4.3V, and then the discharge rate was 0.2C, 0.5C, 1 Charging / discharging was performed to discharge to 2.7 V at 0.0 C, and these operations were set as one cycle, and the discharge capacity and energy density were measured for each cycle. This cycle was repeated 3 times, and the discharge capacity and energy density of the 3rd cycle were obtained. The results are shown in Table 1.
1 and Table 12. Further, the above operation was discharged for a lithium secondary battery using the lithium-cobalt-based composite oxide prepared in Example 1, Example 3, Example 4, Comparative Example 1, Comparative Example 3 and Comparative Example 4 as a positive electrode active material. Rate 0.2C
However, the same procedure was performed, and discharge characteristic diagrams at 0.2 C, 0.5 C and 1 C are shown in FIGS. 9 to 14, respectively. It should be noted that a higher energy density value indicates that more energy can be used even during high load discharge, and that discharge with a higher voltage is possible when the discharge capacity is the same, that is, the load characteristics are Show that you are excellent.

【表11】 [Table 11]

【表12】 表11及び表12の結果より、本発明のリチウムコバル
ト系複合酸化物を正極活物質として用いたリチウム二次
電池は比較例のものを正極活物質として用いたものと比
べ、容量維持率が高く、負荷特性が優れていることが分
かる。更に、図2〜図13の結果より、比較例4のもの
を正極活物質として用いたものと比べ、放電カーブ末期
にはっきりとした肩が見られ、放電の最後まで高電圧を
維持していることが分かる。
[Table 12] From the results of Table 11 and Table 12, the lithium secondary battery using the lithium cobalt-based composite oxide of the present invention as the positive electrode active material has a higher capacity retention rate than the one using the comparative example as the positive electrode active material. It can be seen that the load characteristics are excellent. Further, from the results of FIGS. 2 to 13, a clear shoulder is seen at the end of the discharge curve and a high voltage is maintained until the end of discharge, as compared with the case where Comparative Example 4 is used as the positive electrode active material. I understand.

【0069】・安全性の評価 輿石、喜多、和田(平成13年11月21日〜23日開催 第42
回 電池討論会 講演要旨集、462〜463頁)、太
田、大岩、石垣ら(平成13年11月21日〜23日開催第42回
電池討論会 講演要旨集、470〜471頁)及び特開
2002−158008号公報の電池の熱安定性評価法
に基づいて、実施例2および比較例4で調製したリチウ
ムコバルト系複合酸化物を正極活物質として用いたリチ
ウム二次電池を室温で正極に対して、定電流電圧(CC
CV)充電により0.5Cで5時間かけて、4.3Vま
で充電した後、アルゴン雰囲気下でリチウム二次電池を
分解し、リチウムを引き抜き,デインターカレーション
した正極活物質を含有する正極板を取り出した。次い
で、この取り出した正極板から正極活物質を各5.0m
g削り取り、エチレンカーボネートとメチルエチルカー
ボネートの1:1混練液1リットルにLiPF6 1モル
を溶解した液5.0mlと一緒に示差走査熱量測定(DS
C)用密閉式セル(SUSセル)に封入し、昇温速度2℃/
minにて示差走査熱量測定装置(SIIエポリードサー
ビス社製、形式DSC6200)にて示差熱量変化を測
定した。その示差熱量変化の結果を図15に示す。この
図15の縦軸の熱量は,測定した正極活物質の重さで割
った値を用いた。なお,図15において発熱ピークの高
さが最大になった時の温度が高く,また,発熱開始から
の発熱量の勾配が緩やかな方が,熱安定性,即ち電池安
全性が優れていることを示す。図15の結果より,Li
CoO2(比較例4)は、発熱ピークの高さが最大にな
った時の温度が196℃であるのに対して、本発明のリ
チウムコバルト系複合酸化物(実施例2)では、発熱ピ
ークの高さが最大になった時の温度が235℃で,ま
た,LiCoO2(比較例4)のものと比べて,本発明
のリチウムコバルト系複合酸化物は,発熱開始温度から
発熱ピークの高さが最大となる時の温度までの発熱量の
勾配が緩やかであることから電池の安全性に優れること
が分かる。
・ Safety evaluation Koshiishi, Kita, Wada (held from November 21 to 23, 2001, No. 42)
Proceedings of the 42nd Battery Symposium, 462-463), Ota, Oiwa, Ishigaki, et al. (The 42nd Battery Symposium, Proceedings of November 21-23, 2001, pages 470-471) and JP Based on the battery thermal stability evaluation method of Japanese Patent Laid-Open No. 2002-158008, a lithium secondary battery using the lithium cobalt-based composite oxide prepared in Example 2 and Comparative Example 4 as a positive electrode active material was used for a positive electrode at room temperature. Constant current voltage (CC
CV) A positive electrode plate containing a positive electrode active material obtained by decomposing and deintercalating lithium after decomposing a lithium secondary battery in an argon atmosphere after charging to 4.3 V for 5 hours at 0.5 C by charging. Took out. Next, 5.0 m of each positive electrode active material was taken out from the taken out positive plate.
Differential scanning calorimetry (DS) together with 5.0 ml of 1 liter of 1: 1 mixture of ethylene carbonate and methyl ethyl carbonate dissolved in 1 liter of LiPF 6
Enclosed in a closed cell (SUS cell) for C), heating rate 2 ° C /
The differential calorimetric change was measured with a differential scanning calorimeter (model DSC6200, manufactured by SII Epoll Service) at min. The result of the change in the differential calorific value is shown in FIG. As the heat quantity on the vertical axis of FIG. 15, a value divided by the measured weight of the positive electrode active material was used. It should be noted that in FIG. 15, the temperature is high when the height of the exothermic peak is maximum and the gradient of the calorific value from the start of exothermicity is gentle, that is, the thermal stability, that is, the battery safety is excellent. Indicates. From the result of FIG. 15, Li
In the case of CoO 2 (Comparative Example 4), the temperature at which the height of the exothermic peak becomes maximum is 196 ° C., whereas in the lithium cobalt-based composite oxide of the present invention (Example 2), the exothermic peak is shown. The temperature at the maximum height of 235 ° C. is 235 ° C., and in comparison with that of LiCoO 2 (Comparative Example 4), the lithium cobalt-based composite oxide of the present invention has a higher exothermic peak from the exothermic onset temperature. It can be seen that the safety of the battery is excellent because the gradient of the calorific value up to the temperature at which the maximum value is maximum is gentle.

【0070】[0070]

【発明の効果】上記したとおり、本発明のリチウムコバ
ルト系複合酸化物は、一般式;LixCo1-yMey2-a
(Meは、V、Cu、Zr、Zn、Mg、Al又はFe
から選ばれる1種又は2種以上の金属元素を表す。x
は、0.9≦x≦1.1、yは0≦y≦0.01、aは
−0.1≦a≦0.1の値をとる。)で表される複合酸
化物の粒子表面にMg、Ti又はZrから選ばれる少な
くとも1種以上の金属酸化物を密着性よく付着させたリ
チウムコバルト系複合酸化物であり、このリチウムコバ
ルト系複合酸化物をリチウム二次電池の正極活物質とし
て用いたときに、特に負荷特性、サイクル特性及び安全
性が優れたリチウム二次電池となる。
As described above, the lithium cobalt-based composite oxide of the present invention has the general formula: Li x Co 1-y Me y O 2-a.
(Me is V, Cu, Zr, Zn, Mg, Al or Fe
Represents one or more metal elements selected from x
Is 0.9 ≦ x ≦ 1.1, y is 0 ≦ y ≦ 0.01, and a is −0.1 ≦ a ≦ 0.1. ) Is a lithium-cobalt-based composite oxide in which at least one metal oxide selected from Mg, Ti or Zr is adhered to the particle surface of the composite-oxide represented by the formula (3) with good adhesion. When the product is used as a positive electrode active material of a lithium secondary battery, the lithium secondary battery has excellent load characteristics, cycle characteristics, and safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られたリチウムコバルト系複合
酸化物の粒子表面の状態を示す電子顕微鏡写真。
FIG. 1 is an electron micrograph showing a state of a particle surface of a lithium cobalt-based composite oxide obtained in Example 1.

【図2】 実施例1で得られたリチウムコバルト系複合
酸化物の粒子表面の状態を示す電子顕微鏡写真。
FIG. 2 is an electron micrograph showing the state of the particle surface of the lithium-cobalt-based composite oxide obtained in Example 1.

【図3】 実施例1で得られたリチウムコバルト系複合
酸化物を正極活物質とするリチウム二次電池のサイクル
特性を示す図。
FIG. 3 is a diagram showing cycle characteristics of a lithium secondary battery using the lithium cobalt-based composite oxide obtained in Example 1 as a positive electrode active material.

【図4】 実施例3で得られたリチウムコバルト系複合
酸化物を正極活物質とするリチウム二次電池のサイクル
特性を示す図。
FIG. 4 is a diagram showing cycle characteristics of a lithium secondary battery in which the lithium cobalt-based composite oxide obtained in Example 3 is used as a positive electrode active material.

【図5】 実施例4で得られたリチウムコバルト系複合
酸化物を正極活物質とするリチウム二次電池のサイクル
特性を示す図。
FIG. 5 is a diagram showing cycle characteristics of a lithium secondary battery in which the lithium cobalt-based composite oxide obtained in Example 4 is used as a positive electrode active material.

【図6】 比較例1で得られたリチウムコバルト系複合
酸化物を正極活物質とするリチウム二次電池ののサイク
ル特性を示す図。
FIG. 6 is a diagram showing cycle characteristics of a lithium secondary battery using the lithium cobalt-based composite oxide obtained in Comparative Example 1 as a positive electrode active material.

【図7】 比較例3で得られたリチウムコバルト系複合
酸化物を正極活物質とするリチウム二次電池ののサイク
ル特性を示す図。
FIG. 7 is a diagram showing cycle characteristics of a lithium secondary battery using the lithium cobalt-based composite oxide obtained in Comparative Example 3 as a positive electrode active material.

【図8】 比較例4のLiCoO2を正極活物質とする
リチウム二次電池のサイクル特性を示す図。
FIG. 8 is a diagram showing cycle characteristics of a lithium secondary battery using LiCoO 2 of Comparative Example 4 as a positive electrode active material.

【図9】 実施例1で得られたリチウムコバルト系複合
酸化物を正極活物質とするリチウム二次電池の0.2
C、0.5C、1Cでの負荷特性を示す図。
9 is a graph of 0.2 of a lithium secondary battery using the lithium-cobalt composite oxide obtained in Example 1 as a positive electrode active material.
The figure which shows the load characteristic in C, 0.5C, and 1C.

【図10】 実施例3で得られたリチウムコバルト系複
合酸化物を正極活物質とするリチウム二次電池の0.2
C、0.5C、1Cでの負荷特性を示す図。
FIG. 10 is a graph of 0.2 of a lithium secondary battery using the lithium-cobalt-based composite oxide obtained in Example 3 as a positive electrode active material.
The figure which shows the load characteristic in C, 0.5C, and 1C.

【図11】 実施例4で得られたリチウムコバルト系複
合酸化物を正極活物質とするリチウム二次電池の0.2
C、0.5C、1Cでの負荷特性を示す図。
11 is a graph showing 0.2 of a lithium secondary battery using the lithium-cobalt-based composite oxide obtained in Example 4 as a positive electrode active material.
The figure which shows the load characteristic in C, 0.5C, and 1C.

【図12】 比較例1で得られたリチウムコバルト系複
合酸化物を正極活物質とするリチウム二次電池の0.2
C、0.5C、1Cでの負荷特性を示す図。
FIG. 12 is a graph of 0.2 of a lithium secondary battery using the lithium cobalt-based composite oxide obtained in Comparative Example 1 as a positive electrode active material.
The figure which shows the load characteristic in C, 0.5C, and 1C.

【図13】 比較例3で得られたリチウムコバルト系複
合酸化物を正極活物質とするリチウム二次電池の0.2
C、0.5C、1Cでの負荷特性を示す図。
13 is a graph showing 0.2 of a lithium secondary battery using the lithium-cobalt-based composite oxide obtained in Comparative Example 3 as a positive electrode active material.
The figure which shows the load characteristic in C, 0.5C, and 1C.

【図14】 比較例4のLiCoO2を正極活物質とす
るリチウム二次電池の0.2C、0.5C、1Cでの負
荷特性を示す図。
FIG. 14 is a diagram showing load characteristics at 0.2C, 0.5C, and 1C of a lithium secondary battery using LiCoO 2 of Comparative Example 4 as a positive electrode active material.

【図15】 実施例2及び比較例4で得られたリチウム
コバルト系複合酸化物からリチウムを引き抜き,デイン
ターカレーションした正極活物質の示差熱量変化を示す
図。
FIG. 15 is a diagram showing a change in differential calorific value of the positive electrode active material obtained by deintercalating lithium from the lithium cobalt-based composite oxides obtained in Example 2 and Comparative Example 4.

フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB04 AB06 AC06 AD03 AD06 AE05 5H029 AJ02 AJ05 AJ12 AK03 AL02 AL03 AL04 AL06 AL07 AL11 AL12 AL16 AM02 AM03 AM04 AM05 AM07 AM16 CJ02 CJ08 CJ22 DJ16 EJ04 EJ12 HJ01 HJ02 HJ05 HJ07 HJ14 5H050 AA02 AA07 AA15 BA16 BA17 CA07 CA08 CA09 CB02 CB03 CB05 CB07 CB08 CB11 CB12 CB20 CB22 EA09 EA24 FA17 GA02 GA10 GA22 HA01 HA02 HA05 HA07 HA14 Continued front page    F-term (reference) 4G048 AA04 AB01 AB04 AB06 AC06                       AD03 AD06 AE05                 5H029 AJ02 AJ05 AJ12 AK03 AL02                       AL03 AL04 AL06 AL07 AL11                       AL12 AL16 AM02 AM03 AM04                       AM05 AM07 AM16 CJ02 CJ08                       CJ22 DJ16 EJ04 EJ12 HJ01                       HJ02 HJ05 HJ07 HJ14                 5H050 AA02 AA07 AA15 BA16 BA17                       CA07 CA08 CA09 CB02 CB03                       CB05 CB07 CB08 CB11 CB12                       CB20 CB22 EA09 EA24 FA17                       GA02 GA10 GA22 HA01 HA02                       HA05 HA07 HA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式;LixCo1-yMey2-a(Me
は、V、Cu、Zr、Zn、Mg、Al又はFeから選
ばれる1種又は2種以上の金属元素を表す。xは、0.
9≦x≦1.1、yは0≦y≦0.01、aは−0.1
≦a≦0.1の値をとる。)で表される複合酸化物と、
Mg、Ti又はZrから選ばれる少なくとも1種以上の
金属酸化物とを乾式混合し、200〜700℃で加熱処
理して前記複合酸化物の粒子表面に前記金属酸化物を付
着させてなることを特徴とするリチウムコバルト系複合
酸化物。
1. A general formula; Li x Co 1-y Me y O 2-a (Me
Represents one or more metal elements selected from V, Cu, Zr, Zn, Mg, Al or Fe. x is 0.
9 ≦ x ≦ 1.1, y is 0 ≦ y ≦ 0.01, and a is −0.1
It takes a value of ≦ a ≦ 0.1. ) A complex oxide represented by
At least one metal oxide selected from Mg, Ti, or Zr is dry-mixed, and heat-treated at 200 to 700 ° C. to deposit the metal oxide on the particle surface of the composite oxide. Characteristic lithium-cobalt type composite oxide.
【請求項2】 前記金属酸化物の付着量が0.05〜1
重量%である請求項1記載のリチウムコバルト系複合酸
化物。
2. The adhesion amount of the metal oxide is 0.05 to 1
The lithium cobalt-based composite oxide according to claim 1, which is contained in a weight percentage.
【請求項3】 BET比表面積が0.1〜2.0m2
gである請求項1又は2記載のリチウムコバルト系複合
酸化物。
3. A BET specific surface area of 0.1 to 2.0 m 2 /
The lithium cobalt-based composite oxide according to claim 1, which is g.
【請求項4】 下記の第一〜第ニ工程を含むことを特徴
とするリチウムコバルト系複合酸化物の製造方法。 第一工程;一般式;LixCo1-yMey2-a(Meは、
V、Cu、Zr、Zn、Mg、Al又はFeから選ばれ
る1種又は2種以上の金属元素を表す。xは、0.9≦
x≦1.1、yは0≦y≦0.1、aは−0.1≦a≦
0.1の値をとる。)で表される複合酸化物と、Mg、
Ti又はZrから選ばれる少なくとも1種以上の金属酸
化物とを乾式混合し前記複合酸化物の粒子表面に前記金
属酸化物の粒子を付着させる工程。 第二工程;第一工程で得られる金属酸化物を付着させた
複合酸化物を200〜700℃で加熱処理してリチウム
コバルト系複合酸化物を得る工程。
4. A method for producing a lithium-cobalt-based composite oxide, which comprises the following first to second steps. First step; formula; Li x Co 1-y Me y O 2-a (Me is
It represents one or more metal elements selected from V, Cu, Zr, Zn, Mg, Al or Fe. x is 0.9 ≦
x ≦ 1.1, y is 0 ≦ y ≦ 0.1, a is −0.1 ≦ a ≦
It takes a value of 0.1. ) And a composite oxide represented by
A step of dry-mixing with at least one metal oxide selected from Ti or Zr and adhering the particles of the metal oxide to the surface of the particles of the composite oxide. Second step: a step of heat-treating the composite oxide to which the metal oxide obtained in the first step is attached at 200 to 700 ° C. to obtain a lithium cobalt-based composite oxide.
【請求項5】 前記第一工程で用いる金属酸化物は、平
均粒径1.0μm以下である請求項4記載のリチウムコ
バルト系複合酸化物の製造方法。
5. The method for producing a lithium-cobalt composite oxide according to claim 4, wherein the metal oxide used in the first step has an average particle size of 1.0 μm or less.
【請求項6】 請求項1乃至3のいずれか1項記載のリ
チウムコバルト系複合酸化物を含むことを特徴とするリ
チウム二次電池正極活物質。
6. A positive electrode active material for a lithium secondary battery, comprising the lithium-cobalt composite oxide according to any one of claims 1 to 3.
【請求項7】 請求項6記載のリチウム二次電池正極活
物質を用いることを特徴とするリチウム二次電池。
7. A lithium secondary battery comprising the positive electrode active material of the lithium secondary battery according to claim 6.
JP2002290015A 2001-11-22 2002-10-02 Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery Expired - Fee Related JP4245888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290015A JP4245888B2 (en) 2001-11-22 2002-10-02 Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001357295 2001-11-22
JP2001-357295 2001-11-22
JP2002290015A JP4245888B2 (en) 2001-11-22 2002-10-02 Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003221234A true JP2003221234A (en) 2003-08-05
JP4245888B2 JP4245888B2 (en) 2009-04-02

Family

ID=27759203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290015A Expired - Fee Related JP4245888B2 (en) 2001-11-22 2002-10-02 Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4245888B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2005085635A (en) * 2003-09-09 2005-03-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006202702A (en) * 2005-01-24 2006-08-03 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
KR100635741B1 (en) 2004-11-29 2006-10-17 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and thereof method
CN1300872C (en) * 2005-05-13 2007-02-14 北京化工大学 Columnar structure LiCoO2 electrode material and its preparing process
CN1316652C (en) * 2004-10-21 2007-05-16 北京化工大学 Cobalt acid lithium battery material adulterated alkaline-earth metal between layers and its preparing method
JP2007258095A (en) * 2006-03-24 2007-10-04 Sony Corp Positive electrode active material, its manufacturing method, and battery
JP2008016243A (en) * 2006-07-04 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008041570A (en) * 2006-08-09 2008-02-21 Sony Corp Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
KR100864199B1 (en) * 2007-08-21 2008-10-17 주식회사 엘 앤 에프 Composite oxide usable as cathode active material and methode thereof
JP2009021134A (en) * 2007-07-12 2009-01-29 Toshiba Corp Nonaqueous electrolyte battery and battery pack
EP2028704A1 (en) 2007-07-11 2009-02-25 Toda Kogyo Corporation Process for producing composite cathode active material for non-aqueous electrolyte secondary cell
JP2009099530A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
US7622223B2 (en) 2004-03-29 2009-11-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7776144B2 (en) 2003-10-23 2010-08-17 Fujifilm Corporation Ink and ink set for inkjet recording
US7842268B2 (en) 2005-02-14 2010-11-30 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP2011181527A (en) * 2005-11-02 2011-09-15 Agc Seimi Chemical Co Ltd Lithium-containing composite oxide
JP2012104498A (en) * 2012-01-04 2012-05-31 Toshiba Corp Nonaqueous electrolyte battery, and battery pack
JP2013503449A (en) * 2009-08-27 2013-01-31 エンビア・システムズ・インコーポレイテッド Cathode material for lithium batteries coated with metal oxide
KR20140009526A (en) * 2011-06-17 2014-01-22 우미코르 Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
WO2014156116A1 (en) * 2013-03-28 2014-10-02 三洋電機株式会社 Positive electrode for nonaqueous-electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2015065007A (en) * 2013-09-25 2015-04-09 旭硝子株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US20150311512A1 (en) * 2012-12-14 2015-10-29 Umicore Bimodal Lithium Transition Metal Based Oxide Powder for Use in a Rechargeable Battery
EP2932546A4 (en) * 2012-12-14 2016-12-21 Umicore Nv Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
JP2018508116A (en) * 2015-12-23 2018-03-22 エルジー・ケム・リミテッド Positive electrode active material for secondary battery and secondary battery including the same
KR20180079478A (en) * 2016-12-30 2018-07-11 일진머티리얼즈 주식회사 Lithium composite oxide, manufacturing method thereof
US10044035B2 (en) 2011-06-17 2018-08-07 Umicore Lithium cobalt oxide based compounds with a cubic secondary phase
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
JP2020537319A (en) * 2017-11-13 2020-12-17 エルジー・ケム・リミテッド Lithium cobalt-based positive electrode active material, its manufacturing method, positive electrode and secondary battery including this
WO2021049310A1 (en) * 2019-09-11 2021-03-18 日本化学工業株式会社 Positive electrode active material for lithium secondary batteries, and lithium secondary battery
WO2021184259A1 (en) * 2020-03-18 2021-09-23 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
CN114094059A (en) * 2021-09-28 2022-02-25 格林美(湖北)新能源材料有限公司 Composite nano-layer coated cobalt-free single crystal positive electrode material and preparation method thereof
WO2023190891A1 (en) * 2022-04-01 2023-10-05 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050779A (en) * 2003-02-03 2005-02-24 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2005085635A (en) * 2003-09-09 2005-03-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8268485B2 (en) 2003-09-09 2012-09-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7776144B2 (en) 2003-10-23 2010-08-17 Fujifilm Corporation Ink and ink set for inkjet recording
US7622223B2 (en) 2004-03-29 2009-11-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7858237B2 (en) 2004-03-29 2010-12-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN1316652C (en) * 2004-10-21 2007-05-16 北京化工大学 Cobalt acid lithium battery material adulterated alkaline-earth metal between layers and its preparing method
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
KR100635741B1 (en) 2004-11-29 2006-10-17 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and thereof method
JP2006202702A (en) * 2005-01-24 2006-08-03 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
US7842268B2 (en) 2005-02-14 2010-11-30 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
CN1300872C (en) * 2005-05-13 2007-02-14 北京化工大学 Columnar structure LiCoO2 electrode material and its preparing process
JP2011181527A (en) * 2005-11-02 2011-09-15 Agc Seimi Chemical Co Ltd Lithium-containing composite oxide
JP2007258095A (en) * 2006-03-24 2007-10-04 Sony Corp Positive electrode active material, its manufacturing method, and battery
JP4586991B2 (en) * 2006-03-24 2010-11-24 ソニー株式会社 Positive electrode active material, method for producing the same, and secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2008016243A (en) * 2006-07-04 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008041570A (en) * 2006-08-09 2008-02-21 Sony Corp Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
EP2028704A1 (en) 2007-07-11 2009-02-25 Toda Kogyo Corporation Process for producing composite cathode active material for non-aqueous electrolyte secondary cell
US8404387B2 (en) 2007-07-12 2013-03-26 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
US8728669B2 (en) 2007-07-12 2014-05-20 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
JP2009021134A (en) * 2007-07-12 2009-01-29 Toshiba Corp Nonaqueous electrolyte battery and battery pack
US9406973B2 (en) 2007-07-12 2016-08-02 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
KR100864199B1 (en) * 2007-08-21 2008-10-17 주식회사 엘 앤 에프 Composite oxide usable as cathode active material and methode thereof
JP2009099530A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2013191565A (en) * 2007-09-27 2013-09-26 Nippon Soda Co Ltd Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US8142929B2 (en) 2007-09-27 2012-03-27 Sanyo Electric Co., Ltd. Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
US7968229B2 (en) 2007-09-27 2011-06-28 Sanyo Electric Co., Ltd. Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2013503449A (en) * 2009-08-27 2013-01-31 エンビア・システムズ・インコーポレイテッド Cathode material for lithium batteries coated with metal oxide
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
JP2014523840A (en) * 2011-06-17 2014-09-18 ユミコア Lithium metal oxide particles coated with a mixture of core material elements and one or more metal oxides
EP3059211A1 (en) * 2011-06-17 2016-08-24 Umicore Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides with a spinel phase indexed in the fd3-m space group.
US10044035B2 (en) 2011-06-17 2018-08-07 Umicore Lithium cobalt oxide based compounds with a cubic secondary phase
CN103635431A (en) * 2011-06-17 2014-03-12 尤米科尔公司 Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides
US9979021B2 (en) 2011-06-17 2018-05-22 Umicore Stoichiometrically controlled lithium cobalt oxide based compounds
EP2720981A1 (en) 2011-06-17 2014-04-23 Umicore Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
US20160006032A1 (en) * 2011-06-17 2016-01-07 Umicore Stoichiometrically Controlled Lithium Cobalt Oxide Based Compounds
JP2016041659A (en) * 2011-06-17 2016-03-31 ユミコア Lithium metal oxide particle coated with mixture of element of core material and one or more metal oxides
CN103635431B (en) * 2011-06-17 2016-06-01 尤米科尔公司 The lithium metal oxide particle being coated with the mixture of the element of core material with one or more metal-oxides
KR101630821B1 (en) * 2011-06-17 2016-06-16 우미코르 Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
CN105753071A (en) * 2011-06-17 2016-07-13 尤米科尔公司 Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides
JP2016131156A (en) * 2011-06-17 2016-07-21 ユミコア Lithium metal oxide particle coated with mixture of element of core material and one or more metal oxides
KR20140009526A (en) * 2011-06-17 2014-01-22 우미코르 Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
KR101820617B1 (en) * 2011-06-17 2018-01-22 유미코아 Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
EP2720981B1 (en) * 2011-06-17 2016-11-16 Umicore Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
JP2012104498A (en) * 2012-01-04 2012-05-31 Toshiba Corp Nonaqueous electrolyte battery, and battery pack
EP2932546A4 (en) * 2012-12-14 2016-12-21 Umicore Nv Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides
US9859550B2 (en) 2012-12-14 2018-01-02 Umicore Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides
US20150311512A1 (en) * 2012-12-14 2015-10-29 Umicore Bimodal Lithium Transition Metal Based Oxide Powder for Use in a Rechargeable Battery
US10069140B2 (en) * 2012-12-14 2018-09-04 Umicore Bimodal lithium transition metal based oxide powder for use in a rechargeable battery
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
WO2014156116A1 (en) * 2013-03-28 2014-10-02 三洋電機株式会社 Positive electrode for nonaqueous-electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP2015065007A (en) * 2013-09-25 2015-04-09 旭硝子株式会社 Positive electrode active material for lithium ion secondary battery and method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
USRE49980E1 (en) 2015-01-15 2024-05-21 Ionblox, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
JP2018508116A (en) * 2015-12-23 2018-03-22 エルジー・ケム・リミテッド Positive electrode active material for secondary battery and secondary battery including the same
US10693196B2 (en) 2015-12-23 2020-06-23 Lg Chem, Ltd. Positive electrode active material for secondary battery and secondary battery including the same
KR20180079478A (en) * 2016-12-30 2018-07-11 일진머티리얼즈 주식회사 Lithium composite oxide, manufacturing method thereof
JP2020537319A (en) * 2017-11-13 2020-12-17 エルジー・ケム・リミテッド Lithium cobalt-based positive electrode active material, its manufacturing method, positive electrode and secondary battery including this
JP7076878B2 (en) 2017-11-13 2022-05-30 エルジー エナジー ソリューション リミテッド Lithium cobalt-based positive electrode active material, its manufacturing method, positive electrode including this, and secondary battery
US11837719B2 (en) 2017-11-13 2023-12-05 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode
WO2021049310A1 (en) * 2019-09-11 2021-03-18 日本化学工業株式会社 Positive electrode active material for lithium secondary batteries, and lithium secondary battery
CN114375514A (en) * 2019-09-11 2022-04-19 日本化学工业株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery
CN114375514B (en) * 2019-09-11 2024-06-07 日本化学工业株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2021184259A1 (en) * 2020-03-18 2021-09-23 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
CN115836437A (en) * 2020-03-18 2023-03-21 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
CN114094059A (en) * 2021-09-28 2022-02-25 格林美(湖北)新能源材料有限公司 Composite nano-layer coated cobalt-free single crystal positive electrode material and preparation method thereof
WO2023190891A1 (en) * 2022-04-01 2023-10-05 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP4245888B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP2003221234A (en) Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery
JP4683527B2 (en) Modified lithium manganese nickel-based composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5584456B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR101184851B1 (en) Positive Electrode Active Material of Lithium Secondary Battery, Process for Preparing the Same and Lithium Secondary Battery
US8003256B2 (en) Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same
JP2012113823A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery
KR20120114232A (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
KR20100049556A (en) Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
KR100854241B1 (en) Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
JP2020115438A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2003020229A (en) Lithium cobalt composite oxide, method for preparing the same, positive pole active substance of lithium secondary cell, and lithium secondary cell
JP2014041710A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6935380B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2013182758A (en) Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery and lithium secondary battery
JP4754209B2 (en) Method for producing lithium cobalt composite oxide powder
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4562496B2 (en) Modified lithium-manganese composite oxide, method for producing the same, lithium secondary battery positive electrode active material composition, and lithium secondary battery
KR20080045066A (en) Positive electrode active material for lithium secondary battery, process for preparing the same and lithium secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4319663B2 (en) Lithium manganate, lithium secondary battery positive electrode secondary active material, lithium secondary battery positive electrode active material, and lithium secondary battery
WO2020080210A1 (en) Positive-electrode active material for lithium secondary battery, manufacturing method for same, and lithium secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
WO2024122440A1 (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery
JP2005235416A (en) Lithium manganate for lithium secondary battery cathode sub active material, lithium secondary battery cathode active material, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Ref document number: 4245888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees