JPH06310145A - Manufacture of nickel acid lithium for lithium secondary battery - Google Patents

Manufacture of nickel acid lithium for lithium secondary battery

Info

Publication number
JPH06310145A
JPH06310145A JP5122199A JP12219993A JPH06310145A JP H06310145 A JPH06310145 A JP H06310145A JP 5122199 A JP5122199 A JP 5122199A JP 12219993 A JP12219993 A JP 12219993A JP H06310145 A JPH06310145 A JP H06310145A
Authority
JP
Japan
Prior art keywords
lithium
nickel
compound
secondary battery
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5122199A
Other languages
Japanese (ja)
Inventor
Kazuhito Komatsu
和仁 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5122199A priority Critical patent/JPH06310145A/en
Publication of JPH06310145A publication Critical patent/JPH06310145A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the battery performance such as the discharge property by mixing a hydroxide compound or oxide compound including trivalent lithium ions, and then heat-treating it. CONSTITUTION:A tetrafluoroethylene resin and a graphite are mixed to a nickel acid lithium obtained as a positive electrode compound 6, and it is pressurized at a specific weight to make into pellets. And as an electrolyte solution, tetrafluorolithium borate is solved in a mixing solvent of the same amounts of propylene carbonate and 1,2-dimethoxyethane, and it is included in a separator 5 so as to be used. Furthermore, as a negative electrode material 4, a metallic lithium is used, and the charge and the discharge are repeated to make the amount of the metallic lithium in a sufficient amount to the positive electrode compound 6. In this case, the nickel acid lithium of the compound 6 is used by heat-treating, after mixing a lithium salt to a hydroxide or an oxide including trivalent nickel ions. As a result, it is not necessary to provide the oxygen in the heating time, and the mixing of rock salt type crystals in the X-ray diffraction map is reduced. Consequently, the battery performance such as the discharge property can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池用ニ
ッケル酸リチウム(LiNiO2)の製造方法に関し、
より詳しくはリチウム、リチウム合金または炭素を負極
活物質とするリチウム二次電池用の正極活物質に用いら
れるLiNiO2の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing lithium nickel oxide (LiNiO 2 ) for a lithium secondary battery,
More specifically, it relates to a method for producing LiNiO 2 used as a positive electrode active material for a lithium secondary battery, which uses lithium, a lithium alloy or carbon as a negative electrode active material.

【0002】[0002]

【従来の技術】非水系リチウム二次電池の正極活物質と
しては、LiyNi2-y2およびLiCoyNi1-y2
示される物質が提案されている。
2. Description of the Related Art As a positive electrode active material for a non-aqueous lithium secondary battery, materials represented by Li y Ni 2-y O 2 and LiCo y Ni 1-y O 2 have been proposed.

【0003】LiyNi2-y2では、LiOH・H2Oと
NiOを混合し、空気雰囲気下、600℃で予め焼成し
た後、再び粉砕し、600〜800℃で焼結する方法
(特開平2−40861号公報)、あるいはLiNO3
とNiCO3およびNi(OH)2を混合、成形後、酸素
気流下650℃で加熱焼成し、再び粉砕、成形後、75
0℃で加熱焼成を行う方法(T.Ohzuku、A.U
eda、M.Nagayama、Y.Iwasaki、
K.Sawai;Chem.express、vol.
7、No.9、p689−692(1992))等が提
案されている。
For Li y Ni 2-y O 2 , a method of mixing LiOH.H 2 O and NiO, pre-baking at 600 ° C. in an air atmosphere, pulverizing again, and sintering at 600 to 800 ° C. ( JP-A-2-40861), or LiNO 3
And NiCO 3 and Ni (OH) 2 are mixed and molded, then heated and baked at 650 ° C. in an oxygen stream, pulverized again, and molded, then 75
Method of heating and baking at 0 ° C. (T. Ohzuku, AU
eda, M .; Nagayama, Y. Iwasaki,
K. Sawai; Chem. express, vol.
7, No. 9, p689-692 (1992)) and the like have been proposed.

【0004】これらの特徴は、ニッケル酸化物にリチウ
ムを予めドープすることにより、層構造を有するLiy
Ni2-y2とし、充放電によるリチウムのドープおよび
脱ドープが、スムーズに行える点にある。
These characteristics are due to Li y having a layered structure by pre-doping lithium in nickel oxide.
Ni 2-y O 2 is used, and it is possible to smoothly dope and dedope lithium by charging and discharging.

【0005】しかしながら、これら従来の技術では、2
価のニッケルイオンを有する化合物を出発原料としてい
るので、焼成時に多量の酸素を必要とし、また加熱時の
酸素の濃度を減少させると、得られたLiyNi2-y2
に岩塩型結晶が混入し、リチウム二次電池のサイクル特
性(充放電特性)に悪影響を与えるという問題があっ
た。
However, in these conventional techniques, 2
Since a compound having a valent nickel ion is used as a starting material, a large amount of oxygen is required during firing, and when the oxygen concentration during heating is reduced, the obtained Li y Ni 2-y O 2
There is a problem in that rock salt type crystals are mixed in and the cycle characteristics (charge / discharge characteristics) of the lithium secondary battery are adversely affected.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、放電
特性等の電池性能の向上を可能とするリチウム二次電池
用ニッケル酸リチウムの製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing lithium nickel oxide for a lithium secondary battery, which can improve battery performance such as discharge characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の上記目的は、原
料として3価のニッケルイオンを有する水酸化物または
酸化物を用いることによって達成される。
The above object of the present invention is achieved by using a hydroxide or oxide having trivalent nickel ions as a raw material.

【0008】すなわち、本発明は、3価のニッケルイオ
ンを含む水酸化物および/または酸化物をリチウム塩と
混合した後、加熱処理することを特徴とするリチウム二
次電池用ニッケル酸リチウムの製造方法にある。
That is, according to the present invention, a hydroxide and / or oxide containing trivalent nickel ions is mixed with a lithium salt and then heat-treated, which is a method for producing lithium nickelate for a lithium secondary battery. On the way.

【0009】本発明では、原料として、3価のニッケル
イオンを有する水酸化物または酸化物を用いる。ここで
用いられる3価のニッケルイオンを有する水酸化物また
は酸化物とは、水酸化ニッケル(III)または酸化ニッ
ケル(III)水和物、すなわちNiO(OH)またはN
23・nH2Oである。
In the present invention, a hydroxide or oxide having trivalent nickel ions is used as a raw material. As used herein, a hydroxide or oxide having trivalent nickel ions means nickel (III) hydroxide or nickel (III) oxide hydrate, that is, NiO (OH) or N.
i 2 O 3 · nH 2 O.

【0010】このような3価のニッケルイオンを有する
水酸化物または酸化物を得るには、公知の方法が採用さ
れる。例えば水酸化ニッケル(III)(NiO(O
H):オキシ水酸化ニッケル)を得るには次のような方
法で行なわれる。
To obtain such a hydroxide or oxide having trivalent nickel ions, a known method is adopted. For example, nickel (III) hydroxide (NiO (O
H): Nickel oxyhydroxide) is obtained by the following method.

【0011】先ず、pH11以上の水酸化ナトリウム水
溶液中に、2価の水酸化ニッケル(Ni(OH)2)を
分散させ、60〜80℃に加温する。次に、この分散液
に、次亜塩素酸ナトリウム水溶液、塩素含有水溶液、臭
素含有水溶液等の所定量を滴下し、反応後、濾過、洗浄
し、乾燥後、オキシ水酸化ニッケルの黒色粉末を得る。
First, divalent nickel hydroxide (Ni (OH) 2 ) is dispersed in an aqueous sodium hydroxide solution having a pH of 11 or more and heated to 60 to 80 ° C. Next, a predetermined amount of an aqueous solution of sodium hypochlorite, an aqueous solution containing chlorine, an aqueous solution containing bromine, etc. is dropped into this dispersion liquid, and after reaction, filtration, washing and drying are performed to obtain a black powder of nickel oxyhydroxide. .

【0012】このようにして得られる3価のニッケルイ
オンを含む水酸化物または酸化物を硝酸リチウム等のリ
チウム塩と所定割合で混合後、加圧成形し、乾燥後、6
00〜800℃、空気中で加熱し、再び粉砕成形後、7
00〜900℃、空気中で加熱焼結する。加熱時間はそ
れぞれ6〜24時間である。このようにしてニッケル酸
リチウムが得られる。
The hydroxide or oxide containing trivalent nickel ions thus obtained is mixed with a lithium salt such as lithium nitrate in a predetermined ratio, pressure-molded, dried and then 6
After heating in air at 00 to 800 ° C and crushing and molding again, 7
Heat-sinter in air at 00 to 900 ° C. The heating time is 6 to 24 hours, respectively. In this way, lithium nickelate is obtained.

【0013】[0013]

【作用】出発物質が3価のニッケルイオンを有する水酸
化物または酸化物を用いるため加熱時に酸素を必要とし
ない。このため、2価のニッケル化合物を空気中で加熱
したニッケル酸リチウムに比べ、X線回折図で岩塩型結
晶の混入がきわめて少ない。ニッケル酸リチウムの特徴
的なX線回折線(CuKα:2θ=18.7度(00
3)面、2θ=44.3度(104)面)の回折強度比
がI(003)/I(104)≧1.34でリチウム含有量が約
7.2重量%となる。
Since the starting material is a hydroxide or oxide having trivalent nickel ions, oxygen is not required during heating. Therefore, as compared with lithium nickel oxide obtained by heating a divalent nickel compound in the air, the rock salt type crystal is extremely less mixed in the X-ray diffraction pattern. Characteristic X-ray diffraction line of lithium nickelate (CuKα: 2θ = 18.7 degrees (00
The diffraction intensity ratio of (3) plane, 2θ = 44.3 degrees (104) plane) is I (003) / I (104) ≧ 1.34, and the lithium content is about 7.2 wt%.

【0014】2価のニッケルイオンを含有する化合物を
空気中で加熱するとX線回折強度比は1.1以下、リチ
ウム含有量は6.9重量%以下となる。予めリチウムの
混合比を1:1から多くすると化学量論比による含有量
7.11重量%に近づくが、リチウムはLi2Oの状態
で存在し、LiNiO2ではない。
When a compound containing divalent nickel ions is heated in air, the X-ray diffraction intensity ratio is 1.1 or less and the lithium content is 6.9% by weight or less. When the mixing ratio of lithium is increased from 1: 1 in advance, the stoichiometric content approaches 7.11% by weight, but lithium exists in the state of Li 2 O and is not LiNiO 2 .

【0015】[0015]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on Examples and the like.

【0016】実施例1 内容積3リットルのガラス容器に、pH11以上の水酸
化ナトリウム溶液2リットルを入れ、水酸化ニッケル
(Ni(OH)2)粉末100gを添加し、60〜80
℃に撹拌しながら加温した。そして、5%次亜塩素酸ナ
トリウム溶液150mlを滴下し3時間撹拌した。ここ
で生成したオキシ水酸化ニッケルを粉末X線回折法によ
り測定し同定した。
Example 1 A glass container having an internal volume of 3 liters was charged with 2 liters of sodium hydroxide solution having a pH of 11 or more, 100 g of nickel hydroxide (Ni (OH) 2 ) powder was added, and the mixture was added to 60-80.
Warm to 0 C with stirring. Then, 150 ml of 5% sodium hypochlorite solution was added dropwise and stirred for 3 hours. The nickel oxyhydroxide produced here was measured and identified by the powder X-ray diffraction method.

【0017】次に硝酸リチウム70g(1モル)とオキ
シ水酸化ニッケル93g(1モル)を混合後、直径10
mmφ、高さ40mmの円柱状ペレットに加圧成形し、
反応温度650℃、空気中で12時間反応させた。その
後に再度粉砕、成形を行い、反応温度750℃、空気中
で24時間反応させて、ニッケル酸リチウムを得た。得
られたニッケル酸リチウムの粉末のX線回折を行いI
(003)/I(104)のピーク強度比を算出した。結果を表1
に示した。
Next, after mixing 70 g (1 mol) of lithium nitrate and 93 g (1 mol) of nickel oxyhydroxide, a diameter of 10 was obtained.
Press-molded into a cylindrical pellet of mmφ and height of 40 mm,
The reaction was carried out in the air at a reaction temperature of 650 ° C. for 12 hours. After that, it was pulverized and molded again, and reacted in the air at a reaction temperature of 750 ° C. for 24 hours to obtain lithium nickelate. The obtained powder of lithium nickelate was subjected to X-ray diffraction and I
The peak intensity ratio of (003) / I (104) was calculated. The results are shown in Table 1.
It was shown to.

【0018】さらに、このニッケル酸リチウムを正極活
物質とし、図1に示すリチウム二次電池を構成した。な
お、リチウム二次電池には内径10.8mmφの放電用
電極を用い、構成作業はアルゴン雰囲気下のドライボッ
クス中で行なった。
Further, using this lithium nickel oxide as a positive electrode active material, a lithium secondary battery shown in FIG. 1 was constructed. The lithium secondary battery used was a discharge electrode having an inner diameter of 10.8 mmφ, and the construction work was performed in a dry box under an argon atmosphere.

【0019】図1中、1は負極端子、2は絶縁物(テフ
ロン材)、3は負極集電板、4は負極材、5はセパレー
タ、6は正極合剤、7は正極端子をそれぞれ示す。
In FIG. 1, 1 is a negative electrode terminal, 2 is an insulator (Teflon material), 3 is a negative electrode current collector plate, 4 is a negative electrode material, 5 is a separator, 6 is a positive electrode mixture, and 7 is a positive electrode terminal. .

【0020】正極合剤6としては、得られたニッケル酸
リチウム90mgに対して黒鉛6mgおよび四フッ化エ
チレン樹脂4mgを混合し、加重2tで加圧成型して直
径10.6mmφのペレットとしたものを用いた。
As the positive electrode mixture 6, 90 mg of the obtained lithium nickel oxide was mixed with 6 mg of graphite and 4 mg of tetrafluoroethylene resin, and the mixture was pressure-molded with a load of 2 t to give pellets having a diameter of 10.6 mmφ. Was used.

【0021】電解液としては、プロピレンカーボネート
および1,2−ジメトキシエタンの1:1混合溶媒にテ
トラフルオロホウ酸リチウム(LiBF4)を溶解した
ものを用い、セパレータ5中に含ませて使用した。
As the electrolytic solution, a solution obtained by dissolving lithium tetrafluoroborate (LiBF 4 ) in a 1: 1 mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used by being contained in the separator 5.

【0022】負極材4としては、金属リチウムを用い、
正極合剤6に対して充分量(約2倍当量)となるように
設計した。
As the negative electrode material 4, metallic lithium is used,
It was designed to be a sufficient amount (about twice equivalent) with respect to the positive electrode mixture 6.

【0023】得られたリチウム二次電池を用いて、0.
9mAの電流で4.2〜3.0Vの範囲の電圧で充放電
を繰り返し、1サイクル目、10サイクル目および50
サイクル目毎の二次電池放電容量を測定した。それらの
結果を表1に示した。
Using the obtained lithium secondary battery,
Charge and discharge are repeated at a voltage in the range of 4.2 to 3.0 V with a current of 9 mA, the first cycle, the tenth cycle and 50
The secondary battery discharge capacity was measured for each cycle. The results are shown in Table 1.

【0024】実施例2 実施例1の次亜塩素酸ナトリウム溶液の添加量を450
mlに変えた以外は、実施例1と同様の方法によってニ
ッケル酸リチウムを得た。その粉末のX線回折を行いI
(003)/I(104)のピーク強度比を算出し、その結果を表
1に示した。
Example 2 The addition amount of the sodium hypochlorite solution of Example 1 was set to 450.
Lithium nickelate was obtained by the same method as in Example 1 except that the amount was changed to ml. X-ray diffraction of the powder is performed I
The peak intensity ratio of (003) / I (104) was calculated, and the results are shown in Table 1.

【0025】さらに、このニッケル酸リチウムを正極活
物質として実施例1と同様にしてリチウム二次電池を構
成し、その電池性能を評価した。その結果を表1に示し
た。
Further, using this lithium nickel oxide as a positive electrode active material, a lithium secondary battery was constructed in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Table 1.

【0026】実施例3 実施例1の次亜塩素酸ナトリウム溶液の添加量を600
mlに変えた以外は、実施例1と同様の方法によってニ
ッケル酸リチウムを得た。その粉末のX線回折を行いI
(003)/I(104)のピーク強度比を算出し、その結果を表
1に示した。
Example 3 The amount of the sodium hypochlorite solution of Example 1 added was 600.
Lithium nickelate was obtained by the same method as in Example 1 except that the amount was changed to ml. X-ray diffraction of the powder is performed I
The peak intensity ratio of (003) / I (104) was calculated, and the results are shown in Table 1.

【0027】さらに、このニッケル酸リチウムを正極活
物質として実施例1と同様にしてリチウム二次電池を構
成し、その電池性能を評価した。その結果を表1に示し
た。
Further, using this lithium nickel oxide as a positive electrode active material, a lithium secondary battery was constructed in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Table 1.

【0028】実施例4 実施例2の加熱温度を650℃、12時間、700℃、
24時間にそれぞれ変えた以外は、実施例2と同様の方
法によってニッケル酸リチウムを得た。その粉末のX線
回折を行いI(003)/I(104)のピーク強度比を算出し、
その結果を表1に示した。
Example 4 The heating temperature of Example 2 was 650 ° C., 12 hours, 700 ° C.
Lithium nickelate was obtained in the same manner as in Example 2 except that the time was changed to 24 hours. X-ray diffraction of the powder is performed to calculate the peak intensity ratio of I (003) / I (104) ,
The results are shown in Table 1.

【0029】さらに、このニッケル酸リチウムを正極活
物質として実施例1と同様にしてリチウム二次電池を構
成し、その電池性能を評価した。その結果を表1に示し
た。
Further, a lithium secondary battery was constructed in the same manner as in Example 1 using this lithium nickel oxide as a positive electrode active material, and the battery performance was evaluated. The results are shown in Table 1.

【0030】実施例5 実施例2の加熱温度を650℃、12時間、800℃、
24時間にそれぞれ変えた以外は、実施例2と同様の方
法によってニッケル酸リチウムを得た。その粉末のX線
回折を行いI(003)/I(104)のピーク強度比を算出し、
その結果を表1に示した。
Example 5 The heating temperature of Example 2 was 650 ° C., 12 hours, 800 ° C.
Lithium nickelate was obtained in the same manner as in Example 2 except that the time was changed to 24 hours. X-ray diffraction of the powder is performed to calculate the peak intensity ratio of I (003) / I (104) ,
The results are shown in Table 1.

【0031】さらに、このニッケル酸リチウムを正極活
物質として実施例1と同様にしてリチウム二次電池を構
成し、その電池性能を評価した。その結果を表1に示し
た。
Further, using this lithium nickel oxide as a positive electrode active material, a lithium secondary battery was constructed in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Table 1.

【0032】実施例6 実施例2の加熱温度を650℃、12時間、900℃、
24時間にそれぞれ変えた以外は、実施例2と同様の方
法によってニッケル酸リチウムを得た。その粉末のX線
回折を行いI(003)/I(104)のピーク強度比を算出し、
その結果を表1に示した。
Example 6 The heating temperature of Example 2 was 650 ° C. for 12 hours at 900 ° C.
Lithium nickelate was obtained in the same manner as in Example 2 except that the time was changed to 24 hours. X-ray diffraction of the powder is performed to calculate the peak intensity ratio of I (003) / I (104) ,
The results are shown in Table 1.

【0033】さらに、このニッケル酸リチウムを正極活
物質として実施例1と同様にしてリチウム二次電池を構
成し、その電池性能を評価した。その結果を表1に示し
た。
Further, using this lithium nickel oxide as a positive electrode active material, a lithium secondary battery was constructed in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Table 1.

【0034】比較例1 市販試薬水酸化ニッケル・−水和物112g(1モル)
と硝酸リチウム70g(1モル)混合したものを、加圧
成形し、650℃、空気中で12時間加熱し、再度粉
砕、成形後、750℃、空気中で24時間加熱し、ニッ
ケル酸リチウムを得た。その粉末のX線回折を行いI
(003)/I(104)のピーク強度比を算出し、その結果を表
1に示した。
Comparative Example 1 Commercially available reagent Nickel hydroxide monohydrate 112 g (1 mol)
And 70 g (1 mol) of lithium nitrate were pressure-molded, heated at 650 ° C. in air for 12 hours, pulverized and molded again, and then heated at 750 ° C. in air for 24 hours to obtain lithium nickelate. Obtained. X-ray diffraction of the powder is performed I
The peak intensity ratio of (003) / I (104) was calculated, and the results are shown in Table 1.

【0035】さらに、このニッケル酸リチウムを正極活
物質として実施例1と同様にしてリチウム二次電池を構
成し、その電池性能を評価した。その結果を表1に示し
た。
Further, using this lithium nickel oxide as a positive electrode active material, a lithium secondary battery was constructed in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Table 1.

【0036】比較例2 比較例1の加熱温度を650℃、12時間、900℃、
24時間にそれぞれ変えた以外は、比較例1と同様の方
法によってニッケル酸リチウムを得た。その粉末のX線
回折を行いI(003)/I(104)のピーク強度比を算出し、
その結果を表1に示した。
Comparative Example 2 The heating temperature of Comparative Example 1 was 650 ° C. for 12 hours at 900 ° C.
Lithium nickelate was obtained in the same manner as in Comparative Example 1 except that the time was changed to 24 hours. X-ray diffraction of the powder is performed to calculate the peak intensity ratio of I (003) / I (104) ,
The results are shown in Table 1.

【0037】さらに、このニッケル酸リチウムを正極活
物質として実施例1と同様にしてリチウム二次電池を構
成し、その電池性能を評価した。その結果を表1に示し
た。
Further, using this lithium nickel oxide as a positive electrode active material, a lithium secondary battery was constructed in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように、実施例1〜6の
ニッケル酸リチウムのI(003)/I(104)面回析強度比が
1.34以上であるのに対し、、比較例1〜2のニッケ
ル酸リチウムのI(003)/I(104)面回析強度比が1.1
以下である。また、実施例1〜6のリチウム二次電池
は、比較例1〜2のリチウム二次電池と比較して各サイ
クルの放電容量が大きく、電池性能に優れていることが
分かる。
As is clear from Table 1, the lithium nickel oxides of Examples 1 to 6 have an I (003) / I (104) plane diffraction intensity ratio of 1.34 or more, while Comparative Example 1 Of lithium nickelate having an I (003) / I (104) plane diffraction intensity ratio of 1.1
It is the following. Further, it can be seen that the lithium secondary batteries of Examples 1 to 6 have a larger discharge capacity in each cycle than the lithium secondary batteries of Comparative Examples 1 and 2 and are excellent in battery performance.

【0040】[0040]

【発明の効果】本発明によって得られるニッケル酸リチ
ウムは、2価のニッケルイオンを含む化合物を空気中で
加熱することによって得られるLiNiO2と比べ、岩
塩型結晶が殆ど認められず良質である。
INDUSTRIAL APPLICABILITY The lithium nickelate obtained according to the present invention is of good quality, with almost no rock salt type crystals being recognized, as compared with LiNiO 2 obtained by heating a compound containing divalent nickel ions in air.

【0041】また、このニッケル酸リチウムをリチウム
二次電池の正極活物質として用いることによって、放電
容量が大きく、かつ充放電特性等の他の電池特性にも優
れたリチウム二次電池を得ることが可能となる。
Further, by using this lithium nickel oxide as a positive electrode active material of a lithium secondary battery, a lithium secondary battery having a large discharge capacity and excellent other battery characteristics such as charge / discharge characteristics can be obtained. It will be possible.

【0042】従って、本発明の製造方法は、リチウム二
次電池用ニッケル酸リチウムの製造方法として非常に有
用である。
Therefore, the manufacturing method of the present invention is very useful as a manufacturing method of lithium nickel oxide for a lithium secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係わるリチウム二次電池の一例を示
す側断面図。
FIG. 1 is a side sectional view showing an example of a lithium secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1:負極端子、2:絶縁物、3:負極集電板、4:負極
材、5:セパレータ、6:陽極合剤、7:陽極端子。
1: Negative electrode terminal, 2: Insulator, 3: Negative electrode current collector plate, 4: Negative electrode material, 5: Separator, 6: Anode mixture, 7: Anode terminal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3価のニッケルイオンを含む水酸化物ま
たは酸化物をリチウム塩と混合した後、加熱処理するこ
とを特徴とするリチウム二次電池用ニッケル酸リチウム
の製造方法。
1. A method for producing lithium nickel oxide for a lithium secondary battery, which comprises mixing a hydroxide or oxide containing trivalent nickel ions with a lithium salt and then heating the mixture.
JP5122199A 1993-04-27 1993-04-27 Manufacture of nickel acid lithium for lithium secondary battery Pending JPH06310145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5122199A JPH06310145A (en) 1993-04-27 1993-04-27 Manufacture of nickel acid lithium for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5122199A JPH06310145A (en) 1993-04-27 1993-04-27 Manufacture of nickel acid lithium for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH06310145A true JPH06310145A (en) 1994-11-04

Family

ID=14830017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5122199A Pending JPH06310145A (en) 1993-04-27 1993-04-27 Manufacture of nickel acid lithium for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH06310145A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653797A1 (en) * 1993-05-31 1995-05-17 Hitachi Maxell, Ltd. Lithium secondary cell containing organic electrolyte, active material for positive electrode of lithium secondary cell, and method for manufacturing the active material
FR2733974A1 (en) * 1995-04-28 1996-11-15 Japan Storage Battery Co Ltd PROCESS FOR PRODUCING LICKIUM-CONTAINING NICKEL OXIDE
US5783334A (en) * 1996-04-01 1998-07-21 Japan Storage Battery Co., Ltd. Method for producing lithium nickelate positive electrode and lithium battery using the same
US6335119B1 (en) 1996-05-24 2002-01-01 Japan Storage Battery Co., Ltd. Lithium battery and method of producing positive electrode active material therefor
JP2004006267A (en) * 2002-03-25 2004-01-08 Sumitomo Chem Co Ltd Method for manufacturing positive electrode material for nonaqueous secondary battery
JP2005251756A (en) * 2005-04-04 2005-09-15 Nippon Chem Ind Co Ltd Lithium secondary battery positive electrode active substance, its manufacturing method, and lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653797A1 (en) * 1993-05-31 1995-05-17 Hitachi Maxell, Ltd. Lithium secondary cell containing organic electrolyte, active material for positive electrode of lithium secondary cell, and method for manufacturing the active material
EP0653797A4 (en) * 1993-05-31 1995-11-22 Hitachi Maxell Lithium secondary cell containing organic electrolyte, active material for positive electrode of lithium secondary cell, and method for manufacturing the active material.
FR2733974A1 (en) * 1995-04-28 1996-11-15 Japan Storage Battery Co Ltd PROCESS FOR PRODUCING LICKIUM-CONTAINING NICKEL OXIDE
US5720932A (en) * 1995-04-28 1998-02-24 Japan Storage Battery Co., Ltd. Method of producing lithium nickelate which contains cobalt
US5783334A (en) * 1996-04-01 1998-07-21 Japan Storage Battery Co., Ltd. Method for producing lithium nickelate positive electrode and lithium battery using the same
US6335119B1 (en) 1996-05-24 2002-01-01 Japan Storage Battery Co., Ltd. Lithium battery and method of producing positive electrode active material therefor
JP2004006267A (en) * 2002-03-25 2004-01-08 Sumitomo Chem Co Ltd Method for manufacturing positive electrode material for nonaqueous secondary battery
JP4639573B2 (en) * 2002-03-25 2011-02-23 住友化学株式会社 Method for producing positive electrode active material for non-aqueous secondary battery
JP2005251756A (en) * 2005-04-04 2005-09-15 Nippon Chem Ind Co Ltd Lithium secondary battery positive electrode active substance, its manufacturing method, and lithium secondary battery
JP4487194B2 (en) * 2005-04-04 2010-06-23 日本化学工業株式会社 Lithium secondary battery positive electrode active material, method for producing the same, and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4185191B2 (en) Method for producing spinel type lithium manganate
CN109845003B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JPH11204110A (en) Manufacture of anode material for lithium ion battery
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JP2000149923A (en) Positive electrode active material for lithium ion secondary battery
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
WO2000061495A1 (en) Method for preparing lithium manganate having spinel structure
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JPH06310145A (en) Manufacture of nickel acid lithium for lithium secondary battery
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
CA2129716A1 (en) Process for producing a positive electrode for lithium secondary batteries
JPH0521067A (en) Nonaqueous electrolytic battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP4306868B2 (en) Method for producing spinel type lithium manganate
JP3499181B2 (en) Method for producing spinel type lithium manganate
JP4473362B2 (en) Method for producing spinel type lithium manganate
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery