JP2013252995A - Lithium manganese complex oxide and carbon composite thereof - Google Patents

Lithium manganese complex oxide and carbon composite thereof Download PDF

Info

Publication number
JP2013252995A
JP2013252995A JP2012129806A JP2012129806A JP2013252995A JP 2013252995 A JP2013252995 A JP 2013252995A JP 2012129806 A JP2012129806 A JP 2012129806A JP 2012129806 A JP2012129806 A JP 2012129806A JP 2013252995 A JP2013252995 A JP 2013252995A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium manganese
lithium
manganese composite
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012129806A
Other languages
Japanese (ja)
Other versions
JP6014821B2 (en
Inventor
Tomonari Takeuchi
友成 竹内
Mitsuharu Tabuchi
光春 田渕
Yoko Nabeshima
洋子 鍋島
Hiroyuki Kageyama
博之 蔭山
Kuniaki Tatsumi
国昭 辰巳
Junji Akimoto
順二 秋本
Junichi Imaizumi
純一 今泉
Hideka Shibuya
英香 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tanaka Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tanaka Chemical Corp
Priority to JP2012129806A priority Critical patent/JP6014821B2/en
Publication of JP2013252995A publication Critical patent/JP2013252995A/en
Application granted granted Critical
Publication of JP6014821B2 publication Critical patent/JP6014821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium manganese-based positive electrode material which is a positive electrode material capable of being used in place of a LiCoO-based positive electrode material, and exhibiting excellent charge and discharge characteristics, and which can be manufactured by an easy manufacturing method by using elements being inexpensive and little restricted in terms of natural resources.SOLUTION: A novel lithium manganese complex oxide can be obtained which consists of only a crystal phase of a cubic rock-salt type structure by mixing and crushing a raw material by a mechanical milling method, the raw material including lithium oxide and manganese oxide, and which exhibits excellent charge and discharge characteristics. A composite more increased in a discharge capacity can be obtained by filling a mixture of the complex oxide and a carbon material in a conductive vessel, and by sintering the mixture under a non-oxidizing atmosphere, while being pressurized, and by energizing a DC pulse current.

Description

本発明は、リチウムマンガン複合酸化物、該複合酸化物と炭素の複合体、及びそれらの製造方法に関する。   The present invention relates to a lithium manganese composite oxide, a composite of the composite oxide and carbon, and a production method thereof.

近年の多様な機器やシステムの発展により、動力源としての蓄電池の高性能化の要求がますます高くなってきている。中でもリチウムイオン二次電池は、携帯通信機器、ノート型パソコン等の電子機器の電源を担う二次電池として広く普及が進んでおり、また環境負荷低減の観点から自動車のモーター駆動用バッテリーとしても期待されている。このため、リチウムイオン二次電池は今後一層の需要増加が予想され、またこれら機器の高性能化に対応した高エネルギー密度のリチウムイオン二次電池の開発が求められている。   With the development of various devices and systems in recent years, there is an increasing demand for higher performance of storage batteries as a power source. In particular, lithium ion secondary batteries are widely used as secondary batteries that power electronic devices such as portable communication devices and laptop computers, and are also expected to be used as motor drive batteries for automobiles from the viewpoint of reducing environmental impact. Has been. For this reason, the demand for lithium ion secondary batteries is expected to increase further in the future, and the development of high energy density lithium ion secondary batteries corresponding to higher performance of these devices is demanded.

現行のリチウムイオン二次電池においては、正極材料として主にリチウムコバルト酸化物(LiCoO2)が用いられているが、希少金属であるコバルトを多量に含むため、リチウムイオン二次電池の素材コストを上昇させる要因の一つになっている。今後、車載用等への用途拡大や電池の大型化に伴う需要増加に対して、LiCoO2から成る正極材料のみでは対応することは困難であると考えられる。 In the current lithium ion secondary battery, lithium cobalt oxide (LiCoO 2 ) is mainly used as the positive electrode material, but because it contains a large amount of cobalt, which is a rare metal, the material cost of the lithium ion secondary battery is reduced. It has become one of the factors that raise it. In the future, it is considered difficult to respond to the increase in demand accompanying the expansion of applications for in-vehicle use, etc. and the increase in size of batteries, using only a positive electrode material made of LiCoO 2 .

LiCoO2に代替し得る正極材料としては、より安価で資源的に制約の少ない元素から成る材料としてリチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn2O4)等が研究開発され、一部代替材料として実用化されている。しかしながら、LiNiO2は充電時に電池の安全性を低下させるという問題があり、一方LiMn2O4は高温(約60℃)充放電時に3価のマンガンが電解液中に溶出し、それが電池性能を著しく劣化させるという問題があるため、これら材料への代替はあまり進んでいない。 Lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), etc. have been researched and developed as cathode materials that can be substituted for LiCoO 2 as materials that are cheaper and less resource-constrained. Some have been put to practical use as alternative materials. However, LiNiO 2 has the problem of reducing battery safety during charging, while LiMn 2 O 4 has trivalent manganese eluting into the electrolyte during high-temperature (about 60 ° C) charging and discharging, which is the battery performance. However, there is not much progress in substitution for these materials.

一方、リチウムマンガン酸化物の中では、Li2MnO3という正極材料も提案されており、高容量を示すことから近年盛んに研究開発が行われており、資源的に豊富で安価な鉄やチタンを含有するリチウムマンガン酸化物(鉄含有Li2MnO3およびチタン含有Li2MnO3)が高容量を示し、特に特定の化学組成、遷移金属イオン分布を持つ場合、室温において高電流密度下で優れた放電特性を示すことや低温で優れた放電特性を示すことが報告されている(下記特許文献1−6参照)。 On the other hand, among lithium manganese oxides, a positive electrode material called Li 2 MnO 3 has also been proposed, and since it has a high capacity, research and development has been actively conducted in recent years. Lithium manganese oxides containing iron (iron-containing Li 2 MnO 3 and titanium-containing Li 2 MnO 3 ) exhibit high capacity, especially when they have a specific chemical composition and transition metal ion distribution, excellent at high current density at room temperature It has been reported that it exhibits excellent discharge characteristics at low temperatures (see Patent Documents 1-6 below).

また、従来からリチウム二次電池正極材料としての活用が困難とされていた立方晶岩塩型結晶構造を有するリチウムチタン酸化物(鉄含有Li2TiO3や鉄およびニッケル含有Li2TiO3)が、リチウムイオン二次電池用正極材料として活用可能なことも報告されている(下記特許文献7−8)。 In addition, lithium titanium oxide (iron-containing Li 2 TiO 3 and iron- and nickel-containing Li 2 TiO 3 ) having a cubic rock salt type crystal structure, which has been conventionally difficult to utilize as a positive electrode material for lithium secondary batteries, It has also been reported that it can be used as a positive electrode material for lithium ion secondary batteries (Patent Documents 7 to 8 below).

以上の通り、LiCoO2系正極材料に代替しうるリチウムマンガン系正極材料について種々の報告がなされているが、より一層の充放電特性の改善および材料の低コスト化のためには、結晶構造の制御を含む正極材料の化学組成や製造条件についての更なる最適化が望まれている。 As described above, various reports have been made on lithium manganese-based positive electrode materials that can be substituted for LiCoO 2 -based positive electrode materials. However, in order to further improve the charge / discharge characteristics and reduce the cost of materials, Further optimization of the chemical composition and manufacturing conditions of the positive electrode material including control is desired.

また、従来のリチウムマンガン酸化物は、共沈−水熱−焼成法を中心とする多段の複雑なプロセスで作製される場合が多く、原料の素材コストを低く抑えられても製造コストが全体のコストを押し上げる懸念がある。このため、実用の生産プロセスとしての観点からは、作製法をより簡便化して、優れた性能を有する正極材料を作製することが求められている。   In addition, conventional lithium manganese oxide is often produced by a multi-stage complicated process centering on coprecipitation-hydrothermal-firing method, and the production cost is reduced even if the raw material cost is kept low. There is a concern of raising costs. For this reason, from the viewpoint of a practical production process, it is required to produce a positive electrode material having excellent performance by simplifying the production method.

特開2002−68748号公報JP 2002-68748 A 特開2002−121026号公報JP 2002-121026 A 特開2005−154256号公報JP 2005-154256 A 特開2008−63211号公報JP 2008-63211 A 特開2009−179501号公報JP 2009-179501 A 特開2009−274940号公報JP 2009-274940 A 特開2003−48717号公報JP2003-48717 特開2003−306322号公報JP2003-306322A

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、LiCoO2系正極材料に代わりうる優れた充放電特性を有する正極材料であって、安価で資源的に制約の少ない元素を用いて、簡単な製造方法で作製できるリチウムマンガン系正極材料を提供することである。 The present invention has been made in view of the current state of the prior art described above, and its main purpose is a positive electrode material having excellent charge / discharge characteristics that can replace the LiCoO 2 -based positive electrode material, and is inexpensive and resource-intensive. It is an object of the present invention to provide a lithium manganese based positive electrode material that can be manufactured by a simple manufacturing method using an element with few restrictions.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、酸化リチウムと酸化マンガンを原料として、メカニカルミリング法で複合酸化物を製造する方法によれば、一工程の簡単な処理方法によって、立方晶岩塩型結晶構造の結晶相のみからなるリチウムマンガン複合酸化物を製造できることを見出した。そして、この方法で得られた複合酸化物は、単斜晶層状岩塩型構造を含むリチウムマンガン酸化物や、立方晶岩塩型結晶構造のみから成るチタン含有リチウムマンガン酸化物と比較して、優れた充放電特性を有するものであり、特に、平均放電電圧が高く、放電容量が大きくなることを見出した。更に、このリチウムマンガン複合酸化物を炭素材料と共に導電性容器内に充填し、非酸化性雰囲気下において、加圧下に直流パルス電流を通電して加熱反応させる方法によれば、該リチウムマンガン複合酸化物と炭素材料が強固に結合した複合体を得ることができ、得られた複合体はリチウムイオン二次電池用正極材料とした場合に、より高い放電容量を有する材料となることを見出した。   The present inventor has intensively studied to achieve the above-described object. As a result, according to the method of producing a composite oxide by the mechanical milling method using lithium oxide and manganese oxide as raw materials, lithium manganese consisting only of the crystal phase of cubic rock salt type crystal structure is achieved by a simple treatment method in one step. It has been found that composite oxides can be produced. The composite oxide obtained by this method is superior to lithium manganese oxide containing a monoclinic layered rock salt structure or titanium-containing lithium manganese oxide consisting only of a cubic rock salt crystal structure. It has charge / discharge characteristics, and in particular, it has been found that the average discharge voltage is high and the discharge capacity is increased. Furthermore, according to the method of filling the lithium manganese composite oxide together with the carbon material in a conductive container and conducting a heating reaction by applying a direct current pulse current under pressure in a non-oxidizing atmosphere, the lithium manganese composite oxide It was found that a composite in which a product and a carbon material are firmly bonded can be obtained, and that the obtained composite becomes a material having a higher discharge capacity when used as a positive electrode material for a lithium ion secondary battery.

本発明は、これらの知見にも基づいて更に研究を重ねた結果、完成されたものである。   The present invention has been completed as a result of further research based on these findings.

即ち、本発明は、下記のリチウムマンガン複合酸化物、該複合酸化物と炭素材料の複合体、これらの製造方法、リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池を提供するものである。
項1. 組成式Li1+xMn1-xO2(-1/3<x<1/3)で表され、立方晶岩塩型構造の結晶相のみからなる、リチウムマンガン複合酸化物。
項2. 上記項1に記載のリチウムマンガン複合酸化物と炭素材料が互いに接合した複合体であって、
(1)炭素材料の量が、リチウムマンガン複合酸化物と炭素材料の合計量を基準として0.01〜30重量%であり、
(2)該複合体のタップ密度が、原料として用いたリチウムマンガン複合酸化物と炭素材料の混合物のタップ密度と比較して30%以上大きい値であり、
(3)100mLビーカーに該複合体0.5gと水50mLを入れて、長さ3cm、中心部断面直径5mmの回転子を毎分200回転させて5 分間撹拌してもリチウムマンガン複合酸化物と炭素材料との接合が剥離しないことにより定義される接合強度を有する、
ことを特徴とするリチウムマンガン複合酸化物−炭素複合体。
項3. 炭素材料がアセチレンブラック、ケッチェンブラック又は気相成長炭素繊維である上記項2に記載の複合体。
項4. 酸化リチウム及び酸化マンガンを原料として、メカニカルミリング法により該原料を混合粉砕することを特徴とする、上記項1に記載のリチウムマンガン複合酸化物の製造方法。
項5. 上記項1に記載のリチウムマンガン複合酸化物と炭素材料の混合物を導電性を有する容器に充填し、非酸化性雰囲気下において、該混合物を加圧した状態で、直流パルス電流を通電して焼結させることを特徴とする、上記項2又は3に記載のリチウムマンガン複合酸化物−炭素複合体の製造方法。
項6. 上記項1に記載のリチウムマンガン複合酸化物を含むリチウムイオン二次電池用正極材料。
項7. 上記項2又は3に記載のリチウムマンガン複合酸化物−炭素複合体を含むリチウム二次電池用正極材料。
項8. 上記項6又は7に記載の正極材料を構成要素とするリチウムイオン二次電池。
That is, the present invention provides the following lithium manganese composite oxide, a composite of the composite oxide and a carbon material, a production method thereof, a positive electrode material for a lithium ion secondary battery, and a lithium ion secondary battery. is there.
Item 1. A lithium manganese composite oxide represented by a composition formula Li 1 + x Mn 1-x O 2 (-1/3 <x <1/3) and consisting only of a crystal phase of a cubic rock salt structure.
Item 2. The lithium manganese composite oxide according to item 1 and a carbon material joined to each other,
(1) The amount of the carbon material is 0.01 to 30% by weight based on the total amount of the lithium manganese composite oxide and the carbon material,
(2) The tap density of the composite is 30% or more larger than the tap density of the mixture of the lithium manganese composite oxide and carbon material used as a raw material,
(3) Put 0.5 g of the complex and 50 mL of water in a 100 mL beaker, and rotate the rotor with a length of 3 cm and a central cross-sectional diameter of 5 mm at 200 rpm for 5 minutes. Having a bond strength defined by the fact that the bond with the material does not delaminate,
A lithium manganese composite oxide-carbon composite characterized by the above.
Item 3. Item 3. The composite according to Item 2, wherein the carbon material is acetylene black, ketjen black, or vapor grown carbon fiber.
Item 4. Item 2. The method for producing a lithium manganese composite oxide according to Item 1, wherein lithium oxide and manganese oxide are used as raw materials, and the raw materials are mixed and pulverized by a mechanical milling method.
Item 5. The mixture of the lithium manganese composite oxide and the carbon material according to the above item 1 is filled in a container having conductivity, and a DC pulse current is applied in a non-oxidizing atmosphere while the mixture is pressurized. Item 4. The method for producing a lithium manganese composite oxide-carbon composite according to Item 2 or 3, wherein the lithium manganese composite oxide is carbonized.
Item 6. A positive electrode material for a lithium ion secondary battery comprising the lithium manganese composite oxide according to Item 1.
Item 7. Item 4. A positive electrode material for a lithium secondary battery, comprising the lithium manganese composite oxide-carbon composite according to item 2 or 3.
Item 8. 8. A lithium ion secondary battery comprising the positive electrode material according to item 6 or 7 as a constituent element.

以下、本発明について詳細に説明する。   The present invention will be described in detail below.

リチウムマンガン複合酸化物及びその製造方法
本発明のリチウムマンガン複合酸化物は、組成式Li1+xMn1-xO2(-1/3<x<1/3)で表される立方晶岩塩型構造の結晶相のみからなる複合酸化物である。上記組成式で表される立方晶岩塩型構造の結晶相のみからなる複合酸化物は、従来知られていない新規な酸化物であり、リチウムイオン二次電池用正極材料とした場合に、優れた充放電性能を有する材料である。
Lithium-manganese composite oxide and method for producing the same The lithium-manganese composite oxide of the present invention is represented by the composition formula Li 1 + x Mn 1-x O 2 (-1/3 <x <1/3). It is a complex oxide consisting only of the crystal phase of a cubic rock salt structure. The composite oxide consisting only of the crystal phase of the cubic rock salt structure represented by the above composition formula is a novel oxide that has not been known so far, and is excellent when used as a positive electrode material for a lithium ion secondary battery. It is a material having charge / discharge performance.

本発明のリチウムマンガン複合酸化物は、原料として酸化リチウムと酸化マンガンを用い、メカニカルミリング法によって、原料を十分に粉砕混合することによって得ることができる。原料として用いる酸化リチウムと酸化マンガンは、LiとMnのモル比が、目的とする複合酸化物におけるLiとMnのモル比と同一となるように混合すればよい。   The lithium manganese composite oxide of the present invention can be obtained by using lithium oxide and manganese oxide as raw materials and sufficiently pulverizing and mixing the raw materials by a mechanical milling method. Lithium oxide and manganese oxide used as raw materials may be mixed so that the molar ratio of Li and Mn is the same as the molar ratio of Li and Mn in the target composite oxide.

メカニカルミリング法は、機械的エネルギーを付与しながら原料を摩砕混合する方法であり、この方法によれば、原料に機械的な衝撃や摩擦を与えて摩砕混合することによって、原料に含まれる各酸化物粒子が激しく接触して微細化され、物性、形態などを変化させることができる。   The mechanical milling method is a method of grinding and mixing raw materials while applying mechanical energy. According to this method, the raw materials are included in the raw materials by applying mechanical impact and friction to the raw materials and mixing them. Each oxide particle can be vigorously brought into contact and refined to change physical properties, morphology, and the like.

メカニカルミリング装置としては、例えば、ボールミル、振動ミル、ターボミル、ディスクミル等を用いることができ、中でも振動ミルが好ましい。ポットと振動子の材質については特に限定的ではないが、例えば、ジルコニア製、メノウ製、ステンレス製などのポットを用いることができる。振動子の粒径についても特に限定はないが、例えば、直径10〜60mmのものを使用することができる。   As the mechanical milling device, for example, a ball mill, a vibration mill, a turbo mill, a disk mill or the like can be used, and among these, a vibration mill is preferable. The material of the pot and the vibrator is not particularly limited. For example, a pot made of zirconia, agate, stainless steel, or the like can be used. The particle size of the vibrator is not particularly limited, but for example, a vibrator having a diameter of 10 to 60 mm can be used.

メカニカルミリングの各種条件は、所望の複合酸化物を得ることができるように設定すればよい。例えば、振動ミルにより複合体を作製する場合には、ポット内に原料混合物と粉砕用振動子を加え、所定の回転数及び時間でメカニカルミリング処理を行えばよい。処理条件の一例として、回転数は、100rpm〜1000rpmの範囲内、中でも200rpm〜600rpmの範囲内であることが好ましい。また、振動ミルを行う際の処理時間は、例えば1時間〜100時間の範囲内、中でも2時間〜10時間の範囲内であることが好ましい。メカニカルミリングは、通常、室温近傍の温度で行えばよい。   Various conditions for mechanical milling may be set so that a desired composite oxide can be obtained. For example, when a composite is produced by a vibration mill, a raw material mixture and a grinding vibrator are added to the pot, and mechanical milling processing may be performed at a predetermined rotation speed and time. As an example of the processing conditions, the rotation speed is preferably in the range of 100 rpm to 1000 rpm, and more preferably in the range of 200 rpm to 600 rpm. In addition, the treatment time when performing the vibration mill is preferably in the range of, for example, 1 hour to 100 hours, and more preferably in the range of 2 hours to 10 hours. Mechanical milling is usually performed at a temperature near room temperature.

メカニカルミリングを行う際の雰囲気については特に限定的ではないが、大気中の水分や炭酸ガスと原料との反応を抑制するために、ヘリウム、アルゴン、窒素などの不活性ガス雰囲気とすることが好ましい。   The atmosphere when performing mechanical milling is not particularly limited, but it is preferable to use an inert gas atmosphere such as helium, argon, or nitrogen in order to suppress the reaction between moisture and carbon dioxide gas in the atmosphere and the raw material. .

上記した方法によれば、メカニカルミリング処理によって、原料として用いる酸化リチウムと酸化マンガンとが摩砕混合され、互いに反応して、組成式Li1+xMn1-xO2(-1/3<x<1/3)で表されるリチウムマンガン複合酸化物が形成される。この方法で得られる上記組成式で表されるリチウムマンガン複合酸化物は、空間群

Figure 2013252995
の立方晶岩塩型構造の結晶相のみからなるものであり、従来知られていない新規な酸化物である。 According to the method described above, lithium oxide and manganese oxide used as raw materials are ground and mixed by mechanical milling, and react with each other to form a composition formula Li 1 + x Mn 1-x O 2 (-1/3 < A lithium manganese composite oxide represented by x <1/3) is formed. The lithium manganese composite oxide represented by the above composition formula obtained by this method is a space group.
Figure 2013252995
This is a novel oxide that has not been known so far.

該複合酸化物は、単斜晶層状岩塩型構造を含むリチウムマンガン酸化物や、立方晶岩塩型結晶構造のみからなるチタン含有リチウムマンガン酸化物と比較して、平均放電電圧が高く、放電容量が高く、充放電効率も良好である。   The composite oxide has a higher average discharge voltage and a higher discharge capacity than lithium manganese oxide having a monoclinic layered rock salt structure or titanium-containing lithium manganese oxide having only a cubic rock salt crystal structure. High and charge / discharge efficiency is also good.

リチウムマンガン複合酸化物−炭素複合体及びその製造方法
本発明では、上記した方法で得られる立方晶岩塩型構造の結晶相のみからなるリチウムマンガン複合酸化物を、炭素材料との複合体とすることによって、導電性を向上させることができ、より優れた充放電性能、特に、高い放電容量を有する正極材料とすることができる。
Lithium manganese composite oxide-carbon composite and method for producing the same In the present invention, a lithium manganese composite oxide consisting only of a crystal phase of a cubic rock salt structure obtained by the above-described method is used as a composite with a carbon material. Therefore, the conductivity can be improved, and a positive electrode material having more excellent charge / discharge performance, in particular, high discharge capacity can be obtained.

リチウムマンガン複合酸化物と炭素材料との複合体は、上記した組成式Li1+xMn1-xO2(-1/3<x<1/3)で表される立方晶岩塩型構造の結晶相のみからなるリチウムマンガン複合酸化物と炭素材料からなる原料を十分に混合した後、導電性を有する容器内に充填し、非酸化性雰囲気下において、直流パルス電流を通電して加熱反応させる方法によって得ることができる。 The composite of lithium manganese composite oxide and carbon material has a cubic rock salt structure represented by the above composition formula Li 1 + x Mn 1-x O 2 (-1/3 <x <1/3). Lithium manganese composite oxide consisting only of crystalline phase and raw material consisting of carbon material are mixed well, then filled into a conductive container, and heated and reacted by applying DC pulse current in a non-oxidizing atmosphere. It can be obtained by the method.

この方法で原料とするリチウムマンガン複合酸化物の粒径については、特に限定はないが、通常、平均粒径1〜50μm程度の粉末状のものを用いることが好ましい。尚、本願明細書では、平均粒径とは、乾式のレーザー回折・散乱式による粒度分布測定で、累積度数分布が50%となる粒径である。   The particle size of the lithium manganese composite oxide used as a raw material by this method is not particularly limited, but it is usually preferable to use a powdery material having an average particle size of about 1 to 50 μm. In the present specification, the average particle size is a particle size at which the cumulative frequency distribution is 50% in the particle size distribution measurement by a dry laser diffraction / scattering method.

炭素材料についても特に限定されず、例えば、アセチレンを高温で熱分解させて得られる粉末、いわゆる爆発法によって得られる粉末など公知のアセチレンブラック粉末、ケッチェンブラック、気相成長炭素繊維(VGCF)などを用いることができる。   The carbon material is not particularly limited. For example, a powder obtained by thermally decomposing acetylene at a high temperature, a powder obtained by a so-called explosion method, such as a known acetylene black powder, ketjen black, vapor grown carbon fiber (VGCF), etc. Can be used.

炭素材料の平均粒径についても特に限定はないが、通常0.005〜10μm程度、好ましくは0.01〜1μm程度の粉末状又は針状のものを用いることが好ましい。   The average particle size of the carbon material is also not particularly limited, but it is usually preferable to use a powdery or needle-like material of about 0.005 to 10 μm, preferably about 0.01 to 1 μm.

リチウムマンガン複合酸化物と炭素材料との複合体を製造するには、まず、原料として用いるリチウムマンガン複合酸化物と炭素材料を十分に混合した後、電子伝導性を有する容器に充填し、非酸化性雰囲気下において、該混合物を加圧した状態で、放電プラズマ焼結法、パルス通電焼結法、プラズマ活性化焼結法等と呼ばれる直流パルス電流を通電する通電焼結法によって原料混合物を焼結させる。これによって、目的とするリチウムマンガン系複合酸化物−炭素複合体を得ることができる。   In order to produce a composite of lithium manganese composite oxide and carbon material, first, the lithium manganese composite oxide and carbon material used as raw materials are mixed well, then filled into a container having electron conductivity, and non-oxidized In a neutral atmosphere, the raw material mixture is baked by an electric current sintering method in which a direct-current pulse current is applied, which is called a discharge plasma sintering method, a pulse electric current sintering method, a plasma activated sintering method, etc. in a state where the mixture is pressurized. Tie. Thereby, the target lithium manganese composite oxide-carbon composite can be obtained.

具体的には、電子伝導性を有する容器に原料とする複合酸化物と炭素材料の混合物を充填し、非酸化性雰囲気下において加圧しながらパルス状のON−OFF直流電流を通電することによって、通電焼結を行うことができる。   Specifically, by filling a container having electron conductivity with a mixture of a composite oxide and a carbon material as raw materials, and applying a pulsed ON-OFF direct current while applying pressure in a non-oxidizing atmosphere, Electric current sintering can be performed.

通電焼結は、非酸化性雰囲気下、例えば、Ar、Nなどの不活性ガス雰囲気下、Hなどの還元性雰囲気下等で行う。また、酸素濃度が十分に低い減圧状態、例えば、酸素分圧が、20Pa程度以下の減圧状態としてもよい。 The electric current sintering is performed in a non-oxidizing atmosphere, for example, in an inert gas atmosphere such as Ar or N 2 or in a reducing atmosphere such as H 2 . Further, a reduced pressure state in which the oxygen concentration is sufficiently low, for example, a reduced pressure state in which the oxygen partial pressure is about 20 Pa or less may be used.

電子伝導性を有する容器として十分な密閉状態を確保できる容器を用いる場合には、該容器内を非酸化性雰囲気とすればよい。また、電子伝導性を有する容器は完全な密閉状態でなくてもよく、不完全な密閉状態の容器を用いる場合には、該容器を反応室内に収容して、該反応室内を不活性ガス雰囲気、還元性雰囲気などの非酸化性雰囲気とすればよい。これにより、リチウムマンガン複合酸化物と炭素粉末との反応を非酸化性雰囲気下で行うことが可能となる。この場合、例えば、反応室内を0.1MPa程度以上の不活性ガス雰囲気、還元性ガス雰囲気などとすることが好ましい。   When a container that can ensure a sufficiently sealed state is used as a container having electron conductivity, the inside of the container may be a non-oxidizing atmosphere. Further, the container having electron conductivity may not be completely sealed. When an incompletely sealed container is used, the container is accommodated in the reaction chamber, and the reaction chamber is filled with an inert gas atmosphere. A non-oxidizing atmosphere such as a reducing atmosphere may be used. Thereby, the reaction between the lithium manganese composite oxide and the carbon powder can be performed in a non-oxidizing atmosphere. In this case, for example, the inside of the reaction chamber is preferably an inert gas atmosphere or a reducing gas atmosphere of about 0.1 MPa or more.

リチウムマンガン複合酸化物と炭素材料の混合比は、両者の合計量を基準として、炭素材料の量を0.001〜30重量%程度とすればよく、特に0.01〜20重量%程度とすることが好ましい。炭素粉末の量が0.001重量%未満では、リチウムマンガン複合酸化物の電子伝導性の向上が不十分となり、複合体とすることよる効果を十分に得られないおそれがある。一方、30重量%以上では、形成される複合体中に占める複合酸化物の重量比率及び体積比率の低下に伴って、正極活物質として用いた場合に電池の重量エネルギー密度及び体積エネルギー密度が低下するため好ましくない。   The mixing ratio of the lithium manganese composite oxide and the carbon material may be about 0.001 to 30% by weight, particularly preferably about 0.01 to 20% by weight, based on the total amount of both. When the amount of the carbon powder is less than 0.001% by weight, the improvement of the electronic conductivity of the lithium manganese composite oxide is insufficient, and the effect of forming the composite may not be sufficiently obtained. On the other hand, at 30% by weight or more, when used as a positive electrode active material, the weight energy density and volume energy density of the battery decrease as the weight ratio and volume ratio of the composite oxide in the formed composite decrease. Therefore, it is not preferable.

電子伝導性を有する容器としては、電子伝導性を有するものであれば特に限定されず、炭素、鉄、酸化鉄、銅、アルミニウム、タングステンカーバイド、炭素及び/又は酸化鉄に窒化珪素を混合した混合物等から形成されているものを好適に使用できる。   The container having electron conductivity is not particularly limited as long as it has electron conductivity. Carbon, iron, iron oxide, copper, aluminum, tungsten carbide, carbon and / or iron oxide mixed with silicon nitride. What is formed from etc. can be used conveniently.

このような電子伝導性容器に上記複合酸化物と炭素材料の混合粉末を充填した状態で直流パルス電流を印加することにより、充填された混合粉末の粒子間隙に生じる放電現象を利用して、放電プラズマ、放電衝撃圧力等による粒子表面の浄化活性化作用、電場により生じる電界拡散効果、ジュール熱による熱拡散効果、加圧による塑性変形圧力等が粒子接合の駆動力となって複合酸化物同士が炭素材料を介して接合される。   By applying a direct current pulse current in a state in which the mixed powder of the composite oxide and the carbon material is filled in such an electron conductive container, a discharge phenomenon that occurs in the particle gap of the filled mixed powder is used to discharge. Particle oxide purification activation by plasma, discharge shock pressure, etc., electric field diffusion effect caused by electric field, thermal diffusion effect by Joule heat, plastic deformation pressure by pressurization, etc. act as driving force for particle bonding, Joined via a carbon material.

通電焼結を行う装置としては、リチウムマンガン系複合酸化物および炭素粉末の混合粉末を加熱、冷却、加圧等することが可能であり、放電に必要な電流を印加できるものであれば特に限定されない。例えば、市販の通電焼結装置(放電プラズマ焼結装置)を使用できる。このような通電焼結装置及びその原理は、例えば、特開平10−251070号公報等に開示されている。   As an apparatus for carrying out current sintering, there is a particular limitation as long as it is possible to heat, cool, pressurize, etc. a mixed powder of lithium manganese composite oxide and carbon powder and to apply a current necessary for discharge. Not. For example, a commercially available electric current sintering apparatus (discharge plasma sintering apparatus) can be used. Such an electric current sintering apparatus and its principle are disclosed in, for example, Japanese Patent Laid-Open No. 10-251070.

以下に通電焼結装置の模式図を示した図1を参考にしながら、本発明のリチウムマンガン系複合酸化物−炭素複合体の製造方法の具体例を説明する。   A specific example of the method for producing a lithium manganese composite oxide-carbon composite of the present invention will be described below with reference to FIG. 1 showing a schematic diagram of an electric current sintering apparatus.

通電焼結装置1は、試料2が装填されるダイ(電子伝導性容器)3と上下一対のパンチ4および5とを有する。パンチ4および5は、それぞれパンチ電極6および7に支持されており、このパンチ電極6および7を介して、ダイ3に装填された試料2に必要に応じて加圧しながらパルス電流を供給することができる。ダイ3の素材は限定されず、例えば、黒鉛等の炭素材料が挙げられる。   The electric sintering apparatus 1 includes a die (electron conductive container) 3 on which a sample 2 is loaded and a pair of upper and lower punches 4 and 5. The punches 4 and 5 are supported by punch electrodes 6 and 7, respectively, and a pulse current is supplied through the punch electrodes 6 and 7 while applying pressure to the sample 2 loaded in the die 3 as necessary. Can do. The material of the die 3 is not limited, and examples thereof include a carbon material such as graphite.

図1に示す装置では、上記した電子伝導性を有する容器3、通電用パンチ4,5、パンチ電極6,7を含む通電部は、水冷真空チャンバー8に収容されており、チャンバー内は、雰囲気制御機構15による所定の雰囲気に調整できる。従って、雰囲気制御機構15を利用して、チャンバー内を非酸化性雰囲気に調整すればよい。   In the apparatus shown in FIG. 1, the energization part including the above-described container 3 having electron conductivity, energization punches 4 and 5, and punch electrodes 6 and 7 is accommodated in a water-cooled vacuum chamber 8. It can be adjusted to a predetermined atmosphere by the control mechanism 15. Therefore, the atmosphere control mechanism 15 may be used to adjust the inside of the chamber to a non-oxidizing atmosphere.

制御装置12は、加圧機構13、パルス電源11、雰囲気制御機構15、水冷却機構16、10、及び温度計測装置17を駆動制御するものである。制御装置12は加圧機構13を駆動し、パンチ電極6、7が所定の圧力で原料混合物を加圧するよう構成されている。   The control device 12 drives and controls the pressurization mechanism 13, the pulse power source 11, the atmosphere control mechanism 15, the water cooling mechanisms 16 and 10, and the temperature measurement device 17. The control device 12 is configured to drive the pressurizing mechanism 13 so that the punch electrodes 6 and 7 pressurize the raw material mixture at a predetermined pressure.

通電処理の条件については、後述する条件を満足する高密度化された複合体が形成される条件とすればよい。   The condition for the energization process may be a condition for forming a high-density composite that satisfies the conditions described below.

具体的な通電処理時のダイ(電子伝導性容器)3の温度(加熱温度)は、リチウムマンガン複合酸化物および炭素材料の種類およびその粒径等に応じて適宜選択することができるが、通常200〜700℃程度とすればよく、好ましくは300〜600℃程度とすればよい。加熱温度が200℃未満では炭素材料との接合が不十分となる場合がある。一方、加熱温度が700℃を上回ると、立方晶岩塩型構造のLi1+xMn1-xO2が還元分解して斜方晶LiMnO2が不純物として生成するため好ましくない。従って、300〜600℃程度の加熱温度が好適である。 The temperature (heating temperature) of the die (electron conductive container) 3 at the time of specific energization treatment can be appropriately selected according to the types of lithium manganese composite oxide and carbon material, the particle size thereof, etc. What is necessary is just about 200-700 degreeC, and what is necessary is just about 300-600 degreeC. If the heating temperature is less than 200 ° C., bonding with the carbon material may be insufficient. On the other hand, when the heating temperature exceeds 700 ° C., Li 1 + x Mn 1-x O 2 having a cubic rock salt structure is reduced and decomposed to form orthorhombic LiMnO 2 as an impurity, which is not preferable. Accordingly, a heating temperature of about 300 to 600 ° C. is suitable.

加熱のために印加するパルス電流は、例えばパルス幅2〜3ミリ秒程度で、周期は3Hz〜300Hz程度のパルス状ON−OFF直流電流を用いることができる。具体的な電流値は電子伝導性容器の種類、大きさ等により異なるが、上記した温度範囲となるように、具体的な電流値を決めればよい。例えば内径15mmの黒鉛型材を用いた場合には200〜1000A程度、内径100mmの型材を用いた場合には1000〜8000A程度が好適である。処理時は、型材温度をモニターしながら電流値を増減させ、所定の温度を管理できるように電流値を制御すればよい。   For example, a pulsed ON-OFF direct current having a pulse width of about 2 to 3 milliseconds and a period of about 3 Hz to 300 Hz can be used as the pulse current applied for heating. Although the specific current value varies depending on the type and size of the electron conductive container, the specific current value may be determined so as to be in the temperature range described above. For example, when a graphite mold with an inner diameter of 15 mm is used, about 200 to 1000 A is preferable, and when a mold with an inner diameter of 100 mm is used, about 1000 to 8000 A is preferable. During processing, the current value may be controlled so that a predetermined temperature can be managed by increasing or decreasing the current value while monitoring the mold material temperature.

通電焼結は、リチウムマンガン複合酸化物および炭素材料からなる原料粉末を加圧した状態で行うことが好ましい。具体的な方法としては、例えば、上記した電子伝導性容器3に充填した原料粉末をパンチ電極6,7を介して加圧すればよい。原料粉末を加圧する際の圧力としては、例えば、5〜60MPa程度、好ましくは10〜50MPa程度とすればよい。5MPa未満の加圧力ではリチウムマンガン複合酸化物と炭素材料の接合が不十分となり、60MPaを超える圧力ではリチウムマンガン複合酸化物の分解等が促進されるために好ましくない。通常、10〜50MPa程度の圧力が好適である。   The electric current sintering is preferably performed in a state where a raw material powder made of a lithium manganese composite oxide and a carbon material is pressurized. As a specific method, for example, the raw material powder filled in the electron conductive container 3 may be pressurized through the punch electrodes 6 and 7. The pressure at the time of pressurizing the raw material powder is, for example, about 5 to 60 MPa, preferably about 10 to 50 MPa. When the pressure is less than 5 MPa, the bonding between the lithium manganese composite oxide and the carbon material becomes insufficient, and when the pressure exceeds 60 MPa, decomposition of the lithium manganese composite oxide is promoted, which is not preferable. Usually, a pressure of about 10 to 50 MPa is suitable.

通電焼結による焼結時間については、使用する原料の量、焼結温度などによって異なるので、一概に規定できないが、通常、上記した加熱温度範囲に到達するまで加熱すれば良く、上記した温度範囲に到達すれば直ちに放冷しても良く、或いは、例えば2時間程度までこの温度範囲に保持してもよい。   The sintering time by electric current sintering varies depending on the amount of raw materials used, the sintering temperature, etc., and thus cannot be specified in general, but it is usually sufficient to heat until reaching the heating temperature range described above, and the temperature range described above. If it reaches | attains, you may cool immediately, or you may hold | maintain in this temperature range, for example to about 2 hours.

上記した方法で所定の温度で通電焼結処理を行った後、電子伝導性容器を冷却し、形成された複合体を容器から取り出し、必要に応じて乳鉢等で軽く粉砕することにより、目的とするリチウムマンガン複合酸化物−炭素複合体を回収することができる。多量の通電焼結処理を行う場合には、大きな型材を用い、上記のプロセスをスケールアップすればよい。   After conducting the electric current sintering treatment at a predetermined temperature by the method described above, the electron conductive container is cooled, the formed composite is taken out from the container, and lightly pulverized with a mortar or the like as necessary. The lithium manganese composite oxide-carbon composite to be recovered can be recovered. When a large amount of current sintering treatment is performed, a large mold material is used, and the above process may be scaled up.

本発明のリチウムマンガン複合酸化物と炭素との複合体は、リチウムマンガン複合酸化物同士が導電材である炭素材料を介して強固に接合されて高密度化されたものであり、単に、リチウムマンガン複合酸化物と炭素粉末が混合された状態ではなく、該複合酸化物の表面の一部又は全体に炭素が付着した状態において強固に接合した状態となり、原料混合物と比較して密度が大きく増加している。具体的には、原料として用いたリチウムマンガン複合酸化物粉末と炭素材料の混合物のタップ密度と比較して、該複合体のタップ密度は30%以上大きい値となる。尚、タップ密度の増大の上限については特に限定的ではなく、加圧通電焼結の際の温度、圧力などによって異なるが、通常、原料混合物のタップ密度と比較して、80%程度までの増大となる。   The composite of lithium manganese composite oxide and carbon of the present invention is a lithium manganese composite oxide that is strongly bonded and densified through a carbon material that is a conductive material. It is not in a state where the composite oxide and the carbon powder are mixed, but in a state where the carbon is adhered to a part or the whole of the surface of the composite oxide, it is in a strongly bonded state, and the density is greatly increased compared to the raw material mixture. ing. Specifically, the tap density of the composite is 30% or more larger than the tap density of the mixture of the lithium manganese composite oxide powder and the carbon material used as the raw material. The upper limit of the tap density increase is not particularly limited, but it varies depending on the temperature, pressure, etc. during pressure electric current sintering, but usually increases to about 80% compared to the tap density of the raw material mixture. It becomes.

尚、本願明細書におけるタップ密度は、露点-70℃以下のアルゴンガス雰囲気のグローブボックス内で試料を乳鉢で10分間以上粉砕した後、約0.5gを採取して、容量10mLのメスシリンダーに投入し、100回タップした後、密度を測定した値である。   The tap density in this specification is about 0.5g after pulverizing the sample in a glove box with an argon gas atmosphere with a dew point of -70 ° C or less for 10 minutes or more, and throwing it into a 10 mL capacity cylinder. Then, after tapping 100 times, the density was measured.

この際の複合体の接合状態は、100mlビーカーに該複合体0.5g及び水50mlを入れて、長さ3cm、中心部断面直径5mmの回転子を毎分200回転させて5分間撹拌しても炭素材料が分離しないことにより定義される。この点において、該複合酸化物と炭素粉末との混合物と明確に区別されるものである。   At this time, the composite was joined by placing 0.5 g of the composite and 50 ml of water in a 100 ml beaker, stirring the rotor with a length of 3 cm and a central cross-sectional diameter of 5 mm at 200 rpm for 5 minutes. Is also defined by the fact that the carbon material does not separate. In this respect, it is clearly distinguished from a mixture of the composite oxide and carbon powder.

リチウムマンガン複合酸化物−炭素複合体の用途
上記した方法で得られるリチウムマンガン複合酸化物−炭素複合体は、上記した優れた充放電特性を有するリチウムマンガン複合酸化物と炭素材料とが密接に接合したものであり、密度が高く、電子伝導性が向上した状態となる。このため該複合体をリチウムイオン二次電池用の正極材料として用いることによって、平均放電電圧が高く、放電容量が高く、充放電効率が良好なリチウムイオン二次電池を得ることができる。
Applications of lithium manganese composite oxide-carbon composite The lithium manganese composite oxide-carbon composite obtained by the above-described method is a close junction between the lithium manganese composite oxide having the above-described excellent charge / discharge characteristics and the carbon material. As a result, the density is high and the electron conductivity is improved. Therefore, by using the composite as a positive electrode material for a lithium ion secondary battery, a lithium ion secondary battery having a high average discharge voltage, a high discharge capacity, and a good charge / discharge efficiency can be obtained.

該複合体を正極活物質として用いるリチウムイオン二次電池は、公知の手法により製造することができる。すなわち、正極活物質として、本発明方法で得られた複合体を使用する他は、負極材料として、公知の金属リチウム、炭素系材料(活性炭、黒鉛)などを使用し、電解液として、公知のエチレンカーボネート、ジメチルカーボネートなどの溶媒に過塩素酸リチウム、LiPF6などのリチウム塩を溶解させた溶液を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てればよい。 A lithium ion secondary battery using the composite as a positive electrode active material can be produced by a known method. That is, except that the composite obtained by the method of the present invention is used as a positive electrode active material, a known metal lithium, a carbon-based material (activated carbon, graphite) or the like is used as a negative electrode material, and a known electrolyte is used as an electrolyte solution. Using a solution obtained by dissolving lithium perchlorate, lithium salt such as LiPF 6 in a solvent such as ethylene carbonate or dimethyl carbonate, and using other known battery components, a lithium ion secondary according to a conventional method What is necessary is just to assemble a battery.

本発明のリチウムマンガン複合酸化物は、立方晶岩塩型結晶構造の結晶相のみからなる新規な材料であり、リチウムイオン二次電池用正極材料として、優れた充放電性能を有する物質であり、特に平均放電電圧が高く、放電容量が大きい物質である。本発明の製造方法によれば、メカニカルミリング法という比較的簡単な方法によって、この様な優れた性能を有する新規な複合酸化物を一工程の簡単な方法で得ることができる。   The lithium manganese composite oxide of the present invention is a novel material consisting only of a crystal phase having a cubic rock salt type crystal structure, and is a substance having excellent charge / discharge performance as a positive electrode material for a lithium ion secondary battery. It is a substance with a high average discharge voltage and a large discharge capacity. According to the production method of the present invention, a novel complex oxide having such excellent performance can be obtained by a simple method of one step by a relatively simple method called a mechanical milling method.

また、該リチウムマンガン複合酸化物と炭素材料を通電焼結して得られる複合体は、導電性が向上した材料であり、より高い放電容量を有する正極材料として有効に利用できる。   In addition, a composite obtained by conducting current sintering of the lithium manganese composite oxide and the carbon material is a material with improved conductivity, and can be effectively used as a positive electrode material having a higher discharge capacity.

このため、本発明のリチウムマンガン複合酸化物、及び該複合酸化物と炭素材料との複合体は、いずれもリチウムイオン二次電池の正極活物質として有用性の高い物質である。   For this reason, both the lithium manganese composite oxide of the present invention and the composite of the composite oxide and the carbon material are highly useful substances as the positive electrode active material of the lithium ion secondary battery.

また、本発明の製造方法によれば、この様な優れた性能を有する、複合酸化物と複合体を、比較的容易に製造できる。   Further, according to the production method of the present invention, a complex oxide and a complex having such excellent performance can be produced relatively easily.

通電焼結装置の一例の概略図。Schematic of an example of an electric current sintering apparatus. 実施例1及び実施例2で得られた試料のX線回折図である。2 is an X-ray diffraction pattern of samples obtained in Example 1 and Example 2. FIG. 実施例1及び実施例2で得られた試料を正極活物質とするリチウムイオン二次電池の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of the lithium ion secondary battery which uses the sample obtained in Example 1 and Example 2 as a positive electrode active material. 実施例3及び実施例4で得られた試料のX線回折図である。6 is an X-ray diffraction pattern of samples obtained in Example 3 and Example 4. FIG. 実施例3及び実施例4で得られた試料を正極活物質とするリチウムイオン二次電池の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of the lithium ion secondary battery which uses the sample obtained in Example 3 and Example 4 as a positive electrode active material. 比較例1で得られた試料のX線回折図である。2 is an X-ray diffraction pattern of a sample obtained in Comparative Example 1. FIG. 比較例1で得られた試料を正極活物質とするリチウムイオン二次電池の充放電特性を示すグラフである。It is a graph which shows the charge / discharge characteristic of the lithium ion secondary battery which uses the sample obtained by the comparative example 1 as a positive electrode active material. 比較例2で得られた試料のX線回折図である。6 is an X-ray diffraction pattern of a sample obtained in Comparative Example 2. FIG. 比較例2で得られた試料を正極活物質とするリチウムイオン二次電池の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of the lithium ion secondary battery which uses the sample obtained by the comparative example 2 as a positive electrode active material.

1 通電焼結装置
2 試料
3 ダイ(導電性容器)
4、5 パンチ
6,7 パンチ電極
8 水冷真空チャンバー
9 冷却水路
10、16 水冷却機構
11 焼結用電源
12 制御装置
13 加圧機構
14 位置計測機構
15 雰囲気制御機構
17 温度計測装置
1 Electric current sintering equipment 2 Sample 3 Die (conductive container)
4, 5 Punch 6, 7 Punch electrode 8 Water-cooled vacuum chamber 9 Cooling water channel 10, 16 Water cooling mechanism 11 Power source for sintering 12 Controller 13 Pressurizing mechanism 14 Position measuring mechanism 15 Atmosphere controlling mechanism 17 Temperature measuring apparatus

以下に実施例及び比較例を示して本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples and comparative examples.

実施例1
市販のLi2O及びMnO2をモル比1:1(原子比Li/Mn=2)で秤量し、これをアルゴンガス雰囲気下でジルコニア製ポットに入れ、伊藤製作所製振動カップミル(型式MC-4A)を用い、メカニカルミリング法により2時間処理した。
Example 1
Commercially available Li 2 O and MnO 2 were weighed at a molar ratio of 1: 1 (atomic ratio Li / Mn = 2), and placed in a zirconia pot under an argon gas atmosphere. ) And processed for 2 hours by a mechanical milling method.

得られた試料のX線回折パターンを図2に示す。図2から明らかな通り、Li2MnO3に帰属されるピークのみから成り、X線リートベルト解析から、この試料は立方晶岩塩型結晶相

Figure 2013252995
のみで解析できることが判った。また解析から得られたMn/(Li+Mn)比は、約0.337(4)であり、ほぼ初期の目的組成であるLi2MnO3の組成で表されるものであった。 The X-ray diffraction pattern of the obtained sample is shown in FIG. As is clear from Fig. 2, it consists only of peaks attributed to Li 2 MnO 3, and from X-ray Rietveld analysis, this sample is a cubic rock salt crystalline phase.
Figure 2013252995
It turned out that it can analyze only by. Further, the Mn / (Li + Mn) ratio obtained from the analysis was about 0.337 (4), which was expressed by the composition of Li 2 MnO 3 which is the initial target composition.

この試料を正極活物質として、下記の条件で充放電試験した時の充放電曲線を図3に示す。   FIG. 3 shows a charge / discharge curve when this sample is used as a positive electrode active material and a charge / discharge test is performed under the following conditions.

充放電試験条件
正極:活物質10mg+AB5mg+PTFE0.5mgを混合しAlメッシュ上に圧着。
負極:金属リチウム。
電解液:LiPF6をEC+DMC溶媒中に溶解させたもの。
試験温度:30℃。
電流密度(活物質あたり):23mA/g
電位範囲:1.5-4.8V
上記した放電試験の結果、放電容量は約210mAh/g、平均放電電圧は約3.0Vであり、後述する比較例1に記載の立方晶岩塩型構造のみからなるチタン含有Li2MnO3の値(放電容量約120mAh/g、平均放電電圧約2.2V)、および比較例2に記載の単斜晶層状岩塩型構造を含むLi2MnO3の値(放電容量約100mAh/g、平均放電電圧約1.9V)に比べ優れた放電特性を示した。
Charge / discharge test conditions <br/> Positive electrode: Active material 10mg + AB5mg + PTFE0.5mg mixed and crimped on Al mesh.
Negative electrode: metallic lithium.
Electrolyte: LiPF 6 dissolved in EC + DMC solvent.
Test temperature: 30 ° C.
Current density (per active material): 23mA / g
Potential range: 1.5-4.8V
As a result of the above discharge test, the discharge capacity was about 210 mAh / g, the average discharge voltage was about 3.0 V, and the value of titanium-containing Li 2 MnO 3 consisting only of the cubic rock salt structure described in Comparative Example 1 (described later) Discharge capacity of about 120 mAh / g, average discharge voltage of about 2.2 V), and the value of Li 2 MnO 3 containing the monoclinic layered rock salt structure described in Comparative Example 2 (discharge capacity of about 100 mAh / g, average discharge voltage of about 1.9 Excellent discharge characteristics compared to V).

実施例2
実施例1で作製したLi2MnO3(平均粒径約7μm)をアセチレンブラック(AB)(平均一次粒子径約0.04μm)と重量比でLi2MnO3:AB=98:2となるよう混合し、これをジルコニア製ポットに入れ、遊星ボールミルにより200rpmで30分間混合した。これを内径15mmの黒鉛容器に充填し、通電焼結機SPS-3.20MK-IV(富士電波工機(株)製)のチャンバー内にセット後、チャンバー内を約20Pa程度まで減圧した。
Example 2
Li 2 MnO 3 (average particle size of about 7 μm) prepared in Example 1 was mixed with acetylene black (AB) (average primary particle size of about 0.04 μm) so that the weight ratio was Li 2 MnO 3 : AB = 98: 2. This was placed in a zirconia pot and mixed with a planetary ball mill at 200 rpm for 30 minutes. This was filled in a graphite container having an inner diameter of 15 mm and set in the chamber of an electric sintering machine SPS-3.20MK-IV (manufactured by Fuji Radio Engineering Co., Ltd.), and then the pressure in the chamber was reduced to about 20 Pa.

その後、チャンバー内をアルゴンガスで大気圧まで充填し、黒鉛容器内に充填した原料粉末を約30MPaで加圧した。更に黒鉛治具に約400Aの直流のパルス電流(パルス幅2.5ミリ秒、周期30Hz)を印加し、試料近傍を約10℃/分で昇温させた。温度が400℃に到達後、その温度で5分間保持した後、印加電流および加圧を停止し、黒鉛容器を自然放冷させた。   Thereafter, the inside of the chamber was filled with argon gas to atmospheric pressure, and the raw material powder filled in the graphite container was pressurized at about 30 MPa. Further, a DC pulse current of about 400 A (pulse width 2.5 milliseconds, period 30 Hz) was applied to the graphite jig, and the vicinity of the sample was heated at about 10 ° C./min. After the temperature reached 400 ° C., the temperature was maintained at that temperature for 5 minutes, the applied current and pressurization were stopped, and the graphite container was allowed to cool naturally.

室温近傍に冷却後、黒鉛容器から試料を取り出し、アルゴンガス雰囲気下で乳鉢で粉砕してリチウムマンガン複合酸化物とアセチレンブラックの複合体を得た。   After cooling to near room temperature, a sample was taken out from the graphite container and pulverized in a mortar under an argon gas atmosphere to obtain a lithium manganese composite oxide / acetylene black composite.

図2に得られた試料のXRDパターンを示す。図2に示す通り、Li2MnO3及び炭素に帰属されるピークのみからなり、不純物相は認められなかった。X線リートベルト解析から、Li2MnO3は立方晶岩塩型結晶相

Figure 2013252995
のみで解析でき、Mn/(Li+Mn)比は約0.346(2)であり、通電焼結処理前とほぼ同程度であることから、分解等を起こさずに、Li2MnO3-C複合体を作製することが出来たことが確認できた。 FIG. 2 shows an XRD pattern of the obtained sample. As shown in FIG. 2, it consisted only of peaks attributed to Li 2 MnO 3 and carbon, and no impurity phase was observed. From X-ray Rietveld analysis, Li 2 MnO 3 is a cubic rock salt type crystal phase
Figure 2013252995
Only can be analyzed, Mn / (Li + Mn) ratio is about 0.346 (2), since the previous current sintering process is almost the same, without causing decomposition, Li 2 MnO 3 -C complex It was confirmed that the body could be produced.

得られた複合体を露点約-90℃のアルゴンガス雰囲気のグローブボックス内で粉砕した後、約0.5gを採取して、容量10mLのメスシリンダーに投入し、100回タップした後、密度を測定した。その結果、タップ密度は1.4g/cm3であり、通電焼結処理前の値(約0.9g/cm3)に比べ40%以上増大しており、Li2MnO3とアセチレンブラックが強固に接合していることが確認できた。更に、通電処理後の試料0.5gを大気中に取り出し、水50mLとともに100mLビーカーに入れ、長さ3cm、中心部断面直径5mmの回転子を毎分200回転させて5分間攪拌し静置したところ、試料粉は全て沈殿し、炭素粉等の浮遊物は確認されなかった。このことから、上記した方法で得られた複合体は、Li2MnO3がアセチレンブラックと強固に接合していることが確認できた。 After pulverizing the resulting composite in a glove box with an argon gas atmosphere with a dew point of about -90 ° C, about 0.5 g is collected, put into a 10 mL capacity cylinder, tapped 100 times, and then the density is measured. did. As a result, the tap density was 1.4 g / cm 3 , an increase of more than 40% compared to the value before current sintering (approximately 0.9 g / cm 3 ), and Li 2 MnO 3 and acetylene black were firmly bonded. I was able to confirm. Furthermore, 0.5 g of the sample after the energization treatment was taken out into the atmosphere, placed in a 100 mL beaker with 50 mL of water, and a rotor with a length of 3 cm and a central cross-sectional diameter of 5 mm was stirred 200 minutes per minute and left standing for 5 minutes. All of the sample powder settled, and no suspended matter such as carbon powder was observed. From this, it was confirmed that Li 2 MnO 3 was firmly bonded to acetylene black in the composite obtained by the above method.

得られたLi2MnO3-C複合体を正極活物質として、実施例1と同様にして充放電試験をした時の充放電曲線を図3に示す。放電容量は約280mAh/g、平均放電電圧は約2.7Vであり、後述する比較例1に記載の立方晶岩塩型構造のみからなるチタン含有Li2MnO3の値(放電容量約120mAh/g、平均放電電圧約2.2V)、および比較例2に記載の単斜晶層状岩塩型構造を含むLi2MnO3の値(放電容量約100mAh/g、平均放電電圧約1.9V)に比べ優れた放電特性を示した。また、実施例1で得られたリチウムマンガン複合体を正極活物質とする場合と比較して、放電容量が大きくなったことが確認できた。 FIG. 3 shows a charge / discharge curve when the charge / discharge test was conducted in the same manner as in Example 1 using the obtained Li 2 MnO 3 —C composite as the positive electrode active material. The discharge capacity is about 280 mAh / g, the average discharge voltage is about 2.7 V, and the value of titanium-containing Li 2 MnO 3 consisting only of the cubic rock salt structure described in Comparative Example 1 described later (discharge capacity is about 120 mAh / g, Discharge superior to that of Li 2 MnO 3 (discharge capacity of about 100 mAh / g, average discharge voltage of about 1.9 V) including the monoclinic layered rock-salt structure described in Comparative Example 2 The characteristics are shown. Moreover, it has confirmed that the discharge capacity became large compared with the case where the lithium manganese composite obtained in Example 1 was used as a positive electrode active material.

実施例3
市販のLi2O及びMnO2をモル比1.2:1(原子比Li/Mn=2.4)で秤量し、実施例1と同様にしてアルゴンガス雰囲気下でこれをジルコニア製ポットに入れ、メカニカルミリング法により2時間処理した。得られた試料のX線回折パターンは、図4に示す通り、Li2MnO3に帰属されるピークのみからなるものであり、1段のプロセスによりLi2MnO3単相が得られたことが確認できた。X線リートベルト解析から、この試料は立方晶岩塩型結晶相

Figure 2013252995
のみで解析できることが分かった。また解析から得られるMn/(Li+Mn)比は約0.324(2)であり、ほぼ初期の目的組成であるLi2MnO3の組成で表されるものであった。 Example 3
Commercially available Li 2 O and MnO 2 were weighed in a molar ratio of 1.2: 1 (atomic ratio Li / Mn = 2.4) and placed in a zirconia pot under an argon gas atmosphere in the same manner as in Example 1 to perform mechanical milling. For 2 hours. The resulting X-ray diffraction pattern of the sample, as shown in FIG. 4, which consist of only the peak attributed to Li 2 MnO 3, be Li 2 MnO 3 single phase by one-stage process is obtained It could be confirmed. From X-ray Rietveld analysis, this sample is a cubic rock salt type crystal phase
Figure 2013252995
It turned out that it can analyze only by. Further, the Mn / (Li + Mn) ratio obtained from the analysis was about 0.324 (2), which was expressed by the composition of Li 2 MnO 3 which is the initial target composition.

この試料を正極活物質として、実施例1と同一条件で充放電試験した時の充放電曲線を図5に示す。放電容量は約200mAh/g、平均放電電圧は約3.0Vであり、後述する比較例1に記載の立方晶岩塩型構造のみからなるチタン含有Li2MnO3の値(放電容量約120mAh/g、平均放電電圧約2.2V)、および比較例2に記載の単斜晶層状岩塩型構造を含むLi2MnO3の値(放電容量約100mAh/g、平均放電電圧約1.9V)に比べ優れた放電特性を示した。 FIG. 5 shows a charge / discharge curve when a charge / discharge test was performed under the same conditions as in Example 1 using this sample as the positive electrode active material. The discharge capacity is about 200 mAh / g and the average discharge voltage is about 3.0 V. The value of titanium-containing Li 2 MnO 3 consisting only of the cubic rock salt structure described in Comparative Example 1 described later (discharge capacity about 120 mAh / g, Discharge superior to that of Li 2 MnO 3 (discharge capacity of about 100 mAh / g, average discharge voltage of about 1.9 V) including the monoclinic layered rock-salt structure described in Comparative Example 2 The characteristics are shown.

実施例4
上記実施例3で作製したLi2MnO3(平均粒径約7μm)をアセチレンブラック(AB)(平均一次粒子径約0.04μm)と重量比でLi2MnO3:AB=98:2となるよう混合し、実施例2と同様の方法で400℃、5分間通電焼結処理を行った。
Example 4
The Li 2 MnO 3 (average particle size of about 7 μm) prepared in Example 3 was acetylene black (AB) (average primary particle size of about 0.04 μm) in a weight ratio of Li 2 MnO 3 : AB = 98: 2. The mixture was mixed and subjected to current sintering treatment at 400 ° C. for 5 minutes in the same manner as in Example 2.

得られた試料のXRDパターンは、図4に示す通りであり、Li2MnO3及び炭素に帰属されるピークのみからなり、不純物相は認められなかった。X線リートベルト解析から、Li2MnO3は立方晶岩塩型結晶相

Figure 2013252995
のみで解析でき、Mn/(Li+Mn)比は約0.345(2)であり、通電焼結処理前とほぼ同程度であった。また、実施例2と同じ方法で測定したタップ密度は約1.4g/cm3であり、通電処理前の値(約0.9g/cm3)に比べ40%以上増大しており、Li2MnO3とABが強固に接合していることが確認できた。更に、通電処理後の試料0.5gを水50mLとともに100mLビーカーに入れ、長さ3cm、中心部断面直径5mmの回転子を毎分200回転させて5分間攪拌し静置したところ、試料粉は全て沈殿し、炭素粉等の浮遊物は確認されなかった。このことから、上記した通電焼結処理により、Li2MnO3がアセチレンブラックと強固に接合していることが確認できた。以上により、上記方法により、分解等を起こさずに、Li2MnO3-C複合体を作製することが出来た。 The XRD pattern of the obtained sample is as shown in FIG. 4 and consists only of peaks attributed to Li 2 MnO 3 and carbon, and no impurity phase was observed. From X-ray Rietveld analysis, Li 2 MnO 3 is a cubic rock salt type crystal phase
Figure 2013252995
The Mn / (Li + Mn) ratio was about 0.345 (2), almost the same as that before the electric current sintering treatment. Further, the tap density measured by the same method as in Example 2 is about 1.4 g / cm 3, which is an increase of 40% or more compared to the value before the energization treatment (about 0.9 g / cm 3 ), and Li 2 MnO 3 It was confirmed that AB and AB were firmly joined. Furthermore, 0.5 g of the sample after the energization treatment was placed in a 100 mL beaker with 50 mL of water, and a rotor with a length of 3 cm and a central cross-sectional diameter of 5 mm was stirred at 200 rpm for 5 minutes. Precipitation occurred and no suspended matter such as carbon powder was observed. From this, it was confirmed that Li 2 MnO 3 was firmly bonded to acetylene black by the above-described electric sintering treatment. As described above, a Li 2 MnO 3 —C composite could be produced by the above method without causing decomposition or the like.

得られたLi2MnO3-C複合体を正極活物質として、実施例1と同一条件で充放電試験した時の充放電曲線を図5に示す。放電容量は約200mAh/g、平均放電電圧約は3.0Vであり、後述する比較例1に記載の立方晶岩塩型構造のみからなるチタン含有Li2MnO3の値(放電容量約120mAh/g、平均放電電圧約2.2V)、および比較例2に記載の単斜晶層状岩塩型構造を含むLi2MnO3の値(放電容量約100mAh/g、平均放電電圧約1.9V)に比べ優れた放電特性を示した。 FIG. 5 shows a charge / discharge curve when a charge / discharge test was performed under the same conditions as in Example 1 using the obtained Li 2 MnO 3 —C composite as a positive electrode active material. The discharge capacity is about 200 mAh / g, the average discharge voltage is about 3.0 V, and the value of titanium-containing Li 2 MnO 3 consisting only of the cubic rock salt structure described in Comparative Example 1 described later (discharge capacity of about 120 mAh / g, Discharge superior to that of Li 2 MnO 3 (discharge capacity of about 100 mAh / g, average discharge voltage of about 1.9 V) including the monoclinic layered rock-salt structure described in Comparative Example 2 The characteristics are shown.

比較例1
市販のLi2O、MnO2、およびTiO2を、モル比1:0.5:0.5で秤量し、実施例1と同様に、アルゴンガス雰囲気下でこれをジルコニア製ポットに入れ、メカニカルミリング法により2時間処理した。得られた試料のX線回折パターンは、図6に示す通りであり、Li1+x(Mn1-yTiy)1-xO2帰属されるピークのみからなり、1段のプロセスにより、Li1+x(Mn1-yTiy)1-xO2単相が得られたことが確認できた。X線リートベルト解析から、この試料は立方晶岩塩型結晶相

Figure 2013252995
のみで解析でき、その格子定数はa = 4.1087(5)Åであり、実施例1のLi2MnO3試料(a = 4.0712(5)Å)より増大していた。また解析から得られる(Mn+Ti)/(Li+Mn+Ti)比は、約0.312(3)であり、当初の目的であるTi含有Li2MnO3が作製できたことが確認できた。 Comparative Example 1
Commercially available Li 2 O, MnO 2 , and TiO 2 were weighed at a molar ratio of 1: 0.5: 0.5, and placed in a zirconia pot under an argon gas atmosphere in the same manner as in Example 1, and then 2 by mechanical milling. Time processed. The X-ray diffraction pattern of the obtained sample is as shown in FIG. 6 and consists of only a peak attributed to Li 1 + x (Mn 1-y Ti y ) 1-x O 2 . It was confirmed that a Li 1 + x (Mn 1-y Ti y ) 1-x O 2 single phase was obtained. From X-ray Rietveld analysis, this sample is a cubic rock salt type crystal phase
Figure 2013252995
The lattice constant was a = 4.1087 (5) Å, which was larger than the Li 2 MnO 3 sample of Example 1 (a = 4.0712 (5) Å). Further, the (Mn + Ti) / (Li + Mn + Ti) ratio obtained from the analysis was about 0.312 (3), and it was confirmed that the Ti-containing Li 2 MnO 3 which was the original purpose could be produced.

このTi含有Li2MnO3試料を正極活物質として、実施例1と同一条件で充放電試験した時の充放電曲線を図7に示す。放電容量は約120mAh/g、平均放電電圧は約2.2Vであり、実施例1及び2で測定した値よりも低い値であった。 FIG. 7 shows a charge / discharge curve when this Ti-containing Li 2 MnO 3 sample was used as the positive electrode active material and a charge / discharge test was performed under the same conditions as in Example 1. The discharge capacity was about 120 mAh / g and the average discharge voltage was about 2.2 V, which was lower than the values measured in Examples 1 and 2.

比較例2
LiOHおよびMnO2をモル比1:2で秤量し、これを混合後、通常の電気炉で700℃、3時間熱処理した。得られた試料は、図8に示す通り、単斜晶層状岩塩型構造の結晶相

Figure 2013252995
と立方晶岩塩型構造の結晶相
Figure 2013252995
に由来するピークが認められ、X線リートベルト解析から、両者の比率は約70:30であった。
このLi2MnO3を正極活物質として、実施例1と同一条件で充放電試験した時の充放電曲線を図9示す。放電容量は約100mAh/g、平均放電電圧は約1.9Vであり、実施例1及び2で得られた値に比べて低い値であった。 Comparative Example 2
LiOH and MnO 2 were weighed at a molar ratio of 1: 2, mixed, and then heat-treated in an ordinary electric furnace at 700 ° C. for 3 hours. The obtained sample has a monoclinic layered rock salt type crystal phase as shown in FIG.
Figure 2013252995
And the crystal phase of cubic rock salt structure
Figure 2013252995
From the X-ray Rietveld analysis, the ratio between the two was about 70:30.
FIG. 9 shows a charge / discharge curve when a charge / discharge test is performed under the same conditions as in Example 1 using this Li 2 MnO 3 as the positive electrode active material. The discharge capacity was about 100 mAh / g and the average discharge voltage was about 1.9 V, which was lower than the values obtained in Examples 1 and 2.

比較例3
実施例1で作製したLi2MnO3をアセチレンブラック(AB)と重量比でLi2MnO3:AB=98:2となるよう混合した。この混合粉について、実施例2と同様にして測定したタップ密度は約0.9g/cm3であり、実施例2で作製した複合体の値(約1.4g/cm3)に比べて低かった。また、この混合粉0.5gを水50mLとともに100mLビーカーに入れ、長さ3cm、中心部断面直径5mmの回転子を毎分200回転させて5分間攪拌し静置したところ、試料粉は一部沈殿するものの、水中に浮遊する微粒の粉末が確認され、また水面には浮遊炭素粉が確認された。このことから、混合のみではLi2MnO3とABを強固に接合できないことが分かった。
Comparative Example 3
Li 2 MnO 3 produced in Example 1 was mixed with acetylene black (AB) so that Li 2 MnO 3 : AB = 98: 2 by weight ratio. About this mixed powder, the tap density measured in the same manner as in Example 2 was about 0.9 g / cm 3 , which was lower than the value of the composite prepared in Example 2 (about 1.4 g / cm 3 ). In addition, 0.5 g of this mixed powder was put in a 100 mL beaker with 50 mL of water, and a rotor with a length of 3 cm and a central cross-sectional diameter of 5 mm was rotated 200 times per minute and stirred for 5 minutes. However, fine powder floating in water was confirmed, and floating carbon powder was confirmed on the water surface. This indicates that Li 2 MnO 3 and AB cannot be joined firmly by mixing alone.

Claims (8)

組成式Li1+xMn1-xO2(-1/3<x<1/3)で表され、立方晶岩塩型構造の結晶相のみからなる、リチウムマンガン複合酸化物。 A lithium manganese composite oxide represented by a composition formula Li 1 + x Mn 1-x O 2 (-1/3 <x <1/3) and consisting only of a crystal phase of a cubic rock salt structure. 請求項1に記載のリチウムマンガン複合酸化物と炭素材料が互いに接合した複合体であって、
(1)炭素材料の量が、リチウムマンガン複合酸化物と炭素材料の合計量を基準として0.01〜30重量%であり、
(2)該複合体のタップ密度が、原料として用いたリチウムマンガン複合酸化物と炭素材料の混合物のタップ密度と比較して30%以上大きい値であり、
(3)100mLビーカーに該複合体0.5gと水50mLを入れて、長さ3cm、中心部断面直径5mmの回転子を毎分200回転させて5 分間撹拌してもリチウムマンガン複合酸化物と炭素材料との接合が剥離しないことにより定義される接合強度を有する、
ことを特徴とするリチウムマンガン複合酸化物−炭素複合体。
A lithium-manganese composite oxide according to claim 1 and a carbon material joined together,
(1) The amount of the carbon material is 0.01 to 30% by weight based on the total amount of the lithium manganese composite oxide and the carbon material,
(2) The tap density of the composite is 30% or more larger than the tap density of the mixture of the lithium manganese composite oxide and carbon material used as a raw material,
(3) Put 0.5 g of the complex and 50 mL of water in a 100 mL beaker, and rotate the rotor with a length of 3 cm and a central cross-sectional diameter of 5 mm at 200 rpm for 5 minutes. Having a bond strength defined by the fact that the bond with the material does not peel,
A lithium manganese composite oxide-carbon composite characterized by the above.
炭素材料がアセチレンブラック、ケッチェンブラック又は気相成長炭素繊維である請求項2に記載の複合体。 The composite according to claim 2, wherein the carbon material is acetylene black, ketjen black or vapor grown carbon fiber. 酸化リチウム及び酸化マンガンを原料として、メカニカルミリング法により該原料を混合粉砕することを特徴とする、請求項1に記載のリチウムマンガン複合酸化物の製造方法。 2. The method for producing a lithium manganese composite oxide according to claim 1, wherein lithium oxide and manganese oxide are used as raw materials, and the raw materials are mixed and pulverized by a mechanical milling method. 請求項1に記載のリチウムマンガン複合酸化物と炭素材料の混合物を導電性を有する容器に充填し、非酸化性雰囲気下において、該混合物を加圧した状態で、直流パルス電流を通電して焼結させることを特徴とする、請求項2又は3に記載のリチウムマンガン複合酸化物−炭素複合体の製造方法。 The mixture of the lithium manganese composite oxide and the carbon material according to claim 1 is filled in a container having conductivity, and a DC pulse current is applied in a non-oxidizing atmosphere while the mixture is pressurized. The method for producing a lithium manganese composite oxide-carbon composite according to claim 2, wherein the lithium manganese composite oxide is carbonized. 請求項1に記載のリチウムマンガン複合酸化物を含むリチウムイオン二次電池用正極材料。 A positive electrode material for a lithium ion secondary battery comprising the lithium manganese composite oxide according to claim 1. 請求項2又は3に記載のリチウムマンガン複合酸化物−炭素複合体を含むリチウム二次電池用正極材料。 A positive electrode material for a lithium secondary battery comprising the lithium manganese composite oxide-carbon composite according to claim 2. 請求項6又は7に記載の正極材料を構成要素とするリチウムイオン二次電池。 The lithium ion secondary battery which uses the positive electrode material of Claim 6 or 7 as a component.
JP2012129806A 2012-06-07 2012-06-07 Lithium manganese composite oxide and carbon composite thereof Active JP6014821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129806A JP6014821B2 (en) 2012-06-07 2012-06-07 Lithium manganese composite oxide and carbon composite thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129806A JP6014821B2 (en) 2012-06-07 2012-06-07 Lithium manganese composite oxide and carbon composite thereof

Publications (2)

Publication Number Publication Date
JP2013252995A true JP2013252995A (en) 2013-12-19
JP6014821B2 JP6014821B2 (en) 2016-10-26

Family

ID=49950861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129806A Active JP6014821B2 (en) 2012-06-07 2012-06-07 Lithium manganese composite oxide and carbon composite thereof

Country Status (1)

Country Link
JP (1) JP6014821B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159098A (en) * 2013-12-04 2015-09-03 国立大学法人 東京大学 active material
JP2018085324A (en) * 2016-11-15 2018-05-31 パナソニックIpマネジメント株式会社 Cathode active material for battery, and battery using cathode active material
JP2019153564A (en) * 2018-03-06 2019-09-12 Jx金属株式会社 Positive electrode active material for lithium ion battery, manufacturing method of positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20200023762A (en) * 2018-08-27 2020-03-06 주식회사 엘지화학 Positive electrode active material for lithium secondary battery and manufacturing method thereof
CN113753900A (en) * 2021-10-09 2021-12-07 北京科技大学 Method for separating impurity elements in polycrystalline silicon by using pulse current and polycrystalline silicon
CN114600280A (en) * 2019-10-22 2022-06-07 戴森技术有限公司 LMO cathode composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139860A (en) * 1988-11-17 1990-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH0629019A (en) * 1990-12-19 1994-02-04 Tosoh Corp Lithium containing manganese dioxide and its manufacture and application
JP2005135723A (en) * 2003-10-30 2005-05-26 National Institute Of Advanced Industrial & Technology Compound powder for electrode and its manufacturing method
JP2008127233A (en) * 2006-11-20 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium-manganese compound oxide containing titanium and nickel
CN101237044A (en) * 2008-02-29 2008-08-06 厦门大学 Positive material rock salt Mn lithium of nano lithium ion battery and its making method
JP2012091982A (en) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology Lithium-manganese compound oxide having cubic rock salt structure and process for producing the same
JP2012096974A (en) * 2010-11-05 2012-05-24 National Institute Of Advanced Industrial Science & Technology Lithium manganese compound oxide-carbon composite and method of manufacturing the same
WO2012160738A1 (en) * 2011-05-26 2012-11-29 株式会社豊田自動織機 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, vehicle, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2013173632A (en) * 2012-02-23 2013-09-05 Toyota Industries Corp Lithium-manganese-based composite oxide, positive electrode active material for secondary battery, and secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139860A (en) * 1988-11-17 1990-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH0629019A (en) * 1990-12-19 1994-02-04 Tosoh Corp Lithium containing manganese dioxide and its manufacture and application
JP2005135723A (en) * 2003-10-30 2005-05-26 National Institute Of Advanced Industrial & Technology Compound powder for electrode and its manufacturing method
JP2008127233A (en) * 2006-11-20 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium-manganese compound oxide containing titanium and nickel
CN101237044A (en) * 2008-02-29 2008-08-06 厦门大学 Positive material rock salt Mn lithium of nano lithium ion battery and its making method
JP2012091982A (en) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology Lithium-manganese compound oxide having cubic rock salt structure and process for producing the same
JP2012096974A (en) * 2010-11-05 2012-05-24 National Institute Of Advanced Industrial Science & Technology Lithium manganese compound oxide-carbon composite and method of manufacturing the same
WO2012160738A1 (en) * 2011-05-26 2012-11-29 株式会社豊田自動織機 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, vehicle, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2013173632A (en) * 2012-02-23 2013-09-05 Toyota Industries Corp Lithium-manganese-based composite oxide, positive electrode active material for secondary battery, and secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. SUGIYAMA ET AL.: "A new variety of LiMnO2: high-pressure synthesis and magnetic properties of tetragonal and cubic pha", MATERIALS SCIENCE AND ENGINEERING, vol. B84, JPN6016006181, 2001, pages 224 - 232, ISSN: 0003260122 *
Y. TANAKA ET AL.: "Synthesis of spinel Li4Mn5O12 with an aid of mechanochemical treatment", POWDER TECHNOLOGY, vol. 132, JPN6016006183, 2003, pages 74 - 80, ISSN: 0003365764 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159098A (en) * 2013-12-04 2015-09-03 国立大学法人 東京大学 active material
JP2018085324A (en) * 2016-11-15 2018-05-31 パナソニックIpマネジメント株式会社 Cathode active material for battery, and battery using cathode active material
JP2019153564A (en) * 2018-03-06 2019-09-12 Jx金属株式会社 Positive electrode active material for lithium ion battery, manufacturing method of positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20200023762A (en) * 2018-08-27 2020-03-06 주식회사 엘지화학 Positive electrode active material for lithium secondary battery and manufacturing method thereof
KR102639665B1 (en) * 2018-08-27 2024-02-21 주식회사 엘지에너지솔루션 Positive electrode active material for lithium secondary battery and manufacturing method thereof
CN114600280A (en) * 2019-10-22 2022-06-07 戴森技术有限公司 LMO cathode composition
CN113753900A (en) * 2021-10-09 2021-12-07 北京科技大学 Method for separating impurity elements in polycrystalline silicon by using pulse current and polycrystalline silicon

Also Published As

Publication number Publication date
JP6014821B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6485232B2 (en) Method for producing positive electrode active material
Krajewski et al. Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries
JP6014821B2 (en) Lithium manganese composite oxide and carbon composite thereof
JP6708326B2 (en) Positive electrode material for sodium secondary batteries
CN109075337B (en) Method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5347031B2 (en) Nano-cathode material for lithium battery and method for producing the same
CN111052463B (en) Lithium ion secondary battery, positive electrode active material, and method for producing same
EP2768051A1 (en) Silicon-based composite and method for manufacturing same
JP6265259B2 (en) Negative electrode active material, negative electrode and battery
Shi et al. Core–shell structured Li [(Ni0. 8Co0. 1Mn0. 1) 0.7 (Ni0. 45Co0. 1Mn0. 45) 0.3] O2 cathode material for high-energy lithium ion batteries
JP6350646B2 (en) Negative electrode active material, negative electrode and battery
JP2008226741A (en) Composite powder for electrode and its manufacturing method
Feng et al. One-pot hydrothermal synthesis of core-shell structured MnCO3@ C as anode material for lithium-ion batteries with superior electrochemical performance
Sturman et al. High-entropy materials for lithium-ion battery electrodes
JP6737305B2 (en) Negative electrode active material, negative electrode and battery
KR20140147448A (en) Preparation method for porous SiO via self-template chemical etching and anode material for lithium rechargeable batteries containing the same material
JP2005135723A (en) Compound powder for electrode and its manufacturing method
JP5299971B2 (en) Electrode active material for lithium ion secondary battery and method for producing the same
JP5765780B2 (en) Lithium silicate compound, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2012060084A1 (en) Lithium borate compound and method for producing same
US8480932B2 (en) Composite of metal sulfide and metal oxide and process for producing the composite
JP2012096974A (en) Lithium manganese compound oxide-carbon composite and method of manufacturing the same
JPWO2019130863A1 (en) Halogen-containing composite and its manufacturing method
WO2014022989A1 (en) Doped secondary battery positive electrode material and preparation method thereof
JPWO2016175310A1 (en) Method for producing 5V-class spinel type lithium manganese-containing composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160816

R150 Certificate of patent or registration of utility model

Ref document number: 6014821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250