JPH0393163A - Nonaqueous system secondary battery - Google Patents

Nonaqueous system secondary battery

Info

Publication number
JPH0393163A
JPH0393163A JP1227990A JP22799089A JPH0393163A JP H0393163 A JPH0393163 A JP H0393163A JP 1227990 A JP1227990 A JP 1227990A JP 22799089 A JP22799089 A JP 22799089A JP H0393163 A JPH0393163 A JP H0393163A
Authority
JP
Japan
Prior art keywords
battery
manganese dioxide
active material
positive electrode
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227990A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Toshiyuki Noma
俊之 能間
Yuji Yamamoto
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1227990A priority Critical patent/JPH0393163A/en
Publication of JPH0393163A publication Critical patent/JPH0393163A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase cycle performance by decreasing the amount of sodium in a manganese composite oxide containing lithium. CONSTITUTION:In a nonaqueous system secondary battery having a negative electrode 2 using lithium as the active material and a positive electrode 1 using a composite oxide as indicated in LixMnOy (x and y each is a positive integer.) as the active material, the amount of sodium in the composite oxide is decreased. Manganese dioxide used as an active material of a battery is neutralized with an alkali in the production process and contains sodium. If manganese dioxide in which the amount of sodium is decreased is used as a raw material for synthesizing the positive active material, adverse effect of sodium can be avoided. Initial discharge capacity is increased and cycle performance is also increased.

Description

【発明の詳細な説明】 童呈上曵租且公立 本発明はリチウム或いはリチウム合金を負極活物質とす
る非水系二次電池に関し、特に正極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and particularly to improvements in the positive electrode.

従来生技歪 この種二次電池の正極活物質としては三酸化モリブデン
、五酸化バナジウム、チタン或いはニオブの硫化物など
が提案されており、一部実用化されているものがある。
Conventional production techniques have been proposed as positive electrode active materials for this type of secondary battery, such as molybdenum trioxide, vanadium pentoxide, titanium or niobium sulfide, and some of them have been put into practical use.

一方、非水系一次電池の正極活物質としては二酸化マン
ガン、フン化炭素が代表的なものとして知られており、
且これらは既に実用化されている。
On the other hand, manganese dioxide and carbon fluoride are known as typical positive electrode active materials for non-aqueous primary batteries.
Moreover, these have already been put into practical use.

特に、二酸化マンガンは保存性に優れ、資源的に豊富で
あり且つ安価であるという利点を有している。
In particular, manganese dioxide has the advantages of excellent preservability, abundant resources, and low cost.

このような背景に鑑みて、非水系二次電池の正極活物質
として二酸化マンガンを用いることが有益であると考え
られるが、二酸化マンガンは可逆性に難があり充放電サ
イクル特性に問題がある。
In view of this background, it is considered to be beneficial to use manganese dioxide as a positive electrode active material for non-aqueous secondary batteries, but manganese dioxide has difficulty in reversibility and has problems in charge-discharge cycle characteristics.

そこで本願出願人は、二酸化マンガンを用いる場合の上
記欠点を抑制すべく、特開昭63−114064号公報
に示すようにlizMno,1を含有するMnO,、或
いはリチウムを含有しており、CuKαにおけるX&l
1回折図において2θ=2231.5”  37’.4
2”,55’にピークを有するマンガン酸化物、更にス
ピネル型,λ型,或いはその両者の中間的な構造を持つ
マンガン酸化物を正極活物質として用いることを先に提
案している。
Therefore, in order to suppress the above-mentioned drawbacks when using manganese dioxide, the applicant of the present application has developed a method that contains MnO containing lizMno,1 or lithium, as shown in Japanese Patent Application Laid-Open No. 63-114064, and that X&l
2θ=2231.5” 37’.4 in 1 diffractogram
It has previously been proposed to use manganese oxides having peaks at 2'' and 55', as well as manganese oxides having a spinel type, λ type, or an intermediate structure between the two, as positive electrode active materials.

”しよ゜と る これらは、いずれも[,ixMno>’で表わされるリ
チウムを含有するマンガン複合酸化物であり、結晶構造
がリチウムイオンの侵入・脱離に対して可逆性を有する
ので、サイクル特性の向上が認められる。但し、実用上
は更に他の特性をも改良することが望まれる。
All of these are manganese composite oxides containing lithium expressed as [,ixMno>', and their crystal structures are reversible against the entry and exit of lithium ions, so they can be easily cycled. Improvements in properties are observed. However, in practical terms, it is desirable to further improve other properties.

本発明はかかる現状に鑑みてなされたものであり、サイ
クル特性を一層向上させることができる非水系二次電池
を提供することを目的とする。
The present invention has been made in view of the current situation, and an object of the present invention is to provide a non-aqueous secondary battery that can further improve cycle characteristics.

i.   ″゛ るための 本発明は上記目的を達或するために、リチウムる正極と
を有する非水系二次電池において、前記複合酸化物中の
Na量が低減されていることを特徴とする。
i. In order to achieve the above object, the present invention provides a non-aqueous secondary battery having a lithium positive electrode, characterized in that the amount of Na in the composite oxide is reduced.

葺一一一一服 本願出願人は、正極活物質としてL i xMnoy複
合酸化物を用いた場合の電池特性を一層向上させるため
に、種々の検討を行った。その結果、L i xMno
y複合酸化物を合或する際の原料となる二酸化マンガン
にNaがほとんど含まれなければ、正極活物質の放電容
量が増大することを解明した。
The applicant of the present application has conducted various studies in order to further improve battery characteristics when Li x Mnoy composite oxide is used as a positive electrode active material. As a result, L i xMno
It has been found that the discharge capacity of the positive electrode active material increases if the manganese dioxide, which is the raw material for combining the y-composite oxide, contains almost no Na.

即ち、一般的に、電池活物質として用いられる二酸化マ
ンガンはその製造過程において、アルカリによる中和処
理が行われるが、この際アルカリとしてNa塩が多く用
いられる。Na塩による中和処理を処した二酸化マンガ
ンは、通常1000〜5000ppm程度のNaを含有
していることが判明した。このようなNaを含有した二
酸化マンガンとLi塩との熱処理により合威されるLi
x M n O y複合酸化物では、理由は定かではな
いが、焼或反応時に二酸化マンガン中のNaがMnO2
とLi塩との焼成反応に悪影響を及ぼして放電容量が小
さくなる。また、充放電をくり返した場合には、充放電
サイクルの進行に伴って正極中のNaが溶出しこれが負
極上に析出することによって、負極表面でのLiの充放
電反応が阻害されてサイクル寿命の低下を引きおこす。
That is, manganese dioxide used as a battery active material is generally neutralized with an alkali during its manufacturing process, and in this case, Na salt is often used as the alkali. It has been found that manganese dioxide that has been neutralized with Na salt usually contains about 1000 to 5000 ppm of Na. Li is synthesized by heat treatment of such Na-containing manganese dioxide and Li salt.
x M n O y In the composite oxide, Na in manganese dioxide changes to MnO2 during the sintering reaction, although the reason is not clear.
This adversely affects the firing reaction between Li salt and Li salt, resulting in a decrease in discharge capacity. In addition, when charging and discharging are repeated, as the charge and discharge cycles progress, Na in the positive electrode is eluted and deposited on the negative electrode, which inhibits the charge and discharge reaction of Li on the surface of the negative electrode, resulting in a cycle lifespan. causes a decrease in

上記実験結果より、正極活物質であるLixMnoyを
合成する際に原料としてNa量が低減さた二酸化マンガ
ンを用いれば、即ちLixMnOy中にNaが殆ど含ま
れていなければ、上記のNaによる悪影響を排除するこ
とができる。
From the above experimental results, if manganese dioxide with a reduced amount of Na is used as a raw material when synthesizing LixMnoy, which is the positive electrode active material, that is, if LixMnOy contains almost no Na, the negative effects of Na mentioned above can be eliminated. can do.

去一施一斑 本発明の実施例を第l図〜第3図に基づいて、以下に説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

〔実施例l〕[Example 1]

第1図は本発明の非水系二次電池の半断面図であり、リ
チウム金属から戒る負極2は負極集電体7の内面に圧着
されている。この負極集電体7は断面略コ字状のステン
レスから或る負極缶5の内底面に固着されている。上記
負極缶5の周端はポリプロピレン製の絶縁バンキング8
の内部に固定されており、絶縁パッキング8の外周には
上記負極缶5とは反対方向に断面略コ字状を威すステン
レス製の正極缶4が固定されている。この正極缶4の内
底面には正極集電体6が固定されており、この正極集電
体6の内面には正極1が固定さている。この正極lと前
記負極2この間にはポリプロピレン製微孔性薄膜より成
るセバレータ3が介装されている。尚、電池寸法は直径
24.0mm、厚み3.0mである。また、電解液とし
ては、プロピレンカーボネートとジメトキシエタンとの
混合溶媒に過塩素酸リチウムを1モル/1溶解したもの
を用いている。
FIG. 1 is a half-sectional view of a non-aqueous secondary battery of the present invention, in which a negative electrode 2 made of lithium metal is crimped onto the inner surface of a negative electrode current collector 7. This negative electrode current collector 7 is made of stainless steel and has a substantially U-shaped cross section and is fixed to the inner bottom surface of a certain negative electrode can 5 . The peripheral edge of the negative electrode can 5 is an insulating banking 8 made of polypropylene.
A positive electrode can 4 made of stainless steel and having a substantially U-shaped cross section is fixed to the outer periphery of the insulating packing 8 in the opposite direction to the negative electrode can 5. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode 1 is fixed to the inner surface of this positive electrode current collector 6. A separator 3 made of a microporous thin film made of polypropylene is interposed between the positive electrode 1 and the negative electrode 2. Note that the battery dimensions are 24.0 mm in diameter and 3.0 m in thickness. The electrolytic solution used is one in which lithium perchlorate is dissolved at 1 mol/1 in a mixed solvent of propylene carbonate and dimethoxyethane.

ここで、本発明の要旨である正極lは、以下のようにし
て作製した。
Here, the positive electrode I, which is the gist of the present invention, was produced as follows.

先ず、正極活物質となるl,ixMnoy複合酸化物の
原料となる二酸化マンガンを、以下に示す手順にて作威
した。MnSOn溶液(2mol/j!)とHz SO
a  (2mol/f)溶液を等量混合シテ電解液を作
威し、この電解液(液温:95℃)と黒鉛電極とを用い
て電解二酸化マンガンを合威した。
First, manganese dioxide, which is a raw material for a l,ixMnoy composite oxide, which is a positive electrode active material, was prepared according to the procedure shown below. MnSOn solution (2 mol/j!) and Hz SO
An electrolytic solution was prepared by mixing equal amounts of a (2 mol/f) solution, and electrolytic manganese dioxide was synthesized using this electrolytic solution (solution temperature: 95° C.) and a graphite electrode.

尚、この場合の電流密度は10mA/cdである。Note that the current density in this case is 10 mA/cd.

次に、上記電解二酸化マンガンを温水中で十分に洗浄し
た後、電解二酸化マンガン100gに、NH.OH溶液
(0.  8mol/f)  1/を加えた後、60″
に保ちながらビーカー中で1時間攪拌し、電解二酸化マ
ンガンの中和処理を行った。次いで、電解二酸化マンガ
ンを冷水で洗浄した後、濾過、乾燥した。
Next, after thoroughly washing the electrolytic manganese dioxide in warm water, 100 g of electrolytic manganese dioxide was added with NH. After adding 1/2 OH solution (0.8 mol/f), 60″
The mixture was stirred in a beaker for 1 hour while maintaining the temperature to neutralize the electrolytic manganese dioxide. Next, the electrolytic manganese dioxide was washed with cold water, filtered, and dried.

このようにして得られた電解二酸化マンガン80gと水
酸化リチウム20gとを乳鉢にて混合した後、空気中に
おいて375℃で20時間熱処理し、l,izMnoz
を含有するマンガン酸化物を作威した。このようにして
得られた活物質粉末と、導電剤としてのアセチレンブラ
ンクと、結着剤としてのフッ素樹脂粉末とを重量比で9
0:6:4の比率で混合して正極合剤とし、この正極合
剤を2トン/cdで直径2011に加圧威型した後25
0℃で熱処理することにより正極を作製した。また、負
極は所定厚みのリチウム板を直径20mに打抜いたもの
を用いた。
After mixing 80 g of electrolytic manganese dioxide and 20 g of lithium hydroxide thus obtained in a mortar, heat treatment was performed at 375°C in air for 20 hours, and l,izMnoz
Manganese oxide containing manganese was produced. The active material powder thus obtained, the acetylene blank as a conductive agent, and the fluororesin powder as a binder were mixed in a weight ratio of 9.
After mixing at a ratio of 0:6:4 to form a positive electrode mixture, this positive electrode mixture was pressurized to a diameter of 2011 at 2 tons/cd.
A positive electrode was produced by heat treatment at 0°C. The negative electrode used was a lithium plate with a predetermined thickness punched out to a diameter of 20 m.

このようにして作製した電池を、以下(AI )電池と
称する. 〔実施例■〕 上記実施例■の電解二酸化マンガンの作威工程おにいて
、NH.OH水溶液( 0 .  8 mol/ 1 
)の代わりにLiOH水溶液( 0 .  8 n+o
l/ 1 )を用いて中和処理を行う他は、上記実施例
1と同様にして電池を作製した。
The battery thus produced is hereinafter referred to as an (AI) battery. [Example ■] In the production process of electrolytic manganese dioxide in Example ■ above, NH. OH aqueous solution (0.8 mol/1
) instead of LiOH aqueous solution (0.8 n+o
A battery was produced in the same manner as in Example 1 above, except that the neutralization treatment was performed using 1/1).

このようにして作製した電池を、以下(A2)電池と称
する。
The battery thus produced is hereinafter referred to as (A2) battery.

〔実施例■〕[Example ■]

前記実施例Iの電解二酸化マンガンの作成工程において
、NH.OH水溶液による中和処理を行わない他は、前
記実施例Iと同様にして電池を作製した。
In the process of producing electrolytic manganese dioxide in Example I, NH. A battery was produced in the same manner as in Example I above, except that the neutralization treatment with an OH aqueous solution was not performed.

このようにして作製した電池を、以下(A,〉電池と称
する。
The battery thus produced is hereinafter referred to as (A,> battery).

〔実施例■〕[Example ■]

前記実施例Iの電解二酸化マンガンの作或工程において
、NH40H水溶液の代わりにNaOH水溶液(0. 
 8sol/1)を用いて二酸化マンガンの中和処理を
行ない、更にこの二酸化マンガンをHzSOm水溶液(
0.5mol#!)1 1中で8時間攪拌して脱Na処
理を行なう。次いで、二酸化マンガンを冷水で洗浄した
後、NH.OH水溶液(0.  8n+ol/j!) 
 I It中で1時間中和処理する。
In a step of producing electrolytic manganese dioxide in Example I, a NaOH aqueous solution (0.
The manganese dioxide was neutralized using a HzSOm aqueous solution (8sol/1).
0.5mol#! ) 1 Stir in 1 for 8 hours to remove sodium. Next, after washing the manganese dioxide with cold water, NH. OH aqueous solution (0.8n+ol/j!)
Neutralize in I It for 1 hour.

次に、再度冷水で洗浄した後、濾過、乾燥することによ
り電解二酸化マンガンを作威した。このようにして電解
二酸化マンガンを作戒する他は前記実施例■と同様にし
て電池を作製した。
Next, after washing with cold water again, electrolytic manganese dioxide was produced by filtering and drying. A battery was produced in the same manner as in Example 2 above, except that the electrolytic manganese dioxide was prepared in this manner.

このようにして作製した電池を、以下(A4)電池と称
する。
The battery thus produced is hereinafter referred to as (A4) battery.

〔実施例V〕[Example V]

前記実施例Iの電解二酸化マンガンの作或工程において
、NH4 0H水溶液の代わりにNaOH水溶液( 0
 .  8 s+ol/ 1 )を用いて中和処理を行
なう.次に、得られた二酸化マンガンを60℃の温水(
1 f)中で1時間攪拌して濾過した後、再度60℃温
水(In)中で1時間攪拌する。このような温水での脱
Na処理を計8回繰り返して電解二酸化マンガンを作成
する。このようにして電解二酸化マンガンを作成する他
は前記実施例■と同様にして電池を作製した。
In a step of producing electrolytic manganese dioxide in Example I, a NaOH aqueous solution ( 0
.. Neutralization treatment is performed using 8 s+ol/1). Next, the obtained manganese dioxide was added to 60°C hot water (
After stirring for 1 hour in 1f) and filtering, the mixture was stirred again for 1 hour in 60°C warm water (In). Electrolytic manganese dioxide is produced by repeating this Na removal treatment using hot water a total of 8 times. A battery was produced in the same manner as in Example 2 above, except that electrolytic manganese dioxide was produced in this manner.

このようにして作製した電池を、以下(A,〉電池と称
する。
The battery thus produced is hereinafter referred to as (A,> battery).

〔比較例〕[Comparative example]

前記実施例Iの電解二酸化マンガンの作戒工程において
、NH40H水溶液の代わりにNaOH水溶液( 0 
.  8 mol/ l )を用いて中和処理を行なう
他は、前記実施例Iと同様にして電池を作製した。
In the process of preparing electrolytic manganese dioxide in Example I, a NaOH aqueous solution (0
.. A battery was produced in the same manner as in Example I above, except that the neutralization treatment was performed using (8 mol/l).

このようにして作製した電池を、以下(X)電池と称す
る。
The battery thus produced is hereinafter referred to as the (X) battery.

〔実験I〕[Experiment I]

上記本発明の(A1)電池〜(A5〉電池及び比較例の
<X>電池において、正極活物質を作製する際に用いる
電解二酸化マンガン中のNa含有量と、初期放電容量と
を調べたので、その結果を下記第1表に示す。尚、初期
放電容量の実験条件は、3mAで2.Ovまで放電する
という条件で行った. 〔以下余白〕 第l表 上記第1表に示すように、本発明の(A,〉電池〜(A
,)電池に用いる電解二酸化マンガンではNa含有量が
50〜800ppmであって低い値を示しているのに対
して、比較例の(X)電池に用いる電解二酸化マンガン
では、Na含有量が5000ppmであるって高い値を
示していることが認められる。特に、電解二酸化マンガ
ンの作製工程で中和処理にNa塩を用いていないものの
Na含有量は50〜200ppmであって、著しく低い
値を示していることが認められる。
In the above-mentioned batteries (A1) to (A5) of the present invention and the <X> battery of the comparative example, the Na content in the electrolytic manganese dioxide used in preparing the positive electrode active material and the initial discharge capacity were investigated. The results are shown in Table 1 below.The experimental conditions for the initial discharge capacity were to discharge to 2.0V at 3mA. , (A,> battery of the present invention ~ (A
,) The electrolytic manganese dioxide used in the battery has a Na content of 50 to 800 ppm, which is a low value, whereas the electrolytic manganese dioxide used in the comparative example (X) battery has a Na content of 5000 ppm. It can be seen that the value is quite high. In particular, it is recognized that the Na content is 50 to 200 ppm, which is a significantly low value even though Na salt is not used in the neutralization treatment in the production process of electrolytic manganese dioxide.

尚、Na塩による中和処理を行なっていない二酸化マン
ガン中のNa含有量は一般にio00ppm以下であっ
てこの範囲のNa含有量の二酸化マンガンを用いること
が望ましいが、上記(AI)電池〜(A,)電池に用い
る電解二酸化マンガンでは全て1000ppm以下であ
り、上記範囲内に入っていることがわかる。
The Na content in manganese dioxide that has not been neutralized with Na salt is generally io00 ppm or less, and it is desirable to use manganese dioxide with a Na content in this range. ,) It can be seen that the electrolytic manganese dioxide used in batteries all have a concentration of 1000 ppm or less, which is within the above range.

次に、初期放電容量は、(A1)電池〜(As)電池で
は33〜48mAHであるのに対して、(X)電池では
29mAHLかないことが認められる。特にNa含有量
が200ppm以下の(A1)電池〜(A3)電池では
全て40mAH以上であることが認められる。したがっ
て、Na含有量の低い二酸化マンガンを用いて正極を作
或するのが望ましい。
Next, it is recognized that the initial discharge capacity of the (A1) battery to (As) battery is 33 to 48 mAH, while that of the (X) battery is only 29 mAHL. In particular, it is recognized that all of the batteries (A1) to (A3) with Na content of 200 ppm or less have a power of 40 mAH or more. Therefore, it is desirable to fabricate the positive electrode using manganese dioxide with a low Na content.

〔実験■〕[Experiment■]

本発明の(AI )電池〜(A,)及び比較例の(X)
電池の充放電サイクル特性を調べたので、その結果を第
2図に示す。尚、実験条件は、3mAで4時間放電した
後、3mAで充電終止電圧4Vまで充電するという条件
である。
(AI) battery of the present invention ~ (A,) and comparative example (X)
The charge/discharge cycle characteristics of the battery were investigated and the results are shown in FIG. The experimental conditions were to discharge at 3 mA for 4 hours and then charge at 3 mA to a charge end voltage of 4V.

第2図に示すように、(A,)電池〜(A,)電池では
100サイクル以上にならないと放電終止電圧が大きく
低下し始めないのに対して、(X)電池では100サイ
クル以下で放電終止電圧が低下し始めることが認められ
る。特に、Na含有量の少ない二酸化マンガンを用いた
(A,)電池〜(A,)電池では特に良好な特性を示し
ていることが認められる。
As shown in Figure 2, for the (A,) battery to (A,) battery, the end-of-discharge voltage does not begin to decrease significantly until 100 cycles or more, whereas for the (X) battery, the discharge end voltage does not start to decrease significantly after 100 cycles or less. It is observed that the final voltage begins to decrease. In particular, it is recognized that the (A,) to (A,) batteries using manganese dioxide with a low Na content exhibit particularly good characteristics.

尚、上記実施例では正極活物質であるLixMnoyの
原料として電解二酸化マンガンを用いたが、これに限定
するものではなく、本発明は化学二酸化マンガンや天然
二酸化マンガンも適用できることは勿論である。
In the above example, electrolytic manganese dioxide was used as the raw material for LixMnoy, which is the positive electrode active material, but the present invention is not limited to this, and it goes without saying that chemical manganese dioxide and natural manganese dioxide can also be applied.

また、本発明は上記非水電解液を用いた非水系二次電池
に限定されるものではなく、固定電解質を用いた非水系
二次電池にも適用することが可能である。
Furthermore, the present invention is not limited to non-aqueous secondary batteries using the above-mentioned non-aqueous electrolyte, but can also be applied to non-aqueous secondary batteries using a fixed electrolyte.

発里夏盟来 以上説明したように、複合酸化物中のNaiを低減すれ
ば、初期放電容量が増大すると共に、サ4. イクル特性を飛躍的に向上させることができる。
As explained above, if Nai in the composite oxide is reduced, the initial discharge capacity will increase, and 4. The cycle characteristics can be dramatically improved.

したがって、電池の性能を飛躍的に向上させることがで
きるという効果を奏する。
Therefore, there is an effect that the performance of the battery can be dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の半断面図、第2図は本発明の(A
,)電池〜(A,)電池及び比較例の(X)電池のサイ
クル特性を示すグラフである。 1・・・正極、2・・・負極、3・・・セバレータ。
FIG. 1 is a half-sectional view of the battery of the present invention, and FIG. 2 is a half-sectional view of the battery of the present invention (A
, ) battery - (A,) battery and a comparative example (X) battery are graphs showing the cycle characteristics of the battery. 1...Positive electrode, 2...Negative electrode, 3...Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム或いはリチウム合金を活物質とする負極
と、Li_xMnO_yで表される複合酸化物を活物質
とする正極とを有する非水系二次電池において、 前記複合酸化物中のNa量が低減されていることを特徴
とする非水系二次電池。
(1) In a non-aqueous secondary battery having a negative electrode using lithium or a lithium alloy as an active material and a positive electrode using a composite oxide represented by Li_xMnO_y as an active material, the amount of Na in the composite oxide is reduced. A non-aqueous secondary battery characterized by:
JP1227990A 1989-09-01 1989-09-01 Nonaqueous system secondary battery Pending JPH0393163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227990A JPH0393163A (en) 1989-09-01 1989-09-01 Nonaqueous system secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227990A JPH0393163A (en) 1989-09-01 1989-09-01 Nonaqueous system secondary battery

Publications (1)

Publication Number Publication Date
JPH0393163A true JPH0393163A (en) 1991-04-18

Family

ID=16869442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227990A Pending JPH0393163A (en) 1989-09-01 1989-09-01 Nonaqueous system secondary battery

Country Status (1)

Country Link
JP (1) JPH0393163A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128452A1 (en) * 2000-02-25 2001-08-29 Mitsui Mining & Smelting Co., Ltd Manganese dioxide for lithium primary battery and process for producing the same
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it
JP2007182032A (en) * 2006-01-10 2007-07-19 Tohoku Ricoh Co Ltd Printing equipment and stencil printing equipment
US7524581B2 (en) 2004-07-23 2009-04-28 The Gillette Company Non-aqueous electrochemical cells
JP2011198772A (en) * 2011-06-27 2011-10-06 Jx Nippon Mining & Metals Corp Precursor for positive electrode material of lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128452A1 (en) * 2000-02-25 2001-08-29 Mitsui Mining & Smelting Co., Ltd Manganese dioxide for lithium primary battery and process for producing the same
US6821678B2 (en) 2000-02-25 2004-11-23 Mitsui Mining & Smelting Company, Ltd. Process of producing manganese dioxide for a lithium primary battery
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it
US7524581B2 (en) 2004-07-23 2009-04-28 The Gillette Company Non-aqueous electrochemical cells
JP2007182032A (en) * 2006-01-10 2007-07-19 Tohoku Ricoh Co Ltd Printing equipment and stencil printing equipment
JP2011198772A (en) * 2011-06-27 2011-10-06 Jx Nippon Mining & Metals Corp Precursor for positive electrode material of lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
EP0265950B1 (en) Non-aqueous secondary cell
US5166012A (en) Manganese oxide compounds
JPH0746607B2 (en) Non-aqueous secondary battery
EP0892762A1 (en) Method of preparation of lithium manganese oxide spinel
JPH0227660A (en) Nonaqueous secondary battery
JP2003217572A (en) Positive electrode active material for lithium secondary battery
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH01209663A (en) Nonaqueous secondary battery
JP2003002661A (en) Method for producing lithium cobalt composite oxide
JP3667468B2 (en) Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof
KR20010052669A (en) Method for preparing lithium manganate having spinel structure
JPH09115505A (en) Lithium secondary battery and its manufacture
JP2001185148A (en) Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JPH0393163A (en) Nonaqueous system secondary battery
JP2001185148A5 (en)
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JPH01235158A (en) Nonaqueous secondary battery
JPH0260056A (en) Manufacture of nonaqueous secondary battery and its positive electrode active mateiral
JPS63148550A (en) Nonaqueous secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
KR100326456B1 (en) A positive active material for a lithium secondary battery and A method of preparing the same