JPH0367464A - Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese - Google Patents

Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese

Info

Publication number
JPH0367464A
JPH0367464A JP1203260A JP20326089A JPH0367464A JP H0367464 A JPH0367464 A JP H0367464A JP 1203260 A JP1203260 A JP 1203260A JP 20326089 A JP20326089 A JP 20326089A JP H0367464 A JPH0367464 A JP H0367464A
Authority
JP
Japan
Prior art keywords
active material
lithium
manganese
oxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1203260A
Other languages
Japanese (ja)
Inventor
Junichi Yamaura
純一 山浦
Akira Ota
璋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1203260A priority Critical patent/JPH0367464A/en
Publication of JPH0367464A publication Critical patent/JPH0367464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain excellent cycle reversibility by setting the ratio between the Li atom and Mn atom of a composite oxide of Li and Mn used as the active material of a positive electrode within a specific range. CONSTITUTION:An organic electrolyte Li secondary battery has a positive electrode using an active material made of a composite oxide of Li and Mn obtained by baking a mixture of Mn oxide (MnO2, Mn2O3 or Mn3O4) and LiNO3 in the air. The ratio between the Li atom and Mn atom of this active material must be 0.30:0.70-0.35:0.65. When the Mn oxide of the raw material is MnO2 in particular, the baking temperature is preferably 430-470 deg.C. When the Mn oxide is Mn2O3, the baking temperature is preferably 450-530 deg.C. When the Mn oxide is Mn3O4, the baking temperature is preferably 450-500 deg.C. An Li secondary battery with excellent cycle reversibility and high energy density can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウムを負極活物質とした高エネルギ密度
を有する有機電解質リチウム二次電池、特にその正極活
物質の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an organic electrolyte lithium secondary battery having a high energy density using lithium as a negative electrode active material, and particularly to improvements in its positive electrode active material.

従来の技術 リチウム電池として正極にMnO2を用いた一次電池は
、既に実用化されている。リチウム電池の場合、水分の
存在が電池性能に悪影響を及ぼすため、従来においては
、M n 02を250℃から400℃の温度で加熱処
理して付着水および結合水を除去し、リチウム電池の正
極として用いていた。
BACKGROUND OF THE INVENTION Primary lithium batteries using MnO2 as a positive electrode have already been put into practical use. In the case of lithium batteries, the presence of water has a negative effect on battery performance, so conventionally Mn02 is heat-treated at a temperature of 250°C to 400°C to remove attached water and bound water, and then used as a positive electrode for lithium batteries. It was used as

MnO2の結晶構造としては、特公昭49−25571
号公報に開示されているように250℃〜350℃の温
度で熱処理したγ−β型、あるいは米国特許第4,13
3,856号明細書に開示されているように、350℃
〜430℃の温度で熱処理したβ型と考えられる。
The crystal structure of MnO2 is described in Japanese Patent Publication No. 49-25571.
γ-β type heat-treated at a temperature of 250°C to 350°C as disclosed in US Pat. No. 4,13
3,856, 350°C.
It is considered to be the β type heat treated at a temperature of ~430°C.

しかし、その後の検討で、空気中で400℃で熱処理し
たMnO2もγ−β型MnO2といわれている。ところ
が、これらの結晶構造を有するM n O2は、リチウ
ム二次電池として用いる場合、充放電に伴う結晶構造の
崩れによりサイクルとともに容量が低下することがわか
った。
However, in subsequent studies, MnO2 heat-treated at 400°C in air is also said to be γ-β type MnO2. However, it has been found that when MnO2 having these crystal structures is used as a lithium secondary battery, the capacity decreases with cycles due to the collapse of the crystal structure during charging and discharging.

そこでサイクルの可逆性を必要とするリチウム二次電池
用の正極活物質という観点からMnO2の改良を含めた
マンガン酸化物の開発が盛んに行われ、いくつかの提案
がなされてきた。その一つにスピネル型構造を有する二
酸化マンガンを正極活物質とする試みがあり、特開昭5
8−220362号公報に示されたように固体電解質と
組み合わせたもの、あるいは特開昭61114065号
公報に示されたようにLiMn20.を主体とする正極
などがある。
Therefore, from the viewpoint of positive electrode active materials for lithium secondary batteries that require cycle reversibility, manganese oxide, including improvements to MnO2, has been actively developed, and several proposals have been made. One such attempt was to use manganese dioxide, which has a spinel-type structure, as a positive electrode active material.
8-220362 in combination with a solid electrolyte, or LiMn20. There are positive electrodes mainly composed of .

また、スピネル型に類似した構造を有するλ型M n 
02についても、特開昭55−100224号公報、特
開昭63−187569号公報なとで開示されている。
In addition, λ type M n having a structure similar to a spinel type
02 is also disclosed in JP-A-55-100224 and JP-A-63-187569.

しかし完全なスピネル型では二段放電であり、それぞれ
の容量も少なく、サイクル劣化も大きい。またλ型ある
いはλ型とスピネル型の中間的な構造を有するものは、
容量は大きいがサイクル劣化は大きい。次いで、MnO
2にLiをドープして結晶構造の改良を行い、サイクル
の可逆性を向上させる試みも盛んに行われている。例え
ば、特開昭62−108455号公報特開昭62−10
8457号公報のようにLiをドープしたM n O2
を熱処理するもの、特開昭61−16473号公報、特
開昭62−126556号公報、特開昭62−1606
57号公報のようにLi塩の水溶液中にMnO2を浸し
てLiをドープするもの、特開昭63−148550号
公報のようにLiをドープしたα型また(よδ型のM 
n O2を用いるもの等である。さら番こ(よ、特51
昭62−290058号公報のようHコM n 02 
番こLiMnO2を予め添加するもの、特lSM昭63
114064号公報のよう番こl、i2Mno3を含有
するMnO2を用いるもの等もある。
However, a complete spinel type discharges in two stages, each with a small capacity and significant cycle deterioration. Also, those with a λ type or an intermediate structure between λ type and spinel type,
Although the capacity is large, cycle deterioration is large. Then, MnO
Attempts are also being made to improve the crystal structure by doping 2 with Li to improve cycle reversibility. For example, JP-A-62-108455, JP-A-62-10
M n O2 doped with Li as in Publication No. 8457
JP-A-61-16473, JP-A-62-126556, JP-A-62-1606
57, in which MnO2 is immersed in an aqueous solution of Li salt to dope Li, and JP-A-63-148550, in which Li-doped
These include those using nO2. Sarabanko (Yo, special 51
Hco M n 02 as in Publication No. 1986-290058
Pre-added LiMnO2, special SM 1986
There is also a method using MnO2 containing MnO2, i2Mno3, etc., as disclosed in Japanese Patent No. 114064.

また、リチウム−次電池番こイ系るもので(よあるが、
Liをドープする試み(よ、特開昭57−49164号
公報で予めM n O=中◆こ結合フ1f呈度のLi(
ヒ音物例えば、L i OH,L i NO:]を混合
しtこ後、熱処理するというものがある。
In addition, lithium secondary batteries are similar (although there are some)
An attempt was made to dope Li (Japanese Unexamined Patent Publication No. 57-49164), in which Li (
For example, there is a method that mixes Li OH, Li NO:] and then heat-treats the mixture.

さらに、MnO2にLiOHを30〜40mo 1%混
合し、加熱処理してLiをドープしたもの、M n O
2にLiNO3を約30mo1%混合し、400℃で熱
処理してLiをドープしt二もの等力くある。
Furthermore, MnO2 is mixed with 30-40mo 1% of LiOH and heat treated to dope Li, MnO
About 30 mo1% of LiNO3 was mixed with No. 2, and the mixture was heat-treated at 400° C. to be doped with Li.

以上の公知例に示される技術内容を追試しtコ結果、リ
チウム二次電池の活物質としてMnO2にLiをドープ
したものは、いずれも従来のγ−β型1vi n O2
に比べてサイクルの可逆性の向上がみられた。これは、
Llのドープにより結晶構造が補強された効果と考えら
れる。しかし、いずれも充分とはいえなかった。例えば
、Liをドープしたα型またはδ型のMnO2の場合は
、活物質利用率がきわめて悪いことと、α型またはδ型
のMnO2が元来結晶格子内に異種の陽イオンを含んで
おり、この陽イオンの溶出の影響と思われる負極の変質
がみられた。また、Li塩の水溶液中にM n 02を
浸してドープすることによって、可逆性の向上は多少み
られるが、その効果は小さい。これは、この方法でドー
プされるLiの量がきわめて小さいためだと考えられる
As a result of re-examining the technical contents shown in the above-mentioned known examples, all of the active materials of lithium secondary batteries in which MnO2 is doped with Li are the conventional γ-β type 1vin O2.
Improved cycle reversibility was observed compared to this is,
This is thought to be due to the effect of reinforcing the crystal structure by doping with Ll. However, none of them were sufficient. For example, in the case of Li-doped α-type or δ-type MnO2, the active material utilization rate is extremely poor, and α-type or δ-type MnO2 originally contains different types of cations in the crystal lattice. Deterioration of the negative electrode was observed, which was thought to be due to the elution of these cations. Furthermore, although some improvement in reversibility can be seen by doping M n 02 by immersing it in an aqueous solution of Li salt, the effect is small. This is considered to be because the amount of Li doped with this method is extremely small.

次に、リチウム−次電池に係る技術ではあるが、M n
 02中にその結合水量程度のLi化合物例えば、Li
OH,LiN0:+を混合した後に熱処理する方法をリ
チウム二次電池に適用してみた。しかし、確かに一次電
池としての利用率向上には効果がみられたが、サイクル
の可逆性に対しての効果は小さかった。これは、結合水
量程度のLi化合物の添加ではドープ量として不足して
いるためだと考えられる。次いで、MnO2にLiMn
O2を予め添加するもの、Li2MnO3を含有するM
 n 02を用いるものも試みたが、LiMnO2,L
i2MnO3の含有量に応じて可逆性は向上するものの
、LiMnO2゜L i 2M n 03はかさ高い材
料であるため、添加によって容量の体積効率が低下する
という欠点があった。従来、MnO2の結晶はC軸方向
にトンネルを有し、充放電によってこのトンネルへのL
lの侵入及び放出が行われる。即ち、このLiの侵入及
び放出が安定して行われると優れた可逆性を示すことに
なる。従来のγ−β型MnO2では、Liの侵入及び放
出の繰り返しく充放電サイクル)により結晶構造が徐々
に破壊され、サイクルにともなって容量の低下がおこる
とされている。Liの侵入は一種の電気化学的なLiの
ドープと考えられるが、サイクル可逆性の違い(結晶構
造の補強効果)を見るかぎり、電気化学的なドープと、
予め化学的かつ熱的な処理を加えてLiをドープしたも
のとではM n Oz中のLiの配位形態は異なると考
えられる。
Next, although it is a technology related to lithium-secondary batteries, M n
For example, a Li compound of about the amount of bound water in 02
We applied a method of mixing OH and LiN0:+ and then heat-treating them to a lithium secondary battery. However, although it was certainly effective in improving the utilization rate as a primary battery, the effect on cycle reversibility was small. This is thought to be due to the fact that the addition of the Li compound in the amount of bound water is insufficient as a doping amount. Then, LiMn was added to MnO2.
Those to which O2 is added in advance, M containing Li2MnO3
I also tried using n02, but LiMnO2, L
Although the reversibility improves depending on the content of i2MnO3, since LiMnO2°L i 2M n 03 is a bulky material, there is a drawback that the volumetric efficiency of the capacity decreases due to its addition. Conventionally, MnO2 crystals have a tunnel in the C-axis direction, and L into this tunnel is caused by charging and discharging.
The entry and release of l takes place. That is, if the intrusion and release of Li are performed stably, excellent reversibility will be exhibited. In conventional γ-β type MnO2, the crystal structure is gradually destroyed by repeated charging and discharging cycles (intrusion and release of Li), and it is said that the capacity decreases with the cycles. The intrusion of Li is considered to be a kind of electrochemical Li doping, but as far as we look at the difference in cycle reversibility (reinforcement effect of crystal structure), it is not electrochemical doping.
It is thought that the coordination form of Li in MnOz is different from that in which Li is doped by chemical and thermal treatment in advance.

また、予め何等かの化学的かつ熱的な処理でM n 0
2中にLiをドープしたものはいずれもサイクルの可逆
性には優れており、基本的には化学的かつ熱的な処理に
よってLiをドープしたMnO2はリチウム二次電池用
の正極活物質として有望と考えられる。特にこれまで報
告されたものの中で、サイクルの可逆性および活物質利
用率という観点からリチウム二次電池用の正極活物質に
最も適したものは、LiOHをMnO2に対して30m
o1%〜40mo1%程度混合し、加熱処理してLiを
ドープするというものと、MnO2にL i NO3を
混合し400℃で熱処理するというものであった。
In addition, by some chemical and thermal treatment in advance, M n 0
2 doped with Li has excellent cycle reversibility, and basically MnO2 doped with Li through chemical and thermal treatment is promising as a positive electrode active material for lithium secondary batteries. it is conceivable that. In particular, among those reported so far, the most suitable cathode active material for lithium secondary batteries from the viewpoint of cycle reversibility and active material utilization rate is LiOH at 30mM relative to MnO2.
One was to mix about 1% o to 40mol and dope with Li, and the other was to mix MnO2 with LiNO3 and heat treat it at 400°C.

例えば、CMDにLiN0+を30mo1%混合して4
00℃で焼成すると、サイクルの可逆性はもちろんのこ
と、利用率の高い活物質が得られると報告されている。
For example, by mixing 30mo1% of LiN0+ with CMD,
It has been reported that when fired at 00°C, an active material with high utilization rate as well as cycle reversibility can be obtained.

これらの方法を含めて、般にLiをドープすると活物質
の密度が低くなるため容量の体積効率は少し低くなるが
、MnO2あたりの活物質利用率が向上し、サイクルの
可逆性も向上するため、優れたリチウム二次電池用正極
活物質になりうる。ところが、その後の検討で、これら
の活物質には大きな欠点があることがわかった。それは
、M n O2の原材料として電解二酸化マンガン(E
MD)を用いた場合に起こるもので、正極を製造する工
程で、例えばペースト化するために媒体として水を用い
るとペーストのpHがきわめて高くなり、正極に用いる
集電材が腐食するというものである。これは、活物質か
らアルカリ(L i OHと考えられる)が遊離したた
めと考えられる。特に、集電材にアルミニウム等のアル
カリに対してきわめて弱い材料を用いると、水素発生を
伴う激しい腐食が起こり、極板にすることさえできなか
った。比較的アルカリに強いと思われるチタンまたはス
テンレス銅等を集電材に用いた場合、極板にすることは
できたが、容量の低下等、電池性能に著しく影響を及ぼ
すことがわかった。これは、−度遊離したアルカリが、
何等かの形で関与しているためと考えられる。ところが
、水の関与しない正極の製造法(例えば、粉末状の導電
剤と結着剤を乾式で混合してプレス成形する方法)を用
いると、電池性能に影響を与えることはほとんどなかっ
た。すなわち、この活物質は、正極製造の工程中に水を
関与させなければ使える材料でる。しかし、乾式で製造
できる極板にはその形状及び寸法に限界があり、汎用性
の観点からは充分でない。
Including these methods, doping with Li generally lowers the density of the active material, resulting in a slightly lower volumetric efficiency, but it also improves the active material utilization rate per MnO2 and improves cycle reversibility. , can be an excellent positive electrode active material for lithium secondary batteries. However, subsequent studies revealed that these active materials have major drawbacks. It uses electrolytic manganese dioxide (E
(MD), and in the process of manufacturing a positive electrode, for example, if water is used as a medium to make a paste, the pH of the paste becomes extremely high, and the current collector material used in the positive electrode corrodes. . This is considered to be because alkali (considered to be Li OH) was liberated from the active material. In particular, when a material that is extremely weak against alkali, such as aluminum, is used as a current collector, severe corrosion accompanied by hydrogen generation occurs, and the material cannot even be used as an electrode plate. When titanium or stainless steel copper, which are thought to be relatively resistant to alkali, were used as the current collector material, it was possible to make the electrode plates, but it was found that the battery performance was significantly affected, such as a decrease in capacity. This means that - degree of liberated alkali is
This is probably because they are involved in some way. However, when a positive electrode manufacturing method that does not involve water (for example, a method in which a powdered conductive agent and a binder are dry mixed and press-molded), there was almost no effect on battery performance. In other words, this active material cannot be used unless water is involved in the positive electrode manufacturing process. However, there are limits to the shape and dimensions of the electrode plates that can be produced by dry process, and they are not sufficient from the viewpoint of versatility.

一方、化学合成二酸化マンガン(CM I))はEMD
に比べてかさ高いため、容量の体積効率が低く実使用に
は不向きという欠点はあるが、同じように調製した活物
質では、水を関与させてもアルカリを遊離する現象はま
ったく起こらなかった。これは、CMDがEMDに比べ
て表面積が大きい(多孔質)ことによるもので、CMD
ではLiOHとの反応が完全に進み、EMDではLiO
HまたはLiNO3との反応が不完全であるためと考え
られる。また、LiNO3をEMDに30mo1%加え
、400℃で焼成したものは、LiOHを用いた場合に
比べてその活物質利用率が向上し、水を関与させたとき
のアルカリの遊離はLiOHの場合に比べ多少低かった
。しかし、完全ではないので問題は残り、汎用性という
観点からは充分でない。ただし、LiN0:+を用いて
EMDにLiをドープした活物質は、LiOHを用いた
ものより活物質利用率に優れており、現状では、最も優
れたリチウム二次電池用の活物質といえる。
On the other hand, chemically synthesized manganese dioxide (CMI) is an EMD
However, active materials prepared in the same way did not release alkali at all even in the presence of water. This is because CMD has a larger surface area (porous) than EMD, and CMD
In this case, the reaction with LiOH has proceeded completely, and in EMD, LiO
This is thought to be because the reaction with H or LiNO3 is incomplete. In addition, when 30 mo1% of LiNO3 is added to EMD and fired at 400°C, the active material utilization rate is improved compared to when LiOH is used, and the release of alkali when water is involved is lower than when using LiOH. It was a little lower than that. However, since it is not perfect, problems remain, and it is not sufficient from the viewpoint of versatility. However, an active material obtained by doping EMD with Li using LiN0:+ has a better active material utilization rate than one using LiOH, and can be said to be the most excellent active material for lithium secondary batteries at present.

発明が解決しようとする課題 本発明の目的は、サイクルの進行に対して常に安定した
放電容量を有し、高エネルギ密度のリチウム二次電池を
提供することである。そして、本発明の課題は、正極活
物質の改良に係るもので、マンガン酸化物をサイクルの
可逆性ばかりでなく、活物質利用率、容量の体積効率に
も優れ、さらに正極の製造工程における汎用性にも優れ
た活物質を提供することである。
Problems to be Solved by the Invention An object of the present invention is to provide a lithium secondary battery that has a discharge capacity that is always stable as the cycle progresses and has a high energy density. The object of the present invention is to improve the positive electrode active material. Manganese oxide has not only excellent cycle reversibility, but also excellent active material utilization rate and volumetric efficiency, and is also widely used in the manufacturing process of positive electrodes. The purpose of the present invention is to provide an active material with excellent properties.

課題を解決するための手段 本発明は、マンガン酸化物としてMnO2゜M n 2
031 またはM n 304を用い、これと硝酸リチ
ウムにLiNO3とを混合し、かつ空気中で焼成、好ま
しくは430℃以上、530℃以下の温度範囲で焼成し
て得られるリチウムとマンガンとの複合酸化物を活物質
として用いるものである。ただし、この複合酸化物中の
リチウム原子とマンガン原子との比(Li:Mn)が0
.30:0.70〜0.35:0.65であることが必
要条件である。特に、原材料のマンガン酸化物がMnO
2である場合、その焼成温度は430℃以上、470℃
以下であることが好ましく、マンガン酸化物がMn2O
3である場合、その焼成温度は450℃以上、530℃
以下であることが好ましい。さらにマンガン酸化物がM
 n 304である場合は、その焼成温度は450℃以
上、5oo℃以下であることが好ましい。また、焼成に
よってLiもMnも失われることはないので、複合酸化
:Mn)は、原材料のマンガン酸化物とLiNO3の混
合量で調製することができる。さらに、焼成前のマンガ
ン酸化物とLiNO3の混合時に媒体として水を用い、
硝酸リチウムを予め水に溶解した後、上記所定温度で焼
成することが好ましい。
Means for Solving the Problems The present invention provides MnO2゜Mn2 as manganese oxide.
Composite oxidation of lithium and manganese obtained by mixing 031 or M n 304 with lithium nitrate and LiNO3, and firing in air, preferably at a temperature range of 430°C or higher and 530°C or lower. It uses a substance as an active material. However, the ratio of lithium atoms to manganese atoms (Li:Mn) in this composite oxide is 0.
.. The necessary condition is 30:0.70 to 0.35:0.65. In particular, the raw material manganese oxide is MnO
2, the firing temperature is 430°C or higher, 470°C
It is preferable that the manganese oxide is Mn2O
3, the firing temperature is 450°C or higher, 530°C
It is preferable that it is below. Furthermore, manganese oxide is M
n 304, the firing temperature is preferably 450°C or higher and 5oo°C or lower. Furthermore, since neither Li nor Mn is lost during firing, the composite oxide (Mn) can be prepared by mixing the raw materials manganese oxide and LiNO3. Furthermore, water is used as a medium when mixing manganese oxide and LiNO3 before firing,
It is preferable that lithium nitrate be dissolved in water in advance and then fired at the above predetermined temperature.

上述した本発明の正極活物質ならびに製造法を用いるこ
とにより、従来技術のいずれよりもサイクル可逆性、活
物質利用率、容量の体積効率に優れ、さらに正極の製造
工程における汎用性にも優れた正極となる。
By using the above-described positive electrode active material and manufacturing method of the present invention, it is possible to achieve better cycle reversibility, active material utilization rate, and volumetric efficiency than any of the conventional technologies, and also excellent versatility in the positive electrode manufacturing process. Becomes the positive electrode.

例えば、従来、最も優れたリチウム二次電池用正極活物
質と考えられるLiNO3をEMDに30mo1%加工
て400℃で熱処理したものに比べ、サイクル可逆性は
ほぼ同程度であるが、活物質利用率ならびに容量の体積
効率においては少なくとも10%以上高く、水を関与さ
せてもアルカリを遊離することがなく、汎用性もきわめ
て優れている。すなわち、本発明の正極活物質を用いる
ことにより、製造汎用性に優れ、サイクルの進行に対し
て常に安定した放電容量を有する高エネルギ密度のリチ
ウム二次電池を提供することができる。
For example, compared to LiNO3, which is conventionally considered the best positive electrode active material for lithium secondary batteries, processed into EMD at 30 mo1% and heat-treated at 400°C, the cycle reversibility is almost the same, but the active material utilization rate is In addition, the volumetric efficiency is at least 10% higher, no alkali is liberated even when water is involved, and the versatility is extremely excellent. That is, by using the positive electrode active material of the present invention, it is possible to provide a high energy density lithium secondary battery that has excellent manufacturing versatility and always has a stable discharge capacity as the cycle progresses.

作用 従来、MnO2にLiをドープするための原材料にLi
OHとLiNO3を用いる場合では、その活物質利用率
、容量の体積効率、さらに水を関与させたときのアルカ
リの遊離状態に違いが見られたので、X線回折法により
、結晶形態を比較してみた。第1図は、EMDにそれぞ
れLiOHおよびLiNO3を30mo1%混合し、水
で練った後、400℃で5時間空気中で加熱して調製し
たものについてのX線回折パターンを比較したものであ
る。この比較図を見ると明らかなように、LiNO3を
用いたもの(第1図A)には2θ=21.8付近と20
= 53.1付近にLiOHを用いたもの(第1図B)
にはないピークがみられる。その詳細は定かではないが
、明らかに異なる結晶相(フェーズ)が存在しており、
少なくとも異なる材料になっているといえる。また、こ
れはスピネル型のLiMn20*のX線回折パターンや
従来のγ−β型M n O2とも異なるものである。す
なわち、このような異なる材料となるためLiOHをL
iのドープ源として用いた場合より、特性が向上してい
ると考えられる。ところが、本発明の活物質では、さら
に従来のものに比べ、活物質利用率の向上とアルカリの
遊離の抑制ができるが、これはLiN0:+ とEMD
との間で起こる化学的及び熱的なLiのドープがきわめ
て完成度の高いものであることによる。ただし、X線回
折では、その差は顕著に現れるものではなかった。特に
、LiNO3とEMDを混合して焼成すると、No、(
酸化窒素ガス)の発生がみられるが、本発明の条件下で
は、従来のものに比べ、焼成中のNO,の発生はきわめ
て激しかった。
Function Conventionally, Li was used as a raw material for doping MnO2 with Li.
When using OH and LiNO3, differences were observed in the active material utilization rate, volumetric efficiency, and free state of alkali when water was involved, so we compared their crystal forms using X-ray diffraction. I tried it. FIG. 1 compares the X-ray diffraction patterns of EMD prepared by mixing 30 mo1% of each of LiOH and LiNO3, kneading with water, and then heating in air at 400° C. for 5 hours. As is clear from this comparison diagram, the one using LiNO3 (Fig. 1A) has a 2θ of around 21.8 and 20
= 53.1 using LiOH (Figure 1B)
A peak that is not present can be seen. Although the details are not clear, there are clearly different crystal phases.
At least it can be said that they are made of different materials. This is also different from the X-ray diffraction pattern of spinel type LiMn20* and the conventional γ-β type M n O2. In other words, since LiOH is a different material,
It is considered that the characteristics are improved compared to when it is used as a doping source for i. However, the active material of the present invention can further improve the active material utilization rate and suppress the release of alkali compared to the conventional one, but this is due to the fact that LiN0:+ and EMD
This is because the chemical and thermal doping of Li that occurs between the two is extremely complete. However, the difference was not noticeable in X-ray diffraction. In particular, when LiNO3 and EMD are mixed and fired, No.
However, under the conditions of the present invention, the generation of NO during firing was much more intense than under the conventional conditions.

本来、LiNO3の分解温度は600℃であり、本発明
の焼成温度では分解するはずがない。
Originally, the decomposition temperature of LiNO3 is 600°C, and LiNO3 cannot be decomposed at the firing temperature of the present invention.

従って、M n O2を触媒とするLiNO3の分解反
応を併発していることが予想されるが、本発明の条件下
(従来のものより高温)では、この分解反応が一層起こ
り易いものと思われる。さらにこの分解過程で発生する
N 03. N O2等は強い酸化剤として働くもので
、少なくともM n O2の表面はきわめて活性な状態
になっていると考えられる。おそらく、これらが効果的
に作用して、Liのドープが完全に行われ、アルカリの
遊離を起こさない材料になり、さらには活物質利用率の
向上にも寄与していると思われる。
Therefore, it is expected that a decomposition reaction of LiNO3 using M n O2 as a catalyst occurs concurrently, but it is thought that this decomposition reaction occurs more easily under the conditions of the present invention (higher temperature than conventional ones). . Furthermore, N03. generated during this decomposition process. N 2 O 2 and the like act as strong oxidizing agents, and it is thought that at least the surface of M n O 2 is in an extremely active state. Presumably, these factors work effectively to completely dope Li, resulting in a material that does not cause alkali release, and also contributes to improving the utilization rate of the active material.

従来、MnO,、の還元体であるMn2O3またはMn
 304は、活物質として活性が低くきわめて低容量な
ため使用できるものではなかったが、LiNO3と共に
本発明の条件下で焼成すると容量を有するようになり、
MnO2の場合よりその容量特性は少し劣るが、充分な
性能を持つようになった。また、これらを原材料とした
ものも、本発明の条件下の焼成過程で著しくNoXを発
生した。
Conventionally, Mn2O3 or Mn, which is a reduced form of MnO,
304 could not be used as an active material due to its low activity and extremely low capacity, but when it is fired with LiNO3 under the conditions of the present invention, it has a capacity.
Although its capacitance characteristics are slightly inferior to those of MnO2, it now has sufficient performance. Further, products using these materials as raw materials also generated a significant amount of NoX during the firing process under the conditions of the present invention.

すなわち、この場合もLiNO3の触媒反応が併発して
おり、さらに都合のよいことにNOlの酸化力によって
、これらのマンガン酸化物そのものの活性が向上する(
Mn203またはMrzO<がきわめてM n 02に
近い状態にまで酸化された)と考えられる。
In other words, in this case as well, the catalytic reaction of LiNO3 occurs simultaneously, and more conveniently, the oxidizing power of NOl improves the activity of these manganese oxides themselves (
It is thought that Mn203 or MrzO< was oxidized to a state extremely close to Mn02).

以上のように、Liのドープ方法の一つにすぎないが、
LiNOsを用いた本発明の技術はきわめて興味深いも
のである。
As mentioned above, this is just one method of doping Li, but
The technology of the present invention using LiNOs is extremely interesting.

実施例 以下本発明の実施例を示す。Example Examples of the present invention will be shown below.

実施例1 本発明のLiとマンガンとの複合酸化物からなる活物質
は以下のように調製した。まず、LiNO3を所定量の
水に溶解させ、LiNO3の飽和水溶液に近いものを作
る。これに所定量のマンガン酸化物粉末を加え、充分に
かくはん混合し、水分を一部蒸発させて泥状の塊にした
後、電気炉を用い、所定温度で4〜5時間焼成する。焼
成後、粉末表面に未反応物質と思われる白色粉が見られ
ることがあるが、この場合は再び水を加え練り、再度焼
成するとよい。このように焼成を二度行ってもその電池
特性にはまったく影響はなかった。また、マンガン酸化
物とLiNO3を予め粉末のまま混合してから、水を加
え練っても同じものが調製できた。しかし、水を用いず
、粉末同士を混合しただけのものを直接焼成すると、反
応が均一に行われに<<、性能のばらつきが大きくなっ
てしまった。従って、混合には水を関与させることが好
ましい。
Example 1 An active material comprising a complex oxide of Li and manganese of the present invention was prepared as follows. First, LiNO3 is dissolved in a predetermined amount of water to create something close to a saturated aqueous solution of LiNO3. A predetermined amount of manganese oxide powder is added thereto, thoroughly stirred and mixed, and a portion of the water is evaporated to form a mud-like mass, which is then fired at a predetermined temperature for 4 to 5 hours using an electric furnace. After firing, white powder, which is thought to be unreacted substances, may be seen on the powder surface; in this case, it is best to add water, knead, and fire again. Even after firing twice in this way, the battery characteristics were not affected at all. The same product could also be prepared by mixing manganese oxide and LiNO3 in powder form in advance and then adding water and kneading. However, when the mixture of powders was directly fired without using water, the reaction did not occur uniformly, resulting in large variations in performance. Therefore, it is preferable to involve water in the mixing.

次に、比較検討用の活物質として、LiOHをLiのド
ープ源として用いたものも調製した。この場合の調製法
も前記とほぼ同様で、水を用いて混合し、焼成したもの
がばらつきも小さく優れていた。
Next, as an active material for comparative study, one using LiOH as a Li doping source was also prepared. The preparation method in this case was almost the same as above, and the one in which water was used for mixing and baking was superior with less variation.

実施例2 マンガン酸化物としてEMDを用い、実施例1の手法で
、L i : Mn=0.3 : 0.7 (L i含
有量30mo1%に相当)となるようにし、焼成温度を
400℃とした場合の従来の活物質と、これと同組成で
焼成温度を440℃とした本発明の活物質の比較検討を
行った。また、参考のために、同組成で400℃調製し
たLiOHをドープ源とした活物質とEMDを400℃
で加熱処理したγ−β型のM n O2も調製した。
Example 2 Using EMD as manganese oxide, using the method of Example 1, Li:Mn=0.3:0.7 (corresponding to Li content of 30 mo1%), and the firing temperature was set to 400°C. A comparative study was conducted between the conventional active material in which the above-mentioned active material was used, and the active material of the present invention having the same composition but at a firing temperature of 440°C. For reference, we also prepared an active material with the same composition prepared at 400°C using LiOH as a doping source and EMD at 400°C.
A γ-β type M n O2 heat-treated was also prepared.

まず以上の四つの活物質を用いて第2図のようなボタン
型電池を組み立てて、その特性比較を行った。第2図に
おいて、正極1は活物質に導電材である炭素粉末(活物
質に対して5重量%)と結着剤である四フッ化エチレン
樹脂粉末(活物質に対して7重量%)を混合したもので
、正極ケース内側にスポット溶接で固定したチタンネッ
ト2上にプレス成形したものである。すなわち、これは
正極製造過程に水を関与させない乾式法である。また、
活物質量はいずれも100■とした。
First, a button-type battery as shown in Figure 2 was assembled using the above four active materials, and its characteristics were compared. In Figure 2, the positive electrode 1 contains carbon powder as a conductive material (5% by weight based on the active material) and tetrafluoroethylene resin powder as a binder (7% by weight based on the active material). It is a mixture that is press-molded onto a titanium net 2 fixed to the inside of the positive electrode case by spot welding. That is, this is a dry method that does not involve water in the positive electrode manufacturing process. Also,
The amount of active material was 100μ in both cases.

そして、ポリプロピレン製のセパレータ3.封口板4に
圧着した金属リチウムの負極5及び電解液6(1モルの
LiAsF6を炭酸プロピレンと炭酸エチレンとの混合
溶媒中に溶かしたもの)と共にポリプロピレン製のガス
ケット7を介して密封し、直径20m1高さ1 、6 
mmの電池とした。また、この電池は正極の特性を比較
する目的で試作したもので、正極の容量に対し負極の容
量を約4倍充填しており、充放電特性に負極の欠乏等に
よる影響が現れないようにしている。充放電試験は、2
mAの定電流充放電を充電終止電圧を3.8V、放電終
止電圧を2.Ovと設定して行った。第3図に上記4種
類の活物質を適用した電池の放電容量−サイクル特性を
示す。第3図において曲線8はγ−β型M n 02の
特性である。その初期容量は他より大きいが、サイクル
に伴う容量劣化は最も大きい。次に、曲線9は30mo
1%相当のLiOHをドープ源に用い400℃で焼成し
たものであり、サイクル可逆性は優れているが、容量が
小さい。しかし、この場合、活物質に含まれているM 
n O2量から計算すると、γ−β型M n 02単独
のものよりもその利用率は高くなっている。
And a polypropylene separator 3. The metal lithium negative electrode 5 and the electrolytic solution 6 (1 mol of LiAsF6 dissolved in a mixed solvent of propylene carbonate and ethylene carbonate) were sealed together with a polypropylene gasket 7, which was crimped onto the sealing plate 4, and the diameter was 20 m1. height 1, 6
It was made into a battery of mm. In addition, this battery was prototyped for the purpose of comparing the characteristics of the positive electrode, and the capacity of the negative electrode was filled to about 4 times the capacity of the positive electrode, so that the charging and discharging characteristics would not be affected by the lack of the negative electrode. ing. The charge/discharge test is 2
For constant current charging and discharging of mA, the final charge voltage is 3.8V, and the final discharge voltage is 2. I set it as Ov. FIG. 3 shows the discharge capacity-cycle characteristics of a battery to which the above four types of active materials are applied. In FIG. 3, curve 8 is the characteristic of γ-β type M n 02. Its initial capacity is higher than the others, but its capacity degradation with cycling is the greatest. Next, curve 9 is 30mo
It was fired at 400° C. using LiOH equivalent to 1% as a doping source, and has excellent cycle reversibility but low capacity. However, in this case, M contained in the active material
When calculated from the amount of n O2, the utilization rate is higher than that of γ-β type M n 02 alone.

次いで、曲線10は従来の30mo1%相当のLiNO
3を用い400℃で焼成した活物質の特性で、曲線11
は本発明に係る30mo1%のLiN0+を用い、44
0℃で焼成した活物質の特性である。サイクル可逆性は
いずれも優れており、さらにその容量も曲線9に比べて
大きいが、曲線IOと曲線11とでは曲線11の方が容
量もサイクル可逆性にも優れていた。
Next, curve 10 shows the conventional LiNO equivalent to 30mo1%.
Curve 11 is the characteristic of the active material fired at 400℃ using 3.
using 30 mo1% LiN0+ according to the present invention, 44
These are the characteristics of the active material fired at 0°C. All of them had excellent cycle reversibility, and the capacity was also larger than curve 9, but between curve IO and curve 11, curve 11 was superior in both capacity and cycle reversibility.

これは、さきに述べた通り、Liのドープの完成度の違
いによる効果と思われる。さらに、この電池においては
活物質の重量を統一しているが、それぞれの活物質のか
さ密度を比較した結果、γ−β型M n 02を100
とした場合、LiOHをドープ源に用いたものと、Li
NO3を用いた従来の活物質は約80程度であったが、
本発明のものは約85であった。これは、本発明の活物
質のLiのドープの完成度が高いため、より緻密な構造
を有していることを示している。従って、同じ寸法の極
板を作ることを想定し、容量の体積効率という観点から
考えると、本発明の活物質の優位性はさらに高いものと
なる。
As mentioned earlier, this seems to be an effect due to the difference in the degree of completion of Li doping. Furthermore, in this battery, the weight of the active materials is unified, but as a result of comparing the bulk density of each active material, it was found that the γ-β type M n 02 was 100%
In this case, one using LiOH as a doping source and one using LiOH as a doping source
The conventional active material using NO3 was about 80,
The value of the present invention was about 85. This indicates that the active material of the present invention has a more dense structure because the degree of completion of Li doping is high. Therefore, assuming that electrode plates of the same dimensions are made and considered from the viewpoint of volumetric efficiency, the active material of the present invention is even more superior.

実施例3 次に、LiNO3を加えて焼成する活物質についてLi
の含有量を30mo1%に固定して焼成温度を、350
℃〜550℃の間において20℃刻みで変化させて検討
した。ちなみに、従来の活物質は焼成温度が400℃の
ものに相当する。次いで、これらの活物質をそれぞれ1
00■ずつ用いて実施例2と同じボタン型電池を構成し
、実施例2と同じ条件の充放電試験を行った。第4図は
各焼成温度における容量−サイクル特性を示したもので
ある。これを見ると、焼成温度が390℃以下の場合(
曲線12:350℃9曲線13 : 370℃。
Example 3 Next, regarding the active material to be fired by adding LiNO3, Li
The content of is fixed at 30mo1% and the firing temperature is set to 350
The temperature was varied in 20°C increments between 550°C and 550°C. Incidentally, conventional active materials have a firing temperature of 400°C. Next, 1 of each of these active materials
The same button-type battery as in Example 2 was constructed using 0.00 mm each, and a charge/discharge test was conducted under the same conditions as in Example 2. FIG. 4 shows the capacity-cycle characteristics at each firing temperature. Looking at this, if the firing temperature is 390℃ or less (
Curve 12: 350°C 9 Curve 13: 370°C.

曲線14:390℃)は、サイクル可逆性が不十分であ
ることがわかる。これは、Liのドープが不完全である
ため目的とする結晶構造になっていないものと推定され
る。
It can be seen that curve 14 (390°C) has insufficient cycle reversibility. It is presumed that this is because the intended crystal structure was not formed because the Li doping was incomplete.

また、410℃以上では、いずれもサイクル可逆性に優
れているが、490℃以上(曲線19:490℃1曲線
20 : 510℃2曲線21 : 530℃。
In addition, at 410°C or higher, both have excellent cycle reversibility, but at 490°C or higher (curve 19: 490°C 1 curve 20: 510°C 2 curve 21: 530°C.

曲線22 : 550℃)になると全体的に容量が低下
して行くことがわかる。これは、活物質自身の活性の低
下に起因するものと思われる。また、410℃(曲線1
5)と430℃〜470℃(曲線16〜曲線曲線)とを
比べると、後者において容量の増加及びサイクル可逆性
の向上がみられる。これは、410℃と430℃の間に
NoXの発生度合の大きな変化がみられることから、4
10℃と430℃の間に活物質自身に何等かの変化が起
こっていることを意味している。そこで、容量が大きく
、かつサイクル可逆性に優れると思われる温度範囲につ
いて、さらに焼成温度を細かく変えて検討した。第5図
は焼成温度を420℃(曲線23)、430℃(曲線2
4)、440℃(曲線25)、450℃(曲線26)、
460℃(曲線27)、470℃(曲線28)、及び4
80℃(曲線29)で調製した活物質それぞれについて
同様の電池試験を行った時の容量−サイクル特性を比較
したものである。その結果、焼成温度430℃〜470
℃で容量が大きくなるが、中でも440℃〜460℃に
おいて最も容量が大きくなることがわかった。また、焼
成温度によって活物質のかさ密度が変化するかどうかを
調べた結果、430℃以上で焼成したものは高密度にな
っていることがわかった。従って、容量の体積効率とい
う観点からは、本発明の活物質はさらに好ましいといえ
る。
Curve 22: It can be seen that the capacity decreases overall when the temperature reaches 550°C. This seems to be due to a decrease in the activity of the active material itself. Also, 410℃ (curve 1
5) and 430°C to 470°C (curves 16 to 470°C), an increase in capacity and improved cycle reversibility is seen in the latter. This is because there is a large change in the degree of NoX generation between 410°C and 430°C.
This means that some change occurs in the active material itself between 10°C and 430°C. Therefore, we investigated the temperature range that is thought to provide large capacity and excellent cycle reversibility by further varying the firing temperature. Figure 5 shows the firing temperatures of 420°C (curve 23) and 430°C (curve 2).
4), 440°C (curve 25), 450°C (curve 26),
460°C (curve 27), 470°C (curve 28), and 4
This figure compares the capacity-cycle characteristics of active materials prepared at 80° C. (curve 29) when similar battery tests were conducted. As a result, the firing temperature was 430°C to 470°C.
It was found that the capacity increased at 440°C to 460°C. Furthermore, as a result of investigating whether the bulk density of the active material changes depending on the firing temperature, it was found that those fired at 430° C. or higher have a higher density. Therefore, from the viewpoint of volumetric efficiency, the active material of the present invention can be said to be more preferable.

実施例4 次に、複合酸化物中のリチウム原子とマンガン原子の比
(Li:Mn)についての検討を行った。まず予備検討
として、LiN0:+ とEMDとの仕込み混合比と、
複合酸化物中のLiとMnの原子比の関係を複合酸化物
の化学分析によって調べた結果、焼成温度にかかわらず
、互いに一致することが確認できた。活物質の調製法は
実施例1で示した通りで、焼成温度は440℃に固定し
、Liの含有量が10mo1%、15mo1%20mo
1%、25mo1%、3Qmo1%。
Example 4 Next, the ratio of lithium atoms to manganese atoms (Li:Mn) in the composite oxide was studied. First, as a preliminary study, the mixing ratio of LiN0:+ and EMD,
As a result of investigating the relationship between the atomic ratios of Li and Mn in the composite oxide by chemical analysis of the composite oxide, it was confirmed that they agree with each other regardless of the firing temperature. The method for preparing the active material was as shown in Example 1, the firing temperature was fixed at 440°C, and the Li content was 10 mo1%, 15 mo1%, 20 mo1%.
1%, 25mo1%, 3Qmo1%.

35mo1%、40mo1%、45mo1%。35mo1%, 40mo1%, 45mo1%.

50mo1%となる9種類の活物質を調製した。Nine types of active materials were prepared with a concentration of 50 mo1%.

そして、これらの活物質をそれぞれ100■ずつ用いて
上記実施例と同じボタン型電池を構威し、上記実施例と
同じ条件の充放電試験を行った。第6図はLi含有量の
異なる活物質の容量−サイクル特性を比較したものであ
る。Liの含有量が増えるにしたがって、サイクル可逆
性が向上し、(曲線30 : 10mo 1%1曲線3
1 : 15mo 1%。
Then, the same button type batteries as in the above example were constructed using 100 µm of each of these active materials, and a charge/discharge test was conducted under the same conditions as in the above example. FIG. 6 compares the capacity-cycle characteristics of active materials with different Li contents. As the Li content increases, the cycle reversibility improves (curve 30: 10mo 1%1 curve 3
1: 15mo 1%.

曲線32:20mo1%2曲線33 : 25mo 1
%)特にLi含有量が30mo1%以上(曲線34〜3
8)のものが優れていた。しかし、Li含有量が45m
o1%以上(曲線37〜38)になると、サイクル可逆
性には優れるが容量が低くなる傾向にあった。これは、
活物質充填量がいずれも100■であり、活物質中のM
 n 02の量が相対的に少なくなるためである。さら
に、Li含有量が45mo1%以上のものは、そのかさ
密度がきわめて低く、体積効率がきわめて低いという欠
点もある。従って、サイクル可逆性と容量との関係から
、Li含有量は30mo1%以上、4Qmo1%以下、
すなわちリチウム原子とマンガン原子の比(L i :
Mn)カ0.30 : 0.70−0.40 : 0.
60が好ましい。
Curve 32: 20mo 1%2 Curve 33: 25mo 1
%) Especially when the Li content is 30 mo1% or more (curves 34 to 3
8) was excellent. However, the Li content is 45m
When o1% or more (curves 37 to 38), cycle reversibility was excellent, but the capacity tended to be low. this is,
The active material filling amount is 100μ in each case, and M in the active material is
This is because the amount of n 02 becomes relatively small. Furthermore, those having a Li content of 45 mo1% or more have the disadvantage that their bulk density is extremely low and their volumetric efficiency is extremely low. Therefore, from the relationship between cycle reversibility and capacity, the Li content should be 30mo1% or more, 4Qmo1% or less,
That is, the ratio of lithium atoms to manganese atoms (L i :
Mn) Mo 0.30: 0.70-0.40: 0.
60 is preferred.

実施例5 実施例4で好ましい結果を示したところのLi含有量が
30mo1%〜40mo1%の範囲のものについて、水
を関与させたときのアルカリの遊離度合を検討した。ま
たこの検討においては、焼成温度を440℃とした。ま
ず、Li含有量の異なる活物質をそれぞれ1gずつ試験
管に取り、各々に水を5Qmf加えて充分にかくはんし
た後、約6時間放置した。次いで、放置後盾物質は沈澱
するので、その上澄み液を採取し、pHを調べた。その
結果、Li含有量が35mo1%以下の場合、いずれも
pHは7〜8であり、はとんどアルカリの遊離は起こっ
ていないと思われる。しかし、Li含有量が36mo1
%以上からはアルカリの遊離によるpHの上昇がみられ
、39 m o 1%になると、そのpHは10を超え
た。
Example 5 Regarding the Li content range of 30 mo1% to 40 mo1%, which showed favorable results in Example 4, the degree of alkali release when water was involved was investigated. Further, in this study, the firing temperature was set at 440°C. First, 1 g of active materials with different Li contents were placed in test tubes, 5 Qmf of water was added to each tube, and the tubes were thoroughly stirred and left for about 6 hours. Next, since the shield substance precipitated after being left to stand, the supernatant liquid was collected and the pH was examined. As a result, when the Li content was 35 mo1% or less, the pH was 7 to 8 in all cases, and it seems that almost no alkali was liberated. However, the Li content is 36mol
% or more, an increase in pH due to alkali liberation was observed, and when it reached 39 m o 1%, the pH exceeded 10.

次に、上記各上澄み液中にアルミニウム箔を浸し、その
影響を観察した。その結果、pH10以上となったLi
含有量が39mo1%と40mo1%のものにおいて、
著しいガス発生が見られた。また、Li含有量が36〜
38mo1%のものはpH8以上となり、穏やかではあ
るが、やはりガス発生が見られた。また、Li含有量が
35mo1%以下のものではガス発生がまったく見られ
なかった。
Next, an aluminum foil was immersed in each of the above supernatant liquids, and the effects thereof were observed. As a result, Li with a pH of 10 or more
In those with a content of 39 mo1% and 40 mo1%,
Significant gas generation was observed. In addition, the Li content is 36~
In the case of 38 mo1%, the pH was higher than 8, and gas generation was still observed, albeit mildly. In addition, no gas generation was observed when the Li content was 35 mo1% or less.

アルカリの遊離が電池性能に影響を与えるか否かは不明
であり、耐食性のある集電材を用いればアルカリの遊離
があっても使える可能性があるので、本実施例では、上
述の乾式法による正極製造法ではなく、結着剤の四フッ
化エチレン樹脂粉末の代わりに四フッ化エチレン樹脂の
水性ディスバージョン液を用いて正極合剤をペースト状
にし、これをチタンネットの集電材に充填した後に乾燥
し、さらに圧延して正極を作る湿式製造法を試みた。そ
して、このようにして作った正極を用いて上述と同様の
ボタン型電池に構成し、充放電試験を行った。
It is unclear whether the release of alkali affects battery performance or not, and if a corrosion-resistant current collector is used, it may be possible to use it even with the release of alkali. Therefore, in this example, the dry method described above was used. Instead of using the positive electrode manufacturing method, the positive electrode mixture was made into a paste using an aqueous dispersion liquid of tetrafluoroethylene resin instead of the polytetrafluoroethylene resin powder used as a binder, and this was filled into a titanium net current collector material. We tried a wet manufacturing method in which the material was then dried and further rolled to produce a positive electrode. Then, a button type battery similar to that described above was constructed using the positive electrode thus produced, and a charge/discharge test was conducted.

その結果、上の試験でpHが10以上となった活物質で
は、・乾式法で作った正極に比べ、著しい活物質利用率
の低下(容量として30%〜40%の低下)がみられ、
pH8以上のものもやはり活物質利用率の低下(容量と
して5%〜10%の低下)がみられた。しかし、Li含
有量が35mo1%以下のpH7〜8のものは、乾式法
で作ったものとほとんど同じ利用率を示した。以上のこ
とから、アルカリの遊離は、特に活物質利用率に悪影響
を及ぼすと思われ、さらにはLi含有量が35mo1%
以下のものではアルカリの遊離はほとんど起こらないこ
とが推測される。従って、正極製造法における汎用性と
いう観点からはLi含有量は35mo1%以下にすべき
である。
As a result, in the active material whose pH was 10 or more in the above test, a significant decrease in the active material utilization rate (30% to 40% decrease in capacity) was observed compared to the positive electrode made by the dry method.
For those with a pH of 8 or more, a decrease in the utilization rate of the active material (5% to 10% decrease in capacity) was also observed. However, those with a Li content of 35 mo1% or less and a pH of 7 to 8 showed almost the same utilization rate as those made by the dry method. From the above, it seems that the liberation of alkali has a particularly negative effect on the active material utilization rate, and furthermore, when the Li content is 35 mo1%
It is presumed that the following substances cause almost no alkali release. Therefore, from the viewpoint of versatility in the positive electrode manufacturing method, the Li content should be 35 mo1% or less.

実施例に れまでは、マンガン酸化物の原材料として、MnO2を
用いた検討を行ったが、本実施例ではマンガン酸化物と
して、Mn3O4及びMn2O3を用いた場合について
も検討を試みた。まず、M n 304及びMn2O3
をそのまま活物質に用い上述と同様のボタン型電池を構
成し、充放電試験を行った。その結果、いずれも第7図
の曲線39゜曲線40に示すように、きわめて容量の低
い電池となってしまった。次に、実施例1と同様の方法
でMnとLiの原子比が0.7:0.3となるようにL
iNO3をM n 203またはM n 304 に混
合し、これを470℃で焼成して活物質を調製した。そ
して、これらの活物質を用い、上述と同様のボタン型電
池を構成し、充放電試験を行った。
Up to this point in the examples, studies have been conducted using MnO2 as a raw material for manganese oxide, but in this example, studies have also been attempted using Mn3O4 and Mn2O3 as manganese oxides. First, M n 304 and Mn2O3
A button type battery similar to that described above was constructed using the same as the active material, and a charge/discharge test was conducted. As a result, as shown in curve 39° and curve 40 in FIG. 7, the batteries had extremely low capacities. Next, in the same manner as in Example 1, L was adjusted so that the atomic ratio of Mn and Li was 0.7:0.3.
An active material was prepared by mixing iNO3 with M n 203 or M n 304 and firing the mixture at 470°C. Then, a button type battery similar to that described above was constructed using these active materials, and a charge/discharge test was conducted.

その結果、第7図の曲線41(Mn304を用いたもの
)及び曲線42 (Mn203を用いたもの)に示すよ
うな容量を持つようになるが、本発明の〜1nO2を原
材料に用いたもの(曲線43)に比べ、その容量は少し
低くなる。
As a result, it has a capacity as shown in curve 41 (using Mn304) and curve 42 (using Mn203) in FIG. Compared to curve 43), its capacity is slightly lower.

ところが、サイクルに伴う容量の低下率、すなわちサイ
クル可逆性をみると、むしろMnO□を用いたものより
も優れている。従って、この活物質は、容量よりもサイ
クル可逆性を高度に要求される用途においては、むしろ
好ましいものである。
However, when looking at the rate of decrease in capacity with cycling, that is, the cycle reversibility, it is actually superior to that using MnO□. Therefore, this active material is rather preferred in applications where a high degree of cycling reversibility is required rather than capacity.

次に、Mn20. またはM n 304 についても
、実施例3〜5におけるM n O2の検討と同様に最
適焼成温度、最適Li含有量、ならびにアルカリの遊離
度合の検討を行った。その結果、Mn30゜では、その
焼成温度は450℃以上、500℃以下が好ましく、M
n2O3では450℃以上、530℃以下が好ましいこ
とがわかった。また、最適Li含有量としては、活物質
利用率とアルカリの遊離度合とから、いずれの場合もM
nO2と同じ30mo1%以上、35mo1%以下の範
囲が好ましかった。
Next, Mn20. For M n 304 as well, the optimum firing temperature, optimum Li content, and degree of alkali release were investigated in the same way as the examination of M n O2 in Examples 3 to 5. As a result, when Mn is 30°, the firing temperature is preferably 450°C or higher and 500°C or lower;
It was found that for n2O3, the temperature is preferably 450°C or higher and 530°C or lower. In addition, the optimum Li content is determined based on the active material utilization rate and the degree of alkali release in both cases.
The range of 30 mo1% or more and 35 mo1% or less, which is the same as nO2, was preferable.

以上のように、最適焼成温度は異なるが、上記いずれの
マンガン酸化物においても、その最適Li含有量は同じ
であることがわかった。すなわち、リチウムとマンガン
酸化物の複合酸化物である本発明の活物質において、複
合酸化物中のリチウム原子とマンガン原子の比(Li:
Mn)が0.30:0.70−0.35 : 0.65
であることが必要条件であるといえる。
As described above, it has been found that although the optimum firing temperature is different, the optimum Li content is the same for any of the above manganese oxides. That is, in the active material of the present invention which is a composite oxide of lithium and manganese oxide, the ratio of lithium atoms to manganese atoms in the composite oxide (Li:
Mn) is 0.30:0.70-0.35:0.65
It can be said that it is a necessary condition.

発明の効果 このように本発明によれば、サイクル可逆性に優れ高い
エネルギ密度を有するリチウム二次電池が提供できる。
Effects of the Invention As described above, according to the present invention, a lithium secondary battery having excellent cycle reversibility and high energy density can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bは材料比較のためのX線回折パターン図、
第2図は本発明の実施例に用いた電池の縦断面図、第3
図、第4図、第5図、第6図及び第7図は本発明の効果
を示す容量−サイクル特性の比較図である。 1・・・・・・正極、2・・・・・・チタンネット、3
・・・・・・セパレータ、4・・・・・・封口板、5・
・・・・・リチウム負極、6・・・・・・電解液、7・
・・・・・ガスケット。
Figures 1A and B are X-ray diffraction pattern diagrams for material comparison;
Figure 2 is a vertical cross-sectional view of the battery used in the embodiment of the present invention;
FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are comparison diagrams of capacity-cycle characteristics showing the effects of the present invention. 1...Positive electrode, 2...Titanium net, 3
... Separator, 4... Sealing plate, 5.
... Lithium negative electrode, 6 ... Electrolyte, 7.
·····gasket.

Claims (5)

【特許請求の範囲】[Claims] (1)マンガン酸化物(MnO_2、Mn_2O_3又
はMn_3O_4)と硝酸リチウム(LiNO_3)と
の混合物を空気中で焼成して得られるリチウムとマンガ
ンとの複合酸化物を活物質とする正極を備え、前記複合
酸化物中のリチウム原子とマンガン原子との比(Li:
Mn)が、0.30:0.70〜0.35:0.65で
あることを特徴とする有機電解質リチウム二次電池。
(1) A positive electrode having a composite oxide of lithium and manganese obtained by firing a mixture of manganese oxide (MnO_2, Mn_2O_3 or Mn_3O_4) and lithium nitrate (LiNO_3) in air as an active material, The ratio of lithium atoms to manganese atoms in the oxide (Li:
An organic electrolyte lithium secondary battery characterized in that Mn) is 0.30:0.70 to 0.35:0.65.
(2)マンガン酸化物が電解二酸化マンガンであり、硝
酸リチウムと共に430℃以上470℃以下の温度で焼
成したことを特徴とする特許請求の範囲第1項記載の有
機電解質リチウム二次電池。
(2) The organic electrolyte lithium secondary battery according to claim 1, wherein the manganese oxide is electrolytic manganese dioxide and is fired together with lithium nitrate at a temperature of 430° C. or more and 470° C. or less.
(3)マンガン酸化物がMn_2O_3であり、硝酸リ
チウムと共に450℃以上、530℃以下の温度で焼成
したことを特徴とする特許請求の範囲第1項記載の有機
電解質リチウム二次電池。
(3) The organic electrolyte lithium secondary battery according to claim 1, wherein the manganese oxide is Mn_2O_3 and is fired together with lithium nitrate at a temperature of 450°C or higher and 530°C or lower.
(4)マンガン酸化物がMn3O_4であり、硝酸リチ
ウムと共に450℃以上、500℃以下の温度で焼成し
たことを特徴とする特許請求の範囲第1項記載の有機電
解質リチウム二次電池。
(4) The organic electrolyte lithium secondary battery according to claim 1, wherein the manganese oxide is Mn3O_4 and is fired together with lithium nitrate at a temperature of 450°C or higher and 500°C or lower.
(5)硝酸リチウムとマンガン酸化物の混合時に媒体と
して水を用い、硝酸リチウムを予め水に溶解した後、4
30〜530℃の温度で空気中において焼成することを
特徴とするリチウムとマンガンとの複合酸化物の製造法
(5) Use water as a medium when mixing lithium nitrate and manganese oxide, and after dissolving lithium nitrate in water in advance,
A method for producing a composite oxide of lithium and manganese, which comprises firing in air at a temperature of 30 to 530°C.
JP1203260A 1989-08-04 1989-08-04 Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese Pending JPH0367464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1203260A JPH0367464A (en) 1989-08-04 1989-08-04 Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1203260A JPH0367464A (en) 1989-08-04 1989-08-04 Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese

Publications (1)

Publication Number Publication Date
JPH0367464A true JPH0367464A (en) 1991-03-22

Family

ID=16471087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1203260A Pending JPH0367464A (en) 1989-08-04 1989-08-04 Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese

Country Status (1)

Country Link
JP (1) JPH0367464A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022767A1 (en) * 1993-04-01 1994-10-13 Fuji Chemical Industry Co., Ltd. METHOD OF PRODUCTION OF LiM3+O2 OR LiMn2O4 AND LiNi3+O2 AS POSITIVE POLE MATERIAL OF SECONDARY CELL
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
JP2008130372A (en) * 2006-11-21 2008-06-05 Hitachi Vehicle Energy Ltd Lithium secondary battery and method of selecting positive active material for lithium secondary battery
JP2012084257A (en) * 2010-10-07 2012-04-26 Toyota Industries Corp Complex oxide manufacturing method, lithium ion secondary battery cathode active material, and lithium ion secondary battery
CN108598426A (en) * 2018-04-26 2018-09-28 吉林大学 The method for improving its charge/discharge capacity by preparing cobalt acid manganese/N doping carbon/manganese dioxide nucleocapsid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022767A1 (en) * 1993-04-01 1994-10-13 Fuji Chemical Industry Co., Ltd. METHOD OF PRODUCTION OF LiM3+O2 OR LiMn2O4 AND LiNi3+O2 AS POSITIVE POLE MATERIAL OF SECONDARY CELL
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
JP2008130372A (en) * 2006-11-21 2008-06-05 Hitachi Vehicle Energy Ltd Lithium secondary battery and method of selecting positive active material for lithium secondary battery
JP2012084257A (en) * 2010-10-07 2012-04-26 Toyota Industries Corp Complex oxide manufacturing method, lithium ion secondary battery cathode active material, and lithium ion secondary battery
CN108598426A (en) * 2018-04-26 2018-09-28 吉林大学 The method for improving its charge/discharge capacity by preparing cobalt acid manganese/N doping carbon/manganese dioxide nucleocapsid

Similar Documents

Publication Publication Date Title
Bach et al. Birnessite manganese dioxide synthesized via a sol—gel process: a new rechargeable cathodic material for lithium batteries
JP3064655B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
Paik et al. Lithium and deuterium NMR studies of acid-leached layered lithium manganese oxides
EP1083614B1 (en) Lithium intercalating material containing oxygen, sulfur and a transition metal, electrode structure and production process thereof, and secondary lithium battery
JP4068796B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH08162114A (en) Lithium secondary battery
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JPH0367464A (en) Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese
JPH04136195A (en) Novel composite material
JPH10241682A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
JPH01235158A (en) Nonaqueous secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP3227771B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH0679485B2 (en) Non-aqueous secondary battery
JP2005187326A (en) Method for producing lithium nickelate
JP2797528B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3102005B2 (en) Positive active material for lithium secondary battery and method for producing the same
JP3141377B2 (en) Positive active material for lithium secondary battery and method for producing the same
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH02109260A (en) Lithium secondary battery
JPS63221559A (en) Nonaqueous secondary battery
JPH03214562A (en) Manufacture of positive electrode for secondary battery with non-aqueous electrolyte
JPS63218156A (en) Nonaqueous secondary battery