JPS63274059A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS63274059A
JPS63274059A JP62107989A JP10798987A JPS63274059A JP S63274059 A JPS63274059 A JP S63274059A JP 62107989 A JP62107989 A JP 62107989A JP 10798987 A JP10798987 A JP 10798987A JP S63274059 A JPS63274059 A JP S63274059A
Authority
JP
Japan
Prior art keywords
active material
battery
lithium
discharge capacity
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62107989A
Other languages
Japanese (ja)
Other versions
JP2550990B2 (en
Inventor
Masaaki Yokogawa
横川 雅明
Toshio Hashimoto
俊夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62107989A priority Critical patent/JP2550990B2/en
Priority to GB8724998A priority patent/GB2196785B/en
Priority to DE3736366A priority patent/DE3736366C2/en
Priority to KR1019870012003A priority patent/KR960006425B1/en
Priority to US07/114,282 priority patent/US4828834A/en
Priority to FR8715017A priority patent/FR2606219B1/en
Publication of JPS63274059A publication Critical patent/JPS63274059A/en
Application granted granted Critical
Publication of JP2550990B2 publication Critical patent/JP2550990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase charge-discharge performance by constituting a battery with a negative active material mainly comprising lithium, a positive active material mainly comprising LiMn2O4, and a nonaqueous electrolyte. CONSTITUTION:A battery consists of a negative active material 2 mainly comprising lithium, a positive active material 5 mainly comprising LiMn2O4, and a nonaqueous electrolyte. LiMn2O4 having a half width in a diffraction peak of 1.1-2.1 deg. in a diffraction angle of 46.1 deg. in X-ray diffraction using FeKalpha beam is used as the positive active material 5 of a nonaqueous electrolyte battery. High charge-discharge capacity corresponding to 90% of the theoretical charge- discharge capacity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種小型電子機器の電源として使用が期待さ
れる充放電可能な非水電解液電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a chargeable and dischargeable non-aqueous electrolyte battery that is expected to be used as a power source for various small electronic devices.

〔発明の概要] 本発明は、リチウム含有物を陰極活物質とする非水電解
液電池において、FeKα線を使用してX線回折を行っ
た時に回折角46.1°における回折ピークの半値幅が
1.1〜2.1°であるようなLiMnzOaを陽極活
物質として選択的に使用することにより、上記非水電解
液電池の充放電特性を向上させることを可能とするもの
である。
[Summary of the Invention] The present invention provides a non-aqueous electrolyte battery using a lithium-containing material as a cathode active material, and the half-width of the diffraction peak at a diffraction angle of 46.1° when X-ray diffraction is performed using FeKα rays. By selectively using LiMnzOa with an angle of 1.1 to 2.1° as an anode active material, it is possible to improve the charge/discharge characteristics of the non-aqueous electrolyte battery.

〔従来の技術〕[Conventional technology]

陰極活物質としてリチウムを使用し、電解液に有機電解
質を使用したいわゆる非水電解液電池は、自己放電が少
ない、電圧が高い、保存性に優れる等の利点を有してお
り、特に5〜IO年の長期にわたる信頼性を有する電池
として、電子時計や種h″のメモリーバックアップ用の
電′a¥して広く使用されている。
So-called non-aqueous electrolyte batteries, which use lithium as the cathode active material and an organic electrolyte as the electrolyte, have advantages such as low self-discharge, high voltage, and excellent storage stability. As a battery with long-term reliability of IO years, it is widely used as a memory backup battery for electronic watches and other types of batteries.

ところが、これら従来使用されている非水電解液電池は
一次電池であり、一度の使用でその寿命が尽きてしまう
ため、経済性に改善の余地がある。
However, these conventionally used non-aqueous electrolyte batteries are primary batteries, and their lifespan ends after one use, so there is room for improvement in economic efficiency.

そこで、近年種々の電子機器の飛躍的進歩とともに、長
時間便利にかつ経済的に使用できる電源として再充電可
能な非水電解液二次電池の出現が待たれており、多くの
研究が進められている。
Therefore, along with the dramatic advances in various electronic devices in recent years, the emergence of rechargeable non-aqueous electrolyte secondary batteries as a power source that can be conveniently and economically used for long periods of time has been awaited, and much research is being carried out. ing.

一般に、非水電解液二次電池の陰極活物質としては、金
属リチウム、リチウム合金(たとえばLi−Al合金)
、リチウムイオンをドーピングした導電性高分子(たと
えばポリアセチレンやポリピロール等)、さらにはリチ
ウムイオンを結晶中に混入した眉間化合物等が用いられ
ており、電解液としては有機溶媒に電解質を溶解した非
水電解液が用いられている。
Generally, as the cathode active material of a non-aqueous electrolyte secondary battery, metallic lithium, lithium alloy (for example, Li-Al alloy) is used.
, conductive polymers doped with lithium ions (such as polyacetylene and polypyrrole), and even compounds with lithium ions mixed into their crystals are used, and the electrolyte is a non-aqueous solution in which the electrolyte is dissolved in an organic solvent. An electrolyte is used.

一方、陽極活物質としては研究の結果各種の材料が堤案
されており、代表的なものとしてはたとえば特開昭50
−54836号公報に記載されるようにTi5z、Mo
5t、NbSez、v、oS等が挙げられる。
On the other hand, as a result of research, various materials have been proposed as anode active materials, and representative examples include, for example,
-Ti5z, Mo as described in Publication No. 54836
5t, NbSez, v, oS, etc.

これらの材料を用いた電池の放電反応は、陰極のリチウ
ムイオンが陽極活物質であるこれら材料の眉間にインタ
ーカーレーションすることによって進行し、逆に充電す
る場合には上記材料の眉間からリチウムイオンが陰極ヘ
デインターカーレーションする。すなわち、陰極のリチ
ウムイオンが陽極活物質の眉間に出入りする反応を繰返
すことによって、充放電を繰返すことができる。
The discharge reaction of batteries using these materials progresses by intercalation of lithium ions at the cathode between the eyebrows of these materials, which are the anode active materials, and conversely, when charging, lithium ions are intercalated between the eyebrows of the materials. is intercalated with the cathode. That is, charging and discharging can be repeated by repeating the reaction in which lithium ions at the cathode move in and out of the glabella of the anode active material.

しかしながら、上述の陽極材料においては、充放電反応
イ繰返すうちにリチウムイオンが次第にデインターカー
レーションされにくくなるため、放電容量が徐々に低下
し、サイクル寿命が短くなるという欠点があった。また
、これらの陽極材料は高価であるため、大容量の電池を
製造しようとするとコストが高くなり、二次電池の主流
となっているニッケルーカドミウム電池と比べても経済
上不利となる。
However, in the above-mentioned anode materials, as the charge/discharge reaction is repeated, lithium ions become gradually less likely to be deintercalated, so that the discharge capacity gradually decreases and the cycle life is shortened. Furthermore, since these anode materials are expensive, manufacturing a large-capacity battery will result in high costs, making it economically disadvantageous compared to nickel-cadmium batteries, which are the mainstream of secondary batteries.

そこで、充放電サイクルにともなう放電容量の劣化が少
なく、サイクル寿命特性に優れ、さらに゛経済性にも優
れる陽極材料として、本願出願人はたとえば特願昭61
−257479号明細書において、LiMnm0aを主
体とする陽極材料を開示した。
Therefore, as an anode material that has less deterioration in discharge capacity due to charge/discharge cycles, has excellent cycle life characteristics, and is also economical, the applicant of the present application has proposed, for example, Japanese Patent Application No. 61
In the specification of JP-257479, an anode material mainly composed of LiMnmOa was disclosed.

〔発明が解決しようとする間居点〕[The gap that the invention attempts to solve]

上述のように、陽極材料としてLiMn、O,が開発さ
れたことにより、放電容量、サイクル寿命、経済性には
ある程度の改善がみられた。ところで、このLiMn2
O4を利用する電池反応は次式のように表される。
As mentioned above, the development of LiMn, O, as an anode material has resulted in a certain degree of improvement in discharge capacity, cycle life, and economic efficiency. By the way, this LiMn2
A battery reaction using O4 is expressed by the following equation.

このLiMnzOa は、一般的には炭酸リチウムと二
酸化マンガンを1=2のモル比で混合し、800〜90
0″Cで焼成することにより調製される。しかしながら
、このように調製されたLiMn2O4を陽極活物質と
して電池を構成しても、その充放電容量は上記反応式か
ら理論的に算出される充放電容量の30%程度にしか達
しない。
This LiMnzOa is generally produced by mixing lithium carbonate and manganese dioxide at a molar ratio of 1=2, and
It is prepared by firing at 0''C. However, even if a battery is constructed using LiMn2O4 prepared in this way as an anode active material, its charge/discharge capacity is the same as that calculated theoretically from the above reaction formula. It only reaches about 30% of its capacity.

そこで本発明は、充放電特性に優れるLiMnxOaを
陽極活物質として使用する非水電解?&電池を提供する
ことを目的とする。
Therefore, the present invention proposes non-aqueous electrolysis using LiMnxOa, which has excellent charge and discharge characteristics, as an anode active material. & batteries.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、LiMn、O,を陽極活物質とする非水
電解液電池の充放電容量を理論容量に近づけるべく種々
検討を重ねた結果、FeKα線を使用してX線回折を行
った際に、回折角46.1”において回折ピークの半値
幅が1.1〜2.1°であるようなLiMnm0aを上
記非水電解液電池の陽極活物質として使用すると、優れ
た充放電特性が得られることを見出し、本発明に到った
ものである。すなわち、本発明にかかる非水電解液電池
は、Llを主体とする負極活物質と、LiMn、O,を
主体とする陽極活物質と、非水電解液とから成り、上記
LiMnzOaは、FeKα線を使用したX線回折にお
いて、回折角46、1 @における回折ピークの半値幅
が1.1〜2.l。
The present inventors conducted various studies in order to bring the charge/discharge capacity of a non-aqueous electrolyte battery using LiMn, O, as an anode active material closer to the theoretical capacity, and as a result, conducted X-ray diffraction using FeKα rays. In particular, when LiMnm0a, which has a diffraction peak half-width of 1.1 to 2.1° at a diffraction angle of 46.1", is used as the anode active material of the above-mentioned non-aqueous electrolyte battery, excellent charge-discharge characteristics can be obtained. The inventors have discovered that the non-aqueous electrolyte battery of the present invention can be obtained using a negative electrode active material mainly composed of Ll, and a positive electrode active material mainly composed of LiMn, O, and the like. and a nonaqueous electrolyte, and in X-ray diffraction using FeKα rays, the half-width of the diffraction peak at a diffraction angle of 46.1 @ is 1.1 to 2.1.

であることを特徴とするものである。It is characterized by:

本発明の非水電解液電池の陽極活物質として用いられる
LiMnm0aは、たとえば炭酸リチウムと二酸化マン
ガンを空気中で焼成することにより調製される。このと
き、焼成温度を調節することにより、X線回折において
観測される回折ピークの半値幅が変化するわけである。
LiMnmOa used as the anode active material of the nonaqueous electrolyte battery of the present invention is prepared, for example, by firing lithium carbonate and manganese dioxide in air. At this time, by adjusting the firing temperature, the half-width of the diffraction peak observed in X-ray diffraction changes.

本発明においては、FeKα線を使用してX線回折を行
った際に、回折角46.1°における回折ピークの半値
幅が141〜2.1であるLiHn2O4を選択的に使
用するが、半値幅が上述の範囲よりも小さいと、所望の
放電容量が達成されない。
In the present invention, when performing X-ray diffraction using FeKα rays, LiHn2O4 whose half-value width of the diffraction peak at a diffraction angle of 46.1° is 141 to 2.1 is selectively used. If the value range is smaller than the above range, the desired discharge capacity will not be achieved.

また、上記炭酸リチウムの代わりにヨウ化リチウムを使
用しても良く、また焼成を空気中ではなく不活性ガス中
で行っても良い。
Furthermore, lithium iodide may be used instead of the lithium carbonate, and the calcination may be performed in an inert gas instead of in air.

一方、陰極活物質として使用される物質としては、金属
リチウム、リチウム合金(たとえばLi−A1、LiP
b、 Li5nSLiBi、、LiCd等)、リチウム
イオンを結晶中に混入した層間化合物(たとえば、Ti
5z、?IoS、等の層間にリチウムをはさんだもの)
等が使用可能である。
On the other hand, materials used as cathode active materials include metallic lithium, lithium alloys (e.g. Li-A1, LiP
b, Li5nSLiBi, LiCd, etc.), intercalation compounds with lithium ions mixed into the crystal (for example, Ti
5z,? IoS, etc. with lithium sandwiched between layers)
etc. are available.

また、電解液にはリチウム塩を電解質とし、これを有機
溶剤に溶解した非水電解液が使用される。
In addition, a non-aqueous electrolyte in which a lithium salt is used as an electrolyte and is dissolved in an organic solvent is used as the electrolyte.

ここで、有機溶剤としては、1.2−ジメトキシエタン
、1.2−ジェトキシエタン、γ−ブチロラクトン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、1
.3−ジオキソラン、4−メチル−1,3〜ジオキソラ
ン等の単独または2種以上の混合溶剤が使用できる。
Here, the organic solvents include 1,2-dimethoxyethane, 1,2-jethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1
.. Solvents such as 3-dioxolane and 4-methyl-1,3-dioxolane may be used alone or in combination of two or more.

電解質としては、LiCIO4、LiAsF6、Lit
”Fb、LiBFa、LiB(CaHs)4の1種また
は2種以上を混合したもの等が使用可能である。
As an electrolyte, LiCIO4, LiAsF6, Lit
It is possible to use one or a mixture of two or more of Fb, LiBFa, and LiB(CaHs)4.

〔作用〕[Effect]

FeKα線を使用してX線回折を行った時に、回折角4
6.1’″におけるピークの半値幅が1.1〜2.1゜
であるようなLiMntO,を選択的に非水電解液電池
の陽極活物質として使用することにより、理論充放電容
量の90%以上という高い充放電容量を確保することが
可能である。
When performing X-ray diffraction using FeKα radiation, the diffraction angle is 4.
By selectively using LiMntO, which has a peak half-width of 1.1 to 2.1 degrees at 6.1''', as an anode active material of a non-aqueous electrolyte battery, the theoretical charge/discharge capacity of 90 It is possible to secure a high charge/discharge capacity of % or more.

〔実施例〕〔Example〕

以下、本発明を具体的な実験例にもとづき、図面を参照
しながら説明する。
Hereinafter, the present invention will be explained based on specific experimental examples and with reference to the drawings.

第1の実施例 本実施例は、LiMn2O4をいろいろな焼成温度にて
調製し、これらを用いていわゆるボタン型の電池をそれ
ぞれ作成し、これらの充放電特性を調べたものである。
First Example In this example, LiMn2O4 was prepared at various firing temperatures, so-called button-type batteries were made using these, and their charge and discharge characteristics were investigated.

まず、非水電解液電池の陽極活物質として良好な特性を
有するしiMn=o=を得るため、LiMnzOaの焼
成温度を種々に変化させ、これによるX線回折ピークの
変化および放電容量の変化を調べた。
First, in order to obtain iMn=o=, which has good properties as an anode active material for non-aqueous electrolyte batteries, we varied the firing temperature of LiMnzOa and investigated the resulting changes in X-ray diffraction peaks and discharge capacity. Examined.

LiMntO4を調製するにあたっては、市販の二酸化
マンガン86.9g(1モル)と炭酸リチウム18.5
g (0,25モル)とを乳鉢ですりつぶしながら十分
に混合し、得られた混合物をアルミナボート上、空気中
で1時間焼成した。焼成温度は430°Cから900 
’Cの間とした。
To prepare LiMntO4, 86.9 g (1 mol) of commercially available manganese dioxide and 18.5 g of lithium carbonate were used.
g (0.25 mol) were sufficiently mixed while being ground in a mortar, and the resulting mixture was calcined on an alumina boat in air for 1 hour. Firing temperature ranges from 430°C to 900°C
'C' room.

次にこの生成物を冷却し、X線回折により分析した。こ
のx1回折はFeKα線を使用して行い、測定条件は管
電圧30 kV、管電流15隋^、測定範囲2,000
 cps、走査速度1°/分、記録紙速度5mm/分、
発散スリット幅l°、受光スリット幅0.6 m+nで
ある。物質の同定は、アメリカ材料試験協会(ASTM
)のカード・インデックスと照合することにより行い、
上記生成物はLiMntO4であることが確認された。
The product was then cooled and analyzed by X-ray diffraction. This x1 diffraction was performed using FeKα radiation, and the measurement conditions were a tube voltage of 30 kV, a tube current of 15 kV, and a measurement range of 2,000 m.
cps, scanning speed 1°/min, recording paper speed 5mm/min,
The divergence slit width is 1°, and the light receiving slit width is 0.6 m+n. Identification of substances is based on the American Society for Testing and Materials (ASTM)
) by comparing it with the card index of
The above product was confirmed to be LiMntO4.

この−例として、460°Cの焼成温度にて得られたL
iMnzOaのX線回折スペクトルを第1図に示す。こ
のとき、回折角46.1@における回折ピークの半値幅
は2.08@であり、これは従来のLiMntO4の一
般的な製造方法において800〜900 ’Cで焼成さ
れたものよりも広い幅である。なお、他の温廣にて焼成
されたLiMnzOaについての半値幅のデータは、後
述の表1にまとめて示す。
As an example of this, L obtained at a calcination temperature of 460 °C
The X-ray diffraction spectrum of iMnzOa is shown in FIG. At this time, the half-width of the diffraction peak at a diffraction angle of 46.1@ is 2.08@, which is wider than that of LiMntO4 fired at 800-900'C in the conventional general manufacturing method. be. Note that data on half-widths of LiMnzOa fired at other temperatures are summarized in Table 1 below.

次に、上述のようにして各焼成温度にて得られたLiM
n、04を使用して、第2図に断面図で示すような非水
電解液電池を作成した。すなわち、上記LiMntO<
を86.4重量部とり、これに8.6重量部のグラファ
イト、およびバインダーとして5重置部のポリテトラフ
ルオロエチレン(テフロン)を添′加して陽極組成物と
した。この陽極組成物を直径15.511111、厚さ
0.44 #lll 、 Tfl量0.213 gの陽
極ペレット(5)に成形した。
Next, LiM obtained at each firing temperature as described above
A non-aqueous electrolyte battery as shown in the cross-sectional view in FIG. 2 was prepared using No. 04. That is, the above LiMntO<
An anode composition was prepared by adding 86.4 parts by weight of graphite and 5 parts by weight of polytetrafluoroethylene (Teflon) as a binder. This anode composition was molded into an anode pellet (5) having a diameter of 15.511111, a thickness of 0.44 #ll, and a Tfl amount of 0.213 g.

一方、市販の0.3 mm厚のアルミニウム板を直径1
5.5 vavsに打抜き、陰極罐(2)にスボント溶
接により接着し、その上に厚さ0.18 mmのリチウ
ム箔を直径15 mmの円形に打抜いたものを圧着して
陰極ベレット(1)を作成し、陰極を形成した。
On the other hand, a commercially available 0.3 mm thick aluminum plate was
5.5 vavs, adhered to the cathode can (2) by spont welding, and press-bonded a lithium foil with a thickness of 0.18 mm into a circular shape with a diameter of 15 mm on top of it to form a cathode pellet (1 ) was created to form a cathode.

次に、上記陰極上にセパレータ(3)を重ね、ブラスチ
ンク製のガスケント(4)をはめ込み、1モル/lのL
iCl0aを熔解した炭酸プロピレンと1,2−ジメト
キシエタンの混合電解液を注入した。これに、先に作成
した陽極ベレン)(5)を上記セパレータ(3)に重ね
、陽極罐(6)を被せた後、開口部を密封するようにか
しめてシールを施し、外形20mm、厚さ1.6 mm
のいわゆるボタン型の非水電解液電池を作成した。
Next, a separator (3) was placed on top of the cathode, a gasket (4) made of brass tink was fitted, and 1 mol/l of L
A mixed electrolyte of propylene carbonate and 1,2-dimethoxyethane in which iCl0a was dissolved was injected. The anode belen (5) prepared earlier was stacked on the separator (3), and the anode can (6) was covered, and the opening was caulked to seal. 1.6 mm
We created a so-called button-type non-aqueous electrolyte battery.

上述の方法により、各焼成温度にて調製されたLiMn
2O4を使用し、それぞれ非水電解液電池A。
LiMn prepared at each calcination temperature by the above method
Nonaqueous electrolyte battery A uses 2O4.

B、C,D、E、F、G、H,I、J、Kを作成した。B, C, D, E, F, G, H, I, J, and K were created.

これら各電池の名称と焼成温度との対応は、表1に示す
とおりである。
The correspondence between the name of each of these batteries and the firing temperature is as shown in Table 1.

このようにして得られた非水電解液電池A、B。Nonaqueous electrolyte batteries A and B thus obtained.

C,D、E、F、G、H,I、J、にの充放電特性を調
べた。
The charging and discharging characteristics of C, D, E, F, G, H, I, and J were investigated.

表1 まず、これらの非水電解液電池に1にΩの抵抗′を接続
し、終止電圧を2.Ovとして放電特性を測定した結果
を第3図に示す、この図において、縦軸は電池電圧(■
)、横軸は放電時間(Hr)を表す、この第3図から平
均放電電圧値を読みとって平均放’mi流値に換算し、
さらに終止電圧に達するまでの放電持続時間を乗すると
、放電容量をアンペア時容量(この測定系では1にΩの
抵抗を使用しているので、単位はmAHとなる。)とし
て算出することができる0表1には、このようにして求
めた放電容量を併記しである。
Table 1 First, connect a resistor of Ω to 1 to these non-aqueous electrolyte batteries, and set the final voltage to 2. Figure 3 shows the results of measuring the discharge characteristics as Ov. In this figure, the vertical axis is the battery voltage (■
), the horizontal axis represents the discharge time (Hr), the average discharge voltage value is read from this Figure 3 and converted to the average discharge 'mi current value,
Furthermore, by multiplying the discharge duration until reaching the final voltage, the discharge capacity can be calculated as ampere-hour capacity (in this measurement system, a resistance of Ω is used for 1, so the unit is mAH). Table 1 also shows the discharge capacity determined in this manner.

次に、上述のように放電を起こした各電池に、4 +m
Aの電流を流し、終止電圧を3.I Vとして充電特性
を測定した結果を第4図に示す、この図において、縦軸
は電池電圧(■)、横軸は充電時間(H「)をそれぞれ
表す、この第4図、および前述の第3図において、各電
池に対応する曲線が平坦な部分(定電圧的に変化する部
分)を多く有していることからもわかるように、本発明
にかかる非水電界液電池の充放電特性は非常に安定して
いる。
Next, each battery that has undergone discharge as described above is given 4 + m
A current is applied and the final voltage is set to 3. The results of measuring the charging characteristics as IV are shown in Figure 4. In this figure, the vertical axis represents the battery voltage (■), and the horizontal axis represents the charging time (H''). In FIG. 3, as can be seen from the fact that the curves corresponding to each battery have many flat parts (parts that vary in constant voltage), the charge-discharge characteristics of the non-aqueous electrolyte battery according to the present invention are shown. is very stable.

これは、LiMnz04層間へのリチウム・イオンのイ
ンターカーレージロンおよびデインターカーレーシゴン
が非常に速やかに起こっている証拠であり、上述のよう
にして調製されたLiMn1O,が陽極活物質として優
れた特性を有していることがわかる。
This is evidence that intercalation and deintercalation of lithium ions between the LiMnz04 layers occurs very quickly, and LiMn1O, prepared as described above, is excellent as an anode active material. It can be seen that it has certain characteristics.

また、表1に記載の放電容量と焼成温度との関係を図示
すると、第5図のようになる。この図において、縦軸は
放電容!1(mAH)、横軸は焼成温度(”C)を表す
0以上、表1、第3図および第5図から、20 mAH
以上の優れた放電容量を有し、実用に耐える電池はA、
B、C,D、E、Fの各電池であり、これらの陽極活物
質である1、iMnzOmはX線回折角46.1°にお
ける回折ピークの半値幅がいずれも1.1〜2.1°の
範囲にあることがわかる。
Further, the relationship between the discharge capacity and firing temperature listed in Table 1 is illustrated in FIG. 5. In this figure, the vertical axis is the discharge capacity! 1 (mAH), the horizontal axis represents the firing temperature ("C), 0 or more, from Table 1, Figures 3 and 5, 20 mAH
Batteries that have the above excellent discharge capacity and can withstand practical use are A.
B, C, D, E, and F batteries, and their anode active materials 1 and iMnzOm all have a diffraction peak half-width of 1.1 to 2.1 at an X-ray diffraction angle of 46.1°. It can be seen that it is in the range of °.

しかも、この半値幅はLiMngOaの焼成温度により
制御することが可能であり、その適正温度範囲は430
〜520°である。上述の範囲よりも焼成温度が高い場
合には放電容量が順次減少する傾向のあることがわかっ
た。また、焼成温度が上述の範囲よりも低くてもやはり
放電容量は低下し、たとえば焼成温度を400 ’Cと
して調製されたLiMn1O4を゛使用した電池りでは
、放電容量が19.1 sAH(第5図参照)とかえっ
て低下していた。このときのLiMn1O4のX線回折
スペクトルは、第6図に示すとおりである。この図から
、焼成温度が400“Cと低い場合には、未反応の炭酸
リチウムおよび二酸化マンガンが残存しており、所望の
特性が達成されないことがわかる。
Moreover, this half-width can be controlled by the firing temperature of LiMngOa, and the appropriate temperature range is 430°C.
~520°. It has been found that when the firing temperature is higher than the above range, the discharge capacity tends to gradually decrease. Furthermore, even if the firing temperature is lower than the above range, the discharge capacity still decreases. For example, in a battery using LiMn1O4 prepared at a firing temperature of 400'C, the discharge capacity is 19.1 sAH (5th (see figure), on the contrary, it was decreasing. The X-ray diffraction spectrum of LiMn1O4 at this time is as shown in FIG. This figure shows that when the firing temperature is as low as 400"C, unreacted lithium carbonate and manganese dioxide remain, and the desired characteristics are not achieved.

第2の実施例 本実施例は、LiMnzO,を調製する際に、第1の実
施例に記載した炭酸リチウムの代わりにヨウ化リチウム
を使用し、また焼成を空気中で行う代わりに窒素雰囲気
下で行った例である。
Second Example In this example, when preparing LiMnzO, lithium iodide was used instead of lithium carbonate as described in the first example, and calcination was performed under a nitrogen atmosphere instead of in air. This is an example of what was done.

まず、市販の二酸化マンガン50g(0゜57モル)と
ヨウ化リチウム39g (0,29モル)およびグラフ
ァイト5.2 gとを乳鉢ですりつぶしながら十分に混
合し、得られた混合物を3トン7cm”の圧力でペレッ
ト状に加圧成形した。このペレットをアルミナボートに
のせ、窒素雰囲気下、300°Cで6時間焼成した。焼
成後、生成物を冷却し、エチレングリコールおよびジメ
チルエーテルで逐次洗浄した。
First, 50 g (0.57 mol) of commercially available manganese dioxide, 39 g (0.29 mol) of lithium iodide, and 5.2 g of graphite were thoroughly mixed while grinding in a mortar, and the resulting mixture was poured into a container weighing 3 tons of 7 cm. The pellets were placed on an alumina boat and fired at 300°C for 6 hours under a nitrogen atmosphere. After firing, the product was cooled and washed successively with ethylene glycol and dimethyl ether.

この生成物を、第1の実施例に記載の条件にてX線回折
により分析し、ASTMのカード・インデックスと照合
してLiMnzOaであることを確認した。
This product was analyzed by X-ray diffraction under the conditions described in the first example, and compared with the ASTM card index, it was confirmed that it was LiMnzOa.

このX線回折スペクトルを第7図に示す0回折角46、
ピにおけるピークの半値幅は1.57°であった。
This X-ray diffraction spectrum is shown in FIG.
The half width of the peak at P was 1.57°.

この第7図では、第1回に現れているピークの他に、グ
ラファイトのピークが見られる。
In this FIG. 7, in addition to the peak appearing in the first round, a graphite peak can be seen.

次に、このLiMnzO4の95重量部にバインダーと
して5重量部のポリテトラフル牙ロエチレン(テフロン
)を添加し、陽極組成物とした。以下の非水電解液電池
の組み立ては、第1の実施例に記載の方法に準じて行い
、電池Mを作成した。この電池Mの放電容量は、第1の
実施例に記載の方法に準じて行った結果、23.1 m
AHという良好なものであった。
Next, 5 parts by weight of polytetrafluoroethylene (Teflon) as a binder was added to 95 parts by weight of this LiMnzO4 to prepare an anode composition. The following assembly of the non-aqueous electrolyte battery was carried out according to the method described in the first example, and a battery M was created. The discharge capacity of this battery M was 23.1 m as a result of the method described in the first example.
It was good as AH.

第3の実施例 本実施例は、LiMnzOaを調製する際に、第1の実
施例に記載したように焼成を空気中で行う代わ゛りに窒
素雰囲気下で行った例である。
Third Example This example is an example in which LiMnzOa was prepared in a nitrogen atmosphere instead of in air as described in the first example.

まず、市販の二酸化マンガン86.9g(1モル)と炭
酸リチウム18.5 g  (0,25モル) とを乳
鉢ですりつぶしながら十分に混合し、得られた混合物を
アルミナボートにのせ、窒素雰囲気下、450°Cで1
時間焼成した。この生成物を、第1の実施例に記載の条
件にてX線回折により分析し、LiMnzOmであるこ
とを確認した0回折角46.1”におけるピークの半値
幅は1.60’であった。
First, 86.9 g (1 mol) of commercially available manganese dioxide and 18.5 g (0.25 mol) of lithium carbonate were ground and mixed thoroughly in a mortar, and the resulting mixture was placed on an alumina boat and heated under a nitrogen atmosphere. , 1 at 450°C
Baked for an hour. This product was analyzed by X-ray diffraction under the conditions described in the first example, and it was confirmed that it was LiMnzOm.The half width of the peak at 0 diffraction angle of 46.1'' was 1.60'. .

以下の非水電解液電池の組み立ては、第1の実施例に記
載の方法に準じて行い、電池Nを作成した。この電池N
の放電容量は、第1の実施例に記載の方法に準じて行っ
た結果、22.9 +sAHという良好なものであった
The following assembly of the non-aqueous electrolyte battery was performed according to the method described in the first example, and battery N was created. This battery N
The discharge capacity was as good as 22.9 +sAH as a result of conducting the test according to the method described in the first example.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においては、
非水電解液二次電池の陽極活物質に使用されるLiMn
2O4の焼成温度を、実用上好適な放電容量を維持し得
る程度に従来よりも低く設定し、特に回折角46.1’
における回折ピークの半値幅を広めに設定しているので
、これを用いて作成される電池の充放電特性を理論容量
の90%以上にまで著しく高めることが可能である。
As is clear from the above description, in the present invention,
LiMn used as anode active material for non-aqueous electrolyte secondary batteries
The firing temperature of 2O4 was set lower than before to the extent that a practically suitable discharge capacity could be maintained, and in particular, the diffraction angle was 46.1'.
Since the half-value width of the diffraction peak is set to be wide, it is possible to significantly improve the charge/discharge characteristics of a battery made using this to 90% or more of the theoretical capacity.

また、LiMnzO4は比較的安価な物質であるため、
陽極活物質として従来使用されていたTiS、、MoS
、、NbSe、、v203等の高価な物質に比べて経済
性に優れることはもちろん、製造過程におけるエネルギ
ー節減も可能となる。
In addition, since LiMnzO4 is a relatively inexpensive substance,
TiS, MoS, conventionally used as anode active materials
, , NbSe, , V203, and other expensive materials, it is not only more economical, but also allows for energy savings in the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二酸化マンガンと炭酸リチウムとを460 ’
Cで焼成して得られたLiMntOmのX線回折スペク
トル図、第2図は非水電解液電池の一構成例を示す概略
断面図、第3図は使用したLiMnzO4の回折ピーク
の半値幅の違いによる放電特性の違いを示す特性図、第
4図は使用したLiMnzOaの回折ピークの半値幅の
違いによる充電特性の違いを示す特性図、第5図は非水
電解液電池の放電容量とLiMnxOaの焼成温度との
関係を示す特性図、第6′図は二酸化マンガンと炭酸リ
チウムとを400 ’Cで焼成して得られたLiMn2
O4のX線回折スペクトル図、第7図は二酸化マンガン
とヨウ化リチウムとを300 ’Cで焼成して得られた
LtMnJaのX線回折スペクトル図である。 1・・・ 陰極ベレント 2・・・ 陰極罐 3・・・ セパレータ 4・・・ ガスケット 5・・・ 陽極ペレット 6・・・ 陽極罐 特許出願人     ソニー株式会社 代理人   弁理士   小 池   見回   田村
榮− 同   佐藤 勝 20    30   40   1$o    60
    70   80   90    to。 53趙町2E;)F@Ka 第1図 口 第2図 0    2    4    6     B   
  Io     f2故!吟間 (Hr ) 第3図 第4図 回兜X@嵌斐 回忙X僧覗榔
Figure 1 shows manganese dioxide and lithium carbonate at 460'
An X-ray diffraction spectrum diagram of LiMntOm obtained by firing with C, Figure 2 is a schematic cross-sectional view showing an example of the configuration of a non-aqueous electrolyte battery, and Figure 3 is the difference in half-width of the diffraction peaks of the LiMnzO4 used. Figure 4 is a characteristic diagram showing the difference in charging characteristics due to the difference in the half-width of the diffraction peak of the used LiMnzOa, and Figure 5 is the relationship between the discharge capacity of the non-aqueous electrolyte battery and LiMnxOa. A characteristic diagram showing the relationship with firing temperature, Figure 6' shows LiMn2 obtained by firing manganese dioxide and lithium carbonate at 400'C.
FIG. 7 is an X-ray diffraction spectrum diagram of LtMnJa obtained by firing manganese dioxide and lithium iodide at 300'C. 1... Cathode berent 2... Cathode can 3... Separator 4... Gasket 5... Anode pellet 6... Anode can Patent applicant Sony Corporation representative Patent attorney Koike Mitami Sakae Tamura - Masaru Sato 20 30 40 1$o 60
70 80 90 to. 53 Chocho 2E;) F@Ka Figure 1 Exit Figure 2 0 2 4 6 B
Io f2 late! Ginma (Hr) Fig. 3 Fig. 4 Kaibutsu

Claims (1)

【特許請求の範囲】 Liを主体とする負極活物質と、 LiMn_2O_4を主体とする陽極活物質と、非水電
解液とから成り、 上記LiMn_2O_4は、FeKα線を使用したX線
回折において、回折角46.1°における回折ピークの
半値幅が1.1〜2.1°であることを特徴とする非水
電解液電池。
[Claims] Consisting of a negative electrode active material mainly composed of Li, a positive electrode active material mainly composed of LiMn_2O_4, and a non-aqueous electrolyte, the LiMn_2O_4 has a diffraction angle in X-ray diffraction using FeKα rays. A nonaqueous electrolyte battery characterized in that the half width of the diffraction peak at 46.1° is 1.1 to 2.1°.
JP62107989A 1986-10-29 1987-05-01 Non-aqueous electrolyte battery Expired - Fee Related JP2550990B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62107989A JP2550990B2 (en) 1987-05-01 1987-05-01 Non-aqueous electrolyte battery
GB8724998A GB2196785B (en) 1986-10-29 1987-10-26 Organic electrolyte secondary cell
DE3736366A DE3736366C2 (en) 1986-10-29 1987-10-27 Rechargeable galvanic element with organic electrolyte
KR1019870012003A KR960006425B1 (en) 1986-10-29 1987-10-29 Rechargeable organic electrolyte cell
US07/114,282 US4828834A (en) 1986-10-29 1987-10-29 Rechargeable organic electrolyte cell
FR8715017A FR2606219B1 (en) 1986-10-29 1987-10-29 RECHARGEABLE ORGANIC ELECTROLYTE CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107989A JP2550990B2 (en) 1987-05-01 1987-05-01 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS63274059A true JPS63274059A (en) 1988-11-11
JP2550990B2 JP2550990B2 (en) 1996-11-06

Family

ID=14473162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107989A Expired - Fee Related JP2550990B2 (en) 1986-10-29 1987-05-01 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2550990B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139862A (en) * 1988-11-21 1990-05-29 Fuji Elelctrochem Co Ltd Non-aqueous electrolyte secondary battery
JPH02139860A (en) * 1988-11-17 1990-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH02299153A (en) * 1989-05-12 1990-12-11 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
WO1994007275A1 (en) * 1991-07-30 1994-03-31 Yuasa Corporation Lithium secondary cell
US5738957A (en) * 1995-04-26 1998-04-14 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium battery
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139860A (en) * 1988-11-17 1990-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH0824043B2 (en) * 1988-11-17 1996-03-06 松下電器産業株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material
JPH02139862A (en) * 1988-11-21 1990-05-29 Fuji Elelctrochem Co Ltd Non-aqueous electrolyte secondary battery
JPH02299153A (en) * 1989-05-12 1990-12-11 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JPH0834101B2 (en) * 1989-05-12 1996-03-29 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
WO1994007275A1 (en) * 1991-07-30 1994-03-31 Yuasa Corporation Lithium secondary cell
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
US5738957A (en) * 1995-04-26 1998-04-14 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium battery

Also Published As

Publication number Publication date
JP2550990B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
Tarascon et al. The Li1+ xMn2O4/C rocking-chair system: a review
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
EP2985822B1 (en) Positive electrode active material and non-aqueous elecrolyte cell
US4828834A (en) Rechargeable organic electrolyte cell
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
US7326494B2 (en) Composite material and electrodes made therefrom
JPH0757783A (en) Rechargeable lithium battery and its preparation
JP2002151072A (en) Positive electrode material and battery using it
JP4207434B2 (en) Positive electrode active material and method for producing non-aqueous electrolyte battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JPH04284374A (en) Nonaqueous electrolytic secondary battery
JPH0992329A (en) Nonaqueous electrolyte secondary battery
JPWO2003088382A1 (en) Non-aqueous electrolyte secondary battery
JP3036674B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JPH09298061A (en) Nonaqueous secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JPS63274059A (en) Nonaqueous electrolyte battery
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
CA1290805C (en) Rechargeable organic electrolyte cell
JPH10308235A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JP2002063904A (en) Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP2003346807A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees