JP2013144625A - Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013144625A
JP2013144625A JP2012006473A JP2012006473A JP2013144625A JP 2013144625 A JP2013144625 A JP 2013144625A JP 2012006473 A JP2012006473 A JP 2012006473A JP 2012006473 A JP2012006473 A JP 2012006473A JP 2013144625 A JP2013144625 A JP 2013144625A
Authority
JP
Japan
Prior art keywords
nickel
manganese composite
composite hydroxide
positive electrode
nickel cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012006473A
Other languages
Japanese (ja)
Inventor
Takaaki Masukawa
貴昭 増川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP2012006473A priority Critical patent/JP2013144625A/en
Publication of JP2013144625A publication Critical patent/JP2013144625A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nickel cobalt manganese compound hydroxide which allows a higher density of a positive electrode active material and achieves a high density non-aqueous electrolyte secondary battery, and to provide a method for producing the same.SOLUTION: The nickel cobalt manganese compound hydroxide is NiCoMn compound hydroxide, in which the atomic ratio of Ni, Co and Mn is substantially 5:2:3. The nickel cobalt manganese compound hydroxide is obtained by keeping the pH of an aqueous solution containing a nickel salt, a cobalt salt and a manganese salt within the range of 10 to 13, in an atmosphere of a mixed gas composed of an inert gas and oxygen, wherein oxygen is contained in an amount of 0.5 to 3.0 vol% of the inert gas, to deposit the compound hydroxide. The method for producing the compound hydroxide, a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery having a positive electrode using the positive electrode active material as a main part, a separator, a negative electrode, and a nonaqueous electrolyte solution are also provided.

Description

本発明は、非水電解質二次電池用の正極活物質の前駆体として有用なニッケルコバルトマンガン複合水酸化物及びその製造方法、非水電解質二次電池用の正極活物質、並びに非水電解質二次電池に関する。   The present invention relates to a nickel cobalt manganese composite hydroxide useful as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery. Next battery.

非水電解質二次電池として、リチウムイオン二次電池が携帯電話を始めとする携帯機器に用いられてきた。近年、地球環境への関心が高まるとともに、リチウムイオン二次電池については、EV(Electric Vehicle)若しくはPHEV(Plug-in Hybrid Electric Vehicle)用途への展開が期待されている。   As a non-aqueous electrolyte secondary battery, a lithium ion secondary battery has been used in mobile devices such as mobile phones. In recent years, interest in the global environment has increased, and lithium ion secondary batteries are expected to be used for EV (Electric Vehicle) or PHEV (Plug-in Hybrid Electric Vehicle) applications.

EVやPHEVでは電池から推進エネルギーが供給されるため、航続距離を伸ばすためには、電池の容量が重要な課題である。かかる電池の正極活物質としては、比較的大きな容量を示すリチウム−ニッケルコバルトマンガン複合酸化物が現在主流になってきている。電池の容量を向上させる観点からは、リチウム−ニッケルコバルトマンガン複合酸化物すなわち正極活物質を高密度にすることが重要である。   In EV and PHEV, since propulsion energy is supplied from the battery, the capacity of the battery is an important issue in order to extend the cruising distance. As a positive electrode active material of such a battery, a lithium-nickel cobalt manganese composite oxide having a relatively large capacity has become mainstream. From the viewpoint of improving the capacity of the battery, it is important to increase the density of the lithium-nickel cobalt manganese composite oxide, that is, the positive electrode active material.

リチウム−ニッケルコバルトマンガン複合酸化物の製法として、まず前駆体としてニッケルコバルトマンガン複合水酸化物の微粒子を生成し、この前駆体とリチウム化合物とを混合し焼成して正極活物質とするものが存在する。正極活物質の前駆体は、不活性ガス雰囲気下で、ニッケル塩とコバルト塩とマンガン塩とを含む水溶液を錯化剤及びpH調整剤とともに反応槽に連続供給しつつ攪拌し、生成された沈殿物を連続的に回収することで製造される(特許文献1参照)。   As a method for producing a lithium-nickel cobalt manganese composite oxide, there are firstly produced nickel cobalt manganese composite hydroxide fine particles as a precursor, mixed with this precursor and a lithium compound, and fired to obtain a positive electrode active material. To do. The precursor of the positive electrode active material is a precipitate produced by stirring an aqueous solution containing a nickel salt, a cobalt salt, and a manganese salt together with a complexing agent and a pH adjuster while continuously supplying the precursor to a reaction vessel under an inert gas atmosphere. Manufactured by continuously collecting products (see Patent Document 1).

上記の製法によって、高いタップ密度の前駆体が得られるものの、さらにタップ密度を向上させれば、正極活物質を高密化でき電池の容量をさらに向上させることができる。
特開2008−195608号公報
Although a precursor with a high tap density can be obtained by the above production method, if the tap density is further improved, the positive electrode active material can be densified and the capacity of the battery can be further improved.
JP 2008-195608 A

本発明は、上記背景に鑑みてなされたものであり、正極活物質をさらに高密化でき、高密度の非水電解質二次電池を実現可能にするニッケルコバルトマンガン複合水酸化物及びその製造方法提供することを目的とする。   The present invention has been made in view of the above background, and provides a nickel cobalt manganese composite hydroxide capable of further increasing the density of the positive electrode active material and realizing a high-density nonaqueous electrolyte secondary battery, and a method for producing the same. The purpose is to do.

また、本発明は、上記ニッケルコバルトマンガン複合水酸化物を用いた高密度の正極活物質及び高容量の非水電解質二次電池を提供することを目的とする。   Another object of the present invention is to provide a high-density positive electrode active material and a high-capacity nonaqueous electrolyte secondary battery using the nickel cobalt manganese composite hydroxide.

本発明によれば、(1)〜(5)のニッケルコバルトマンガン複合水酸化物、(6)〜(8)のニッケルコバルトマンガン複合水酸化物の製造方法、(9)の非水電解質二次電池用の正極活物質、及び、(10)の非水電解質二次電池が得られる。   According to the present invention, the nickel cobalt manganese composite hydroxide of (1) to (5), the method for producing the nickel cobalt manganese composite hydroxide of (6) to (8), and the nonaqueous electrolyte secondary of (9) The positive electrode active material for a battery and the nonaqueous electrolyte secondary battery of (10) are obtained.

(1) ニッケル(Ni)とコバルト(Co)とマンガン(Mn)との含有割合が、Ni:Co:Mnの原子比で3.5〜5.5:1.0〜3.0:2.5〜4.5であるニッケルコバルトマンガン複合水酸化物であって、
不活性ガスと、当該不活性ガスに対して体積比で0.5%以上3.0%以下の酸素ガスとの混合ガスの雰囲気下で、ニッケル塩、コバルト塩及びマンガン塩(具体的には、モル比3.5〜5.5:1.0〜3.0:2.5〜4.5)を含む水溶液をpH10以上pH13以下に保持することにより、析出させて得られるニッケルコバルトマンガン複合水酸化物。
(1) The content ratio of nickel (Ni), cobalt (Co), and manganese (Mn) is 3.5 to 5.5: 1.0 to 3.0: 2. 5 to 4.5 nickel cobalt manganese composite hydroxide,
In an atmosphere of a mixed gas of an inert gas and an oxygen gas having a volume ratio of 0.5% to 3.0% with respect to the inert gas, a nickel salt, a cobalt salt, and a manganese salt (specifically, Nickel cobalt manganese composite obtained by precipitation by maintaining an aqueous solution containing a molar ratio of 3.5 to 5.5: 1.0 to 3.0: 2.5 to 4.5 at a pH of 10 to 13 hydroxide.

なお、ニッケル(Ni)とコバルト(Co)とマンガン(Mn)との含有割合がNi:Co:Mnの原子比で3.5〜5.5:1.0〜3.0:2.5〜4.5であるとは、Niの割合が3.5以上5.5以下であり、Coの割合が1.0以上3.0以下であり、Mnの割合が2.5以上4.5以下であることを意味する。具体的には、例えば式:NiCoMn(OH)(式中、0.35≦x≦0.55、0.1≦y≦0.3、0.25≦z≦0.45、さらにx+y+z=1)で表されるものを意味する(以下において同じ)。 In addition, the content ratio of nickel (Ni), cobalt (Co), and manganese (Mn) is 3.5 to 5.5: 1.0 to 3.0: 2.5 to the atomic ratio of Ni: Co: Mn. 4.5 means that the proportion of Ni is 3.5 or more and 5.5 or less, the proportion of Co is 1.0 or more and 3.0 or less, and the proportion of Mn is 2.5 or more and 4.5 or less. It means that. Specifically, for example, the formula: Ni x Co y Mn z (OH) 2 (where 0.35 ≦ x ≦ 0.55, 0.1 ≦ y ≦ 0.3, 0.25 ≦ z ≦ 0. 45, and x + y + z = 1) (the same applies hereinafter).

(2) タップ密度が2.0g/ml以上であり、バルク密度が1.5g/ml以上であり、平均粒子径が5μm以上30μm以下である、上記(1)に記載のニッケルコバルトマンガン複合水酸化物。 (2) The nickel-cobalt-manganese composite water according to (1), wherein the tap density is 2.0 g / ml or more, the bulk density is 1.5 g / ml or more, and the average particle size is 5 μm or more and 30 μm or less. Oxides.

(3) 不活性ガスは窒素である、上記(1)又は(2)に記載のニッケルコバルトマンガン複合水酸化物。 (3) The nickel cobalt manganese composite hydroxide according to the above (1) or (2), wherein the inert gas is nitrogen.

(4) 水溶液は錯化剤を含む、上記(1)〜(3)のいずれか一項に記載のニッケルコバルトマンガン複合水酸化物。 (4) The nickel cobalt manganese composite hydroxide according to any one of (1) to (3), wherein the aqueous solution contains a complexing agent.

(5) 非水電解質二次電池用の正極活物質の前駆体である上記(1)〜(4)のいずれかに記載のニッケルコバルトマンガン複合水酸化物。 (5) The nickel cobalt manganese composite hydroxide according to any one of the above (1) to (4), which is a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery.

(6) ニッケル(Ni)とコバルト(Co)とマンガン(Mn)との含有割合が、Ni:Co:Mnの原子比で3.5〜5.5:1.0〜3.0:2.5〜4.5であるニッケルコバルトマンガン複合水酸化物の製造方法であって、
ニッケル塩、コバルト塩及びマンガン塩(モル比)を含む水溶液を得る工程と、
不活性ガスと当該不活性ガスに対して体積比で0.5%以上3.0%以下の酸素ガスとの混合ガスの雰囲気下で、水溶液をpH10以上pH13以下に保持する工程と
を有するニッケルコバルトマンガン複合水酸化物の製造方法。
(6) The content ratio of nickel (Ni), cobalt (Co), and manganese (Mn) is 3.5 to 5.5: 1.0 to 3.0: 2. It is a manufacturing method of nickel cobalt manganese compound hydroxide which is 5-4.5,
Obtaining an aqueous solution containing nickel salt, cobalt salt and manganese salt (molar ratio);
Nickel having a step of maintaining an aqueous solution at a pH of 10 or more and a pH of 13 or less in an atmosphere of a mixed gas of an inert gas and an oxygen gas having a volume ratio of 0.5% to 3.0% with respect to the inert gas. Method for producing cobalt manganese composite hydroxide.

(7) 不活性ガスは窒素である、上記(6)に記載のニッケルコバルトマンガン複合水酸化物の製造方法。 (7) The method for producing a nickel cobalt manganese composite hydroxide according to the above (6), wherein the inert gas is nitrogen.

(8) 混合ガスを、水溶液を収容する反応槽内に定常的に供給する、上記(6)又は(7)のいずれかに記載のニッケルコバルトマンガン複合水酸化物の製造方法。 (8) The method for producing a nickel-cobalt-manganese composite hydroxide according to any one of (6) and (7) above, wherein the mixed gas is constantly supplied into a reaction vessel containing an aqueous solution.

(9) 水溶液は錯化剤を含む、上記(6)〜(8)のいずれかに記載のニッケルコバルトマンガン複合水酸化物の製造方法。 (9) The method for producing a nickel cobalt manganese composite hydroxide according to any one of (6) to (8), wherein the aqueous solution contains a complexing agent.

(10) 上記(1)〜(5)のいずれかに記載の正極活物質のニッケルコバルトマンガン複合水酸化物とリチウム化合物の混合物を焼成して得られる非水電解質二次電池用の正極活物質。 (10) A positive electrode active material for a nonaqueous electrolyte secondary battery obtained by firing a mixture of a nickel cobalt manganese composite hydroxide and a lithium compound of the positive electrode active material according to any one of (1) to (5) above .

(11) 上記(10)に記載の非水電解質二次電池用の正極活物質を主成分とする正極、セパレーター、及び負極を有する、非水電解質二次電池。 (11) A non-aqueous electrolyte secondary battery having a positive electrode, a separator, and a negative electrode mainly composed of the positive electrode active material for a non-aqueous electrolyte secondary battery according to (10).

本発明に係るニッケルコバルトマンガン複合水酸化物によれば、上記のように微酸化性の不活性雰囲気でニッケルコバルトマンガン複合水酸化物の粒子を析出させるので、ニッケルコバルトマンガン複合水酸化物のタップ密度やバルク密度が向上し、正極活物質やその前駆体を高密化でき、結果的として、非水電解質二次電池の容量をさらに向上させることができる。
本発明に係るニッケルコバルトマンガン複合水酸化物の製造方法によれば、本発明のニッケルコバルトマンガン複合水酸化物を効率よく工業的に有利に製造することができる。
According to the nickel-cobalt-manganese composite hydroxide according to the present invention, the nickel-cobalt-manganese composite hydroxide particles are deposited in the slightly oxidizing inert atmosphere as described above, so the nickel-cobalt-manganese composite hydroxide tap Density and bulk density are improved, and the positive electrode active material and its precursor can be densified. As a result, the capacity of the nonaqueous electrolyte secondary battery can be further improved.
According to the method for producing a nickel cobalt manganese composite hydroxide according to the present invention, the nickel cobalt manganese composite hydroxide of the present invention can be efficiently and industrially advantageously produced.

本発明に係るニッケルコバルトマンガン複合水酸化物の製造装置を説明する図である。It is a figure explaining the manufacturing apparatus of the nickel cobalt manganese compound hydroxide concerning the present invention. 本発明に係るニッケルコバルトマンガン複合水酸化物の製造工程を説明する図である。It is a figure explaining the manufacturing process of the nickel cobalt manganese compound hydroxide concerning the present invention. (A)及び(B)は、実施例によるニッケルコバルトマンガン複合水酸化物微粒子と比較例によるニッケルコバルトマンガン複合水酸化物微粒子とを対比したSEM拡大像であり、(C)及び(D)は、実施例による正極活物質微粒子と比較例による正極活物質微粒子とを対比したSEM拡大像である。(A) and (B) are SEM enlarged images in which the nickel cobalt manganese composite hydroxide fine particles according to the example and the nickel cobalt manganese composite hydroxide fine particles according to the comparative example are compared, and (C) and (D) are It is a SEM enlarged image which contrasted the positive electrode active material fine particle by an Example, and the positive electrode active material fine particle by a comparative example.

以下、本発明を、1)ニッケルコバルトマンガン複合水酸化物、2)ニッケルコバルトマンガン複合水酸化物の製造方法、3)非水電解質二次電池用の正極活物質及びその製造方法、並びに4)非水電解質二次電池に項分けして詳細に説明する。   Hereinafter, the present invention is divided into 1) nickel cobalt manganese composite hydroxide, 2) method for producing nickel cobalt manganese composite hydroxide, 3) positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing the same, and 4) The non-aqueous electrolyte secondary battery will be described in detail.

1)ニッケルコバルトマンガン複合水酸化物
(必須成分)
本発明に係るニッケルコバルトマンガン複合水酸化物は、ニッケル(Ni)とコバルト(Co)とマンガン(Mn)とを含み、NiとCoとMnとの含有割合が、Ni:Co:Mnの原子比で3.5〜5.5:1.0〜3.0:2.5〜4.5である。具体的には、例えば次式
NiCoMn(OH)(式中、0.35≦x≦0.55、0.1≦y≦0.3、0.25≦z≦0.45、さらにx+y+z=1)
で表されるものである。
1) Nickel cobalt manganese composite hydroxide (essential component)
The nickel cobalt manganese composite hydroxide according to the present invention contains nickel (Ni), cobalt (Co) and manganese (Mn), and the content ratio of Ni, Co and Mn is the atomic ratio of Ni: Co: Mn. It is 3.5-5.5: 1.0-3.0: 2.5-4.5. Specifically, for example, the following formula Ni x Co y Mn z (OH) 2 (where 0.35 ≦ x ≦ 0.55, 0.1 ≦ y ≦ 0.3, 0.25 ≦ z ≦ 0. 45, and x + y + z = 1)
It is represented by

以上のようなニッケルコバルトマンガン複合水酸化物の中でも、次式
NiCoMn(OH)(式中、0.43≦x≦0.47、0.18≦y≦0.22、0.33≦z≦0.37、さらにx+y+z=1)
で表されるものが、タップ密度又はバルク密度を向上させる観点でより好ましい。
Among the nickel-cobalt-manganese composite hydroxide as described above, the following formula Ni x Co y Mn z (OH ) 2 ( wherein, 0.43 ≦ x ≦ 0.47,0.18 ≦ y ≦ 0.22, 0.33 ≦ z ≦ 0.37, and x + y + z = 1)
Is more preferable from the viewpoint of improving the tap density or bulk density.

(製法及び粉体物理特性に関連する特徴事項)
本発明に係るニッケルコバルトマンガン複合水酸化物は、不活性ガスと微量の酸素ガスとの混合ガスの雰囲気下で、ニッケル塩、コバルト塩及びマンガン塩を含む水溶液をpH10以上pH13以下に保持することによって、高密度の粒子として析出する。ここで、ニッケル塩、コバルト塩及びマンガン塩は、水溶液に一定の比率で供給され、このように供給されるニッケル塩、コバルト塩及びマンガン塩の混合割合は、ニッケルコバルトマンガン複合水酸化物中の原子と実質的に同一であり、ニッケル塩:コバルト塩:マンガン塩のモル比で、通常3.5〜5.5:1.0〜3.0:2.5〜4.5であり、好ましくは4.3〜4.7:1.8〜2.2:3.3〜3.7である。なお、錯化剤水溶液を反応槽内に定常的に供給することで、金属イオンの溶解に関する濃度勾配を小さくして密度の高い十分なサイズの粒子を成長させることができる。錯化剤は、ニッケル塩、コバルト塩及びマンガン塩の混合水溶液と別にして反応槽に供給してもよいし、ニッケル塩、コバルト塩及びマンガン塩の混合水溶液に錯化剤を添加した状態で反応槽内に一括して供給してもよい。
(Features related to manufacturing method and physical properties of powder)
The nickel-cobalt-manganese composite hydroxide according to the present invention maintains an aqueous solution containing nickel salt, cobalt salt and manganese salt at pH 10 or more and pH 13 or less in an atmosphere of a mixed gas of an inert gas and a trace amount of oxygen gas. To precipitate as high density particles. Here, the nickel salt, the cobalt salt and the manganese salt are supplied to the aqueous solution at a certain ratio, and the mixing ratio of the nickel salt, the cobalt salt and the manganese salt supplied in this way is in the nickel cobalt manganese composite hydroxide. It is substantially the same as the atom, and the molar ratio of nickel salt: cobalt salt: manganese salt is usually 3.5 to 5.5: 1.0 to 3.0: 2.5 to 4.5, preferably Is 4.3 to 4.7: 1.8 to 2.2: 3.3 to 3.7. In addition, by supplying the complexing agent aqueous solution into the reaction tank constantly, the concentration gradient relating to the dissolution of metal ions can be reduced, and high-density and sufficiently sized particles can be grown. The complexing agent may be supplied to the reaction vessel separately from the mixed aqueous solution of nickel salt, cobalt salt and manganese salt, or with the complexing agent added to the mixed aqueous solution of nickel salt, cobalt salt and manganese salt. You may supply in batch in a reaction tank.

また、反応中に用いる混合ガスは、不活性ガスに対して体積比で0.5%以上3.0%以下、好ましくは体積比で1.2%以上2.5%以下、より好ましくは体積比で1.6%以上2.4%以下の酸素ガスを含む。混合ガスの主成分である不活性ガスとしては、例えば窒素ガス、アルゴンガス、ネオンガス、ヘリウムガス等が挙げられる。また、混合ガスとして、窒素ガスと空気とを適当な割合で混合して得られるものを用いることもできる。つまり、混合ガスは、本発明の効果を損なわない範囲で二酸化炭素ガス等の各種ガスを少量含めたものとできる。   The mixed gas used during the reaction is 0.5% to 3.0% by volume with respect to the inert gas, preferably 1.2% to 2.5% by volume, more preferably volume. It contains 1.6% to 2.4% oxygen gas in a ratio. Examples of the inert gas that is the main component of the mixed gas include nitrogen gas, argon gas, neon gas, helium gas, and the like. Moreover, what is obtained by mixing nitrogen gas and air in a suitable ratio can also be used as a mixed gas. That is, the mixed gas can contain a small amount of various gases such as carbon dioxide gas as long as the effects of the present invention are not impaired.

以上のように、混合ガスとして不活性ガスに対して体積比で0.5%以上3.0%以下の酸素ガスを含めたものを用いることで、水溶液中のニッケル、コバルト、又はマンガンのイオンに対して僅かな酸化傾向を持たせることができるので、結晶の析出や成長が良好になって、析出した微粒子を高密度化することができる。   As described above, nickel, cobalt, or manganese ions in the aqueous solution can be obtained by using a gas mixture containing oxygen gas in a volume ratio of 0.5% to 3.0% with respect to the inert gas. Therefore, it is possible to give a slight oxidation tendency, so that the precipitation and growth of crystals become good, and the deposited fine particles can be densified.

以上のようにして得られるニッケルコバルトマンガン複合水酸化物は、タップ密度について2.0g/ml以上とでき、バルク密度について1.5g/ml以上とできる。このような比較的高密度のニッケルコバルトマンガン複合水酸化物は、非水電解質二次電池用の正極活物質の前駆体として正極活物質の密度を高める意味で有用なものである。ニッケルコバルトマンガン複合水酸化物のタップ密度及びバルク密度は、実施例に記載した公知の測定法により測定して求めることができる。   The nickel cobalt manganese composite hydroxide obtained as described above can have a tap density of 2.0 g / ml or more and a bulk density of 1.5 g / ml or more. Such a relatively high density nickel-cobalt-manganese composite hydroxide is useful in terms of increasing the density of the positive electrode active material as a precursor of the positive electrode active material for a non-aqueous electrolyte secondary battery. The tap density and bulk density of the nickel-cobalt-manganese composite hydroxide can be determined by measurement by a known measurement method described in the examples.

ニッケルコバルトマンガン複合水酸化物の粉体形状については、特に制限はないが略球状が好ましい。ニッケルコバルトマンガン複合水酸化物の粉体は、結晶構造を有するニッケルコバルトマンガン複合水酸化物の一次粒子、かかる一次粒子が複数個集合して形成された二次粒子、及びこれらの混合物のいずれであってもよい。かかる粉体形状は、通常公知の電子顕微鏡測定により目視または画像データ処理により容易に判断することができる。   Although there is no restriction | limiting in particular about the powder shape of nickel cobalt manganese complex hydroxide, A substantially spherical shape is preferable. The powder of nickel cobalt manganese composite hydroxide may be any of primary particles of nickel cobalt manganese composite hydroxide having a crystal structure, secondary particles formed by aggregating a plurality of such primary particles, and mixtures thereof. There may be. Such a powder shape can be easily determined by visual observation or image data processing by a generally known electron microscope measurement.

ニッケルコバルトマンガン複合水酸化物の平均粒子径については、特に制限はないが、平均粒子径が5μm以上30μm以下の範囲が好ましい。粉体の粒子径は、造粒や粉砕によって制御することができる。粉体の粒子径を上記のような範囲とすることで、非水電解質二次電池の容量や出力を十分大きくすることができる。なお、平均粒子径が大きいと、ニッケルコバルトマンガン複合水酸化物から得たリチウム−ニッケルコバルトマンガン複合酸化物を電極にした際に粒子径が正極集電体の厚みを越えてしまい、実用的でない。かかる粒子径については、通常公知の粒子径分布測定方法・装置より容易に決定することができる。   Although there is no restriction | limiting in particular about the average particle diameter of nickel cobalt manganese composite hydroxide, The range whose average particle diameter is 5 micrometers or more and 30 micrometers or less is preferable. The particle diameter of the powder can be controlled by granulation or pulverization. By setting the particle diameter of the powder in the above range, the capacity and output of the nonaqueous electrolyte secondary battery can be sufficiently increased. When the average particle size is large, the particle size exceeds the thickness of the positive electrode current collector when a lithium-nickel cobalt manganese composite oxide obtained from nickel cobalt manganese composite hydroxide is used as an electrode, which is not practical. . The particle size can be easily determined by a generally known particle size distribution measuring method / apparatus.

(他成分)
本発明に係るニッケルコバルトマンガン複合水酸化物には、上記のようなニッケル、コバルト、及びマンガンの含有量の比が維持される限り、かつ本発明の効果である高密度化を損なわない限り、金属等の他の元素を含有させることも可能である。かかる元素としてはFe、Sn、Al、Ti、Zr、Mg等が挙げられる。またそれらの含有量についても、本発明の効果を損なわない範囲であれば特に制限はない。
(Other ingredients)
In the nickel-cobalt-manganese composite hydroxide according to the present invention, as long as the ratio of the contents of nickel, cobalt, and manganese as described above is maintained, and unless the densification that is the effect of the present invention is impaired, It is also possible to contain other elements such as metals. Examples of such elements include Fe, Sn, Al, Ti, Zr, and Mg. Moreover, there is no restriction | limiting in particular also about those content, if it is a range which does not impair the effect of this invention.

2)ニッケルコバルトマンガン複合水酸化物の製造方法
ニッケルコバルトマンガン複合水酸化物の製造方法を、そのための製造装置と具体的な製造工程とに分けて説明する。
2) Manufacturing Method of Nickel Cobalt Manganese Composite Hydroxide The manufacturing method of nickel cobalt manganese composite hydroxide will be described separately for the manufacturing apparatus and the specific manufacturing process.

2a) ニッケルコバルトマンガン複合水酸化物の製造装置
図1を参照して、本発明に係るニッケルコバルトマンガン複合水酸化物の製造方法に用いられる製造装置について説明する。図示の製造装置100は、反応槽10と、原料供給装置20と、pH調整装置30と、雰囲気制御装置40と、錯化剤供給装置50と、反応生成物回収装置60とを備える。
2a) Nickel Cobalt Manganese Composite Hydroxide Manufacturing Apparatus With reference to FIG. 1, a manufacturing apparatus used in the nickel cobalt manganese composite hydroxide manufacturing method according to the present invention will be described. The illustrated manufacturing apparatus 100 includes a reaction vessel 10, a raw material supply device 20, a pH adjustment device 30, an atmosphere control device 40, a complexing agent supply device 50, and a reaction product recovery device 60.

反応槽10は、金属又は樹脂製の円筒容器であり、プロペラタイプの攪拌装置11を備える。反応槽10は、ヒーター12を備え、反応槽10内に延びる不図示の温度センサーの出力に基づいて反応槽10に収納された溶液SOの温度を一定に保つことができる。反応槽10の側壁の適当な高さ位置には、槽内の反応生成物を排出するための生成物排出口13が設けられており、生成物排出口13には、当該生成物排出口13の任意のタイミングでの開閉を可能にするシャッターが設けられている。   The reaction tank 10 is a cylindrical container made of metal or resin, and includes a propeller type stirring device 11. The reaction tank 10 includes a heater 12 and can keep the temperature of the solution SO stored in the reaction tank 10 constant based on an output of a temperature sensor (not shown) extending into the reaction tank 10. A product outlet 13 for discharging the reaction product in the tank is provided at an appropriate height position on the side wall of the reaction tank 10, and the product outlet 13 includes the product outlet 13. A shutter that enables opening and closing at any timing is provided.

原料供給装置20は、ニッケル塩溶液とコバルト塩溶液とマンガン塩溶液とを適当な比率で混合して得た反応用の混合水溶液を反応槽10に供給する。混合水溶液の供給タイミングや供給量は、原料供給装置20に付随して設けられたバルブ21によって調整され、このバルブ21の動作は、不図示の制御駆動装置によって制御されている。   The raw material supply device 20 supplies a reaction mixed aqueous solution obtained by mixing a nickel salt solution, a cobalt salt solution, and a manganese salt solution at an appropriate ratio to the reaction vessel 10. The supply timing and supply amount of the mixed aqueous solution are adjusted by a valve 21 provided in association with the raw material supply device 20, and the operation of the valve 21 is controlled by a control driving device (not shown).

pH調整装置30は、反応槽10に保持された混合水溶液のpH値を調整するためのものであり、ニッケル塩、コバルト塩、マンガン塩等を含む混合水溶液が供給された反応槽10にpH調整剤であるアルカリ金属水酸化物を供給することによって、反応槽10内の溶液SOをアルカリ状態、具体的には、例えばpH10以上でpH13以下の範囲となるように制御する。アルカリ溶液の供給タイミングや供給量は、pH調整装置30に付随して設けられたバルブ31によって調整され、このバルブ31の動作は、不図示の制御駆動装置によって制御されている。   The pH adjusting device 30 is for adjusting the pH value of the mixed aqueous solution held in the reaction tank 10, and adjusts the pH to the reaction tank 10 supplied with the mixed aqueous solution containing nickel salt, cobalt salt, manganese salt, and the like. By supplying an alkali metal hydroxide as an agent, the solution SO in the reaction vessel 10 is controlled to be in an alkaline state, specifically, for example, in a range of pH 10 or more and pH 13 or less. The supply timing and supply amount of the alkaline solution are adjusted by a valve 31 provided along with the pH adjusting device 30, and the operation of the valve 31 is controlled by a control drive device (not shown).

雰囲気制御装置40は、窒素供給源41aを含む窒素供給系41と、酸素供給源42aを含む酸素供給系42と、両供給系41,42からの窒素及び酸素を混合する混合部44と、混合部44を経た窒素及び酸素の混合ガスを反応槽10上部の空間SPに供給する給気用配管46とを備える。なお、反応槽の10上部には、排気用配管47も設けられており、反応槽10上部の空間SPに溜まった雰囲気を外部に排出させることができる。   The atmosphere control device 40 includes a nitrogen supply system 41 including a nitrogen supply source 41a, an oxygen supply system 42 including an oxygen supply source 42a, a mixing unit 44 that mixes nitrogen and oxygen from both supply systems 41 and 42, and mixing And an air supply pipe 46 for supplying the mixed gas of nitrogen and oxygen that has passed through the section 44 to the space SP above the reaction tank 10. An exhaust pipe 47 is also provided at the upper part of the reaction tank 10 so that the atmosphere accumulated in the space SP above the reaction tank 10 can be discharged to the outside.

ここで、窒素供給系41は、窒素供給源41aからの窒素ガスの供給を断続するバルブ41bと、バルブ41bの下流に配置されて窒素ガスの流量を調整する流量制御部41cとを有しており、酸素供給系42は、酸素供給源42aからの酸素ガスの供給を断続するバルブ42bと、バルブ42bの下流に配置されて窒素ガスの流量を調整する流量制御部42cとを有している。前者の窒素供給源41aは、コストを考慮して例えば窒素ガス及び酸素ガスを含有する空気を供給するものとできる。   Here, the nitrogen supply system 41 includes a valve 41b that intermittently supplies nitrogen gas from the nitrogen supply source 41a, and a flow rate control unit 41c that is arranged downstream of the valve 41b and adjusts the flow rate of nitrogen gas. The oxygen supply system 42 includes a valve 42b for intermittently supplying oxygen gas from the oxygen supply source 42a, and a flow rate control unit 42c disposed downstream of the valve 42b for adjusting the flow rate of nitrogen gas. . The former nitrogen supply source 41a can supply air containing, for example, nitrogen gas and oxygen gas in consideration of cost.

以上の雰囲気制御装置40において、窒素供給系41におけるバルブ41b及び流量制御部41cと、窒素供給系42におけるバルブ42b及び流量制御部42cと、排気用配管47に設けたバルブ47cとは、不図示の制御駆動装置に駆動されて動作しており、反応槽10の空間SPの雰囲気を調整する。具体的には、高純度の窒素ガスに対して体積比で0.5%以上3.0%以下、好ましくは体積比で1.2%以上で2.5%以下(より好ましくは体積比1.6%以上で2.4%以下)の酸素ガスを添加した混合ガスを給気用配管46を介して反応槽10の空間SPに供給することができる。反応槽10の空間SPは、混合ガスの供給によって陽圧となっているが、排気用配管47に設けたバルブ47cの開閉度の調整によって反応槽10内の陽圧を微調整することができる。   In the above atmosphere control device 40, the valve 41b and the flow rate control unit 41c in the nitrogen supply system 41, the valve 42b and the flow rate control unit 42c in the nitrogen supply system 42, and the valve 47c provided in the exhaust pipe 47 are not shown. The control drive device is operated to adjust the atmosphere of the space SP of the reaction vessel 10. Specifically, the volume ratio is 0.5% or more and 3.0% or less, preferably 1.2% or more and 2.5% or less (more preferably volume ratio 1) with respect to high purity nitrogen gas. .6% or more and 2.4% or less) can be supplied to the space SP of the reaction tank 10 through the air supply pipe 46. The space SP of the reaction tank 10 is positively charged by the supply of the mixed gas, but the positive pressure in the reaction tank 10 can be finely adjusted by adjusting the opening / closing degree of the valve 47c provided in the exhaust pipe 47. .

錯化剤供給装置50は錯化剤水溶液を反応槽10に供給する。錯化剤水溶液の供給タイミングや供給量は、錯化剤供給装置50に付随して設けられたバルブ51によって調整され、このバルブ51の動作は、図示の制御駆動装置によって制御されている。   The complexing agent supply device 50 supplies the complexing agent aqueous solution to the reaction vessel 10. The supply timing and supply amount of the complexing agent aqueous solution are adjusted by a valve 51 provided in association with the complexing agent supply device 50, and the operation of the valve 51 is controlled by the illustrated control driving device.

反応生成物回収装置60は、反応槽10から傾斜して延びるオーバーフローパイプ61と、当該オーバーフローパイプ61の下端側を上部に連結した回収タンク62とを備える。オーバーフローパイプ61は、反応槽10の側壁に設けられている生成物排出口13に連通している。回収タンク62は、密閉型の容器であり、その内部に反応槽10からオーバーフローパイプ61を介して排出された反応生成物RP等を貯留している。回収タンク62の下部には、取出装置62bが設けられていて、回収タンク62内に水封された反応生成物RPを定期的に排出させて容器71に収容する。   The reaction product recovery device 60 includes an overflow pipe 61 extending from the reaction tank 10 in an inclined manner, and a recovery tank 62 in which the lower end side of the overflow pipe 61 is connected to the upper part. The overflow pipe 61 communicates with the product discharge port 13 provided on the side wall of the reaction tank 10. The recovery tank 62 is a sealed container and stores therein a reaction product RP and the like discharged from the reaction tank 10 through the overflow pipe 61. A take-out device 62 b is provided below the recovery tank 62, and the reaction product RP sealed in the recovery tank 62 is periodically discharged and stored in the container 71.

なお、回収タンク62から取り出された反応生成物RPは、容器71に収容された後に、不図示の装置にて洗浄され、濾過され、乾燥される。   The reaction product RP taken out from the recovery tank 62 is accommodated in the container 71, then washed by an apparatus (not shown), filtered, and dried.

2b) ニッケルコバルトマンガン複合水酸化物の具体的な製造工程
以下、図1に示す製造装置100を用いたニッケルコバルトマンガン複合水酸化物の製造方法の具体的な工程について説明する。
2b) Specific Manufacturing Process of Nickel Cobalt Manganese Composite Hydroxide The specific process of the manufacturing method of nickel cobalt manganese composite hydroxide using the manufacturing apparatus 100 shown in FIG. 1 will be described below.

まず、反応槽10内にpH調整された溶液SOを準備する(図2のステップS11)。具体的には、まず反応槽10内に水を供給し、均一化のために水の攪拌を行いつつpH調整装置30を動作させて、適当なpH値となるまで、例えば水酸化ナトリウム溶液のようなアルカリ金属水酸化物のpH調整剤を加える。   First, a pH-adjusted solution SO is prepared in the reaction vessel 10 (step S11 in FIG. 2). Specifically, first, water is supplied into the reaction vessel 10 and the pH adjusting device 30 is operated while stirring the water for homogenization until a suitable pH value is reached. Such an alkali metal hydroxide pH adjuster is added.

その後、ヒーター12で反応槽10内の溶液SOを攪拌しつつ加熱して、溶液SOの温度が所定温度に保たれるようにする(図2のステップS12)。溶液SOに設定される温度は、後の結晶化又は共沈反応に適する温度であり、例えば40℃以上で60℃以下の範囲内とされる。   Thereafter, the solution SO in the reaction vessel 10 is heated while being stirred by the heater 12 so that the temperature of the solution SO is maintained at a predetermined temperature (step S12 in FIG. 2). The temperature set for the solution SO is a temperature suitable for the subsequent crystallization or coprecipitation reaction, and is, for example, in the range of 40 ° C. or more and 60 ° C. or less.

反応槽10内の溶液SOの加温に伴って、雰囲気制御装置40からの混合ガスを反応槽10に導入することによって、空間SPの雰囲気を一定状態にする(図2のステップS13)。この際、攪拌装置11のプロペラを定速で回転させることによって、反応槽10の下部に溜まった溶液SOと空間SPに溜まった雰囲気とが十分に接触するようにする。ここで、雰囲気制御装置40からの混合ガスは、ほとんどが窒素であり、わずかに酸素を含むものとなっており、不活性雰囲気でありながらわずかに酸化性を持たせたもの(微酸化性雰囲気)となっている。   As the solution SO in the reaction vessel 10 is heated, the mixed gas from the atmosphere control device 40 is introduced into the reaction vessel 10 to make the atmosphere of the space SP constant (step S13 in FIG. 2). At this time, by rotating the propeller of the stirring device 11 at a constant speed, the solution SO accumulated in the lower part of the reaction vessel 10 and the atmosphere accumulated in the space SP are brought into sufficient contact. Here, the mixed gas from the atmosphere control device 40 is mostly nitrogen and contains a slight amount of oxygen, and is an inert atmosphere that is slightly oxidized (a slightly oxidizing atmosphere). ).

反応槽10内の溶液SOが安定した段階で、攪拌装置11による攪拌を継続しつつ原料供給装置20を動作させて、反応槽10内の溶液SOに対して反応用の混合水溶液を一定流量で滴下し混合する(図2のステップS13)。この際、反応槽10内の溶液SOのpHが一定に維持されるように、所定濃度の水酸化ナトリウムその他のアルカリ金属水酸化物を溶液SOに対して断続的に加える。溶液SOに対して混合される反応用の混合水溶液は、硫酸ニッケル液と硫酸コバルト液と硫酸マンガン水溶液とを所定のモル比で混合したものである。また、上記反応用の混合水溶液の投入の際には、錯化剤供給装置50を適宜動作させて、硫酸アンモニウム溶液等の錯化剤を反応槽10内に適宜供給する。   When the solution SO in the reaction vessel 10 is stabilized, the raw material supply device 20 is operated while continuing the stirring by the stirring device 11, and the mixed aqueous solution for reaction is supplied at a constant flow rate to the solution SO in the reaction vessel 10. Drop and mix (step S13 in FIG. 2). At this time, a predetermined concentration of sodium hydroxide or other alkali metal hydroxide is intermittently added to the solution SO so that the pH of the solution SO in the reaction vessel 10 is kept constant. The mixed aqueous solution for reaction mixed with the solution SO is a mixture of a nickel sulfate solution, a cobalt sulfate solution, and a manganese sulfate aqueous solution in a predetermined molar ratio. In addition, when the above mixed aqueous solution for reaction is added, the complexing agent supply device 50 is operated as appropriate to supply a complexing agent such as an ammonium sulfate solution into the reaction vessel 10 as appropriate.

ここで、上記反応用の混合水溶液において、ニッケル塩溶液とコバルト塩溶液とマンガン塩溶液との混合割合(モル比)は、目標とするニッケルコバルトマンガン複合水酸化物又は複合金属水酸化物の組成比に対応するものとなっており、例えばNi:Co:Mn=3.5〜5.5:1.0〜3.0:2.5〜4.5となるようにされ、好ましくは4.3〜4.7:1.8〜2.2:3.3〜3.7となるようにする。また、溶媒として水が使用される。   Here, in the above mixed aqueous solution for reaction, the mixing ratio (molar ratio) of the nickel salt solution, cobalt salt solution and manganese salt solution is the composition of the target nickel cobalt manganese composite hydroxide or composite metal hydroxide. For example, Ni: Co: Mn = 3.5 to 5.5: 1.0 to 3.0: 2.5 to 4.5, preferably 4. 3 to 4.7: 1.8 to 2.2: 3.3 to 3.7. Moreover, water is used as a solvent.

上記ニッケル塩溶液の溶質であるニッケル塩としては、例えば硫酸ニッケル、硝酸ニッケル、及び塩化ニッケル等を使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルト等を使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガン等を使用することができる。なお、ニッケル、コバルト、及びマンガンのカウンターイオンは揃えることが望ましい。具体的には、例えばNi(2+)SOを用いる場合、Ni(2+)SOに対応させて、Co(2+)SO、及びMn(2+)SOを規定のモル比で混合することになる。 As the nickel salt which is the solute of the nickel salt solution, for example, nickel sulfate, nickel nitrate, nickel chloride and the like can be used. Examples of the cobalt salt that is a solute of the cobalt salt solution include cobalt sulfate, cobalt nitrate, and cobalt chloride. As the manganese salt that is the solute of the manganese salt solution, for example, manganese sulfate, manganese nitrate, manganese chloride, and the like can be used. In addition, it is desirable to arrange counter ions of nickel, cobalt, and manganese. Specifically, for example, when Ni (2+) SO 4 is used, Co (2+) SO 4 and Mn (2+) SO 4 are mixed at a specified molar ratio in correspondence with Ni (2+) SO 4. become.

錯化剤としては、水溶液中でニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。   Complexing agents are those that can form complexes with nickel, cobalt, and manganese ions in aqueous solution, such as ammonium ion donors (ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediamine. Examples include tetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.

上記の反応に際しては、必要ならばpH調整装置30を動作させて、アルカリ金属水酸化物の水溶液を添加することにより、反応槽10内の溶液SOのpH値を調整してアルカリ状態とする。具体的には、反応槽10内の溶液SOのpH値をpH9以上pH13以下の範囲となるように制御する。アルカリ金属水酸化物としては、例えば水酸化ナトリウム、水酸化カリウム等を用いることができる。なお、アルカリ金属水酸化物に代えて水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物を用いることもできる。   In the above reaction, if necessary, the pH adjusting device 30 is operated and an aqueous solution of an alkali metal hydroxide is added to adjust the pH value of the solution SO in the reaction vessel 10 to an alkaline state. Specifically, the pH value of the solution SO in the reaction vessel 10 is controlled to be in the range of pH 9 or more and pH 13 or less. As the alkali metal hydroxide, for example, sodium hydroxide, potassium hydroxide or the like can be used. In place of the alkali metal hydroxide, an alkaline earth metal hydroxide such as magnesium hydroxide, calcium hydroxide, or barium hydroxide can be used.

上記の反応において、反応槽10内を微酸化性雰囲気としており、ニッケルイオン、コバルトイオン、及びマンガンイオンは、微酸化性雰囲気から溶け込んだ酸素ガスの影響を受けて酸化される傾向が生じる。例えば原料液中のマンガンイオンは2価のイオンで存在するが、反応水溶液中では2価又は3価のイオンが混在したものとなり、それらのバランスが微酸化性雰囲気によって調整可能なるので、析出される反応生成生物又は反応沈殿物の密度を高めることができると考えられる。   In the above reaction, the inside of the reaction tank 10 is made into a slightly oxidizing atmosphere, and nickel ions, cobalt ions, and manganese ions tend to be oxidized under the influence of oxygen gas dissolved from the slightly oxidizing atmosphere. For example, manganese ions in the raw material liquid exist as divalent ions, but in the reaction aqueous solution, divalent or trivalent ions are mixed, and their balance can be adjusted by a slightly oxidizing atmosphere, so that they are precipitated. It is thought that the density of the reaction product or reaction precipitate can be increased.

反応槽10内の溶液SOの反応が進行して定常状態になった段階で、反応槽10に設けた生成物排出口13を開けて溶液SOを徐々にオーバーフローさせることにより、反応槽10内で過飽和になって析出した反応生成生物又は反応沈殿物である生成物粒子をオーバーフローパイプ61を介して反応生成物回収装置60に採取する(図2のステップS15)。溶液SOをオーバーフローさせるまでの時間は、装置や溶液によるが、例えば8〜32時間とされる。   At the stage where the reaction of the solution SO in the reaction vessel 10 has progressed to a steady state, the product discharge port 13 provided in the reaction vessel 10 is opened to gradually overflow the solution SO, thereby allowing the solution SO to overflow in the reaction vessel 10. Product particles that are reaction products or reaction precipitates that are supersaturated are collected in the reaction product recovery device 60 through the overflow pipe 61 (step S15 in FIG. 2). The time until the solution SO overflows depends on the apparatus and the solution, but is, for example, 8 to 32 hours.

反応生成物回収装置60に採取されたスラリー状の生成物粒子は、洗浄された後、濾過され、乾燥される(図2のステップS16)。得られた生成物粒子は、LiNiCoMn(OH)(式中、0.35≦x≦0.55、0.1≦y≦0.3、0.25≦z≦0.45、さらにx+y+z=1)で表されるニッケルコバルトマンガン複合水酸化物(本明細書ではニッケルコバルトマンガン複合化合物又は複合金属水酸化物と呼ぶこともある)である。 The slurry-like product particles collected in the reaction product recovery device 60 are washed, filtered, and dried (step S16 in FIG. 2). The resulting product particles, LiNi x Co y Mn z ( OH) 2 ( wherein, 0.35 ≦ x ≦ 0.55,0.1 ≦ y ≦ 0.3,0.25 ≦ z ≦ 0. 45, and x + y + z = 1), which is a nickel cobalt manganese composite hydroxide (also referred to as a nickel cobalt manganese composite compound or a composite metal hydroxide in this specification).

3)非水電解質二次電池用の正極活物質及びその製造方法
3a) 非水電解質二次電池用の正極活物質
非水電解質二次電池用の正極活物質は、上述したニッケルコバルトマンガン複合水酸化物とリチウム化合物との混合物を焼成して得られるリチウム−ニッケルコバルトマンガン複合酸化物であり、式:LiNiCoMn(式中、0.35≦x≦0.55、0.10≦y≦0.30、0.25≦z≦0.45、さらにx+y+z=1)
で表される。
3) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
3a) Positive electrode active material for non-aqueous electrolyte secondary battery The positive electrode active material for non-aqueous electrolyte secondary battery is lithium-nickel obtained by firing a mixture of the above-described nickel cobalt manganese composite hydroxide and lithium compound. Cobalt-manganese composite oxide, formula: LiNi x Co y Mn z O 2 (where 0.35 ≦ x ≦ 0.55, 0.10 ≦ y ≦ 0.30, 0.25 ≦ z ≦ 0. 45, and x + y + z = 1)
It is represented by

正極活物質としてのリチウム−ニッケルコバルトマンガン複合酸化物は、粉体として使用される。リチウム−ニッケルコバルトマンガン複合酸化物の粉体形状については、特に制限はないが略球状が好ましい。リチウム−ニッケルコバルトマンガン複合酸化物の粉体は、結晶構造を有するリチウム−ニッケルコバルトマンガン複合酸化物の一次粒子と、かかる一次粒子が複数個集合して形成された二次粒子と、これらの混合物とのいずれであってもよい。かかる粉体形状は、通常公知の電子顕微鏡測定により目視または画像データ処理により容易に判断することができる。リチウム−ニッケルコバルトマンガン複合酸化物の粒子径については、上述したニッケルコバルトマンガン複合水酸化物と近似しており、タップ密度を2.3g/ml以上とでき、バルク密度を1.6g/ml以上とできる。   The lithium-nickel cobalt manganese composite oxide as the positive electrode active material is used as a powder. The powder shape of the lithium-nickel cobalt manganese composite oxide is not particularly limited, but is preferably approximately spherical. The powder of lithium-nickel cobalt manganese composite oxide includes primary particles of lithium-nickel cobalt manganese composite oxide having a crystal structure, secondary particles formed by aggregating a plurality of such primary particles, and mixtures thereof. Or any of them. Such a powder shape can be easily determined by visual observation or image data processing by a generally known electron microscope measurement. The particle diameter of the lithium-nickel cobalt manganese composite oxide is similar to the nickel cobalt manganese composite hydroxide described above, the tap density can be 2.3 g / ml or more, and the bulk density is 1.6 g / ml or more. And can.

3b) 非水電解質二次電池用の正極活物質の製造方法
上記ニッケルコバルトマンガン複合金属水酸化物の化合物を乾燥した後、分級し、リチウム塩と混合する。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。以上のリチウム塩とニッケルコバルトマンガン複合金属水酸化物とは、最終目的物であるLiNiCoMn(式中、0.35≦x≦0.55、0.1≦y≦0.3、0.25≦z≦0.45、さらにx+y+z=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム−ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
3b) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery The nickel cobalt manganese composite metal hydroxide compound is dried, classified, and mixed with a lithium salt. As the lithium salt, any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used. The above lithium salt and nickel cobalt manganese composite metal hydroxide are LiNi x Co y Mn z O 2 (where 0.35 ≦ x ≦ 0.55, 0.1 ≦ y ≦ 0), which is the final target product. .3, 0.25 ≦ z ≦ 0.45, and x + y + z = 1). A lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese composite hydroxide and a lithium salt. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.

焼成によって得たリチウム−ニッケルコバルトマンガン複合酸化物は、粉砕後に分級され、非水電解質二次電池に適用可能な正極活物質とされる。このような正極活物質は、球形又は球形に近い形状を有し、好ましくは平均粒径が1μm以上30μm以下の範囲、より好ましくは3μm以上13μm以下の範囲にあり、上述のようにタップ密度が2.3g/ml以上となる。   The lithium-nickel-cobalt-manganese composite oxide obtained by firing is classified after pulverization and used as a positive electrode active material applicable to a non-aqueous electrolyte secondary battery. Such a positive electrode active material has a spherical shape or a shape close to a spherical shape, preferably has an average particle diameter in the range of 1 μm to 30 μm, more preferably in the range of 3 μm to 13 μm, and the tap density is as described above. It becomes 2.3 g / ml or more.

3c) 正極活物質の特性測定
正極活物質の容量は、非水電解質二次電池のリチウムイオン二次電池の実用的な電圧が、負極活物質に黒鉛を用いた場合に4.2Vであり、この電圧で評価することが実用的である。ただし、正極活物質単体の容量は、対極にLi金属を用いて測定されるため、その際の電位は、黒鉛の場合の4.2Vに相当する4.3Vで評価することになる。具体的な測定方法は、実施例で記す。
3c) Measurement of characteristics of positive electrode active material The capacity of the positive electrode active material is 4.2 V when the practical voltage of the lithium ion secondary battery of the non-aqueous electrolyte secondary battery uses graphite as the negative electrode active material, It is practical to evaluate at this voltage. However, since the capacity of the positive electrode active material alone is measured using Li metal for the counter electrode, the potential at that time is evaluated at 4.3 V corresponding to 4.2 V in the case of graphite. Specific measurement methods will be described in Examples.

4)非水電解質二次電池
本発明の非水電解質二次電池は、以上で説明した正極活物質を用いるものであれば、特に制限はない。非水電解質二次電池の構造は、公知の種々のタイプとすることができる。また、得られた非水電解質二次電池(リチウムイオン電池)の種々の特性・性能についても、通常公知の評価方法、測定装置に基づき決定することが可能である。
以下に、非水電解質二次電池の構造の一例を、正極、負極、非水電解質等に分けて説明する。
4) Nonaqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery of the present invention is not particularly limited as long as it uses the positive electrode active material described above. The structure of the nonaqueous electrolyte secondary battery can be of various known types. In addition, various characteristics and performance of the obtained nonaqueous electrolyte secondary battery (lithium ion battery) can be determined based on a generally known evaluation method and measuring apparatus.
Hereinafter, an example of the structure of the nonaqueous electrolyte secondary battery will be described separately for the positive electrode, the negative electrode, the nonaqueous electrolyte, and the like.

(正極)
本発明の非水電解質電池の正極は、以上で説明した正極活物質すなわちリチウム−ニッケルコバルトマンガン複合酸化物のほか、導電剤、結着剤等を溶媒中で混合し、得られたスラリーを正極集電体に塗布し、さらに乾燥することにより製造することができる。
(Positive electrode)
The positive electrode of the non-aqueous electrolyte battery of the present invention is prepared by mixing the positive electrode active material described above, that is, the lithium-nickel cobalt manganese composite oxide, a conductive agent, a binder, and the like in a solvent, and using the resulting slurry as the positive electrode. It can manufacture by apply | coating to a collector and drying further.

導電剤は、良好な電池性能を引き出すために添加される。導電剤としては、天然黒鉛;人造黒鉛;アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素;等が例示される。   The conductive agent is added to bring out good battery performance. Examples of the conductive agent include natural graphite; artificial graphite; carbon black such as acetylene black; amorphous carbon such as needle coke;

結着剤としては、非水電解質に対する耐性があり接着性を有するものであれば、特に限定されない。例えば、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、エチレン−プロピレン−ブタジエン三元共重合体、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、カルボキシメチルセルロース、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、又はこれらの誘導体を、単独で、又は混合して用いることができる。   The binder is not particularly limited as long as it has resistance to a nonaqueous electrolyte and has adhesiveness. For example, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, ethylene-propylene-butadiene terpolymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, carboxy Methyl cellulose, fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, or derivatives thereof can be used alone or in combination.

リチウム−ニッケルコバルトマンガン複合酸化物と結着剤とを混合する際に用いる溶媒としては、結着剤を溶解又は分散する溶媒であれば、特に限定されない。例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等の非水溶媒;水、又は分散剤、増粘剤等を加えた水溶液等の水溶液;等を用いることができる。   The solvent used when mixing the lithium-nickel cobalt manganese composite oxide and the binder is not particularly limited as long as the solvent dissolves or disperses the binder. For example, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. Water or an aqueous solution such as an aqueous solution to which a dispersant, a thickener, or the like is added can be used.

正極に用いる集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子等が挙げられる。また、その形状としては、シート状、発泡体状、焼結多孔体状、エキスパンド格子状等が例示される。   Examples of the current collector used for the positive electrode include aluminum, titanium, stainless steel, nickel, calcined carbon, and a conductive polymer. Examples of the shape include a sheet shape, a foam shape, a sintered porous shape, and an expanded lattice shape.

(負極)
非水電解質電池の負極は、負極物質、導電剤、結着剤等を溶媒中で混合し、得られたスラリーを負極集電体に塗布し、さらに乾燥することにより製造することができる。
(Negative electrode)
The negative electrode of the nonaqueous electrolyte battery can be produced by mixing a negative electrode material, a conductive agent, a binder, and the like in a solvent, applying the resulting slurry to a negative electrode current collector, and further drying.

負極材料としては、リチウムイオンを吸蔵、放出可能な材料であれば、何れのものであっても良い。例えば、リチウム金属、リチウム合金(リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,およびウッド合金等のリチウム金属含有合金)の他、リチウム複合酸化物(チタン酸リチウム等)、シリコン、酸化ケイ素、酸化スズ、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有するので、後述する電解質塩としてリチウム塩を採用した場合に、高い放電電圧と小さな不可逆容量を示すことから、負極材料として好ましい。   The negative electrode material may be any material as long as it can occlude and release lithium ions. For example, lithium metal, lithium alloy (lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy), and lithium composite oxide (titanate) Lithium, etc.), silicon, silicon oxide, tin oxide, carbon materials (eg, graphite, hard carbon, low-temperature calcined carbon, amorphous carbon, etc.). Among these, graphite has an operating potential very close to that of metallic lithium, and therefore, when a lithium salt is employed as an electrolyte salt described later, it exhibits a high discharge voltage and a small irreversible capacity, and therefore is preferable as a negative electrode material.

負極の導電剤及び結着剤は、正極の導電剤及び結着剤と同様のものを使用することができる。負極に用いる集電体としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子等が挙げられる。また、その形状としては、シート状、発泡体状、焼結多孔体状、エキスパンド格子状等が例示される。   As the conductive agent and binder for the negative electrode, the same conductive agent and binder as those for the positive electrode can be used. Examples of the current collector used for the negative electrode include copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, and conductive polymer. Examples of the shape include a sheet shape, a foam shape, a sintered porous shape, and an expanded lattice shape.

(非水電解質)
非水電解質は、電解質塩が非水溶媒に含有されたものである。
電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム(LiN(CFSO)、ホウ酸塩(例えばLiBOB)等のリチウム塩が挙げられる。
(Nonaqueous electrolyte)
The nonaqueous electrolyte is an electrolyte salt containing a nonaqueous solvent.
Examples of the electrolyte salt include lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethane. Examples thereof include lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ), and borate (for example, LiBOB).

非水電解液に用いられる有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート;テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン等の鎖状エーテル;γ−ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;スルホラン、1,3−プロパンスルトン、1,3−プロペンスルトン等のスルトン類;等を挙げることができる。これらの有機溶媒は、単独又は2種以上の混合物の形態で用いることができる。また、非水電解質として、リチウムイオンを含有した常温溶融塩を用いることができる。   Examples of the organic solvent used in the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, and the like. Cyclic ethers; chain ethers such as dimethoxyethane; lactones such as γ-butyrolactone; nitriles such as acetonitrile; sultones such as sulfolane, 1,3-propane sultone, 1,3-propene sultone; it can. These organic solvents can be used alone or in the form of a mixture of two or more. Moreover, a room temperature molten salt containing lithium ions can be used as the non-aqueous electrolyte.

(セパレーター)
セパレーターとしては、微多孔性高分子膜、合成樹脂製不織布等を用いることができる。その材質としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、及びポリオレフィン(例えばポリプロピレン、ポリエチレン、ポリブテン等)が例示される。また、ポリエチレンとポリプロピレンとを積層した微多孔製膜を用いることもできる。
(separator)
As the separator, a microporous polymer film, a synthetic resin nonwoven fabric, or the like can be used. Examples of the material include nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, and polyolefin (for example, polypropylene, polyethylene, polybutene, etc.). A microporous film in which polyethylene and polypropylene are laminated can also be used.

なお、非水電解質として、固体電解質を用いることもできる。固体電解質としては、Li2SとP2S5の他、Li、P、O、及びNからなるLi−P−O−N等が挙げられる。   A solid electrolyte can also be used as the nonaqueous electrolyte. Examples of the solid electrolyte include Li—P—O—N composed of Li, P, O, and N in addition to Li 2 S and P 2 S 5.

以下に、本発明の具体な実施例を説明する。ただし本発明はこれらの実施例に制限されるものではない。   Hereinafter, specific examples of the present invention will be described. However, the present invention is not limited to these examples.

(1)実施例1
(ニッケルコバルトマンガン複合水酸化物の製造)
攪拌機とオーバーフローパイプとを備えた容積500Lの円筒形反応槽に水を480L入れた。反応槽の材質には塩化ビニル樹脂を用いた。さらに錯化剤として硫酸アンモニウム粉末を8.9kg加えた。次いでpHが11.5になるまで32%水酸化ナトリウム水溶液を加え、電熱ヒーターにて水溶液の温度を50℃に保持した。次いで反応槽内の溶液中は一定速度にて攪拌を行った。また、反応槽に窒素ガスを10.0L/分の流量にて、空気ガスを1.0L/分の流量にて連続的に供給し、反応槽内の混合ガスにおける酸素濃度を2.0%とした。次にNi:Co:Mn=45:20:35(モル比)となるように硫酸ニッケル(II)水溶液、硫酸コバルト(II)水溶液及び硫酸マンガン(II)水溶液を混合し、混合液中のニッケル濃度が0.65mol/L、コバルト濃度が0.29mol/L、マンガン濃度が0.50mol/Lとなるように水で希釈し、硫酸ニッケル−硫酸コバルト−硫酸マンガン混合水溶液を調整した。この混合水溶液を300ml/分の一定速度にて反応槽上部より槽内液面(攪拌中の溶液表面)へ連続供給した。これと同期して、2.8mol/L硫酸アンモニウム水溶液を錯化剤として24ml/分の一定速度にて反応槽上部の注入口より反応槽内液面へ連続供給した。さらに反応溶液温度を50℃で保持し、反応溶液のpH11.5に保持されるように32%水酸化ナトリウム水溶液を断続的に加え複合金属水酸化物粒子を形成させた。反応槽内は、酸素濃度が2.0%となるように窒素ガスを10.0L/分の流量にて、空気ガスを1.0L/分の流量にて連続的に供給する状態が維持されており、槽内雰囲気は定常的に置換される状態に保持された。反応槽内が定常状態になった72時間後にオーバーフローパイプより排出された水酸化物粒子を連続的に24時間採取し、水洗後に濾過し、棚段式温風乾燥機にて100℃の温風にて20時間乾燥し、乾燥粉末である複合金属水酸化物すなわちニッケルコバルトマンガン複合水酸化物を得た。得られたニッケルコバルトマンガン複合水酸化物は平均粒径(APS)は9.9μm、タッピング密度(TD)は2.33g/ml、バルク密度(BD)は1.83g/mlであった。
(1) Example 1
(Production of nickel cobalt manganese composite hydroxide)
480 L of water was placed in a 500 L cylindrical reaction tank equipped with a stirrer and an overflow pipe. Vinyl chloride resin was used as the material for the reaction vessel. Further, 8.9 kg of ammonium sulfate powder was added as a complexing agent. Next, a 32% aqueous sodium hydroxide solution was added until the pH reached 11.5, and the temperature of the aqueous solution was maintained at 50 ° C. with an electric heater. Next, the solution in the reaction vessel was stirred at a constant speed. Further, nitrogen gas is continuously supplied to the reaction tank at a flow rate of 10.0 L / min and air gas is supplied at a flow rate of 1.0 L / min, so that the oxygen concentration in the mixed gas in the reaction tank is 2.0%. It was. Next, a nickel sulfate (II) aqueous solution, a cobalt sulfate (II) aqueous solution and a manganese (II) sulfate aqueous solution are mixed so that Ni: Co: Mn = 45: 20: 35 (molar ratio), and nickel in the mixed solution is obtained. The mixture was diluted with water so that the concentration was 0.65 mol / L, the cobalt concentration was 0.29 mol / L, and the manganese concentration was 0.50 mol / L to prepare a nickel sulfate-cobalt sulfate-manganese sulfate mixed aqueous solution. This mixed aqueous solution was continuously supplied from the upper part of the reaction tank to the liquid level in the tank (the surface of the stirring solution) at a constant rate of 300 ml / min. In synchronization with this, a 2.8 mol / L ammonium sulfate aqueous solution was continuously supplied as a complexing agent from the inlet at the top of the reaction tank to the liquid level in the reaction tank at a constant rate of 24 ml / min. Furthermore, the reaction solution temperature was kept at 50 ° C., and 32% sodium hydroxide aqueous solution was intermittently added so as to keep the pH of the reaction solution at 11.5 to form composite metal hydroxide particles. The reaction tank is maintained in a state where nitrogen gas is continuously supplied at a flow rate of 10.0 L / min and air gas is supplied at a flow rate of 1.0 L / min so that the oxygen concentration becomes 2.0%. The atmosphere in the tank was maintained in a state where it was constantly replaced. The hydroxide particles discharged from the overflow pipe were collected continuously for 24 hours 72 hours after the inside of the reaction vessel reached a steady state, filtered after washing with water, and heated at 100 ° C. with a shelf-type hot air dryer. And dried for 20 hours to obtain a composite metal hydroxide as a dry powder, that is, nickel cobalt manganese composite hydroxide. The obtained nickel cobalt manganese composite hydroxide had an average particle size (APS) of 9.9 μm, a tapping density (TD) of 2.33 g / ml, and a bulk density (BD) of 1.83 g / ml.

得られたニッケルコバルトマンガン複合水酸化物(試料1とする)のX線回折による分析を行った。分析時の試料としては試料1をそのまま使用した。分析のための測定装置は、株式会社理学製、「RINT2200」であり、測定条件としてはCu−KαのX線を使用した。測定結果としては、ニッケルコバルトマンガン複合水酸化物を検出した。   The obtained nickel cobalt manganese composite hydroxide (sample 1) was analyzed by X-ray diffraction. Sample 1 was used as it was as a sample at the time of analysis. The measurement apparatus for analysis is “RINT2200” manufactured by Rigaku Corporation. Cu-Kα X-rays were used as measurement conditions. As a measurement result, nickel cobalt manganese composite hydroxide was detected.

また、上記試料1についてタッピング密度を測定した。20mlセルの質量[A]を測定し、48meshのフルイで結晶を上記セルに自然落下させ充填した。40mmスペーサー装着のセイシン企業株式会社製、「TAPDENSER KYT3000」を用いて200回タッピング後に、セルの質量[B]と充填容積[D]とを測定した。タッピング密度[TD]は次式により計算した。
〔数1〕
タッピング密度TD=(B−A)/D g/ml
Further, the tapping density of the sample 1 was measured. The mass [A] of the 20 ml cell was measured, and the crystal was spontaneously dropped into the cell with a 48 mesh sieve and filled. The cell mass [B] and filling volume [D] were measured after tapping 200 times using a “TAPDENSER KYT3000” manufactured by Seishin Enterprise Co., Ltd. with a 40 mm spacer. The tapping density [TD] was calculated by the following formula.
[Equation 1]
Tapping density TD = (BA) / D g / ml

上記試料1について平均粒径を測定した。粒径測定のための測定装置は、堀場製作所製、「LA−950」であり、測定条件は操作手順書に従った。   The average particle diameter of the sample 1 was measured. The measuring device for measuring the particle diameter was “LA-950” manufactured by Horiba, Ltd., and the measurement conditions were in accordance with the operation procedure manual.

(正極活物質の作製)
得られたニッケルコバルトマンガン複合水酸化物と炭酸リチウムとをLi/Me(Ni,Co,Mnの合計)の原子比が1.05となるように混合し、焼成用アルミナ製さやに充填し、電気炉を用いて乾燥空気を5L/分の流量で電気炉内に連続的に供給した雰囲気下、昇温速度200℃/時間で700℃まで昇温し、700℃で5時間保持した。その後、200℃/時間の昇温速度で950℃まで昇温し、950℃で10時間保持した。その後、室温まで放冷した。得られたリチウム−ニッケルコバルトマンガン複合酸化物の粒子は平均粒径10.0μm、タッピング密度2.61g/ml、バルク密度1.87g/ml、プレス密度3.008g/mlであった。なお、タッピング密度や平均粒径の測定はニッケルコバルトマンガン複合水酸化物と同様とした。また、リチウム−ニッケルコバルトマンガン複合酸化物について化学分析を行った。具体的には、ICPにてNi,Co,Mn,Li及び不純物成分を分析し、中和滴定にて残留する炭酸Li、LiOHを分析した。
(Preparation of positive electrode active material)
The obtained nickel cobalt manganese composite hydroxide and lithium carbonate were mixed so that the atomic ratio of Li / Me (total of Ni, Co, Mn) was 1.05, and filled in an alumina sheath for firing, In an atmosphere in which dry air was continuously supplied into the electric furnace at a flow rate of 5 L / min using an electric furnace, the temperature was raised to 700 ° C. at a temperature rising rate of 200 ° C./hour, and held at 700 ° C. for 5 hours. Then, it heated up to 950 degreeC with the temperature increase rate of 200 degreeC / hour, and hold | maintained at 950 degreeC for 10 hours. Then, it stood to cool to room temperature. The obtained lithium-nickel cobalt manganese composite oxide particles had an average particle diameter of 10.0 μm, a tapping density of 2.61 g / ml, a bulk density of 1.87 g / ml, and a press density of 3.008 g / ml. The tapping density and average particle size were measured in the same manner as the nickel cobalt manganese composite hydroxide. Moreover, the chemical analysis was performed about lithium- nickel cobalt manganese complex oxide. Specifically, Ni, Co, Mn, Li and impurity components were analyzed by ICP, and residual Li carbonate and LiOH were analyzed by neutralization titration.

(正極活物質の評価)
上記方法にて得られた正極活物質、導電剤であるアセチレンブラック、結着剤であるポリフッ化ビニリデン樹脂(以下、PVDF)を90:5:5の重量比で混合し、N−メチル−2−ピロリドンを加え、混練分散してスラリーを作製した。スラリーをアルミニウム箔に塗布し、60℃で3時間乾燥し、120℃で12時間乾燥した。乾燥後の電極をロールプレスし、面積を2mlとなるように円盤状に打ち抜いたものを正極とした。評価用セルの作製方法は、リチウム金属をステンレス板に貼り付けたものを負極板とした。エチレンカーボネートとジメチルカーボネートを体積比で3:7に混合した溶液にヘキサフルオロリン酸を濃度が1.0mol/Lとなるように添加した溶液を電解液とした。セパレーターにはポリプロピレンセパレーターを用い、正極板、セパレーター、負極板をステンレス板で挟み外装材で封入して二極式評価セルを作製した。
(Evaluation of positive electrode active material)
The positive electrode active material obtained by the above method, acetylene black as a conductive agent, and polyvinylidene fluoride resin (hereinafter referred to as PVDF) as a binder were mixed at a weight ratio of 90: 5: 5, and N-methyl-2 -Pyrrolidone was added and kneaded and dispersed to prepare a slurry. The slurry was applied to an aluminum foil, dried at 60 ° C. for 3 hours, and dried at 120 ° C. for 12 hours. The electrode after drying was roll-pressed and punched into a disc shape so that the area was 2 ml. As a method for producing the evaluation cell, a negative electrode plate was prepared by attaching lithium metal to a stainless steel plate. A solution obtained by adding hexafluorophosphoric acid to a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 3: 7 so as to have a concentration of 1.0 mol / L was used as an electrolytic solution. A polypropylene separator was used as a separator, and a positive electrode plate, a separator, and a negative electrode plate were sandwiched between stainless plates and sealed with an exterior material to prepare a bipolar evaluation cell.

二極式評価セルに対して充電レートを0.1C、放電レートを0.1Cとし、4.3Vで定電流/定電圧で充電後、3.0Vまで定電流放電した。結果的に得られた初期充電容量は187.6mAh/g、初期放電容量は164.0mAh/g、充放電効率は87.5%であった。   With respect to the bipolar evaluation cell, the charge rate was 0.1 C, the discharge rate was 0.1 C, and the battery was charged at a constant current / constant voltage at 4.3 V and then discharged at a constant current to 3.0 V. The resulting initial charge capacity was 187.6 mAh / g, the initial discharge capacity was 164.0 mAh / g, and the charge / discharge efficiency was 87.5%.

以下の表1に、実施例1(試料1を含む)の評価事項をまとめた。

Figure 2013144625
Table 1 below summarizes the evaluation items of Example 1 (including Sample 1).
Figure 2013144625

実施例1で得られた前駆体微粒子及び正極活物質微粒子のSEM写真を図3(A)及び3(C)に示す。図3(A)に示すように、実施例1の前駆体微粒子(ニッケルコバルトマンガン複合水酸化物の微粒子)は、粒子形状が球形に近く表面の凹凸が少ない。図3(C)に示すように、実施例1の正極活物質微粒子(リチウム−ニッケルコバルトマンガン複合酸化物の微粒子)も、粒子形状が球形に近く表面の凹凸が少ない。   SEM photographs of the precursor fine particles and positive electrode active material fine particles obtained in Example 1 are shown in FIGS. 3 (A) and 3 (C). As shown in FIG. 3A, the precursor fine particles (nickel-cobalt-manganese composite hydroxide fine particles) of Example 1 are nearly spherical and have few surface irregularities. As shown in FIG. 3C, the positive electrode active material fine particles (lithium-nickel cobalt manganese composite oxide fine particles) of Example 1 also have a spherical particle shape and few surface irregularities.

(2)実施例2
反応槽内の混合ガスにおける酸素濃度を1.0体積%とした点を除き、実施例1と同じ方法で、ニッケルコバルトマンガン複合水酸化物や正極活物質(リチウム−ニッケルコバルトマンガン複合酸化物)を作製した。また、実施例2の正極活物質から実施例1と同じ方法で二極式評価セルを作製し、実施例1と同様に容量測定を行った。上述した表1には、実施例2の評価事項も併記されている。
(2) Example 2
A nickel cobalt manganese composite hydroxide or a positive electrode active material (lithium-nickel cobalt manganese composite oxide) was used in the same manner as in Example 1 except that the oxygen concentration in the mixed gas in the reaction vessel was 1.0% by volume. Was made. Further, a bipolar evaluation cell was produced from the positive electrode active material of Example 2 by the same method as in Example 1, and the capacity was measured in the same manner as in Example 1. In Table 1 described above, the evaluation items of Example 2 are also shown.

実施例2のニッケルコバルトマンガン複合水酸化物については、平均粒径(APS)9.6μm、タッピング密度(TD)2.15g/ml、バルク密度(BD)1.60g/mlという結果が得られた。また、実施例2の場合、初期放電容量は163.8mAh/g、充放電効率は87.8であった。   For the nickel cobalt manganese composite hydroxide of Example 2, the results were obtained that the average particle size (APS) was 9.6 μm, the tapping density (TD) was 2.15 g / ml, and the bulk density (BD) was 1.60 g / ml. It was. In Example 2, the initial discharge capacity was 163.8 mAh / g, and the charge / discharge efficiency was 87.8.

(3)比較例1
反応槽内の混合ガスにおける酸素濃度を0%とした点を除き、実施例1と同じ方法で、ニッケルコバルトマンガン複合水酸化物及び正極活物質(リチウム−ニッケルコバルトマンガン複合酸化物)を製造した。また、比較例1の正極活物質から実施例1と同じ方法で二極式評価セルを作製し、実施例1と同様に容量測定を行った。上述した表1には、比較例2の評価事項も併記されている。
(3) Comparative Example 1
A nickel cobalt manganese composite hydroxide and a positive electrode active material (lithium-nickel cobalt manganese composite oxide) were produced in the same manner as in Example 1 except that the oxygen concentration in the mixed gas in the reaction vessel was 0%. . In addition, a bipolar evaluation cell was produced from the positive electrode active material of Comparative Example 1 by the same method as in Example 1, and the capacity was measured in the same manner as in Example 1. In Table 1 described above, evaluation items of Comparative Example 2 are also shown.

比較例1のニッケルコバルトマンガン複合水酸化物については、平均粒径(APS)9.5μm、タッピング密度(TD)1.84g/ml、バルク密度(BD)1.29g/mlという結果が得られた。また、比較例1の場合、初期放電容量は163.0mAh/g、充放電効率は88.3であった。   For the nickel cobalt manganese composite hydroxide of Comparative Example 1, the average particle size (APS) 9.5 μm, tapping density (TD) 1.84 g / ml, bulk density (BD) 1.29 g / ml were obtained. It was. In the case of Comparative Example 1, the initial discharge capacity was 163.0 mAh / g, and the charge / discharge efficiency was 88.3.

比較例1で得られた前駆体微粒子及び正極活物質微粒子のSEM写真を図3(B)及び3(D)に示す。図3(B)に示すように、比較例1の前駆体微粒子(ニッケルコバルトマンガン複合水酸化物の微粒子)は、粒子形状が比較的非球形状で表面の凹凸が多い。図3(D)に示すように、比較例1の正極活物質微粒子(リチウム−ニッケルコバルトマンガン複合酸化物の微粒子)も、粒子形状が比較的非球形状で表面の凹凸が多い。   SEM photographs of the precursor fine particles and the positive electrode active material fine particles obtained in Comparative Example 1 are shown in FIGS. 3 (B) and 3 (D). As shown in FIG. 3B, the precursor fine particles (nickel cobalt manganese composite hydroxide fine particles) of Comparative Example 1 have a relatively non-spherical particle shape and many surface irregularities. As shown in FIG. 3D, the positive electrode active material fine particles (lithium-nickel cobalt manganese composite oxide fine particles) of Comparative Example 1 are also relatively non-spherical in shape and have many surface irregularities.

以上の結果から、実施例1、2のニッケルコバルトマンガン複合水酸化物や正極活物質は、高密度であり、非水電解質二次電池の容量を向上させることができることが分かる。   From the above results, it can be seen that the nickel-cobalt-manganese composite hydroxide and the positive electrode active material of Examples 1 and 2 have high density and can improve the capacity of the non-aqueous electrolyte secondary battery.

100…製造装置、10…反応槽、20…原料供給装置、30…pH調整装置、40…雰囲気制御装置、50…錯化剤供給装置、60…反応生成物回収装置   DESCRIPTION OF SYMBOLS 100 ... Manufacturing apparatus, 10 ... Reaction tank, 20 ... Raw material supply apparatus, 30 ... pH adjustment apparatus, 40 ... Atmosphere control apparatus, 50 ... Complexing agent supply apparatus, 60 ... Reaction product collection apparatus

Claims (11)

ニッケル(Ni)とコバルト(Co)とマンガン(Mn)との含有割合が、Ni:Co:Mnの原子比で3.5〜5.5:1.0〜3.0:2.5〜4.5であるニッケルコバルトマンガン複合水酸化物であって、
不活性ガスと、当該不活性ガスに対して体積比で0.5%以上3.0%以下の酸素ガスとの混合ガスの雰囲気下で、ニッケル塩、コバルト塩及びマンガン塩を含む水溶液をpH10以上pH13以下に保持することにより、析出させて得られるニッケルコバルトマンガン複合水酸化物。
The content ratio of nickel (Ni), cobalt (Co), and manganese (Mn) is 3.5 to 5.5: 1.0 to 3.0: 2.5 to 4 in terms of atomic ratio of Ni: Co: Mn. .5 nickel cobalt manganese composite hydroxide,
In an atmosphere of a mixed gas of an inert gas and an oxygen gas having a volume ratio of 0.5% to 3.0% with respect to the inert gas, an aqueous solution containing a nickel salt, a cobalt salt, and a manganese salt has a pH of 10 Nickel-cobalt-manganese composite hydroxide obtained by precipitation by maintaining the pH at 13 or less.
タップ密度が2.0g/ml以上であり、バルク密度が1.5g/ml以上であり、平均粒子径が5μm以上30μm以下である、請求項1に記載のニッケルコバルトマンガン複合水酸化物。   2. The nickel cobalt manganese composite hydroxide according to claim 1, wherein the tap density is 2.0 g / ml or more, the bulk density is 1.5 g / ml or more, and the average particle size is 5 μm or more and 30 μm or less. 前記不活性ガスは窒素である、請求項1又は2に記載のニッケルコバルトマンガン複合水酸化物。   The nickel-cobalt-manganese composite hydroxide according to claim 1 or 2, wherein the inert gas is nitrogen. 前記水溶液は錯化剤を含む、請求項1〜3のいずれか一項に記載のニッケルコバルトマンガン複合水酸化物。   The nickel cobalt manganese composite hydroxide according to any one of claims 1 to 3, wherein the aqueous solution contains a complexing agent. 非水電解質二次電池用の正極活物質の前駆体である請求項1〜4のいずれかに記載のニッケルコバルトマンガン複合水酸化物。   The nickel cobalt manganese composite hydroxide according to any one of claims 1 to 4, which is a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery. ニッケル(Ni)とコバルト(Co)とマンガン(Mn)との含有割合が、Ni:Co:Mnの原子比で3.5〜5.5:1.0〜3.0:2.5〜4.5であるニッケルコバルトマンガン複合水酸化物の製造方法であって、
ニッケル塩、コバルト塩及びマンガン塩を含む水溶液を得る工程と、
不活性ガスと当該不活性ガスに対して体積比で0.5%以上3.0%以下の酸素ガスとの混合ガスの雰囲気下で、前記水溶液をpH10以上pH13以下に保持する工程と
を有するニッケルコバルトマンガン複合水酸化物の製造方法。
The content ratio of nickel (Ni), cobalt (Co), and manganese (Mn) is 3.5 to 5.5: 1.0 to 3.0: 2.5 to 4 in terms of atomic ratio of Ni: Co: Mn. 5 for producing a nickel cobalt manganese composite hydroxide,
Obtaining an aqueous solution containing a nickel salt, a cobalt salt and a manganese salt;
Maintaining the aqueous solution at pH 10 or more and pH 13 or less in an atmosphere of a mixed gas of an inert gas and an oxygen gas having a volume ratio of 0.5% to 3.0% with respect to the inert gas. Method for producing nickel cobalt manganese composite hydroxide.
前記不活性ガスは窒素である、請求項8に記載のニッケルコバルトマンガン複合水酸化物の製造方法。   The method for producing a nickel cobalt manganese composite hydroxide according to claim 8, wherein the inert gas is nitrogen. 前記混合ガスを、前記水溶液を収容する反応槽内に定常的供給する、請求項6又は7のいずれか一項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。   The method for producing a nickel-cobalt-manganese composite hydroxide according to any one of claims 6 and 7, wherein the mixed gas is constantly supplied into a reaction vessel containing the aqueous solution. 前記水溶液は錯化剤を含む、請求項6〜8のいずれか一項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。   The method for producing a nickel cobalt manganese composite hydroxide according to any one of claims 6 to 8, wherein the aqueous solution contains a complexing agent. 請求項1〜5のいずれか一項に記載のニッケルコバルトマンガン複合水酸化物とリチウム化合物との混合物を焼成して得られる非水電解質二次電池用の正極活物質。   The positive electrode active material for nonaqueous electrolyte secondary batteries obtained by baking the mixture of the nickel cobalt manganese composite hydroxide and lithium compound as described in any one of Claims 1-5. 請求項10に記載の非水電解質二次電池用の正極活物質を主成分とする正極、セパレーター、及び負極を有する、非水電解質二次電池。   The nonaqueous electrolyte secondary battery which has a positive electrode which has the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 10 as a main component, a separator, and a negative electrode.
JP2012006473A 2012-01-16 2012-01-16 Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Pending JP2013144625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006473A JP2013144625A (en) 2012-01-16 2012-01-16 Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006473A JP2013144625A (en) 2012-01-16 2012-01-16 Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2013144625A true JP2013144625A (en) 2013-07-25

Family

ID=49040663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006473A Pending JP2013144625A (en) 2012-01-16 2012-01-16 Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2013144625A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928674A (en) * 2014-05-04 2014-07-16 张萍 Preparation method of silicon doped nickel base cathode material used for lithium ion battery
EP2902364A4 (en) * 2013-02-13 2016-06-29 Lg Chemical Ltd Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
WO2016208413A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Composite hydroxide containing transition metal and method for producing same, positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
WO2017078136A1 (en) * 2015-11-05 2017-05-11 住友化学株式会社 Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN109476506A (en) * 2016-07-28 2019-03-15 住友化学株式会社 The manufacturing method of lithium nickel composite oxide
KR20190035717A (en) 2016-07-29 2019-04-03 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR20190035718A (en) 2016-07-29 2019-04-03 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR20190036525A (en) 2016-07-29 2019-04-04 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2019110136A (en) * 2019-03-07 2019-07-04 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2020171088A1 (en) * 2019-02-21 2020-08-27 住友金属鉱山株式会社 Method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN113113594A (en) * 2021-04-07 2021-07-13 湖南工程学院 Doped large-particle nickel cobalt lithium manganate and preparation method and application thereof
JP2022510305A (en) * 2018-11-30 2022-01-26 エルジー・ケム・リミテッド Method for manufacturing positive electrode active material precursor for lithium secondary battery
JP2022536318A (en) * 2019-12-20 2022-08-15 エルジー・ケム・リミテッド Cathode active material precursor, manufacturing method and manufacturing apparatus thereof
US11557754B2 (en) 2014-01-27 2023-01-17 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11742483B2 (en) 2016-07-29 2023-08-29 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP7353432B1 (en) 2022-07-15 2023-09-29 住友化学株式会社 Method for producing metal composite compound and lithium metal composite oxide
WO2024014551A1 (en) * 2022-07-15 2024-01-18 住友化学株式会社 Metal complex compound, production method for metal complex compound, and production method for lithium metal complex oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059490A (en) * 2001-08-17 2003-02-28 Tanaka Chemical Corp Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003086182A (en) * 2001-09-13 2003-03-20 Matsushita Electric Ind Co Ltd Positive electrode active material, method of manufacture, and nonaqueous electrolyte secondary battery
WO2010143805A1 (en) * 2009-06-08 2010-12-16 한양대학교 산학협력단 Cathode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
JP2011057518A (en) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP2011116580A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery
WO2012169274A1 (en) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059490A (en) * 2001-08-17 2003-02-28 Tanaka Chemical Corp Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003086182A (en) * 2001-09-13 2003-03-20 Matsushita Electric Ind Co Ltd Positive electrode active material, method of manufacture, and nonaqueous electrolyte secondary battery
WO2010143805A1 (en) * 2009-06-08 2010-12-16 한양대학교 산학협력단 Cathode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
JP2011057518A (en) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP2011116580A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery
WO2012169274A1 (en) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902364A4 (en) * 2013-02-13 2016-06-29 Lg Chemical Ltd Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
US11577969B2 (en) 2013-02-13 2023-02-14 Lg Energy Solution, Ltd. Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
US11557754B2 (en) 2014-01-27 2023-01-17 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN103928674A (en) * 2014-05-04 2014-07-16 张萍 Preparation method of silicon doped nickel base cathode material used for lithium ion battery
KR102481160B1 (en) 2015-06-26 2022-12-26 스미토모 긴조쿠 고잔 가부시키가이샤 Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
WO2016208413A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Composite hydroxide containing transition metal and method for producing same, positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
JP2017016753A (en) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 Transition metal composite hydroxide particle, manufacturing method for the same, positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery
CN107615531B (en) * 2015-06-26 2021-04-30 住友金属矿山株式会社 Transition metal-containing composite hydroxide and method for producing same, nonaqueous electrolyte secondary battery and positive electrode active material for same, and method for producing same
CN107615531A (en) * 2015-06-26 2018-01-19 住友金属矿山株式会社 Complex hydroxide and manufacture method, rechargeable nonaqueous electrolytic battery and its positive active material and manufacture method containing transition metal
KR20180021681A (en) * 2015-06-26 2018-03-05 스미토모 긴조쿠 고잔 가부시키가이샤 Transition metal-containing complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing the same <br> <br> <br> Patents - stay tuned to the technology Non-aqueous electrolyte secondary battery
US11404690B2 (en) 2015-06-26 2022-08-02 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
US10547052B2 (en) 2015-06-26 2020-01-28 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
WO2017078136A1 (en) * 2015-11-05 2017-05-11 住友化学株式会社 Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11437618B2 (en) 2015-11-05 2022-09-06 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, method of producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JPWO2017078136A1 (en) * 2015-11-05 2018-08-30 住友化学株式会社 Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN108352528A (en) * 2015-11-05 2018-07-31 住友化学株式会社 Positive active material for lithium secondary battery, the manufacturing method of positive active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP7083248B2 (en) 2015-11-05 2022-06-10 住友化学株式会社 Positive Active Material for Lithium Secondary Battery, Method for Manufacturing Positive Active Material for Lithium Secondary Battery, Positive Positive for Lithium Secondary Battery and Lithium Secondary Battery
CN109476506A (en) * 2016-07-28 2019-03-15 住友化学株式会社 The manufacturing method of lithium nickel composite oxide
CN109476506B (en) * 2016-07-28 2022-02-15 住友化学株式会社 Method for producing lithium-nickel composite oxide
CN109843811B (en) * 2016-07-29 2022-08-26 住友金属矿山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
KR20190035717A (en) 2016-07-29 2019-04-03 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR20190035718A (en) 2016-07-29 2019-04-03 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US11742483B2 (en) 2016-07-29 2023-08-29 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US11296316B2 (en) 2016-07-29 2022-04-05 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US11670765B2 (en) 2016-07-29 2023-06-06 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11658297B2 (en) 2016-07-29 2023-05-23 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR20190036525A (en) 2016-07-29 2019-04-04 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US11387453B2 (en) 2016-07-29 2022-07-12 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
CN109843811A (en) * 2016-07-29 2019-06-04 住友金属矿山株式会社 Nickel-manganese composite hydroxide and its manufacturing method, non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7216824B2 (en) 2018-11-30 2023-02-01 エルジー・ケム・リミテッド Method for producing positive electrode active material precursor for lithium secondary battery
JP2022510305A (en) * 2018-11-30 2022-01-26 エルジー・ケム・リミテッド Method for manufacturing positive electrode active material precursor for lithium secondary battery
JPWO2020171088A1 (en) * 2019-02-21 2021-12-16 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
WO2020171088A1 (en) * 2019-02-21 2020-08-27 住友金属鉱山株式会社 Method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2019110136A (en) * 2019-03-07 2019-07-04 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7049284B2 (en) 2019-03-07 2022-04-06 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2022536318A (en) * 2019-12-20 2022-08-15 エルジー・ケム・リミテッド Cathode active material precursor, manufacturing method and manufacturing apparatus thereof
JP7301450B2 (en) 2019-12-20 2023-07-03 エルジー・ケム・リミテッド Positive electrode active material precursor, manufacturing method and manufacturing apparatus thereof
CN113113594B (en) * 2021-04-07 2022-04-08 湖南工程学院 Doped large-particle nickel cobalt lithium manganate and preparation method and application thereof
CN113113594A (en) * 2021-04-07 2021-07-13 湖南工程学院 Doped large-particle nickel cobalt lithium manganate and preparation method and application thereof
JP7353432B1 (en) 2022-07-15 2023-09-29 住友化学株式会社 Method for producing metal composite compound and lithium metal composite oxide
WO2024014551A1 (en) * 2022-07-15 2024-01-18 住友化学株式会社 Metal complex compound, production method for metal complex compound, and production method for lithium metal complex oxide
JP2024011937A (en) * 2022-07-15 2024-01-25 住友化学株式会社 Metal composite compound and manufacturing method of lithium metal complex oxide

Similar Documents

Publication Publication Date Title
JP2013144625A (en) Nickel cobalt manganese compound hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6142929B2 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6217636B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5601337B2 (en) Active material and lithium ion secondary battery
JP6603058B2 (en) Method for producing lithium-containing composite oxide and lithium-containing composite oxide
WO2016190419A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP5741908B2 (en) Positive electrode active material for lithium ion secondary battery
US20120183855A1 (en) Positive active electrode material for lithium secondary battery, process for preparing the same and lithium secondary battery
JP6729051B2 (en) Lithium-nickel-containing composite oxide and non-aqueous electrolyte secondary battery
JP5946011B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
WO2018012466A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP6583662B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2013129589A (en) Composite oxide, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2018049685A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
US20210399330A1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and nonaqueous electrolyte secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
TWI827802B (en) Positive electrode active material for lithium ion secondary batteries, manufacturing method of positive electrode active material for lithium ion secondary batteries, lithium ion secondary batteries
JP6052643B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
CN110114917B (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery
JP6988370B2 (en) Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2018073751A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017084807A (en) Positive electrode paste, positive electrode for nonaqueous electrolyte battery, which is arranged by use thereof, and method for manufacturing nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105