JP2011198772A - Precursor for positive electrode material of lithium ion secondary battery - Google Patents

Precursor for positive electrode material of lithium ion secondary battery Download PDF

Info

Publication number
JP2011198772A
JP2011198772A JP2011142140A JP2011142140A JP2011198772A JP 2011198772 A JP2011198772 A JP 2011198772A JP 2011142140 A JP2011142140 A JP 2011142140A JP 2011142140 A JP2011142140 A JP 2011142140A JP 2011198772 A JP2011198772 A JP 2011198772A
Authority
JP
Japan
Prior art keywords
carbonate
positive electrode
lithium
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011142140A
Other languages
Japanese (ja)
Inventor
Yoshio Kajitani
芳男 梶谷
Hiroshi Tazaki
博 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011142140A priority Critical patent/JP2011198772A/en
Publication of JP2011198772A publication Critical patent/JP2011198772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To establish a simple means of providing a positive electrode material of a lithium ion secondary battery with minimal impurities affecting battery characteristics, excellent composition stability and favorable battery characteristics.SOLUTION: When charging an aqueous chloride solution of Ni, Mn or Co or a mixture of the solution and an aqueous chloride solution of Mg, Al, Ti, Cr, Fe, Cu or Zr in lithium carbonate suspension, the carbonate containing Li is precipitated by determining the amount of the suspension of a lithium carbonate (w) in accordance with a formula of "w (mol)=amount of total metal component other than Li (mol)×(1+0.5x)" (where, x=amount of Li necessary for battery positive-electrode material/amount of total metal component other than Li), and the obtained carbonate is cleaned by a saturated lithium carbonate or ethanol. The precursor for positive-electrode material which is thus obtained with a molar ratio of the amount of Li to the total metal other than Li being 0.5 to 1.3 is used as the positive-electrode material (active material) in a simple method for performing high-temperature oxidation treatment as it is.

Description

この発明は、リチウムイオン二次電池正極材料用前駆体(正極活物質の前駆体)とその製造方法、並びに前記前駆体を用いたリチウムイオン二次電池正極材料(正極活物質)の製造方法に関するものである。   The present invention relates to a precursor for a positive electrode material for a lithium ion secondary battery (precursor of a positive electrode active material), a method for producing the same, and a method for producing a positive electrode material for a lithium ion secondary battery (positive electrode active material) using the precursor. Is.

近年、高エネルギー密度電池として非水系のリチウムイオン二次電池の需要が急増しており、その性能向上に関して様々な観点からの研究が行われている。   In recent years, the demand for non-aqueous lithium ion secondary batteries as high energy density batteries has been increasing rapidly, and research from various viewpoints has been conducted on improving the performance.

このリチウムイオン二次電池は、正極及び負極、並びに両電極間に介在する“電解質を保持したセパレータ”の3つの基本要素によって構成されており、正極及び負極には“活物質,導電材,結着材及び必要に応じて可塑剤を分散媒に混合分散させて成るスラリー”を金属箔や金属メッシュ等の集電体に塗工したものが使用されている。   This lithium ion secondary battery is composed of three basic elements: a positive electrode and a negative electrode, and a “separator holding an electrolyte” interposed between the two electrodes. The positive electrode and the negative electrode have “active material, conductive material, binder”. A material obtained by coating a current collector such as a metal foil or a metal mesh with a slurry obtained by mixing and dispersing a coating material and, if necessary, a plasticizer in a dispersion medium is used.

このうちの正極活物質としてはコバルト系複合酸化物(Li1-xCoO2),ニッケル系複合酸化物(Li1-xNiO2),マンガン系複合酸化物(Li1-xMn24)といったリチウムと遷移金属との複合酸化物が適用されており、これまでにもこれらを基本とした種々の材料が提案されている。 Among these, as the positive electrode active material, cobalt-based composite oxide (Li 1-x CoO 2 ), nickel-based composite oxide (Li 1-x NiO 2 ), manganese-based composite oxide (Li 1-x Mn 2 O 4). ), And composite materials of lithium and transition metals have been applied, and various materials based on these have been proposed.

なお、リチウムイオン二次電池用の正極材料として用いられる上述のようなリチウム複合酸化物は、一般に、リチウムイオン二次電池用正極材料の主体となる元素の化合物(Co,Ni,Mn等の炭酸塩や酸化物など)とリチウム化合物(炭酸リチウム等)を所定の割合で混合し、それを熱処理することにより合成されている。
このようなリチウム複合酸化物の合成方法を紹介したものとして、例えば次の文献を挙げることができる。
In addition, the lithium composite oxide as described above used as a positive electrode material for a lithium ion secondary battery is generally a compound of an element (carbonic acid such as Co, Ni, Mn, etc.) that is a main component of the positive electrode material for a lithium ion secondary battery. Salt, oxide, etc.) and lithium compound (lithium carbonate, etc.) are mixed in a predetermined ratio and heat-treated.
As an introduction of such a method for synthesizing a lithium composite oxide, for example, the following documents can be cited.

特開平1−294364号公報JP-A-1-294364 特開平11−307094号公報Japanese Patent Application Laid-Open No. 11-307094

前記特開平1−294364号公報には、「Ni,Coの塩化物を含む水溶液に二酸化炭素ガス(炭酸ガス)を飽和させ、この溶液に重炭酸ナトリウム水溶液を加えて放置することによりNi,Coの炭酸塩を共沈させ、得られた沈殿物を水洗してからアルゴンガス中にて140℃で乾燥した後、これと炭酸リチウムとを混合して空気中で加熱し反応させることから成るリチウム複合酸化物の製造方法」が示されている。   Japanese Patent Application Laid-Open No. 1-294364 discloses that a carbon dioxide gas (carbon dioxide gas) is saturated in an aqueous solution containing Ni and Co chloride, and an aqueous sodium bicarbonate solution is added to the solution and left to stand. Lithium carbonate obtained by coprecipitation of the carbonate of the product, washing the resulting precipitate with water, drying in argon gas at 140 ° C., mixing this with lithium carbonate, and heating to react in air "Production method of composite oxide" is shown.

また、前記特開平11−307094号公報には、「リチウム以外の各成分元素の硫酸塩水溶液とアンモニアを微量添加した重炭酸アンモニウム塩水溶液とを少しずつ同時もしくは交互に反応槽内へ添加し、混合溶液のpHを中性領域に保ちながらほぼ同心円上に均一な複合炭酸塩の結晶成長を行わせた後、得られた複合炭酸塩と水酸化リチウムとを混合して酸素ガス流通雰囲気中で加熱焼成することから成るリチウム複合酸化物の製造方法」が示されている。   In addition, in JP-A-11-307094, “a sulfate aqueous solution of each component element other than lithium and an ammonium bicarbonate aqueous solution to which a small amount of ammonia has been added are added little by little simultaneously or alternately into the reaction vessel, After making the crystal growth of a uniform composite carbonate almost concentrically while maintaining the pH of the mixed solution in a neutral region, the resulting composite carbonate and lithium hydroxide were mixed together in an oxygen gas flow atmosphere. A method for producing a lithium composite oxide comprising heating and firing "is shown.

しかしながら、本発明者らは、種々のリチウム複合酸化物を正極材料に適用したリチウムイオン二次電池の特性調査を通じて、従前のリチウム複合酸化物には焼結性や組成安定性等の点で十分に満足することができない面があり、これらが電池特性(レート特性等)の劣化につながることを知った。   However, the present inventors have investigated the characteristics of lithium ion secondary batteries in which various lithium composite oxides are applied to the positive electrode material, and the conventional lithium composite oxides are sufficient in terms of sinterability and composition stability. It has been found that there are aspects that cannot be satisfied with this, which leads to deterioration of battery characteristics (rate characteristics, etc.).

そこで、本発明者らは先に特願2003−1955号として次に示すリチウムイオン二次電池正極用材料の安定提供手段を提案した。
A)炭酸リチウム懸濁液にニッケル塩化物,マンガン塩化物及びコバルト塩化物の1種以上からなる水溶液を投入して炭酸塩を析出させることからなる、不純物元素であるNa及びSの含有量が何れも質量割合にて100ppm以下の式ACO3(但し、AはNi,Mn及びCoの1種以上)で表されるリチウムイオン二次電池正極材料用炭酸塩の製造方法。
B)炭酸リチウム懸濁液にニッケル塩化物,マンガン塩化物及びコバルト塩化物の1種以上からなる水溶液を投入して炭酸塩を析出させた後、得られた炭酸塩をリチウム源と混合して焼成するか、あるいは得られた炭酸塩を酸化処理して酸化物となしてからリチウム源と混合して焼成することからなる、Na及びSの含有量が何れも質量割合にて100ppm以下のLi−A−O(但し、AはNi,Mn及びCoの1種以上)系リチウムイオン二次電池正極材料の製造方法。
Therefore, the present inventors previously proposed means for stably providing a positive electrode material for a lithium ion secondary battery as shown in Japanese Patent Application No. 2003-1955.
A) The contents of Na and S, which are impurity elements, consist of depositing an aqueous solution of one or more of nickel chloride, manganese chloride and cobalt chloride into a lithium carbonate suspension to precipitate carbonate. both 100ppm following formula ACO 3 at a mass ratio (where, a is Ni, Mn and one or more Co) lithium ion secondary battery positive electrode material for the production method of the carbonate represented by.
B) An aqueous solution of one or more of nickel chloride, manganese chloride and cobalt chloride is added to the lithium carbonate suspension to precipitate the carbonate, and then the obtained carbonate is mixed with a lithium source. Li or the content of Na and S is 100 ppm or less by mass ratio, either by firing or by oxidizing the carbonate obtained to form an oxide and then mixing with a lithium source and firing. -AO (where A is one or more of Ni, Mn and Co) based lithium ion secondary battery positive electrode material manufacturing method.

これらの方法によると、焼結性や組成安定性に優れ、十分な電池特性を発揮することが可能なリチウムイオン二次電池正極用材料の安定提供が可能となるが、これらの方法は本発明者らの研究の末に得られた次の知見事項等に基づいて案出されたものである。
a)リチウム二次電池正極用の活物質として用いられるリチウム複合酸化物は微細で均質なものほど良好な電池特性を発揮するが、微細で均質なリチウム複合酸化物を得るためにはリチウム複合酸化物の製造原料も微細で均質なものでなければならない。
b)このように微細で均質なリチウム複合酸化物を得る手段として、例えば前記特開平1−294364号公報や特開平11−307094号公報に示されているような湿式法で微細炭酸塩を生成させこれを原料とする方法が知られているが、この原料中に不純物元素としてNaやSが含有されていると、これら不純物元素が焼結性や組成安定性に悪影響を及ぼし、電池特性を劣化する原因となる。
例えば、前述した特開平1−294364号公報に示されている方法では炭酸塩を共沈させるために重炭酸ナトリウムを使用しており、このため得られる炭酸塩にはNa汚染が避けられず、リチウム化(リチウム複合酸化物の生成)時の焼成のときに比表面積が大きくなって焼結性が劣化し操業の安定性が阻害されるばかりか、これをリチウム二次電池正極材料とするとレート特性の悪化を招く。
また、前述した特開平11−307094号公報に示されている方法では、複合炭酸塩の結晶成長を行わせるためにアンモニアを用いるため廃液に窒素が入って廃液処理のコストがかかるばかりか、硫酸塩水溶液を使用しているので得られる複合炭酸塩への硫黄の汚染があり、硫黄はリチウムと反応して硫化リチウムを形成するので正極材料の組成安定性を阻害し、やはりリチウム二次電池の特性劣化を招く。
c)しかるに、炭酸リチウム懸濁液にニッケル塩化物,マンガン塩化物,コバルト塩化物の水溶液を投入して炭酸塩を析出させると、Na,Sに汚染されていない(何れも質量割合にて100ppm以下)微細粒のNi,Mn,Co炭酸塩を得ることができる。そして、このようにして得られた炭酸塩を酸化処理して酸化物となしてからこれを炭酸リチウム等のリチウム源と混合して焼成すると、Na,Sの汚染がない(何れも質量割合にて100ppm以下)タップ密度の高いリチウム複合酸化物が得られ、これをリチウム二次電池正極用の活物質とした場合には優れた電池特性を安定して示すリチウム二次電池が実現される。
According to these methods, it is possible to stably provide a material for a positive electrode of a lithium ion secondary battery that is excellent in sinterability and composition stability and can exhibit sufficient battery characteristics. It was devised on the basis of the following knowledge obtained after the research of the researchers.
a) A lithium composite oxide used as an active material for a positive electrode of a lithium secondary battery exhibits better battery characteristics as it becomes finer and more homogeneous. To obtain a fine and homogeneous lithium composite oxide, lithium composite oxide is used. The manufacturing raw materials must also be fine and homogeneous.
b) As a means for obtaining such a fine and homogeneous lithium composite oxide, for example, a fine carbonate is produced by a wet method as disclosed in JP-A-1-294364 and JP-A-11-307094, for example. However, if Na or S is contained as an impurity element in the raw material, these impurity elements have an adverse effect on sinterability and composition stability, and battery characteristics are improved. Causes deterioration.
For example, in the method shown in the above-mentioned JP-A-1-294364, sodium bicarbonate is used for coprecipitation of carbonate, and thus the resulting carbonate is unavoidably contaminated with Na. When firing at the time of lithiation (generation of lithium composite oxide), the specific surface area becomes large, the sinterability deteriorates and the stability of the operation is hindered. It causes deterioration of the characteristics.
Further, in the method disclosed in Japanese Patent Laid-Open No. 11-307094 described above, ammonia is used for crystal growth of the composite carbonate, so that nitrogen is contained in the waste liquid and the cost of waste liquid treatment is increased. Since the salt solution is used, there is sulfur contamination in the resulting composite carbonate. Sulfur reacts with lithium to form lithium sulfide, which inhibits the composition stability of the positive electrode material. Incurs characteristic deterioration.
c) However, when an aqueous solution of nickel chloride, manganese chloride, and cobalt chloride is added to the lithium carbonate suspension to precipitate the carbonate, it is not contaminated with Na and S (both 100 ppm by mass ratio). The following) fine Ni, Mn, Co carbonate can be obtained. When the carbonate thus obtained is oxidized to an oxide and then mixed with a lithium source such as lithium carbonate and fired, there is no contamination of Na and S (both in mass proportion). 100 ppm or less) When a lithium composite oxide having a high tap density is obtained and this is used as an active material for a positive electrode of a lithium secondary battery, a lithium secondary battery that stably exhibits excellent battery characteristics is realized.

しかし、その後も続けられた本発明者らの検討により、先の提案になる上記「リチウムイオン二次電池正極用材料の提供手段」にも次のような改善すべき点が存在することを認識するに至った。
即ち、炭酸リチウム懸濁液と金属塩化物とを利用した金属炭酸塩の製造方法では、次の反応式に従って反応が進行する。
Li2CO3+MCl2=MCO3+2LiCl(MはNi,Mn,Co等の遷移金属)
この反応では、金属炭酸塩が析出すると同時に塩化リチウムが副生するが、この副生する塩化リチウムがリチウムイオン二次電池正極用材料の特性劣化の原因となることが懸念された。
つまり、上述した先の提案になる「リチウムイオン二次電池正極用材料の提供手段」によると、リチウムイオン二次電池正極材料(正極活物質)を得るためには「上記反応によって得られた生成物を固液分離した後、水洗浄により塩化リチウムを除去してから、洗浄後のMCO3を酸化処理して酸化物となし、次いでこれとリチウム源とを混合して焼成する」という多段階の工程を更に経る必要があるが、この固液分離の際、副生した塩化リチウムが“析出した金属炭酸塩(MCO3)”に付着する。塩化リチウムは水溶性ではあるが、水洗浄による除去が不十分なままで酸化処理を行った場合には、一部は分解蒸発するものの、かなりの部分が残存することとなる。そして、塩化リチウムは吸湿性があり、正極材料表面に付着した場合には“電極膜のはがれ”や高温保存時の“電池の膨れ”の発生原因となる。また、吸湿された水分はサイクル中に電解液と反応を生じ、サイクル劣化の原因となる。
However, as a result of continued investigations by the present inventors, it has been recognized that the above-mentioned “providing means for a positive electrode material for a lithium ion secondary battery” has the following points to be improved. It came to do.
That is, in the method for producing a metal carbonate using a lithium carbonate suspension and a metal chloride, the reaction proceeds according to the following reaction formula.
Li 2 CO 3 + MCl 2 = MCO 3 + 2LiCl (M is a transition metal such as Ni, Mn, Co, etc.)
In this reaction, metal chloride precipitates and lithium chloride is by-produced at the same time. However, there is a concern that the lithium chloride produced as a by-product may cause deterioration in characteristics of the lithium ion secondary battery positive electrode material.
In other words, according to the above-mentioned “providing means for a lithium ion secondary battery positive electrode material” proposed above, in order to obtain a lithium ion secondary battery positive electrode material (positive electrode active material), “the production obtained by the above reaction” After the product is separated into solid and liquid, lithium chloride is removed by washing with water, the washed MCO 3 is oxidized to form an oxide, and then mixed with a lithium source and fired. However, the by-product lithium chloride adheres to the “precipitated metal carbonate (MCO 3 )” during the solid-liquid separation. Lithium chloride is water-soluble, but when oxidation is performed with insufficient removal by washing with water, a part of it is decomposed and evaporated, but a considerable part remains. Lithium chloride has a hygroscopic property, and when it adheres to the surface of the positive electrode material, it causes “peeling of the electrode film” and “battery of the battery” during high-temperature storage. Further, the moisture absorbed by the liquid reacts with the electrolyte during the cycle, causing cycle deterioration.

このようなことから、本発明が目的としたのは、電池特性に影響を与える不純物を極力含まず、組成安定性に優れていて良好な電池特性を発揮するリチウムイオン二次電池正極用材料の簡易な提供手段を確立することである。 For these reasons, the present invention aims to provide a positive electrode material for a lithium ion secondary battery that is excellent in compositional stability and that exhibits good battery characteristics, including impurities that affect battery characteristics as much as possible. It is to establish a simple provision means.

本発明者らは、上記目的を達成すべく更に研究を重ねた結果、次の知見を得ることができた。
a)先の提案になる「リチウムイオン二次電池正極用材料の提供手段」のように
Li2CO3+MCl2=MCO3+2LiCl(MはNi,Mn,Co等の遷移金属)
なる反応式に従って炭酸リチウム懸濁液と金属塩化物とを利用した金属炭酸塩の製造を行うと、金属炭酸塩が析出すると同時に塩化リチウムが副生するが、この塩化リチウムは析出した金属炭酸塩に付着する。なお、塩化リチウムの多くは固液分離によって取り出された金属炭酸塩粒子の表面に付着している。
リチウムイオン二次電池正極用材料の製造原料(前駆体)とされる金属炭酸塩は、酸化処理する前に純水洗浄により不純物の除去がなされるのが一般的であるが、飽和炭酸リチウム溶液又はエタノールを用いた洗浄を実施しても前記金属炭酸塩からの塩化リチウムを始めとした不純物除去が十分に可能である。
As a result of further studies to achieve the above object, the present inventors have obtained the following knowledge.
a) Li 2 CO 3 + MCl 2 = MCO 3 + 2LiCl (M is a transition metal such as Ni, Mn, Co, etc.)
When a metal carbonate is produced using a lithium carbonate suspension and a metal chloride according to the following reaction formula, the metal carbonate precipitates and at the same time lithium chloride is formed as a by-product. This lithium chloride is deposited metal carbonate. Adhere to. Most of lithium chloride is attached to the surface of the metal carbonate particles taken out by solid-liquid separation.
The metal carbonate used as a raw material (precursor) for producing a positive electrode material for a lithium ion secondary battery is generally subjected to removal of impurities by washing with pure water before oxidation treatment, but a saturated lithium carbonate solution Alternatively, even if washing with ethanol is performed, impurities such as lithium chloride can be sufficiently removed from the metal carbonate.

b)一方、前述した「炭酸リチウム懸濁液と金属塩化物とを利用した金属炭酸塩の製造法」を実施する際に炭酸リチウムの懸濁量を調整することによって“Liを含有する複合金属炭酸塩(Liが複合された金属炭酸塩)”を析出させることが可能となることも見出したが、このLiを含有する複合金属炭酸塩を固液分離してから上記「飽和炭酸リチウム溶液又はエタノールを用いた洗浄」を実施することにより、複合金属炭酸塩から電池特性に悪影響を及ぼす塩化リチウムを始めとした不純物の的確な除去がなされると共に、複合金属炭酸塩のLi複合量(Li含有量)を厳密に調整することも可能になる。因みに、Liを含有する複合金属炭酸塩の洗浄をエタノールによって行う場合には、洗浄後に洗浄液から蒸留等によりエタノールを回収して再利用することも容易で、これによって生産コストの低減,生産性の向上を図ることができる。
従って、このようにLi含有量の調整がなされた複合金属炭酸塩をそのまま酸化処理するだけで、「リチウム源を混合して焼成する」という工程を要することなく特性の優れたリチウムイオン二次電池正極材料(正極活物質)を得ることが可能となる。
因みに、Liを含有する複合金属炭酸塩を一般的な純水で洗浄すると、複合化された炭酸リチウムまでもが除去されるために組成のばらつきの要因となり、特性の優れた正極材料(正極活物質)を得ることができない。
b) On the other hand, by carrying out the above-described “method for producing metal carbonate using lithium carbonate suspension and metal chloride”, the amount of lithium carbonate suspended is adjusted to make “a composite metal containing Li” It has also been found that it is possible to precipitate a carbonate (a metal carbonate in which Li is compounded), but the above-mentioned “saturated lithium carbonate solution or By performing “cleaning with ethanol”, impurities such as lithium chloride that adversely affect battery characteristics are accurately removed from the composite metal carbonate, and the amount of Li composite of the composite metal carbonate (including Li) (Amount) can be adjusted precisely. Incidentally, in the case of washing the composite metal carbonate containing Li with ethanol, it is easy to recover and reuse ethanol after washing by distillation or the like after washing, thereby reducing production cost and productivity. Improvements can be made.
Accordingly, a lithium ion secondary battery having excellent characteristics can be obtained by simply oxidizing the composite metal carbonate with the Li content adjusted as described above without requiring a step of “mixing and firing a lithium source”. A positive electrode material (positive electrode active material) can be obtained.
Incidentally, when the composite metal carbonate containing Li is washed with general pure water, even the composite lithium carbonate is removed, which causes variation in composition, and a positive electrode material with excellent characteristics (positive electrode active material). Substance).

c)また、上記リチウムイオン二次電池正極材料(正極活物質)の特性改善のため従来からその有効性が知られているMg,Al,Ti,Cr,Fe,Cu又はZr等のドープ金属をドーピングすべく、“炭酸リチウム懸濁液”と“Ni,Mn又はCoの塩化物の1種以上の水溶液”とを反応させる際に、この“Ni,Mn又はCoの塩化物の1種以上の水溶液”と“Mg,Al,Ti,Cr,Fe,Cu又はZrの塩化物の1種以上の水溶液”との混合液を投入して炭酸塩を析出させるようにしても良い。     c) In addition, a doped metal such as Mg, Al, Ti, Cr, Fe, Cu or Zr, which has been conventionally known to be effective for improving the characteristics of the positive electrode material (positive electrode active material) of the lithium ion secondary battery, is used. When the “lithium carbonate suspension” and “one or more aqueous solutions of Ni, Mn or Co chloride” are reacted for doping, one or more of these “Ni, Mn or Co chlorides” are reacted. A mixed solution of “aqueous solution” and “one or more aqueous solutions of Mg, Al, Ti, Cr, Fe, Cu, or Zr chloride” may be added to precipitate the carbonate.

本発明は、上記知見事項等に基づいて完成されたもので、次の(1)乃至(6)項に示すリチウムイオン二次電池正極材料用前駆体材料(正極活物質製造用の炭酸塩)と当該正極材料用前駆体材料の製造方法、並びにそれを適用したリチウムイオン二次電池正極材料(正極活物質となすリチウム複合酸化物)の製造方法を提供するものである。
(1)式「ACO3(但し、AはNi,Mn,Coの1種以上)」で表される炭酸塩とLi2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料。
(2)式「ACO3(但し、AはNi,Mn,Coの1種以上)」で表される炭酸塩と、式「DCO3(但し、DはMg,Al,Ti,Cr,Fe,Cu,Zrの1種以上)」で表される炭酸塩あるいは式「D(OH)」で表される水酸化物の何れか又は双方と、Li2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料。
(3)炭酸リチウム懸濁液に、Ni,Mn又はCoの塩化物の1種以上の水溶液、あるいはこの水溶液とMg,Al,Ti,Cr,Fe,Cu又はZrの塩化物の1種以上の水溶液との混合液を投入して炭酸塩を析出させる際、炭酸リチウムの懸濁量(w)を下記の式に従って決定することによりLiを含有する炭酸塩を析出させ、かつ、得られた炭酸塩を飽和炭酸リチウム溶液又はエタノールで洗浄することを特徴とする、リチウムイオン二次電池正極材料用前駆体材料の製造方法。
w(モル)=全金属成分量(モル)×(1+0.5x)
〔但し、x=電池正極材料に必要なLi量/全金属成分量〕
(4)炭酸リチウム懸濁液に、Ni,Mn又はCoの塩化物の1種以上の水溶液、あるいはこの水溶液とMg,Al,Ti,Cr,Fe,Cu又はZrの塩化物の1種以上の水溶液との混合液を投入して炭酸塩を析出させる際、炭酸リチウムの懸濁量(w)を下記の式に従って決定することによりLiを含有する炭酸塩を析出させ、かつ得られた炭酸塩をエタノールで洗浄した後、洗浄液からエタノールを回収し再利用することを特徴とする、リチウムイオン二次電池正極材料用前駆体材料の製造方法。
w(モル)=全金属成分量(モル)×(1+0.5x)
〔但し、x=電池正極材料に必要なLi量/全金属成分量〕
(5)上記(3)項又は(4)項に記載の方法により作製したリチウムイオン二次電池正極材料用前駆体材料に酸化処理を施すことを特徴とする、リチウムイオン二次電池正極材料の製造方法。
(6)大気中で800〜1100℃に1〜10時間保持する条件にて酸化処理を行う、上記(5)項に記載のリチウムイオン二次電池正極材料の製造方法。
The present invention has been completed based on the above knowledge and the like, and precursor materials for lithium ion secondary battery positive electrode materials (carbonates for producing positive electrode active materials) shown in the following items (1) to (6): And a method for producing a precursor material for the positive electrode material, and a method for producing a lithium ion secondary battery positive electrode material (a lithium composite oxide serving as a positive electrode active material) to which the precursor material is applied.
(1) A composite of a carbonate represented by the formula “ACO 3 (where A is one or more of Ni, Mn, and Co)” and Li 2 CO 3, and containing Li relative to the total metal content The precursor material for lithium ion secondary battery positive electrode materials whose molar ratio of quantity is 0.5 or more and 1.3 or less.
(2) A carbonate represented by the formula “ACO 3 (where A is one or more of Ni, Mn, Co)” and a formula “DCO 3 (where D is Mg, Al, Ti, Cr, Fe, One or both of a carbonate represented by the formula “D (OH)” and both, and a composite of Li 2 CO 3 , The precursor material for lithium ion secondary battery positive electrode materials whose molar ratio of Li content with respect to metal content is 0.5 or more and 1.3 or less.
(3) In the lithium carbonate suspension, one or more aqueous solutions of Ni, Mn or Co chloride, or one or more of this aqueous solution and Mg, Al, Ti, Cr, Fe, Cu or Zr chloride When the mixed solution with the aqueous solution is added to precipitate the carbonate, the carbonate containing Li is precipitated by determining the suspension amount (w) of the lithium carbonate according to the following formula, and the obtained carbonate A method for producing a precursor material for a positive electrode material for a lithium ion secondary battery, wherein the salt is washed with a saturated lithium carbonate solution or ethanol.
w (mol) = total metal component amount (mol) × (1 + 0.5x)
[Where x = amount of Li required for battery positive electrode material / amount of all metal components]
(4) In the lithium carbonate suspension, one or more aqueous solutions of Ni, Mn or Co chloride, or one or more of this aqueous solution and Mg, Al, Ti, Cr, Fe, Cu or Zr chloride When the mixed solution with the aqueous solution is added to precipitate the carbonate, the carbonate containing Li is precipitated by determining the suspension amount (w) of lithium carbonate according to the following formula, and the obtained carbonate A method for producing a precursor material for a positive electrode material of a lithium ion secondary battery, wherein ethanol is recovered from a cleaning solution and reused after being washed with ethanol.
w (mol) = total metal component amount (mol) × (1 + 0.5x)
[Where x = amount of Li required for battery positive electrode material / amount of all metal components]
(5) A lithium ion secondary battery positive electrode material characterized by subjecting a precursor material for a lithium ion secondary battery positive electrode material produced by the method described in (3) or (4) above to an oxidation treatment Production method.
(6) The method for producing a positive electrode material for a lithium ion secondary battery as described in (5) above, wherein the oxidation treatment is performed in the atmosphere at 800 to 1100 ° C. for 1 to 10 hours.

本発明によれば、“炭酸リチウム懸濁液”と“Ni,Mn,Co塩化物の水溶液”又は“これとMg,Al,Ti,Cr,Fe,Cu,Zr塩化物の水溶液の混合液”とから金属炭酸塩を製造する湿式工程において、炭酸リチウムの懸濁量を調整すると共に、析出した金属炭酸塩を飽和炭酸リチウム溶液で洗浄することにより、Li含有量が高度に制御された“Liを含有する炭酸塩(リチウムイオン二次電池正極材料用前駆体材料)”、即ち「式ACO3(但し、AはNi,Mn,Coの1種以上)で表される炭酸塩とLi2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料」や「式ACO3(但し、AはNi,Mn,Coの1種以上)で表される炭酸塩と、式DCO3(但し、DはMg,Al,Ti,Cr,Fe,Cu,Zrの1種以上)で表される炭酸塩あるいは式D(OH)で表される水酸化物の何れか又は双方と、Li2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料」を安定的に製造することができる。従って、この“Liを含有する炭酸塩(リチウムイオン二次電池正極材料用前駆体材料)”を高温で酸化処理すれば、前駆体材料である炭酸塩の析出工程の後にLi比を調整しながらリチウム源(リチウム化合物)を混合して焼成するという煩雑な工程を省略してもリチウムイオン二次電池正極材料(正極活物質)を得ることができ、リチウムイオン二次電池正極材料の製造コスト低減に大きく寄与する。
また、飽和炭酸リチウム溶液又はエタノールでの洗浄によって炭酸塩から電池特性に悪影響を与える不純物が十分に除去されるので、組成のばらつきや粒子形状の変化を起こすことなく優れた電池特性を発揮するリチウムイオン二次電池正極材料を実現することができる。
更に、洗浄液から蒸留等によりエタノールを回収し再利用することで、生産性を向上することができる。
According to the present invention, "lithium carbonate suspension" and "Ni, Mn, Co chloride aqueous solution" or "Mixed aqueous solution of Mg, Al, Ti, Cr, Fe, Cu, Zr chloride" In a wet process for producing metal carbonate from the above, by adjusting the suspension amount of lithium carbonate and washing the precipitated metal carbonate with a saturated lithium carbonate solution, the Li content is highly controlled. Containing carbonate (precursor material for lithium ion secondary battery positive electrode material) ", that is, a carbonate represented by the formula ACO 3 (where A is one or more of Ni, Mn and Co) and Li 2 CO. A precursor material for a positive electrode material of a lithium ion secondary battery having a molar ratio of the Li content to the total metal content of 0.5 or more and 1.3 or less, or a formula ACO 3 (However, A is one or more of Ni, Mn and Co. And carbonate represented in the formula DCO 3 (where, D is Mg, Al, Ti, Cr, Fe, Cu, 1 or more Zr) represented by the carbonate represented by or formula D (OH) Lithium ion secondary, which is a composite of either or both hydroxides and Li 2 CO 3 , wherein the molar ratio of the Li content to the total metal content is 0.5 or more and 1.3 or less The “precursor material for battery positive electrode material” can be stably produced. Therefore, if this “carbonate containing Li (precursor material for lithium ion secondary battery positive electrode material)” is oxidized at a high temperature, the Li ratio is adjusted after the precipitation step of the carbonate that is the precursor material. Even if the complicated process of mixing and firing the lithium source (lithium compound) is omitted, a lithium ion secondary battery positive electrode material (positive electrode active material) can be obtained, and the manufacturing cost of the lithium ion secondary battery positive electrode material can be reduced. Greatly contributes.
Also, impurities that adversely affect battery characteristics are sufficiently removed from the carbonate by washing with a saturated lithium carbonate solution or ethanol, so lithium that exhibits excellent battery characteristics without causing compositional variation or particle shape change. An ion secondary battery positive electrode material can be realized.
Furthermore, productivity can be improved by recovering and reusing ethanol from the cleaning solution by distillation or the like.

さて、本発明法に従ってリチウムイオン二次電池正極材料用の炭酸塩(前駆体材料)を製造するにあたっては、まず、炭酸リチウム懸濁液を作製する。
作製する懸濁液の炭酸リチウム懸濁量(w)は、式
w(モル)=全金属成分量(モル)×(1+0.5x)
〔但し、x=電池正極材料に必要なLi量/全金属成分量〕
に従って調整される。これにより、製品のLi含有量制御を的確に行うことができる。
In producing a carbonate (precursor material) for a positive electrode material for a lithium ion secondary battery according to the method of the present invention, a lithium carbonate suspension is first prepared.
The lithium carbonate suspension amount (w) of the suspension to be produced is expressed by the formula w (mol) = total metal component amount (mol) × (1 + 0.5x).
[Where x = amount of Li required for battery positive electrode material / amount of all metal components]
Adjusted according to. Thereby, Li content control of a product can be performed exactly.

続いて、調整された上記炭酸リチウム懸濁液に所望組成のNi,Mn,Co塩化物水溶液を投入もしくは滴下する。この際、少量のAl,Si,Mg,Ca,Ti又はCrといった異種元素(電池特性改善元素として知られていたドープ元素)の塩化物水溶液を加えても良い。
投入する塩化物水溶液の組成は“製造する炭酸塩の組成”に応じてNi塩化物,Mn塩化物,Co塩化物の配合割合を加減して調整すれば良く、得ようとする炭酸塩によってはNi塩化物,Mn塩化物,Co塩化物の単独の水溶液であっても構わない。
ここで、塩化物水溶液の濃度はNi,Mn,Co塩化物のトータル濃度で1.0〜5.0モル/lとするのが適当である。好ましくは1.5〜3.0モル/lである。
Subsequently, a Ni, Mn, Co chloride aqueous solution having a desired composition is charged or dropped into the prepared lithium carbonate suspension. At this time, a small amount of a chloride aqueous solution of a different element such as Al, Si, Mg, Ca, Ti or Cr (a doping element known as a battery characteristic improving element) may be added.
The composition of the aqueous chloride solution to be added may be adjusted by adjusting the mixing ratio of Ni chloride, Mn chloride and Co chloride according to the “composition of the carbonate to be produced”. Depending on the carbonate to be obtained, A single aqueous solution of Ni chloride, Mn chloride, or Co chloride may be used.
Here, the concentration of the aqueous chloride solution is suitably 1.0 to 5.0 mol / l in terms of the total concentration of Ni, Mn, and Co chloride. Preferably it is 1.5-3.0 mol / l.

塩化物水溶液の投入速度は、トータル添加量が10分〜12時間で添加されるように調
整するのが良い。
液温は何れも室温で良いが、加熱してもかまわない。また、塩化物水溶液の投入時は炭酸リチウム懸濁液を50〜400rpmの攪拌速度で攪拌するのが望ましい。攪拌速度は使用する槽に合わせて決定する。
投入速度,攪拌速度により所望の粒径の炭酸塩が得られる。
そして、上記処理によれば、平均粒径が5〜20μmであって、Na,Sの含有量が共に100ppm以下である微細粒のLi含有複合金属炭酸塩を析出させることができる。
The charging rate of the aqueous chloride solution is preferably adjusted so that the total addition amount is added in 10 minutes to 12 hours.
The liquid temperature may be room temperature, but it may be heated. In addition, it is desirable to stir the lithium carbonate suspension at a stirring speed of 50 to 400 rpm when the chloride aqueous solution is added. The stirring speed is determined according to the tank to be used.
A carbonate having a desired particle diameter can be obtained depending on the charging speed and the stirring speed.
And according to the said process, the average particle diameter is 5-20 micrometers, Comprising: The fine particle Li containing composite metal carbonate whose content of Na and S is 100 ppm or less can be deposited.

このようにして得られたLi含有複合金属炭酸塩は、固液分離によって溶液中から分離され、次いで飽和炭酸リチウム溶液又はエタノールで洗浄される。
固液分離は、遠心分離,減圧ろ過,フィルタープレス等といった一般的な手法で行えば良い。
また飽和炭酸リチウム溶液又はエタノールでの洗浄も、デカンテーション洗浄,リパルプ洗浄等といった一般的な洗浄方法で実施すれば良い。飽和炭酸リチウム溶液は温度により溶解度が変化するため、炭酸リチウムを過剰に添加した作業環境下で洗浄を実施するのが望ましい。因み、に炭酸リチウムの水に対する溶解度は化学便覧によれば、10℃で1.41wt%、20℃で1.31wt%、30℃で1.24wt%である。
飽和炭酸リチウム溶液又はエタノールで洗浄を行う際、その洗浄温度や洗浄時間を調整することで先の反応で析出したLi含有複合金属炭酸塩のLi含有量をより厳密に調整することができる上、電池特性等に悪影響を及ぼす塩化リチウム等の不純物の除去も十分になされる。
The Li-containing composite metal carbonate thus obtained is separated from the solution by solid-liquid separation, and then washed with a saturated lithium carbonate solution or ethanol.
Solid-liquid separation may be performed by a general method such as centrifugation, vacuum filtration, filter press, or the like.
The washing with the saturated lithium carbonate solution or ethanol may be performed by a general washing method such as decantation washing or repulp washing. Since the solubility of the saturated lithium carbonate solution varies depending on the temperature, it is desirable to perform cleaning in a working environment in which lithium carbonate is added excessively. Incidentally, the solubility of lithium carbonate in water is 1.41 wt% at 10 ° C., 1.31 wt% at 20 ° C., and 1.24 wt% at 30 ° C. according to the chemical handbook.
When washing with saturated lithium carbonate solution or ethanol, the Li content of the Li-containing composite metal carbonate precipitated in the previous reaction can be adjusted more strictly by adjusting the washing temperature and washing time. The removal of impurities such as lithium chloride that adversely affect battery characteristics and the like is also sufficiently performed.

上記手法によって、「式ACO3(但し、AはNi,Mn,Coの1種以上)で表される炭酸塩とLi2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料」や「式ACO3(AはNi,Mn,Coの1種以上)で表される炭酸塩と、式DCO3(DはMg,Al,Ti,Cr,Fe,Cu,Zrの1種以上)で表される炭酸塩あるいは式D(OH)で表される水酸化物の何れか又は双方と、Li2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料」を安定して製造することができる。
これら前駆体材料において、全金属の含有量に対するLi含有量のモル比を0.5以上1.3以下と規定したのは次の理由による。即ち、前記モル比が0.5未満では高温で酸化した際に酸素の脱離が連続的に起こって組成のばらつきの原因となる。これに対して、モル比で0.5を越えるLiを含有する場合には高温で酸化した場合でも生成物が層状構造をとるので金属価数の低減を抑制することができる。更に前記モル比が1.0以上であれば十分なLi含有量を有したリチウムイオン二次電池正極材料の安定製造が一層容易になるが、そのモル比が1.3を越えると逆に電池特性の劣化を招くようになる。
なお、全金属の含有量に対するLi含有量のモル比のより望ましい範囲は0.7〜1.2である。
According to the above technique, “a composite of carbonate represented by the formula ACO 3 (where A is one or more of Ni, Mn, and Co) and Li 2 CO 3 , which contains Li relative to the total metal content. The molar ratio of the amount is 0.5 or more and 1.3 or less, and is represented by a “precursor material for a lithium ion secondary battery positive electrode material” or “formula ACO 3 (A is one or more of Ni, Mn, Co) Either a carbonate and a carbonate represented by the formula DCO 3 (D is one or more of Mg, Al, Ti, Cr, Fe, Cu, Zr) or a hydroxide represented by the formula D (OH) Or a precursor of a lithium ion secondary battery positive electrode material, which is a composite of both and Li 2 CO 3 , wherein the molar ratio of the Li content to the total metal content is 0.5 or more and 1.3 or less. The “material” can be manufactured stably.
In these precursor materials, the molar ratio of the Li content to the total metal content is defined as 0.5 or more and 1.3 or less for the following reason. That is, when the molar ratio is less than 0.5, desorption of oxygen occurs continuously when oxidized at a high temperature, causing variation in composition. On the other hand, in the case of containing Li exceeding 0.5 in molar ratio, even when oxidized at a high temperature, the product has a layered structure, so that reduction of the metal valence can be suppressed. Furthermore, if the molar ratio is 1.0 or more, stable production of a lithium ion secondary battery positive electrode material having a sufficient Li content is further facilitated. However, if the molar ratio exceeds 1.3, the battery is reversed. It will lead to deterioration of characteristics.
In addition, the more desirable range of the molar ratio of the Li content with respect to the total metal content is 0.7 to 1.2.

飽和炭酸リチウム溶液あるいはエタノールによる洗浄を行って得たLi含有複合金属炭酸塩(リチウムイオン二次電池正極材料用前駆体材料)は、これに酸化処理を施すだけで、リチウム源(リチウム化合物)を混合して焼成するという煩雑な工程を必要とすることなくリチウムイオン二次電池正極材料(正極活物質)とすることができる。   Li-containing composite metal carbonate obtained by washing with saturated lithium carbonate solution or ethanol (precursor material for lithium ion secondary battery positive electrode material) can be obtained by simply applying an oxidation treatment to the lithium source (lithium compound). A lithium ion secondary battery positive electrode material (positive electrode active material) can be obtained without requiring a complicated process of mixing and firing.

なお、酸化処理はLi含有複合金属炭酸塩を乾燥してから実施しても良いし、乾燥することなく実施しても良い。
酸化条件は、大気中で800〜1100℃に加熱することにより行うことが好ましい。この場合、処理温度が800℃未満では、粒子の結合力が低くてせん断応力がかかる電極膜スラリーを作製する際に粒子が崩壊する懸念が生じる。一方、処理温度が1100℃を越えると酸素の脱離が大きく、電池特性に悪影響を及ぼしてしまう。また、上記処理温度での保持時間は1〜10時間とするのが好ましい。
酸化処理は、通常の静置炉の他、連続炉やその他の炉でも実施が可能である。
次いで、本発明を実施例によって説明する。
The oxidation treatment may be performed after the Li-containing composite metal carbonate is dried, or may be performed without drying.
The oxidation condition is preferably performed by heating to 800 to 1100 ° C. in the air. In this case, when the treatment temperature is less than 800 ° C., there is a concern that the particles may be collapsed when an electrode film slurry in which the bonding force of the particles is low and shear stress is applied. On the other hand, when the processing temperature exceeds 1100 ° C., the desorption of oxygen is large, which adversely affects the battery characteristics. In addition, the holding time at the treatment temperature is preferably 1 to 10 hours.
The oxidation treatment can be carried out in a continuous furnace or other furnaces in addition to a normal stationary furnace.
The invention will now be illustrated by examples.

(実施例1)
まず、炭酸リチウム1552gを純水3.2リットルに懸濁させた。そして、これに4.8リットルの金属塩溶液を投入した。
ここで、金属塩溶液は塩化ニッケル,塩化コバルト,塩化マンガンの各水和物をNi:Mn:Co=1:1:1になるように調整し、全金属モル数が14モルとなるように調整した。
なお、炭酸リチウムの懸濁量は、製品(リチウムイオン二次電池正極材料、即ち正極活物質)をLixMO2(Mは金属)とした場合にx=1.0となる量であって、次式で算出されたものである。
w(g)=73.9×14×(1+0.5×1.0)=1552
Example 1
First, 1552 g of lithium carbonate was suspended in 3.2 liters of pure water. And 4.8 liters of metal salt solution was thrown into this.
Here, the metal salt solution is prepared by adjusting nickel chloride, cobalt chloride, and manganese chloride hydrates to be Ni: Mn: Co = 1: 1: 1 so that the total number of moles of metal is 14 moles. It was adjusted.
The suspended amount of lithium carbonate is such that x = 1.0 when the product (lithium ion secondary battery positive electrode material, that is, positive electrode active material) is Li x MO 2 (M is a metal). Is calculated by the following equation.
w (g) = 73.9 × 14 × (1 + 0.5 × 1.0) = 1552

この処理により溶液中に微粒のLi含有炭酸塩が析出したが、この析出物を濾過・分離してから、更に濃度13.8g/lの飽和炭酸リチウム溶液で洗浄した。
洗浄はフィルタープレスを使用し、ろ過液の塩素濃度が飽和炭酸リチウム溶液と同レベルとなるまで実施した。この洗浄には飽和炭酸リチウム溶液20リットルを要した。
上記の手法で前記析出物を洗浄後、乾燥して2160gのLi含有炭酸塩(リチウムイオン二次電池正極材料用前駆体材料)を得た。そして、乾燥品は組成分析を行い、Liと全金属とのモル比を調べた。
この調査結果を表1に示す。
By this treatment, fine Li-containing carbonate was precipitated in the solution. This precipitate was filtered and separated, and then washed with a saturated lithium carbonate solution having a concentration of 13.8 g / l.
Washing was performed using a filter press until the chlorine concentration of the filtrate reached the same level as the saturated lithium carbonate solution. This washing required 20 liters of saturated lithium carbonate solution.
The precipitate was washed by the above method and dried to obtain 2160 g of Li-containing carbonate (precursor material for lithium ion secondary battery positive electrode material). The dried product was subjected to composition analysis, and the molar ratio between Li and all metals was examined.
The survey results are shown in Table 1.

一方、「比較例1」として、析出した前記Li含有炭酸塩を飽和炭酸リチウム溶液で洗浄することなく乾燥し、Liと全金属とのモル比を調べた。
また、「比較例2」として、析出した前記Li含有炭酸塩を純水(20リットル)で洗浄してから乾燥し、Liと全金属とのモル比を調べた。
これらの調査結果も表1に併せて示した。
On the other hand, as “Comparative Example 1”, the precipitated Li-containing carbonate was dried without washing with a saturated lithium carbonate solution, and the molar ratio between Li and all metals was examined.
Moreover, as “Comparative Example 2”, the precipitated Li-containing carbonate was washed with pure water (20 liters) and then dried, and the molar ratio of Li to all metals was examined.
These survey results are also shown in Table 1.

Figure 2011198772
Figure 2011198772

表1に示される調査結果からは、飽和炭酸リチウム溶液で洗浄することにより(実施例1により)、ほぼ量論比で炭酸塩のLi含有量を調整できることが分かる。なお、詳細に調査したところ、「実施例1」が得られたLi含有炭酸塩は平均粒径が10.0μmで、Ni:Mn:Coが1:1:1の組成の複合炭酸塩とLi2CO3との複合物であることが確認された。
これに対して、飽和炭酸リチウム溶液で洗浄しない場合は(比較例1の場合は)炭酸塩のLi比は1.3となっており、詳細に調査したところ不純物の塩化リチウムが残存することに起因して炭酸塩のLi比が大きくなったことが分かる。
また、純水で洗浄した場合は、析出した炭酸塩に含有されていた炭酸リチウムが溶解することに起因してLi比が小さくなっており、更に詳細に調査したところ、組成のばらつきが大きくLi含有量の調整が困難であることが分かった。
From the investigation results shown in Table 1, it can be seen that by washing with a saturated lithium carbonate solution (according to Example 1), the Li content of the carbonate can be adjusted with a substantially stoichiometric ratio. A detailed investigation revealed that the Li-containing carbonate from which “Example 1” was obtained had an average particle size of 10.0 μm, and Ni: Mn: Co was a composite carbonate having a composition of 1: 1: 1 and Li. It was confirmed to be a composite with 2 CO 3 .
On the other hand, when not washed with a saturated lithium carbonate solution (in the case of Comparative Example 1), the Li ratio of the carbonate is 1.3, and when investigated in detail, impurity lithium chloride remains. This shows that the Li ratio of the carbonate has increased.
In addition, when washed with pure water, the Li ratio was reduced due to dissolution of lithium carbonate contained in the precipitated carbonate, and further detailed investigation revealed that the composition variation was large. It turned out that adjustment of content is difficult.

次に、上記の3種類の乾燥した炭酸塩を、大気中において1050℃で10時間加熱保持する条件にて酸化処理した。
この結果、処理材の1つである「比較例2」の純水で洗浄した炭酸塩は、酸化により粒子形態が崩れ、微粉化したことをSEMで確認した。
Next, the above three types of dried carbonates were oxidized under the condition of being heated and held at 1050 ° C. for 10 hours in the air.
As a result, it was confirmed by SEM that the carbonate washed with pure water of “Comparative Example 2”, which is one of the treatment materials, collapsed into particles due to oxidation and was finely divided.

次いで、酸化処理して得た「実施例1」に係る材料と「比較例1」に係る材料とをリチウムイオン二次電池の正極材料(正極活物質)となして電極膜を作製し、膜のはがれの有無を調査した。
なお、電極膜は、活物質85%、バインダー8%、導電材7%の比率でNMP(N−メチルピロリドン)を溶媒に混練してAl箔上に塗布し、乾燥後にプレスして作製した。
また、これらを用いて対極をLiとした評価用の2032型コインセルを作製し、電解液として1M−LiPF6をEC−DMC(1:1)に溶解したものを使用し、電池特性{初期容量と25℃でのサイクル特性(20サイクル後の容量保持率)}を評価した。
この評価結果を表2に示す。
なお、「比較例2」の純水洗浄品は微粉化により塗布ができなかったのでこの試験を実施しなかった。
Next, the material according to “Example 1” obtained by the oxidation treatment and the material according to “Comparative Example 1” are used as a positive electrode material (positive electrode active material) of a lithium ion secondary battery to produce an electrode film. The presence or absence of peeling was investigated.
The electrode film was prepared by kneading NMP (N-methylpyrrolidone) in a solvent at a ratio of 85% active material, 8% binder, and 7% conductive material, applying it onto an Al foil, pressing it after drying.
Further, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared using these, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as an electrolyte, and battery characteristics {initial capacity And cycle characteristics at 25 ° C. (capacity retention after 20 cycles)} were evaluated.
The evaluation results are shown in Table 2.
The pure water washed product of “Comparative Example 2” could not be applied due to pulverization, so this test was not performed.

Figure 2011198772
Figure 2011198772

表2に示される評価結果から次のことが分かる。
即ち、析出した炭酸塩を飽和炭酸リチウム溶液で洗浄することなく酸化処理した「比較例1」に係る材料を用いたものでは、不純物として存在した塩化リチウムが酸化処理時の高温により或る程度は分解・蒸発した形跡は認められるものの部位によるばらつきが大きく、そのためこれを用いて作製した正極は電極膜の一部にはがれが見られ、初期容量,サイクル特性とも不良であった。
これに対し、析出した炭酸塩を炭酸リチウム飽和溶液で洗浄してから酸化処理した「実施例1」に係る材料を用いたものは、不純物が完全に除去できており、かつ電池特性も良好であった。
なお、この「実施例1」に係る材料を用いたものは、前駆体である炭酸塩を作製後に混合工程でLi化合物を添加してLi比を調整する必要がなく、少ない工程で正極材料を作製することができた。
The following can be understood from the evaluation results shown in Table 2.
That is, in the case of using the material according to “Comparative Example 1” in which the precipitated carbonate was oxidized without washing with a saturated lithium carbonate solution, lithium chloride present as an impurity was somewhat affected by the high temperature during the oxidation treatment. Although traces of decomposition / evaporation were observed, there was a large variation depending on the site. For this reason, the positive electrode produced using this showed some peeling of the electrode film, and the initial capacity and cycle characteristics were poor.
In contrast, the material using the material according to “Example 1” in which the precipitated carbonate was washed with a saturated lithium carbonate solution and then oxidized was able to completely remove impurities and had good battery characteristics. there were.
In addition, what used the material which concerns on this "Example 1" does not need to adjust Li ratio by adding Li compound by a mixing process after producing carbonate which is a precursor, and does positive electrode material by few processes. We were able to make it.

(実施例2)
まず、炭酸リチウム1552gを純水3.2リットルに懸濁させた。そして、これに4.7リットルの金属塩混合溶液を投入した。
ここで、金属塩混合溶液は、塩化ニッケル,塩化コバルト,塩化マンガンの各水和物をNi:Mn:Co=1:1:1になるように調整したものの 4.3リットルと、塩化マグネシウムの水和物0.4リットルとの混合溶液であり、全金属モル数が14モルとなるように調整したものである。
なお、炭酸リチウムの懸濁量は、製品(リチウムイオン二次電池正極材料、即ち正極活物質)をLixMO2(Mは金属)とした場合にx=1.0となる量であって、次式で算出されたものである。
w(g)=73.9×14×(1+0.5×1.0)=1552
(Example 2)
First, 1552 g of lithium carbonate was suspended in 3.2 liters of pure water. And 4.7 liters of metal salt mixed solution was thrown into this.
Here, the metal salt mixed solution is 4.3 liters of nickel chloride, cobalt chloride, and manganese chloride hydrate adjusted to Ni: Mn: Co = 1: 1: 1, and magnesium chloride. This is a mixed solution with 0.4 liter of hydrate and adjusted so that the total number of moles of metal is 14 moles.
The suspended amount of lithium carbonate is such that x = 1.0 when the product (lithium ion secondary battery positive electrode material, that is, positive electrode active material) is Li x MO 2 (M is a metal). Is calculated by the following equation.
w (g) = 73.9 × 14 × (1 + 0.5 × 1.0) = 1552

この処理により溶液中に微粒のLi含有炭酸塩が析出したが、この析出物を濾過・分離してから、更に濃度13.8g/lの飽和炭酸リチウム溶液で洗浄した。
洗浄はフィルタープレスを使用し、ろ過液の塩素濃度が飽和炭酸リチウム溶液と同レベルとなるまで実施した。この洗浄には飽和炭酸リチウム溶液20リットルを要した。
上記の手法で前記析出物を洗浄後、乾燥して2160gのLi含有炭酸塩(リチウムイオン二次電池正極材料用前駆体材料)を得た。そして、乾燥品は組成分析を行い、Liと全金属とのモル比を調べたところ、Li比(Li/全金属)は1.0であった。
By this treatment, fine Li-containing carbonate was precipitated in the solution. This precipitate was filtered and separated, and then washed with a saturated lithium carbonate solution having a concentration of 13.8 g / l.
Washing was performed using a filter press until the chlorine concentration of the filtrate reached the same level as the saturated lithium carbonate solution. This washing required 20 liters of saturated lithium carbonate solution.
The precipitate was washed by the above method and dried to obtain 2160 g of Li-containing carbonate (precursor material for lithium ion secondary battery positive electrode material). The dried product was subjected to composition analysis, and the molar ratio between Li and all metals was examined. The Li ratio (Li / all metals) was 1.0.

この結果から、飽和炭酸リチウム溶液で洗浄することにより、ほぼ量論比で炭酸塩のLi含有量を調整できることが分かる。
なお、詳細に調査したところ、得られたLi含有炭酸塩は平均粒径が10.0μmで、Ni:Mn:Co:Mgが3:3:3:1の組成の複合炭酸塩とLi2CO3との複合物であることが確認された。
From this result, it can be seen that by washing with a saturated lithium carbonate solution, the Li content of the carbonate can be adjusted by a substantially stoichiometric ratio.
A detailed investigation revealed that the obtained Li-containing carbonate had an average particle size of 10.0 μm and a composite carbonate of Ni: Mn: Co: Mg 3: 3: 3: 1 and Li 2 CO. 3 was confirmed to be a composite.

次に、乾燥した上記の炭酸塩を大気中において1050℃で10時間加熱保持する条件にて酸化処理した。
次いで、酸化処理して得た材料をリチウムイオン二次電池の正極材料(正極活物質)となして電極膜を作製し、膜のはがれの有無を調査した。
電極膜は、活物質85%、バインダー8%、導電材7%の比率でNMP(N−メチルピロリドン)を溶媒に混練してAl箔上に塗布し、乾燥後にプレスして作製した。
また、これらを用いて対極をLiとした評価用の2032型コインセルを作製し、電解液として1M−LiPF6をEC−DMC(1:1)に溶解したものを使用し、電池特性{初期容量と25℃でのサイクル特性(20サイクル後の容量保持率)}を評価した。
この評価結果を表3に示す。
Next, the dried carbonate was oxidized under the condition of being heated and held at 1050 ° C. for 10 hours in the air.
Next, the material obtained by the oxidation treatment was used as a positive electrode material (positive electrode active material) of a lithium ion secondary battery to produce an electrode film, and the presence or absence of peeling of the film was investigated.
The electrode film was prepared by kneading NMP (N-methylpyrrolidone) in a solvent at a ratio of 85% active material, 8% binder, and 7% conductive material, applying the mixture on an Al foil, pressing it after drying.
Further, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared using these, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as an electrolyte, and battery characteristics {initial capacity And cycle characteristics at 25 ° C. (capacity retention after 20 cycles)} were evaluated.
The evaluation results are shown in Table 3.

Figure 2011198772
Figure 2011198772

表3に示される評価結果からも、析出した炭酸塩を炭酸リチウム飽和溶液で洗浄してから酸化処理した材料をリチウムイオン二次電池の正極材料(正極活物質)として用いたものは、正極材料の不純物が完全に除去できており、かつ電池特性も良好となることを確認できる。   Also from the evaluation results shown in Table 3, a material obtained by washing the precipitated carbonate with a saturated lithium carbonate solution and then oxidizing it was used as the positive electrode material (positive electrode active material) of the lithium ion secondary battery. It can be confirmed that the impurities are completely removed and the battery characteristics are also improved.

(実施例3)
まず、炭酸リチウム1552gを純水3.2リットルに懸濁させた。そして、これに4.8リットルの金属塩溶液を投入した。
ここで、金属塩溶液は塩化ニッケル,塩化コバルト,塩化マンガンの各水和物をNi:Mn:Co=1:1:1になるように調整し、全金属モル数が14モルとなるように調整した。
なお、炭酸リチウムの懸濁量は、製品(リチウムイオン二次電池正極材料、即ち正極活物質)をLixMO2(Mは金属)とした場合にx=1.0となる量であって、次式で算出されたものである。
w(g)=73.9×14×(1+0.5×1.0)=1552
(Example 3)
First, 1552 g of lithium carbonate was suspended in 3.2 liters of pure water. And 4.8 liters of metal salt solution was thrown into this.
Here, the metal salt solution is prepared by adjusting nickel chloride, cobalt chloride, and manganese chloride hydrates to be Ni: Mn: Co = 1: 1: 1 so that the total number of moles of metal is 14 moles. It was adjusted.
The suspended amount of lithium carbonate is such that x = 1.0 when the product (lithium ion secondary battery positive electrode material, that is, positive electrode active material) is Li x MO 2 (M is a metal). Is calculated by the following equation.
w (g) = 73.9 × 14 × (1 + 0.5 × 1.0) = 1552

この処理により溶液中に微粒のLi含有炭酸塩が析出したが、この析出物を更にエタノールで洗浄した。
洗浄は、作製した炭酸塩を溶液から遠心分離した後、リバルブ洗浄と減圧ろ過の組み合わせで行い、乾燥ケーキの塩素濃度が100ppm 以下となるまで実施した。なお、乾燥ケーキの塩素濃度は、ケーキ5gを純水50ccに懸濁させてからそのろ液の塩素濃度を調べる手法で測定した。
上記の手法で前記析出物を洗浄後、乾燥して2160gのLi含有炭酸塩(リチウムイオン二次電池正極材料用前駆体材料)を得た。そして、乾燥品の組成分析を行ってLiと全金属とのモル比を調べたところ、Li比(Li/全金属)は1.0であり、実施例1で実施した飽和炭酸リチウム液による洗浄の場合と同じ結果となった。
By this treatment, fine Li-containing carbonate was precipitated in the solution, and this precipitate was further washed with ethanol.
Washing was performed by centrifuging the produced carbonate from the solution, and then performing a combination of revalve washing and vacuum filtration until the dry cake had a chlorine concentration of 100 ppm or less. Note that the chlorine concentration of the dried cake was measured by a method of suspending 5 g of the cake in 50 cc of pure water and then examining the chlorine concentration of the filtrate.
The precipitate was washed by the above method and dried to obtain 2160 g of Li-containing carbonate (precursor material for lithium ion secondary battery positive electrode material). Then, the composition analysis of the dried product was conducted to examine the molar ratio between Li and all metals. The Li ratio (Li / all metals) was 1.0, and the washing with the saturated lithium carbonate solution performed in Example 1 was performed. The same result as in the case of.

なお、洗浄に要したろ過液は全量を回収し、蒸留を行って蒸発成分を凝縮・捕捉した。そして、ガスクロマトグラフにより凝縮・捕捉された濃縮物はエタノールであることを確認した。また、残渣は白色粉末で潮解性があり、塩化リチウムであることを確認した。
このことによって、“不純物である塩化リチウム”と“洗浄液として使用したエタノール”とを分離でき、エタノールを回収・再生することで洗浄を閉鎖系で行うことができる
と判断された。
The entire amount of the filtrate required for washing was collected and distilled to condense and trap the evaporated components. Then, it was confirmed that the concentrate condensed and captured by the gas chromatograph was ethanol. The residue was white powder, deliquescent, and confirmed to be lithium chloride.
As a result, it was determined that “lithium chloride as an impurity” and “ethanol used as a cleaning solution” could be separated, and that cleaning could be performed in a closed system by recovering and regenerating ethanol.

次に、上記の乾燥した炭酸塩を、大気中において1050℃で10時間加熱保持する条件にて酸化処理した。
次いで、酸化処理して得た材料をリチウムイオン二次電池の正極材料(正極活物質)となして電極膜を作製し、膜のはがれの有無を調査した。
なお、電極膜は、活物質85%、バインダー8%、導電材7%の比率でNMP(N−メチルピロリドン)を溶媒に混練してAl箔上に塗布し、乾燥後にプレスして作製した。
また、対極をLiとした評価用の2032型コインセルを作製し、電解液として1M−LiPF6をEC−DMC(1:1)に溶解したものを使用し、電池特性{初期容量と25℃でのサイクル特性(20サイクル後の容量保持率)}を評価した。
この結果、作製した電極膜ははがれが認められず、またコインセルの初期容量は158mAh/g、25℃サイクル特性は93%で、実施例1の場合とほぼ同様であった。
Next, the dried carbonate was oxidized under the condition of being heated and held at 1050 ° C. for 10 hours in the air.
Next, the material obtained by the oxidation treatment was used as a positive electrode material (positive electrode active material) of a lithium ion secondary battery to produce an electrode film, and the presence or absence of peeling of the film was investigated.
The electrode film was prepared by kneading NMP (N-methylpyrrolidone) in a solvent at a ratio of 85% active material, 8% binder, and 7% conductive material, applying it onto an Al foil, pressing it after drying.
Also, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the battery characteristics {at initial capacity and 25 ° C. Cycle characteristics (capacity retention after 20 cycles)} were evaluated.
As a result, no peeling was observed in the produced electrode film, the initial capacity of the coin cell was 158 mAh / g, and the 25 ° C. cycle characteristic was 93%, which was almost the same as in Example 1.

なお、前記「実施例」では何れもNi,Mn及びCoを共に含むLi複合炭酸塩や、Ni,Mn,Co及びMgを含むLi複合炭酸塩の前駆体に係る例のみ示したが、Ni,MnあるいはCoを単独で含むLi複合炭酸塩を前駆体とした場合や、Ni,Mn,Coのうちの2種を含むLi複合炭酸塩を前駆体とした場合、更にはこれらにMg,Al,Ti,Cr,Fe,Cu,Zrの1種又は2種以上を含有させたLi複合炭酸塩を前駆体とした場合も同様に優れた結果が得られることは確認済である。 In the above-mentioned “Examples”, only examples relating to Li composite carbonates containing both Ni, Mn, and Co and precursors of Li composite carbonates containing Ni, Mn, Co, and Mg are shown. When Li composite carbonate containing Mn or Co alone is used as a precursor, or when Li composite carbonate containing two kinds of Ni, Mn and Co is used as a precursor, Mg, Al, It has been confirmed that excellent results can be obtained in the same manner when a Li composite carbonate containing one or more of Ti, Cr, Fe, Cu, and Zr is used as a precursor.

Claims (6)

式「ACO3(但し、AはNi,Mn及びCoの1種以上)」で表される炭酸塩とLi2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料。 A composite of a carbonate represented by the formula “ACO 3 (wherein A is one or more of Ni, Mn, and Co)” and Li 2 CO 3 , wherein the moles of Li content relative to the total metal content The precursor material for lithium ion secondary battery positive electrode materials whose ratio is 0.5 or more and 1.3 or less. 式「ACO3(但し、AはNi,Mn及びCoの1種以上)」で表される炭酸塩と、式「DCO3(但し、DはMg,Al,Ti,Cr,Fe,Cu及びZrの1種以上)」で表される炭酸塩あるいは式「D(OH)」で表される水酸化物の何れか又は双方と、Li2CO3との複合物であって、全金属の含有量に対するLi含有量のモル比が0.5以上1.3以下である、リチウムイオン二次電池正極材料用前駆体材料。 A carbonate represented by the formula “ACO 3 (where A is one or more of Ni, Mn and Co)” and a formula “DCO 3 (where D is Mg, Al, Ti, Cr, Fe, Cu and Zr). 1 or more) of carbonates represented by the formula “D (OH)” or both, and a composite of Li 2 CO 3 and containing all metals The precursor material for lithium ion secondary battery positive electrode materials whose molar ratio of Li content with respect to quantity is 0.5 or more and 1.3 or less. 炭酸リチウム懸濁液に、Ni,Mn又はCoの塩化物の1種以上の水溶液、あるいはこの水溶液とMg,Al,Ti,Cr,Fe,Cu又はZrの塩化物の1種以上の水溶液との混合液を投入して炭酸塩を析出させる際、炭酸リチウムの懸濁量(w)を下記の式に従って決定することによりLiを含有する炭酸塩を析出させ、かつ得られた炭酸塩を飽和炭酸リチウム溶液又はエタノールで洗浄することを特徴とする、リチウムイオン二次電池正極材料用前駆体材料の製造方法。
w(モル)=全金属成分量(モル)×(1+0.5x)
〔但し、x=電池正極材料に必要なLi量/全金属成分量〕
In a lithium carbonate suspension, one or more aqueous solutions of Ni, Mn or Co chlorides, or this aqueous solution and one or more aqueous solutions of Mg, Al, Ti, Cr, Fe, Cu or Zr chlorides. When the mixed solution is added to precipitate the carbonate, the amount of lithium carbonate suspended (w) is determined according to the following formula to precipitate the carbonate containing Li, and the resulting carbonate is saturated with carbonate. The manufacturing method of the precursor material for lithium ion secondary battery positive electrode materials characterized by wash | cleaning with a lithium solution or ethanol.
w (mol) = total metal component amount (mol) × (1 + 0.5x)
[Where x = amount of Li required for battery positive electrode material / amount of all metal components]
炭酸リチウム懸濁液に、Ni,Mn又はCoの塩化物の1種以上の水溶液、あるいはこの水溶液とMg,Al,Ti,Cr,Fe,Cu又はZrの塩化物の1種以上の水溶液との混合液を投入して炭酸塩を析出させる際、炭酸リチウムの懸濁量(w)を下記の式に従って決定することによりLiを含有する炭酸塩を析出させ、かつ得られた炭酸塩をエタノールで洗浄した後、洗浄液からエタノールを回収し再利用することを特徴とする、リチウムイオン二次電池正極材料用前駆体材料の製造方法。
w(モル)=全金属成分量(モル)×(1+0.5x)
〔但し、x=電池正極材料に必要なLi量/全金属成分量〕
In a lithium carbonate suspension, one or more aqueous solutions of Ni, Mn or Co chlorides, or this aqueous solution and one or more aqueous solutions of Mg, Al, Ti, Cr, Fe, Cu or Zr chlorides. When the mixed solution is added to precipitate the carbonate, the amount of lithium carbonate suspended (w) is determined according to the following formula to precipitate the carbonate containing Li, and the resulting carbonate is ethanol A method for producing a precursor material for a positive electrode material of a lithium ion secondary battery, wherein ethanol is recovered from a cleaning solution and reused after cleaning.
w (mol) = total metal component amount (mol) × (1 + 0.5x)
[Where x = amount of Li required for battery positive electrode material / amount of all metal components]
請求項3又は請求項4に記載の方法により作製したリチウムイオン二次電池正極材料用前駆体材料に酸化処理を施すことを特徴とする、リチウムイオン二次電池正極材料の製造方法。 The manufacturing method of the lithium ion secondary battery positive electrode material characterized by performing an oxidation process to the precursor material for lithium ion secondary battery positive electrode materials produced by the method of Claim 3 or Claim 4. 大気中で800〜1100℃に1〜10時間保持する条件にて酸化処理を行う、請求項5に記載のリチウムイオン二次電池正極材料の製造方法。 The manufacturing method of the lithium ion secondary battery positive electrode material of Claim 5 which performs an oxidation process on the conditions hold | maintained at 800-1100 degreeC for 1 to 10 hours in air | atmosphere.
JP2011142140A 2011-06-27 2011-06-27 Precursor for positive electrode material of lithium ion secondary battery Pending JP2011198772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142140A JP2011198772A (en) 2011-06-27 2011-06-27 Precursor for positive electrode material of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142140A JP2011198772A (en) 2011-06-27 2011-06-27 Precursor for positive electrode material of lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004098253A Division JP4916094B2 (en) 2004-03-30 2004-03-30 Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same

Publications (1)

Publication Number Publication Date
JP2011198772A true JP2011198772A (en) 2011-10-06

Family

ID=44876667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142140A Pending JP2011198772A (en) 2011-06-27 2011-06-27 Precursor for positive electrode material of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011198772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742479B2 (en) * 2014-03-28 2023-08-29 Sumitomo Metal Mining Co., Ltd. Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393163A (en) * 1989-09-01 1991-04-18 Sanyo Electric Co Ltd Nonaqueous system secondary battery
JPH08208231A (en) * 1995-01-26 1996-08-13 Japan Metals & Chem Co Ltd Production of spinel type lithium manganite
JPH10182159A (en) * 1996-12-18 1998-07-07 Tosoh Corp Lithium manganate and its production and lithium secondary battery using lithium manganate as anode
JPH1116569A (en) * 1997-06-20 1999-01-22 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH1154159A (en) * 1997-06-04 1999-02-26 Japan Energy Corp Method to recover and reproduce cobalt, nickel or manganese and lithium from battery positive electrode scrap material and material for battery positive electrode
JP2000331680A (en) * 1999-05-24 2000-11-30 Kyocera Corp Lithium secondary battery and manufacture thereof
JP2002184404A (en) * 2000-12-15 2002-06-28 Sony Corp Positive electrode material and nonaqueous electrolyte battery
JP2004022433A (en) * 2002-06-19 2004-01-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393163A (en) * 1989-09-01 1991-04-18 Sanyo Electric Co Ltd Nonaqueous system secondary battery
JPH08208231A (en) * 1995-01-26 1996-08-13 Japan Metals & Chem Co Ltd Production of spinel type lithium manganite
JPH10182159A (en) * 1996-12-18 1998-07-07 Tosoh Corp Lithium manganate and its production and lithium secondary battery using lithium manganate as anode
JPH1154159A (en) * 1997-06-04 1999-02-26 Japan Energy Corp Method to recover and reproduce cobalt, nickel or manganese and lithium from battery positive electrode scrap material and material for battery positive electrode
JPH1116569A (en) * 1997-06-20 1999-01-22 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2000331680A (en) * 1999-05-24 2000-11-30 Kyocera Corp Lithium secondary battery and manufacture thereof
JP2002184404A (en) * 2000-12-15 2002-06-28 Sony Corp Positive electrode material and nonaqueous electrolyte battery
JP2004022433A (en) * 2002-06-19 2004-01-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742479B2 (en) * 2014-03-28 2023-08-29 Sumitomo Metal Mining Co., Ltd. Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof

Similar Documents

Publication Publication Date Title
JP4916094B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
JP4768562B2 (en) Lithium / transition metal composite oxide, method for producing the same, and lithium battery using the same
JP4444121B2 (en) Material for positive electrode of lithium secondary battery and manufacturing method thereof
Senćanski et al. The synthesis of Li (CoMnNi) O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions
JP5963745B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP4620378B2 (en) Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP2006004724A (en) Precursor for positive electrode material for lithium ion secondary battery, its manufacturing method, and manufacturing method of positive electrode material using it
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
KR20120108031A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6493082B2 (en) Process for producing transition metal hydroxide
JPWO2011052607A1 (en) Method for producing positive electrode material for lithium ion secondary battery
JP2013144625A (en) Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11239463B2 (en) Process for producing cathode active material, cathode active material, positive electrode, and lithium ion secondary battery
JP5069007B2 (en) Method for producing lithium / transition metal composite oxide
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
Wang et al. A green process for recycling and synthesis of cathode materials LiMn 2 O 4 from spent lithium-ion batteries using citric acid
CN111403842B (en) Recovery method of waste lithium battery anode material, spherical nickel oxide material and application
JP5657970B2 (en) Lithium / transition metal composite oxide and lithium battery using the same
CN110114917B (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery
JP5828282B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery and secondary battery using the same
JP2011198772A (en) Precursor for positive electrode material of lithium ion secondary battery
JP5831234B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery
JP7206808B2 (en) Cobalt-manganese composite oxide, production method thereof, and use thereof
JPWO2012133436A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5593658B2 (en) Electrolytic manganese dioxide and method for producing lithium manganate using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228