JPH02139860A - Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor - Google Patents

Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor

Info

Publication number
JPH02139860A
JPH02139860A JP63291161A JP29116188A JPH02139860A JP H02139860 A JPH02139860 A JP H02139860A JP 63291161 A JP63291161 A JP 63291161A JP 29116188 A JP29116188 A JP 29116188A JP H02139860 A JPH02139860 A JP H02139860A
Authority
JP
Japan
Prior art keywords
mno2
positive electrode
lithium
limn2o4
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63291161A
Other languages
Japanese (ja)
Other versions
JPH0824043B2 (en
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
豊口 吉徳
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63291161A priority Critical patent/JPH0824043B2/en
Publication of JPH02139860A publication Critical patent/JPH02139860A/en
Publication of JPH0824043B2 publication Critical patent/JPH0824043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a highly reliable non-aqueous electrolyte secondary battery which has lesser decrease in the capacity at charge/discharge cycles by using LiMn2O4 having a specific grating constant as positive electrode active substance. CONSTITUTION:Li oxide, Li hydroxide or Li.Mn oxide, and gamma-type MnO2 are mixed together by a certain atomic ratio, with water added thereto if necessary followed by kneading, and the result is heated at a certain temp. to produce LiMn2O4 having a crystal grating constant (a) of no more than 8.22Angstrom , and this product is used to positive electrode active substance. If therein Li ions are allowed to come in and go out of the grating with charging/discharging, the degree of expansion and contraction is lesser because of small grating constant. Therefore, segregation of electroconductive material particles such as carbon black from LiMn2O4 particles is small under the charge/discharge process, and current collection within electrode plate is kept good, so that this is free from drop of the charge/discharge capacity with repetition of the charge/discharge. Therein also inclusions of Li2MnO3 or MnO2 are less, and corrosion of Li neg. electrode is inhibited, so that the cycle life will also be prolonged.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特に、その正極の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to improvements in its positive electrode.

従来の技術 リチウムまたはリチウム合金を負極とする非水電解質二
次電池の正極活物質については、これまで、Ti、V、
Or、Mo等の層状もしくはトンネル構造を有する酸化
物及びカルコゲン化合物が知られている。これらの構造
を有する化合物では、電池の充放電により、リチウムイ
オンが化合物の層もしくはトンネル内へ出入りする。こ
のため、化合物自体の結晶格子は単に膨張、収縮するの
みで、結晶構造が著しく破壊されることがないため、二
次電池用正極活物質に適する。
Conventional technology As for the positive electrode active materials of non-aqueous electrolyte secondary batteries using lithium or lithium alloy as the negative electrode, Ti, V,
Oxides and chalcogen compounds having layered or tunnel structures such as Or and Mo are known. In compounds having these structures, lithium ions move in and out of the layer or tunnel of the compound as the battery is charged and discharged. Therefore, the crystal lattice of the compound itself simply expands and contracts, and the crystal structure is not significantly destroyed, making it suitable as a positive electrode active material for secondary batteries.

ところで、MnO2は、高い電圧、大きい放電容量、す
なわち、高エネルギー密度を有する正極活物質として非
水電解質−次電池に適用され、/J’s型電子機器用電
源をはじめとし広く利用されている。
By the way, MnO2 is applied to non-aqueous electrolyte secondary batteries as a positive electrode active material having high voltage, large discharge capacity, that is, high energy density, and is widely used including /J's type power supplies for electronic devices. .

MnO2はルチル型の結晶構造であり、上述のトンネル
構造を有する。電池の放電にともない、リチウムイオン
がこのトンネル内に侵入、移動し、いわゆる挿入反応が
起きる。この放電過程では、MnO2の結晶格子は膨張
するが結晶構造そのものの破壊はない。したがって、放
電過程でMnO2内に侵入したリチウムイオンはMnO
2内を容易に移動できる状態にある。にもかかわらず、
充電によシ、リチウムイオンをMnO2内からとり出す
ことが困難である。これは、放電にともなうMnO□粒
子自体の電子伝導性の低下と、充電の際のMnO2粒子
の収縮によるMnO2粒子とカーボンブラック等の導電
剤粒子の分離による集電不良である。特に、MnO□粒
子と導電剤粒子の分離は、放電過程で生成したLixM
nO2が絶縁体に近いため、充電過程でのリチウムイオ
ンの放出を一層困難にする。
MnO2 has a rutile crystal structure and has the above-mentioned tunnel structure. As the battery discharges, lithium ions enter and move into this tunnel, causing a so-called insertion reaction. In this discharge process, the crystal lattice of MnO2 expands, but the crystal structure itself is not destroyed. Therefore, the lithium ions that entered MnO2 during the discharge process
2 can be easily moved around. in spite of,
During charging, it is difficult to extract lithium ions from MnO2. This is due to a decrease in the electronic conductivity of the MnO□ particles themselves due to discharge, and a current collection failure due to separation of the MnO2 particles and conductive agent particles such as carbon black due to shrinkage of the MnO2 particles during charging. In particular, the separation of MnO□ particles and conductive agent particles is achieved by
Since nO2 is close to an insulator, it becomes more difficult to release lithium ions during the charging process.

したがって、MnO□を二次電池に用いた場合、充放電
サイクルによる充放電容量の減少が著しく、寿命が短い
ため、MnO2は二次電池用正極活物質には不向きであ
る。
Therefore, when MnO□ is used in a secondary battery, the charge/discharge capacity decreases significantly during charge/discharge cycles and the life is short, so MnO2 is not suitable as a positive electrode active material for a secondary battery.

以上のようなMnO2の充放電サイクルでの容量減少を
防止するためMnO2にあらかじめLiを添加、加熱し
、充放電過程での結晶格子の膨張、収縮の度合がMn0
zに比べ小さい、スピネル型の結晶構造を有するLiM
n 2O4を正極の活物質に用いることが提案されてお
シ、特に、放7「容量の点から、低温で加熱することに
よシ得たLiMn2O4が好ましいとされている(英国
公開公報GB2196785A)。
In order to prevent the capacity reduction during the charge/discharge cycle of MnO2 as described above, Li is added to MnO2 in advance and heated, so that the degree of expansion and contraction of the crystal lattice during the charge/discharge process becomes Mn0.
LiM with a spinel crystal structure that is smaller than z
It has been proposed to use n2O4 as the active material of the positive electrode, and in particular, LiMn2O4 obtained by heating at a low temperature is said to be preferable from the viewpoint of high capacity (British Publication No. GB2196785A). .

この低温でのLiMn、、04の製造法は概ね次のよう
で6る。Li2GO,とMnO,を混合し、430℃〜
62O℃の温度範囲で加熱するか、または、 Li工と
MnO2の混合物を300℃で加熱後、有機溶媒で洗浄
することによりLiMn2O4を得る。
The method for producing LiMn,.04 at this low temperature is generally as follows6. Mix Li2GO, and MnO, and heat at 430℃~
LiMn2O4 is obtained by heating in a temperature range of 620°C or by heating a mixture of Li and MnO2 at 300°C and washing with an organic solvent.

発明が解決しようとする課題 しかし、このような製造法によって得たLiMn2O4
を正極活物質として用い、リチウムまたはリチウム合金
を負極に用いた電池を組み立て、充放″1程サイクルを
くシ返した場合、リチウム負極の腐食が著しく、サイク
ル寿命が短いという問題点があった。これは次の理由に
よる。
Problems to be Solved by the Invention However, LiMn2O4 obtained by such a production method
When assembling a battery using lithium as the positive electrode active material and lithium or lithium alloy as the negative electrode and repeating the charging/discharging cycle several times, there was a problem that the lithium negative electrode was severely corroded and the cycle life was short. .This is due to the following reason.

Li 2Go 、とMnO□ を混合、加熱してL i
Mn 2O4を得る場合、Li2Go、の融点は618
℃であるため、Li2GO,がMnO2と十分に反応で
きる状態になるためにはこの融点近傍まで加熱する必要
がある。しかし、MnO2はこのような温度ではβ型の
構造に転移するか、または、Liとの反応が著しく不活
性なMn2O3に変化する。β型のMnO2はLlがM
nO2内に拡散可能なトンネル構造を有するが、Liを
十分にMnO2内に取り込むことができない。これは、
β型MnO□を正極活物質に用いる非水電解質−次電池
の放電容量が極端に小さいということからもうかがえる
。したがって、Li2Co3とMnO2からLiMn2
O4を調製する場合、MnO2粒子表面に過剰なLiが
堆積し電気化学的に不活性すLi2Mn057):形成
サレル一方、Li2CO3粒子とMnO2粒子が接触し
ていなかったMnO□粒子表面上は依然としてMnO2
として残る。すなわち、1.ri、、Co5とMnO2
の反応では、同一粒子上にL i2 M n O5とM
nO2が混在したものが生成しやすい。Li 2Mn0
 、やMnO2は電解質中に含まれる微量の水分により
若干溶出するため、リチウムまたはリチウム合金負極に
到達し、この結果、負極表面上でリチウム・マンガン酸
化物が形成されることにより、リチウム負極が腐食する
ため、サイクル寿命が短くなるのである。さらに、Mn
O2は上述したように、充放電サイクルでの容量減少が
大きいことから、Li2Go、とMnO2の反応によっ
て得たLiMn 2O 、を用いても、なお、充放電容
量の減少が見られる。このような、同一粒子上にLi 
2Mn0 、とMnO2が混在したLiMn2O4の生
成を回避するためには、英国公開公報GB219678
5Aの実施例1に開示されているように、Li/Mn原
子比を、LiMn2O4の組成より与えられる値、すな
わち、0.6よシも十分大きい0.7の比率でLi2G
o5とMnO□を混合する必要がある。この理由は明ら
かではないが、Li2Go、をMnO2に比べ過剰に加
えることで、加熱時のLiのMnO2内への拡散をMn
O2粒子表面全体から行うことになシ、LiMn2O4
の形成が容易になると考えられる。しかし、材料調製の
コスト面から見て、余分の試薬を使用することは不利で
あり、材料の組成式に従う試薬量またはその近傍で、材
料調製を行うことが最も望ましい。
Li 2Go and MnO□ are mixed and heated to form Li
When obtaining Mn2O4, the melting point of Li2Go is 618
℃, it is necessary to heat it to around this melting point in order to bring Li2GO into a state where it can sufficiently react with MnO2. However, at such temperatures, MnO2 transforms into a β-type structure or changes into Mn2O3, which is extremely inactive in reacting with Li. In β-type MnO2, Ll is M
Although it has a tunnel structure that allows diffusion into nO2, Li cannot be sufficiently incorporated into MnO2. this is,
This can be seen from the fact that the discharge capacity of non-aqueous electrolyte secondary batteries using β-type MnO□ as the positive electrode active material is extremely small. Therefore, from Li2Co3 and MnO2 to LiMn2
When O4 is prepared, excessive Li is deposited on the surface of MnO2 particles and becomes electrochemically inactive.On the other hand, on the surface of MnO□ particles where Li2CO3 particles and MnO2 particles were not in contact, MnO2 remains.
remains as. That is, 1. ri,, Co5 and MnO2
In the reaction, L i2 M n O5 and M
A mixture of nO2 is likely to be generated. Li2Mn0
, and MnO2 are slightly eluted by trace amounts of water contained in the electrolyte, and reach the lithium or lithium alloy negative electrode. As a result, lithium manganese oxide is formed on the negative electrode surface, causing corrosion of the lithium negative electrode. This shortens the cycle life. Furthermore, Mn
As described above, since O2 has a large capacity decrease during charge/discharge cycles, even if LiMn 2O obtained by the reaction of Li2Go and MnO2 is used, a decrease in charge/discharge capacity is still observed. Li on the same particle like this
In order to avoid the generation of LiMn2O4 in which 2Mn0 and MnO2 are mixed, British Publication Publication GB219678
As disclosed in Example 1 of 5A, the Li/Mn atomic ratio is set to a value given by the composition of LiMn2O4, that is, a ratio of 0.7, which is sufficiently larger than 0.6.
It is necessary to mix o5 and MnO□. The reason for this is not clear, but by adding Li2Go in excess compared to MnO2, the diffusion of Li into MnO2 during heating is suppressed.
LiMn2O4 must be applied from the entire O2 particle surface.
This is thought to facilitate the formation of However, from the viewpoint of the cost of material preparation, it is disadvantageous to use extra reagents, and it is most desirable to prepare the material with an amount of reagent that conforms to the compositional formula of the material or around it.

本発明はこのような従来の欠点を除去するものf6す、
Li 、、MnO、やMnO2の混在が少なく、充放電
サイクルをくり返しても容量減少が小さいLiMn2O
4を正極活物質に用いることで信頼性の高い非水電解質
二次電池を提供し、さらに、このように非水電解質二次
電池の正極活物質としてすぐれた特性を示すL工Mn2
O4の製造法についても提供することを目的とする。
The present invention eliminates these conventional drawbacks.
LiMn2O contains less Li, MnO, and MnO2, and its capacity decreases less even after repeated charge/discharge cycles.
By using 4 as a positive electrode active material, a highly reliable non-aqueous electrolyte secondary battery can be provided, and furthermore, as shown in FIG.
The present invention also aims to provide a method for producing O4.

課題を解決するだめの手段 本発明の非水電解質二次電池は、正極活物質に結晶格子
定数4が8.22Å以下のLiMn2O4を用いること
を特徴とする。さらに、このLiMn2O4を得るため
、本発明の製造法は、リチウム酸化物。
Means for Solving the Problems The nonaqueous electrolyte secondary battery of the present invention is characterized in that LiMn2O4 having a crystal lattice constant 4 of 8.22 Å or less is used as a positive electrode active material. Furthermore, in order to obtain this LiMn2O4, the manufacturing method of the present invention uses lithium oxide.

リチウム水酸化物、または、リチウム・マンガン酸化物
と、γ型のMnO2と、必要に応じて、水を混練し、加
熱することを特徴とし、さらに、特性を向上するため、
生成LiMn 、O、をPH4以上の酸性溶液相中で洗
浄することを特徴とする。
It is characterized by kneading lithium hydroxide or lithium manganese oxide, γ-type MnO2, and, if necessary, water and heating it, and further improving the characteristics,
It is characterized in that the produced LiMn 2 , O, is washed in an acidic solution phase with a pH of 4 or more.

作用 本発明の結晶格子定数aが8.22Å以下のLiMn 
2O4を正極活物質として用い、充放電によってリチウ
ムイオンを結晶格子内に出入りさせた場合、ムSTMカ
ード(rats−782)に記載される結晶格子定数へ
が8.24762人のLiMn 、、O。
Effect The LiMn crystal lattice constant a of the present invention is 8.22 Å or less.
When 2O4 is used as the positive electrode active material and lithium ions are moved in and out of the crystal lattice by charging and discharging, the crystal lattice constant written on the MuSTM card (rats-782) is 8.24762 LiMn,,O.

に比べ、結晶格子が収縮、すなわち、単位胞が小さくな
っているため、膨張、収縮の度合が小さい。
Compared to , the crystal lattice is contracted, that is, the unit cell is smaller, so the degree of expansion and contraction is small.

したがって、充放電過程での、カーボンブラック等の導
電剤粒子とLiMn 2O4粒子との分離が小さく、極
板内での集電は良好に保たれることになシ、充放電サイ
クルをく9返しても充放電容量の減少は少ない。
Therefore, during the charging and discharging process, the separation between conductive agent particles such as carbon black and LiMn2O4 particles is small, and current collection within the electrode plate is maintained well. However, the decrease in charge/discharge capacity is small.

上記の結晶格子定数aが8.22Å以下で、しかも、L
i2Mn0.やMnO2の混在の少ないLiMn2O4
を得るため、リチウム酸化物等とγ型のMnO2と、必
要に応じて、水を混練して加熱する。例えば、LiOH
ノ場合、LiOH(7)融点ハLi2C06ニ比へ44
5℃と著しく低温でる9、MnO2がリチウム拡散が困
難なβ型に転移する前に、LiOHとMnO2は容易に
反応することができる。ここで、LiOHは加熱により
溶解すること、さらに、MnO□内に含まれる少量の水
分が加熱時、MnO2内より放出され、LiOHを溶か
すことによシ、MnO□粒子はLiOHによってその表
面のほとんどを覆われることにな9、LiOHとMnO
2の反応は均一に進む。
The above crystal lattice constant a is 8.22 Å or less, and L
i2Mn0. LiMn2O4 with less mixture of MnO2 and MnO2
In order to obtain this, lithium oxide, etc., γ-type MnO2, and, if necessary, water are kneaded and heated. For example, LiOH
In the case of , the melting point of LiOH(7) becomes the ratio of Li2C06 to 44
At an extremely low temperature of 5° C.9, LiOH and MnO2 can easily react before MnO2 transforms into the β type, where lithium diffusion is difficult. Here, LiOH is dissolved by heating, and furthermore, a small amount of water contained in MnO□ is released from MnO2 during heating, and by melting LiOH, most of the surface of MnO□ particles are covered with LiOH. 9, LiOH and MnO
Reaction 2 proceeds uniformly.

したがって、Li 2Mn05やMnO2の混在の少な
いLiMn2O4が生成する。Li2OやLi 5Mn
04等のリチウム・マンガン酸化物は、融点が高(Mn
O2と反応しにくいが、これらは溶解度は小さいものの
水に溶解するためMnO□との混練時に水を加えること
により、MnO2との反応を均一に行わせることができ
、Li2MnO3やMnOの混在の少ないLi1An2
O4を得ることができるLiOHの場合にも、MnO2
との混練時、水を加えるとさらに均一な反応を行わぜる
ことか可能である。
Therefore, LiMn2O4 containing less Li2Mn05 and MnO2 is generated. Li2O and Li5Mn
Lithium manganese oxides such as 04 have a high melting point (Mn
Although they are difficult to react with O2, they dissolve in water, although their solubility is low, so by adding water when kneading with MnO□, the reaction with MnO2 can be carried out uniformly, and there is less mixing of Li2MnO3 and MnO. Li1An2
Even in the case of LiOH, which can obtain O4, MnO2
It is possible to carry out a more uniform reaction by adding water when kneading with.

ここで、MnO2にγ型の構造を有するMnO2を用い
ると、r型MnO2はリチウム拡散のためのトンネル径
が大きく、リチウム化合物と反応した場合、リチウムは
M n O2粒子内部まで十分に拡散することができ、
粒子表面には過剰のLiが堆積せず、Li2Mn0.が
形成されにくい。したがって均一なLiMn2O4が生
成する。
Here, when MnO2 having a γ-type structure is used, r-type MnO2 has a large tunnel diameter for lithium diffusion, and when it reacts with a lithium compound, lithium can sufficiently diffuse into the inside of the MnO2 particles. is possible,
Excess Li is not deposited on the particle surface, and Li2Mn0. is difficult to form. Therefore, uniform LiMn2O4 is produced.

以上のような、リチウム化合物とMnO□との反応で、
結晶格子定数aが通常の8.24762人よシ収縮した
LiMn2O4が生成する理由は明らかではないが、リ
チウム化合物とMnO2との反応を低温で進めるため、
上記で述べたように、反応途中で、粒子表面にLiMn
 2O 、と結晶構造の似たLi 2Mn05が形成さ
れやすく、加熱を続けてもこの影響が残るためと考えら
れる。実際、上記の反応を430℃以下で行うと、反応
生物はLi 2Mn0 。
In the reaction between the lithium compound and MnO□ as described above,
Although it is not clear why LiMn2O4, which has a crystal lattice constant a of 8.24762 which is more contracted than the normal one, is produced, it is because the reaction between the lithium compound and MnO2 proceeds at a low temperature.
As mentioned above, during the reaction, LiMn is deposited on the particle surface.
This is thought to be because Li 2Mn05, which has a similar crystal structure to 2O, is likely to be formed, and this effect remains even if heating is continued. In fact, when the above reaction is carried out at 430°C or lower, the reaction product is Li2Mn0.

が生成し、さらに、610℃を超える温度で加熱すると
、結晶格子定数aが8.22人より大きいL I M 
n 2O4が生成する。
is generated, and when further heated at a temperature exceeding 610°C, L I M with a crystal lattice constant a larger than 8.22
n2O4 is produced.

さらに、生成したLiMn 2O4を酸性溶液相中で洗
浄することによ5. LiMn2O4粒子表面に一部形
成したLi2Mn0.や未反応残留物のLiOH等のリ
チウム化合物を除去することができ、リチウムまたはリ
チウム合金負極の腐食を防ぐことになるため、電池のサ
イクル寿命が延びる。この酸性溶液相中での洗浄は、溶
液相のpHが4以上であることが好ましい。溶液相のp
Hが4未満であると、LiMn2O4粒子中の工 と溶
液中のH,Oの交換反応が起きるため、このようにして
得たLiMn2O4を用いて電池を構成しても、交換反
応によってLiMn、、04粒子内に入ったH2Oがリ
チウムまたはリチウム合金負極を腐食する。したがって
、電池のサイクル寿命は短くなる。
Furthermore, by washing the generated LiMn2O4 in an acidic solution phase, 5. Li2Mn0. partially formed on the surface of LiMn2O4 particles. It is possible to remove unreacted residual lithium compounds such as LiOH and prevent corrosion of the lithium or lithium alloy negative electrode, thereby extending the cycle life of the battery. In this washing in the acidic solution phase, it is preferable that the pH of the solution phase is 4 or more. solution phase p
If H is less than 4, an exchange reaction between the atoms in the LiMn2O4 particles and H and O in the solution will occur, so even if a battery is constructed using the LiMn2O4 obtained in this way, the exchange reaction will cause LiMn,... H2O that has entered the 04 particles corrodes the lithium or lithium alloy negative electrode. Therefore, the cycle life of the battery is shortened.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例1 本発明のL工Mn2O4を次のようにして作製した。Example 1 The L-engineered Mn2O4 of the present invention was produced as follows.

LiOH,H2O12,066fとγ型M n O2s
 o、o o o yをボールミルテ混合した後、H2
O2Oyllを加えペースト状にし、470℃で6時間
加熱した。さらに、この生成物を粉砕し、再びH,,0
2Om/を加えペースト状にした後、470℃で加熱し
た。この化合物の粉末X線回折は図1のように得られ、
この化合物は、容易にLiMn2O4であると同定でき
、Li2MnO3やMnO□の混在は認められない。こ
のようにして得たLiMn 2O 、のX、W回折指数
(111)の面間隔は4.731人であ!]、 LiM
n、O,は立方晶系であることから、結晶の格子定数a
は次式により a=d、4V12    画(1) (h、に、gは面指数、dは面指数(hll)の面間隔
)8.194人と計算される。
LiOH, H2O12,066f and γ type M n O2s
After mixing o, o o o y with ball mirte, H2
O2Oyll was added to form a paste, and the mixture was heated at 470°C for 6 hours. Furthermore, this product is ground and again H,,0
After adding 2 Om/ to form a paste, it was heated at 470°C. Powder X-ray diffraction of this compound was obtained as shown in Figure 1,
This compound can be easily identified as LiMn2O4, and no mixture of Li2MnO3 or MnO□ is observed. The lattice spacing of the X, W diffraction index (111) of LiMn 2O obtained in this way is 4.731 people! ], LiM
Since n, O, are cubic system, the crystal lattice constant a
is calculated as follows: a=d, 4V12 (1) (h, g is the surface index, d is the surface spacing of the surface index (hl)) 8.194 people.

このLiMn2O.を正極活物質として、第3図に示す
ような扁平型電池を組み立て充放電試験を行った。以下
、第3図に基づき説明する。
This LiMn2O. A flat battery as shown in FIG. 3 was assembled using the above as a positive electrode active material, and a charge/discharge test was conducted. This will be explained below based on FIG.

LiMn2O4,導電剤であるカーボンブラック、及び
、結着剤である四弗化エチレン樹脂粉末を重量比で、7
o対2O対10の割合で混合した。この混合物60qを
チタンエキスバンドメタルから成る正極集電体1をスポ
ット溶接した電池ケース2内に成型、圧着し、正極3と
した。正極板の直径は14.3mmである。負極4には
、厚さ0.36mmのリチウムシートを用い、ステンレ
スメツシュから成る負極集電体6をスポット溶接した封
口板6に加圧圧着した。電解液には、プロピレンカーボ
ネートとジメトキシエタンを等体積の割合で混合したも
のに、1モル/lの割合でLiCdO4を溶解したもの
を用いた。また、セパレータ7にはポリプロピレン不織
布を用いた。又電池ケース2と封口板6の外周部はガス
ケット8で封止した。このようにして構成した本発明の
電池をAとする。
The weight ratio of LiMn2O4, carbon black as a conductive agent, and tetrafluoroethylene resin powder as a binder was 7.
They were mixed in a ratio of 10 to 20. This mixture 60q was molded and crimped into a battery case 2 to which a positive electrode current collector 1 made of titanium extracted band metal was spot welded to form a positive electrode 3. The diameter of the positive electrode plate is 14.3 mm. A lithium sheet with a thickness of 0.36 mm was used as the negative electrode 4, and a negative electrode current collector 6 made of stainless steel mesh was pressure-bonded to a sealing plate 6 spot-welded. The electrolytic solution used was a mixture of propylene carbonate and dimethoxyethane in equal volumes and LiCdO4 dissolved therein at a ratio of 1 mol/l. Moreover, a polypropylene nonwoven fabric was used for the separator 7. Further, the outer peripheries of the battery case 2 and the sealing plate 6 were sealed with a gasket 8. The battery of the present invention constructed in this way is referred to as A.

次に比較例として、L i2G O5とMnO2を原料
としてLiMn 2O4を作製した。Li2Go510
.624fとγ型MnO260,00Ofをボールミル
で混合した後、470℃で6時間加熱した。この化合物
の粉末X線回折は図2のように得られ、この化合物は、
LiMn2O4の他に、Li2MnO3,MnO2が混
在している。このようにして得たLiMn 2O4を正
極活物質として、上記で述べた扁平型電池を同様に構成
した。この比較例の電池をBとする。
Next, as a comparative example, LiMn 2 O 4 was produced using Li 2 G O 5 and MnO 2 as raw materials. Li2Go510
.. 624f and γ-type MnO260,00Of were mixed in a ball mill and then heated at 470° C. for 6 hours. Powder X-ray diffraction of this compound was obtained as shown in Figure 2, and this compound was
In addition to LiMn2O4, Li2MnO3 and MnO2 are mixed. A flat battery described above was constructed in the same manner using LiMn 2 O 4 thus obtained as a positive electrode active material. The battery of this comparative example is designated as B.

以上のように構成した本発明の電池人と比較例の電池B
において、0.8mAの定電流、放電下限電圧2.OV
、充電上限7H圧3.8vの条件で充放電試験を行った
The battery of the present invention configured as described above and the battery B of the comparative example
, a constant current of 0.8 mA, a lower discharge limit voltage of 2. O.V.
A charging/discharging test was conducted under the conditions of a charging upper limit of 7H pressure of 3.8V.

第4図は、本発明の電池Aと比較例の電池Bの各充放電
サイクルでの放電容量をプロットした図である。第4図
より、比較例の電池Bでは、本発明の電池人に比べて、
各サイクルでの放電容量が少なく、充放電サイクルでの
放電容量の減少の度合も大きいことがわかる。これは、
比較例の電池Bに用いたLiMn2O4では電気化学的
に不活性なLi2Mn0.が含まれるため放電容量が少
なくなり、また、充放電サイクルでの放電容量減少の度
合が大きいMnO7が混在するためである。さらに、比
較例の電池Bにおいて、サイクル寿命が約130サイク
ルと短いのは、混在するLi2Mn0. 、 MnO2
が電解液中に含まれる微量の水分によって溶出し、リチ
ウム負極を腐食するためである。以上のような比較例の
電池Bの特性に比べ1本発明の電池人は、放電容量、各
サイクルでの容量減少の度合。
FIG. 4 is a diagram plotting the discharge capacities of Battery A of the present invention and Battery B of Comparative Example at each charge/discharge cycle. From FIG. 4, it can be seen that in the battery B of the comparative example, compared to the battery of the present invention,
It can be seen that the discharge capacity in each cycle is small, and the degree of decrease in discharge capacity in each charge/discharge cycle is also large. this is,
In the LiMn2O4 used in Comparative Example Battery B, Li2Mn0. This is because the discharge capacity decreases due to the presence of MnO7, which reduces the discharge capacity to a large extent during charge/discharge cycles. Furthermore, in battery B of the comparative example, the cycle life is short at about 130 cycles because Li2Mn0. , MnO2
This is because the small amount of water contained in the electrolyte dissolves out and corrodes the lithium negative electrode. Compared to the characteristics of Comparative Example Battery B as described above, the battery of the present invention has the following characteristics: discharge capacity and degree of capacity decrease in each cycle.

サイクル寿命のいずれにおいても優れることがわかる。It can be seen that both cycle lives are excellent.

実施例2 実施例1で本発明のLiMn2O4を得る過程で、種々
の結晶形態のMnO2を用いたほかは、扁平型電池の溝
底、充放電試験条件は同様にして行った。
Example 2 In the process of obtaining LiMn2O4 of the present invention in Example 1, MnO2 of various crystal forms were used, but the groove bottom of the flat battery and the charging/discharging test conditions were the same.

(以下余 白) 表1は、種々の結晶形態のMnO2を用いてLiMn 
2O4を作製した場合の、1oサイクル目での放電容量
、及びγ型MnO2を用いて作製したLiMn 2O4
の放電容量を100とした時の容量比率を記載したもの
である。表1より、Liとの反応の活性度が小さいα型
やβ型のMnO2を用いて作製したLiMn 2O4で
は放電容量が少ないことがわかる。δ型のMnO2を用
いて作iRしたLiMn2O4において放電容量が少な
いのは、加熱によってδ型MnO2は容易に活性度の小
さいβ型MnO2に転移するためと考えられる。以上の
ことから、リチウム化合物とMnO2を反応させLiM
n2O4を得る場合、MnO□の結晶形態はγ型が特に
優れることがわかる。
(Left below) Table 1 shows the results of LiMn using various crystal forms of MnO2.
Discharge capacity at the 1st cycle when 2O4 was prepared, and LiMn 2O4 prepared using γ-type MnO2
The capacity ratio is shown when the discharge capacity of 100 is taken as 100. From Table 1, it can be seen that LiMn 2 O 4 produced using α-type or β-type MnO 2 having low reaction activity with Li has a small discharge capacity. The reason why LiMn2O4 produced by iR using δ-type MnO2 has a small discharge capacity is considered to be that δ-type MnO2 easily transforms into β-type MnO2 with low activity upon heating. From the above, it is possible to react LiM compound and MnO2 to create LiM
It can be seen that when obtaining n2O4, the γ type crystal form of MnO□ is particularly excellent.

実施例3 実施例1で本発明のLiMn2O4を得る過程で、Li
OH−H2OとM n O2の混合比率を変えたほかは
、扁平型電池の構成、充放電条件は同様にして行った。
Example 3 In the process of obtaining LiMn2O4 of the present invention in Example 1, Li
Except for changing the mixing ratio of OH-H2O and MnO2, the configuration of the flat battery and the charging/discharging conditions were the same.

第6図は、Li/Mn原子比(LiOH−H2OとMn
O□の混合比率)に対する生成物の1oサイクル目での
放電容量、及び、Li/Mn原子比に対する電池のサイ
クル劣化率をプロットした図である。また、各Li/M
n原子比における生成物のX線回折分析結果も示した。
Figure 6 shows the Li/Mn atomic ratio (LiOH-H2O and Mn
FIG. 3 is a graph plotting the discharge capacity of the product at the 10th cycle (mixing ratio of O□) and the cycle deterioration rate of the battery versus the Li/Mn atomic ratio. Also, each Li/M
The results of X-ray diffraction analysis of the product in n atomic ratio are also shown.

ここで、サイクル劣化率は次式によって計算した。Here, the cycle deterioration rate was calculated using the following formula.

サイクル劣化率= 10サイクル目の放電容量10サイクル目の放電容量1
0サイクル目の放電容量X10 ×10o               ・・・・・・
(2)第6図より、Li/Mn原子比が377未満のと
きは、放電容量が大きいものの、サイクル劣化率が極め
て悪くなる。これは、サイクル劣化率の大きいMnO□
が混在するためでaる。さらに、第6図より、Li/M
n原子比が4/6を超えると、サイクル劣化率は小さく
良好であるが、放電容量が著しく減少する。以上のこと
から、放電容量が大きく、サイクル劣化率が小さい領域
は、MnO2やLi2MnO3が混在しない領域であり
、Li / Mn原子比では3/7〜4/6である。こ
こで、4/6(=o、667)という値は、 Li2C
o、とMnO□テはLi/Mn原子比が0.7でLi 
2Mn0 、やMnO2の混在が認められないLiMn
2O4が生成する(英国公開公報GB2196785人
及び本出願明細書中の実施例1における比較例参照)の
に対して、5%もLi/Mn原子比が小さく、また、3
/7(==0.429)という値はLiMn2O4の組
成よシ与えられるLi/Mn原子比二〇、6よシも14
%小さい。すなわち、本発明のLiMn 2O4の製造
法を用いれば、従来より少ないLi/Mn原子比のリチ
ウム化合物/ Mn O2混合比で、しかも、低温でL
iMn2O4を作製することができるという特徴がある
Cycle deterioration rate = 10th cycle discharge capacity 10th cycle discharge capacity 1
Discharge capacity at 0th cycle X10 ×10o...
(2) From FIG. 6, when the Li/Mn atomic ratio is less than 377, although the discharge capacity is large, the cycle deterioration rate is extremely poor. This is because MnO□ has a high cycle deterioration rate.
This is because there is a mixture of Furthermore, from Fig. 6, Li/M
When the n atomic ratio exceeds 4/6, the cycle deterioration rate is small and good, but the discharge capacity is significantly reduced. From the above, the region where the discharge capacity is large and the cycle deterioration rate is small is the region where MnO2 and Li2MnO3 are not mixed, and the Li/Mn atomic ratio is 3/7 to 4/6. Here, the value 4/6 (=o, 667) is Li2C
o, and MnO□te have a Li/Mn atomic ratio of 0.7 and are Li
2Mn0, or LiMn where no mixture of MnO2 is recognized.
2O4 is produced (see British Publication No. GB2196785 and the comparative example in Example 1 in the specification of this application), whereas the Li/Mn atomic ratio is 5% smaller, and 3
The value of /7 (==0.429) is given by the composition of LiMn2O4, which is the Li/Mn atomic ratio of 20, 6 and 14.
%small. In other words, if the LiMn2O4 manufacturing method of the present invention is used, L can be produced with a lithium compound/MnO2 mixture ratio with a smaller Li/Mn atomic ratio than before, and at low temperatures.
It has the characteristic that iMn2O4 can be produced.

実施例4 実施例1で本発明のLiMn2O4を得る過程で、加熱
温度を変化させたほかは、扁平型電池の構成。
Example 4 A flat battery configuration was used, except that the heating temperature was changed in the process of obtaining LiMn2O4 of the present invention in Example 1.

充放電試験条件は同様にして行った。The charge/discharge test conditions were the same.

第6図は、加熱温度を変化させて得られたLiMn2O
4において、加熱温度に対する結晶格子定数a、及び、
加熱温度に対するサイクル劣化率をプロットした図であ
る。ここで、結晶格子定数aは、X線回折指数(111
)の面間隔から式(1)を用いて算出し、サイクル劣化
率は式(2)によって計算した。
Figure 6 shows LiMn2O obtained by changing the heating temperature.
4, the crystal lattice constant a with respect to the heating temperature, and
FIG. 3 is a diagram plotting cycle deterioration rate versus heating temperature. Here, the crystal lattice constant a is the X-ray diffraction index (111
) was calculated using equation (1), and the cycle deterioration rate was calculated using equation (2).

第6図より、加熱温度に対する結晶格子定数aは、加熱
温度が610℃を超えると急激に増力口し、一定値8.
248八になる。これに対応して、サイクル劣化率も著
しく増加する。この理由は、加熱温度が610℃を超え
る範囲で得たLiMn 2O4では、充放電過程での結
晶格子の膨張、収縮の度合が大きく、導電剤であるカー
ボンブラック粒子との分離による集電不良のため、サイ
クル劣化率が大きいのである。第6図より、サイクル劣
化率が十分に小さいためには、結晶格子定数aが8.2
2Å以下でなければならないことがわかる。一方、加熱
温度が430℃以下の領域では、結晶格子定数aが8.
22人よりも十分に小さいにもかかわらず、サイクル劣
化率は上昇している。これは、この温度領域では、Li
OH−H2OとMnO2の反応が速やかに進まず、Li
Mn2O.のほかに、Li 2Mn0 、 。
From FIG. 6, it can be seen that the crystal lattice constant a with respect to the heating temperature increases rapidly when the heating temperature exceeds 610°C, and has a constant value of 8.
It becomes 2488. Correspondingly, the cycle degradation rate also increases significantly. The reason for this is that in LiMn2O4 obtained at a heating temperature exceeding 610°C, the degree of expansion and contraction of the crystal lattice during the charging and discharging process is large, resulting in poor current collection due to separation from carbon black particles, which are the conductive agent. Therefore, the cycle deterioration rate is high. From Figure 6, in order for the cycle deterioration rate to be sufficiently small, the crystal lattice constant a must be 8.2.
It can be seen that the thickness must be 2 Å or less. On the other hand, in a region where the heating temperature is 430°C or lower, the crystal lattice constant a is 8.
Even though it is much smaller than 22 people, the cycle deterioration rate is increasing. This means that in this temperature range, Li
The reaction between OH-H2O and MnO2 does not proceed quickly, and Li
Mn2O. Besides, Li2Mn0, .

MnO2が混在するようになるからである。This is because MnO2 becomes mixed.

以上のように、結晶格子定数aが8.22Å以下で、L
i 2Mn0 、やMnO2の混在しなイLiMn2O
4を得るためには、加熱温度を430℃〜510’Cの
間に設定することが望ましい。
As mentioned above, when the crystal lattice constant a is 8.22 Å or less, L
i 2Mn0 , and LiMn2O with no mixture of MnO2
4, it is desirable to set the heating temperature between 430°C and 510'C.

実施例5 実施例1で本発明のLiMn 2O4を得る過程で、リ
チウム化合物を、Li2O、LiOH、LiOH−H2
O。
Example 5 In the process of obtaining LiMn2O4 of the present invention in Example 1, lithium compounds were used as Li2O, LiOH, LiOH-H2
O.

Li3MnO4,Li2Mn0.、LiMnO2より少
なくとも1種選択し、単独または混合物として用いるほ
かは、扁平型電池の構成、充放電試験条件は同様にして
行った。
Li3MnO4, Li2Mn0. , LiMnO2, and used alone or as a mixture, the configuration of the flat battery and the charging/discharging test conditions were the same.

(以下余 白) 表2は、各種のリチウム化合物または混合物と、γ型M
nO2を用いて、結晶格子定数aが8.22Å以下で、
Li 2Mn05やMnO2の混在の少ないL x M
 n 2O aを作製する条件を記載したものであり、
さらに、作製したLiMn 2O4を使用した電池の充
放電サイクル寿命(放電容量が初期容量の半分となった
ときのサイクル数)を記載した。
(Left below) Table 2 shows various lithium compounds or mixtures and γ-type M
Using nO2, the crystal lattice constant a is 8.22 Å or less,
L x M with less mixture of Li 2Mn05 and MnO2
It describes the conditions for producing n 2 O a,
Furthermore, the charge/discharge cycle life (the number of cycles when the discharge capacity becomes half of the initial capacity) of the battery using the produced LiMn 2 O 4 is described.

表2より、リチウム化合物がリチウム酸化物またはリチ
ウム水酸化物の場合には、リチウム化合物とMnO□の
混合比はLi/Mn原子比で3/7〜4/6、加熱温度
範囲は430℃〜510℃であることがわかる。リチウ
ム化合物に、リチウム・マンガン酸化物が含まれる場合
、Li/Mn原子比の上限は3.6 / 8.6とリチ
ウム酸化物または水酸化物に比べやや低くなシ、また、
加熱温度の下限が概ね460℃と高くなる。この理由は
、リチウム・マンガン酸化物では、リチウム酸化物また
は水酸化物に比べ2Liを放出しにくいためである。
From Table 2, when the lithium compound is lithium oxide or lithium hydroxide, the mixing ratio of the lithium compound and MnO□ is 3/7 to 4/6 in Li/Mn atomic ratio, and the heating temperature range is 430°C to It can be seen that the temperature is 510°C. When the lithium compound contains lithium manganese oxide, the upper limit of the Li/Mn atomic ratio is 3.6/8.6, which is slightly lower than that of lithium oxide or hydroxide.
The lower limit of the heating temperature is approximately 460°C. The reason for this is that lithium manganese oxide is less likely to release 2Li than lithium oxide or hydroxide.

さらに、リチウム・マンガン酸化物を用いて作製した電
池のサイクル寿命がやや短くなっているのは、X線回折
分析では認められない程度のLi 2Mn05をはじめ
とするリチウム・マンガン酸化物が残留しており、電解
液中に含まれる微量の水分によって溶出し、リチウム負
極を腐食するためと考えられる。
Furthermore, the cycle life of batteries fabricated using lithium manganese oxides is slightly shorter because lithium manganese oxides such as Li 2Mn05 remain to an extent that cannot be recognized by X-ray diffraction analysis. It is thought that this is because trace amounts of water contained in the electrolyte dissolve and corrode the lithium negative electrode.

なお、表2の条件で得られたLiMn 2O4において
、X線回折指数(311)の回折ピークの半値全幅は、
 FeKa線換算でいずれも1.1°未満であって、英
国公開公報GB2196785人に開示されたLiMn
2O4よシ結晶性が高く、電解液中の水分による溶出が
困難であり、したがってリチウム負極の腐食が少ないの
で、充放電サイクル寿命が長くなるという利点がある。
In LiMn2O4 obtained under the conditions in Table 2, the full width at half maximum of the diffraction peak of the X-ray diffraction index (311) is:
Both are less than 1.1° in terms of FeKa radiation, and the LiMn disclosed in British Publication Publication GB2196785
It has higher crystallinity than 2O4 and is difficult to be eluted by moisture in the electrolyte, so the lithium negative electrode is less likely to be corroded, so it has the advantage of a longer charge-discharge cycle life.

実施例6 リチウム化合物とγ型MnO2を混合する過程で、水の
添加の有無のほかは、実施例1と同様にしてLiMn2
O4の作製、扁平型電池の構成、充放電試験を行った。
Example 6 In the process of mixing the lithium compound and γ-type MnO2, LiMn2 was mixed in the same manner as in Example 1, except that water was added or not.
Production of O4, construction of a flat battery, and charge/discharge tests were conducted.

表3において、リチウム化合物とr型MnO,、の混合
比は、Li/Mn原子比でいずれも1/2であシ、加熱
温度は470℃である。
In Table 3, the mixing ratio of the lithium compound and r-type MnO is 1/2 in terms of Li/Mn atomic ratio, and the heating temperature is 470°C.

表3よシ、いずれのリチウム化合物を用いても、γ型M
nO2との混練時にH2Oを添加する方が、添加しない
場合に比べ放電容量が6〜10%程度増加しており、特
に、リチウム・マンガン酸化物。
According to Table 3, no matter which lithium compound is used, γ-type M
When H2O is added during kneading with nO2, the discharge capacity increases by about 6 to 10% compared to when H2O is not added, especially for lithium manganese oxide.

リチウム酸化物において顕著であることがわかる。It can be seen that this is remarkable in lithium oxide.

この理由は、混練時に添加した1(2Oによって、溶解
度は小さいものの、これらのリチウム・マンガン酸化物
は溶出し、MnO□粒子を覆うことになるため、均一に
LiMn2O4が生成し、電気化学的に不活性なLi、
MnO,が混在しなくなるからである。
The reason for this is that due to the 1(2O) added during kneading, these lithium and manganese oxides are eluted and cover the MnO□ particles, although their solubility is small, so that LiMn2O4 is generated uniformly and electrochemically inactive Li,
This is because MnO is no longer mixed.

実施例7 実施例6と同様に、種々のリチウム化合物とγ型MnO
2とH2Oを混練し、加熱してLiMn2O4を得た。
Example 7 Similar to Example 6, various lithium compounds and γ-type MnO
2 and H2O were kneaded and heated to obtain LiMn2O4.

このようにして得たLiMn2O430,0OOfをイ
オン交換水400肩を中に投入、攪拌し、4 NH2S
o 、溶液を溶液相中のpHが約5に落ち着くまで滴下
した。次に、この酸性LiMn2O4溶液をr過し、洗
浄後の廃液のpHが6〜7になるまでLiMn2O4を
くシ返しイオン交換水で洗浄した。
The thus obtained LiMn2O430,0OOf was poured into 400ml of ion-exchanged water, stirred, and 4NH2S
o, the solution was added dropwise until the pH in the solution phase settled to about 5. Next, this acidic LiMn2O4 solution was filtered, and the LiMn2O4 was repeatedly washed with ion-exchanged water until the pH of the waste solution after washing became 6 to 7.

電池の構成及び充放電試験は実施例1と同様にして行っ
た。
The structure of the battery and the charge/discharge test were conducted in the same manner as in Example 1.

−(以下余 白) 表4は、各リチウム化合物から得たLiMn 2O4の
酸性溶液処理前後における10サイクル目の放電容量を
記載したものである。これより、酸性溶液で処理したL
iMn2O4は、処理前のLiMn 、O。
- (blank below) Table 4 lists the discharge capacity of LiMn 2 O 4 obtained from each lithium compound at the 10th cycle before and after acid solution treatment. From this, L treated with acidic solution
iMn2O4 is LiMn,O before treatment.

に比べ放電容量が増加しており、約5.7 mAhの一
定値になっている。これは、リチウム化合物とMnO2
の加熱によって得たLiMn 2O4中には、X線回折
分析では認められない程度の少量のL x 2 M n
 OsやLiOH等のリチウム化合物が残留しており、
酸処理によって除去されるためである。
The discharge capacity has increased compared to the previous model, and remains at a constant value of approximately 5.7 mAh. This is a combination of lithium compounds and MnO2
LiMn 2O4 obtained by heating contains a small amount of L x 2 M n that cannot be recognized by X-ray diffraction analysis.
Lithium compounds such as Os and LiOH remain,
This is because it is removed by acid treatment.

また、表4には記載していないが、酸性溶液で処理した
LiMn 2O4にはLi 2Mn0 、が残留してい
ないため、全般に、電池のサイクル寿命が処理しないL
iMn2O4に比べ延びるという効果があった。
Although not listed in Table 4, LiMn2O4 treated with acidic solution has no residual Li2Mn0, so the cycle life of the battery is generally shorter than that of LiMn2O4 treated with acidic solution.
It had the effect of being elongated compared to iMn2O4.

第7図は、リチウム化合物としてLion−H2Oを用
いたLiMn2O4を処理する酸性溶液相中のpHに対
して電池のサイクル寿命、及び、処理して得られたリチ
ウム・マンガン酸化物中の水分量をプロットした図であ
る。ここで、酸性溶液で処理した後のLiMn2O4を
リチウム・マンガン酸化物と記した理由は、pHの低い
酸性溶液相中で処理したLiMn、、04は、 LiM
n2O4粒子内からLiが放出されておυ、単純な組成
式で表わせないためである。
Figure 7 shows the cycle life of the battery and the water content in the lithium-manganese oxide obtained by the treatment with respect to the pH in the acidic solution phase in which LiMn2O4 is treated using Lion-H2O as the lithium compound. It is a plotted figure. Here, the reason why LiMn2O4 treated with an acidic solution is described as lithium manganese oxide is that LiMn2O4 treated in a low pH acidic solution phase is LiMn2O4.
This is because Li is released from within the n2O4 particles and cannot be expressed by a simple compositional formula.

第7図から、酸性溶液相中のpHが4未満では電池のサ
イクル寿命は短いことがわかる。これは、第7図より明
らかなように、pHが4未満では処理して得られたリチ
ウム・マンガン酸化物中の水分量が急激に増加し、この
水分がリチウム負極を腐食するためである。以上のこと
から、LiMn2O4を処理する酸性溶液相中のpHは
4以上でなければならない。
From FIG. 7, it can be seen that when the pH in the acidic solution phase is less than 4, the cycle life of the battery is short. This is because, as is clear from FIG. 7, when the pH is less than 4, the amount of water in the lithium-manganese oxide obtained by the treatment increases rapidly, and this water corrodes the lithium negative electrode. From the above, the pH in the acidic solution phase in which LiMn2O4 is treated must be 4 or higher.

なお、第7図では、リチウム化合物としてLiOH−H
2Oを用いたLiMn 2O4にライて述べたが、他の
リチウム化合物を用いて得られたLiMn2O4におい
ても同様な結果であった。さらに、本実施例では、酸と
してH2SO4を使用したが、他の酸、例えば、HC(
1、H2WO4,CH3CO0H等を用いても同様な効
果を得る。
In addition, in FIG. 7, LiOH-H is used as the lithium compound.
Although the above description focused on LiMn2O4 using 2O, similar results were obtained for LiMn2O4 obtained using other lithium compounds. Furthermore, although H2SO4 was used as the acid in this example, other acids such as HC (
1. Similar effects can be obtained by using H2WO4, CH3CO0H, etc.

発明の効果 以上のように、本発明の非水電解質二次電池は、結晶格
子定数aが8.22Å以下のLiMn2O4を正極活物
質として用いるため、充放電サイクルでの容量減少の小
さい信頼性の高い非水電解質二次電池が得られる°。ま
た、本発明のLiMn 2O4の製造法により、Li2
Mn0.やMnO□の混在が少ないLiMn2O4を得
、リチウム負極の腐食が抑制され、電池のサイクル寿命
が長くなるLiMn2O.が得られる。
Effects of the Invention As described above, since the non-aqueous electrolyte secondary battery of the present invention uses LiMn2O4 with a crystal lattice constant a of 8.22 Å or less as the positive electrode active material, the nonaqueous electrolyte secondary battery of the present invention has a reliable battery with small capacity loss during charge/discharge cycles. A high-quality non-aqueous electrolyte secondary battery can be obtained. Furthermore, by the method for producing LiMn 2O4 of the present invention, Li2
Mn0. The LiMn2O. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における正極活物質であるL
iMn 2,04のX線回折図、第2図は比較例におけ
る正極活物質であるLi2MnO3及びMnO2の混在
したLiMn 2O4のX線回折図、第3図は本発明の
一実施例及び比較例に用いた扁平型電池の断面図、第4
図は本発明の電池人及び比較例の電池Bにおける各サイ
クルでの放電容量をプロットした図、第5図はLi /
 Mn原子比(リチウム化合物/ MnO□混合比)に
対して放電容量及びサイクル劣化率をプロットした図、
第6図はリチウム化合物・MnO2混合物の加熱温度に
対する生成LiMn2O4の結晶格子定数a及びサイク
ル劣化率をプロットした図、第7図はLiMn2O4処
理溶液相中のpHに対して電池のサイクル寿命及びリチ
ウム・マンガン酸化物中の水分量をプロットした図であ
る。 1・・・・・・正極集電体、2・・・・・・電池ケース
、3・・・・・・正極、4・・・・・・負極、6・・・
・・・負極集電体、6・・・・・・封口板、7・・・・
・・セパレータ、8・・・・・・ガスケット。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名侶 SJフ 区 SJり 方に誓ヒ庫良t  (mハんう 6J 令 サイグル、劣イ巳率
FIG. 1 shows L, which is a positive electrode active material in an embodiment of the present invention.
An X-ray diffraction diagram of iMn 2,04, Figure 2 is an X-ray diffraction diagram of LiMn 2O4 containing Li2MnO3 and MnO2, which are positive electrode active materials in a comparative example, and Figure 3 is an X-ray diffraction diagram of an example of the present invention and a comparative example. Cross-sectional view of the flat battery used, No. 4
The figure is a diagram plotting the discharge capacity at each cycle of the battery of the present invention and battery B of the comparative example.
A diagram plotting discharge capacity and cycle deterioration rate against Mn atomic ratio (lithium compound/MnO□ mixture ratio),
Figure 6 is a diagram plotting the crystal lattice constant a and cycle deterioration rate of LiMn2O4 produced against the heating temperature of the lithium compound/MnO2 mixture, and Figure 7 is a diagram plotting the cycle life of the battery and the lithium FIG. 3 is a diagram plotting the amount of water in manganese oxide. 1...Positive electrode current collector, 2...Battery case, 3...Positive electrode, 4...Negative electrode, 6...
...Negative electrode current collector, 6... Sealing plate, 7...
... Separator, 8... Gasket. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (4)

【特許請求の範囲】[Claims] (1)正極と、リチウムイオン導伝性の非水電解質と、
リチウムまたはリチウム合金からなる負極を構成要素と
する電池であって、前記正極は、結晶の格子定数aが8
.22Å以下のLiMn_2O_4であることを特徴と
する非水電解質二次電池。
(1) A positive electrode, a lithium ion conductive nonaqueous electrolyte,
A battery comprising a negative electrode made of lithium or a lithium alloy, the positive electrode having a crystal lattice constant a of 8.
.. A non-aqueous electrolyte secondary battery characterized by being made of LiMn_2O_4 with a thickness of 22 Å or less.
(2)Li_2O、LiOH、LiOH−H_2O、L
i_3MnO_4Li_2MnO_3、LiMnO_2
より選択される少なくとも1種のリチウム化合物と、γ
型MnO_2をLi/Mn原子比で3/7〜4/6の範
囲で混合し、430℃〜510℃の間の温度で加熱する
ことにより、特許請求の範囲第1項記載のLiMn_2
O_4を得ることを特徴とする正極活物質の製造法。
(2) Li_2O, LiOH, LiOH-H_2O, L
i_3MnO_4Li_2MnO_3, LiMnO_2
at least one lithium compound selected from γ
By mixing type MnO_2 at a Li/Mn atomic ratio in the range of 3/7 to 4/6 and heating at a temperature between 430°C and 510°C, LiMn_2 according to claim 1 is obtained.
A method for producing a positive electrode active material characterized by obtaining O_4.
(3)特許請求の範囲第2項記載の正極活物質を製造す
る過程において、リチウム化合物と、γ型MnO_2と
、水を混練し、加熱することを特徴とする正極活物質の
製造法。
(3) A method for producing a positive electrode active material, characterized in that in the process of producing the positive electrode active material according to claim 2, a lithium compound, γ-type MnO_2, and water are kneaded and heated.
(4)生成LiMn_2O_4をpH4以上の酸性溶液
相中で処理することを特徴とする特許請求の範囲第2項
又は第3項記載の正極活物質の製造法。
(4) The method for producing a positive electrode active material according to claim 2 or 3, characterized in that the produced LiMn_2O_4 is treated in an acidic solution phase having a pH of 4 or higher.
JP63291161A 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material Expired - Fee Related JPH0824043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291161A JPH0824043B2 (en) 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291161A JPH0824043B2 (en) 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material

Publications (2)

Publication Number Publication Date
JPH02139860A true JPH02139860A (en) 1990-05-29
JPH0824043B2 JPH0824043B2 (en) 1996-03-06

Family

ID=17765235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291161A Expired - Fee Related JPH0824043B2 (en) 1988-11-17 1988-11-17 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material

Country Status (1)

Country Link
JP (1) JPH0824043B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JPH06509077A (en) * 1991-07-06 1994-10-13 ビーエーエスエフ アクチェンゲゼルシャフト Amino methylene cyanacetic acid ester and -amide
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US5498764A (en) * 1993-09-22 1996-03-12 Nippondenso Co., Ltd. Negative electrode for lithium secondary cells and lithium secondary cells using the same
US5565688A (en) * 1993-09-22 1996-10-15 Nippondenso Co., Ltd. Method for preparing an active substance of lithium secondary cells
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
US6093503A (en) * 1992-09-01 2000-07-25 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
EP1049187A2 (en) * 1999-04-27 2000-11-02 Hitachi, Ltd. Lithium secondary battery
JP2001273900A (en) * 2000-01-21 2001-10-05 Showa Denko Kk Positive active material, method of manufacturing same, and nonaqueous secondary battery using the active material
KR100323280B1 (en) * 1996-06-27 2002-07-02 혼조 이치로 Process for producing lithium manganese oxide with spinel structure
JP2003123755A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2007053110A (en) * 2006-10-26 2007-03-01 Hitachi Maxell Ltd Small button secondary battery
JP2008198553A (en) * 2007-02-15 2008-08-28 National Institute Of Advanced Industrial & Technology Active material for lithium cell, its manufacturing method, and lithium cell using the active material
JP2013012461A (en) * 2011-06-02 2013-01-17 Nissan Motor Co Ltd Method for producing cathode active material, method for manufacturing electrode, and electrode
JP2013252995A (en) * 2012-06-07 2013-12-19 National Institute Of Advanced Industrial Science & Technology Lithium manganese complex oxide and carbon composite thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442943B2 (en) 2014-09-12 2018-12-26 株式会社ジェイテクト Electric storage material manufacturing apparatus and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274059A (en) * 1987-05-01 1988-11-11 Sony Corp Nonaqueous electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274059A (en) * 1987-05-01 1988-11-11 Sony Corp Nonaqueous electrolyte battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JPH06509077A (en) * 1991-07-06 1994-10-13 ビーエーエスエフ アクチェンゲゼルシャフト Amino methylene cyanacetic acid ester and -amide
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US6093503A (en) * 1992-09-01 2000-07-25 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US5498764A (en) * 1993-09-22 1996-03-12 Nippondenso Co., Ltd. Negative electrode for lithium secondary cells and lithium secondary cells using the same
US5565688A (en) * 1993-09-22 1996-10-15 Nippondenso Co., Ltd. Method for preparing an active substance of lithium secondary cells
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
KR100323280B1 (en) * 1996-06-27 2002-07-02 혼조 이치로 Process for producing lithium manganese oxide with spinel structure
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
EP1049187A2 (en) * 1999-04-27 2000-11-02 Hitachi, Ltd. Lithium secondary battery
EP1049187A3 (en) * 1999-04-27 2004-04-28 Hitachi, Ltd. Lithium secondary battery
JP2001273900A (en) * 2000-01-21 2001-10-05 Showa Denko Kk Positive active material, method of manufacturing same, and nonaqueous secondary battery using the active material
JP2003123755A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2007053110A (en) * 2006-10-26 2007-03-01 Hitachi Maxell Ltd Small button secondary battery
JP2008198553A (en) * 2007-02-15 2008-08-28 National Institute Of Advanced Industrial & Technology Active material for lithium cell, its manufacturing method, and lithium cell using the active material
JP2013012461A (en) * 2011-06-02 2013-01-17 Nissan Motor Co Ltd Method for producing cathode active material, method for manufacturing electrode, and electrode
JP2013252995A (en) * 2012-06-07 2013-12-19 National Institute Of Advanced Industrial Science & Technology Lithium manganese complex oxide and carbon composite thereof

Also Published As

Publication number Publication date
JPH0824043B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JP4185191B2 (en) Method for producing spinel type lithium manganate
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JP2001345101A (en) Secondary battery
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP3667468B2 (en) Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof
KR20010052669A (en) Method for preparing lithium manganate having spinel structure
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JPH10302766A (en) Lithium ion secondary battery
JPH04345759A (en) Non-aqueous solvent secondary battery
JP3566826B2 (en) Method for producing positive electrode active material and non-aqueous secondary battery
JP2000149943A (en) Process for lithium manganese compound oxide for lithium secondary battery positive active material
JP3227771B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JPH0945330A (en) Nonaqueous secondary battery
JPH0393163A (en) Nonaqueous system secondary battery
JP3589542B2 (en) Method for producing positive electrode active material and non-aqueous secondary battery
JP4473362B2 (en) Method for producing spinel type lithium manganate
JP2001093527A (en) Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees