JP3141377B2 - Positive active material for lithium secondary battery and method for producing the same - Google Patents

Positive active material for lithium secondary battery and method for producing the same

Info

Publication number
JP3141377B2
JP3141377B2 JP01257354A JP25735489A JP3141377B2 JP 3141377 B2 JP3141377 B2 JP 3141377B2 JP 01257354 A JP01257354 A JP 01257354A JP 25735489 A JP25735489 A JP 25735489A JP 3141377 B2 JP3141377 B2 JP 3141377B2
Authority
JP
Japan
Prior art keywords
active material
mno
capacity
battery
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01257354A
Other languages
Japanese (ja)
Other versions
JPH03119657A (en
Inventor
純一 山浦
幸雄 西川
彰克 守田
信夫 江田
秀 越名
博美 奥野
義幸 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01257354A priority Critical patent/JP3141377B2/en
Publication of JPH03119657A publication Critical patent/JPH03119657A/en
Application granted granted Critical
Publication of JP3141377B2 publication Critical patent/JP3141377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウムを負極活物質とした高エネルギ密
度を有する有機電解質リチウム二次電池、特にその正極
活物質の改良に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte lithium secondary battery having high energy density using lithium as a negative electrode active material, and more particularly to an improvement of the positive electrode active material thereof.

従来の技術 リチウム電池として正極にMnO2を用いた一次電池は既
に実用化されている。リチウム電池の場合、水分の存在
が電池性能に悪影響を及ぼすため、従来においては、Mn
O2を250℃から400℃の温度で加熱処理して付着水および
結合水を除去しリチウム電池の正極として用いていた。
MnO2の結晶構造としては、特公昭49−25571号に開示さ
れているように250℃〜350℃の温度で熱処理したγ−β
型、あるいは米国特許第4,133,856号に開示されている
ように350℃〜430℃の温度で熱処理したβ型と考えられ
る。しかし、その後の検討で、空気中で400℃で熱処理
したMnO2もγ−β型MnO2といわれており、結合水も完全
には除去できていないとされている。
2. Description of the Related Art As a lithium battery, a primary battery using MnO 2 for a positive electrode has already been put to practical use. In the case of a lithium battery, the presence of moisture adversely affects battery performance.
O 2 was heated at a temperature of 250 ° C. to 400 ° C. to remove adhering water and bound water and used as a positive electrode of a lithium battery.
The crystal structure of MnO 2, was heat-treated at a temperature of as 250 ° C. to 350 ° C. is disclosed in JP-B-49-25571 γ-β
Or β-form which has been heat treated at a temperature of 350 ° C. to 430 ° C. as disclosed in US Pat. No. 4,133,856. However, in subsequent studies, MnO 2 heat-treated at 400 ° C. in air is also referred to as γ-β type MnO 2, and it is said that bound water cannot be completely removed.

また、結合水を完全に除去するとγ−β型が維持でき
ず、電池活物質としてきわめて活性の低いβ型MnO2にな
ってしまうといわれている。さらに、γ−β型を維持し
たままでも、熱処理温度が高くなるにつれて容量特性が
劣化することが知られている。これは、活物質表面が一
部β型に変わったこともその理由の一つであるが、主に
活物質表面が部分的に還元される等の表面活性の低下が
原因とされている。これらのことを鑑み、現状では350
℃〜400℃程度の温度で熱処理した結合水をわずかに残
したγ−β型MnO2をリチウム電池では用いている。
Further, it is said that if the bound water is completely removed, the γ-β type cannot be maintained, resulting in β-type MnO 2 having extremely low activity as a battery active material. Further, it is known that even when the γ-β type is maintained, the capacitance characteristics deteriorate as the heat treatment temperature increases. This is partly because the surface of the active material partially changed to β type, but it is mainly caused by a decrease in surface activity such as partial reduction of the active material surface. Taking these facts into account, 350
Γ-β type MnO 2 which slightly leaves bound water heat-treated at a temperature of about 400 ° C. to 400 ° C. is used in a lithium battery.

発明が解決しようとする課題 ところが、この結晶構造を有するMnO2はリチウム二次
電池として用いる場合、初期容量は高くエネルギ密度も
高いが、充放電に伴う結晶構造の崩れによりサイクルと
ともに容量低下する。さらに、結晶構造の崩れにともな
い残存結合水が流出し、電池性能、特にサイクル特性と
貯蔵性能に悪影響を及ぼすと言われている。また、この
活物質は、常温、例えば20℃の環境下では高容量を示す
が、低温における放電容量はきわめて低くなり、例え
ば、−20℃になると20℃の時の容量の30%程度までその
容量は低下してしまうという欠点があった。これは、リ
チウム二次電池特有のもので、Li/MnO2一次電池では、
このような低温における著しい容量の低下はない。従っ
て、現状のMnO2を活物質とするリチウム二次電池におい
ては、サイクル可逆性と貯蔵性能と低温特性が不十分で
あり、何等かの改良が必要と思われる。
Problems to be Solved by the Invention However, when MnO 2 having this crystal structure is used as a lithium secondary battery, the initial capacity is high and the energy density is high, but the capacity decreases with the cycle due to the collapse of the crystal structure due to charge and discharge. Further, it is said that residual bound water flows out due to the collapse of the crystal structure, which adversely affects battery performance, particularly cycle characteristics and storage performance. Further, this active material has a high capacity at normal temperature, for example, in an environment of 20 ° C., but has a very low discharge capacity at a low temperature. For example, at −20 ° C., it has a capacity of about 30% of the capacity at 20 ° C. There is a disadvantage that the capacity is reduced. This is unique to lithium secondary batteries, and for Li / MnO 2 primary batteries,
There is no significant decrease in capacity at such low temperatures. Therefore, in the current lithium secondary battery using MnO 2 as an active material, the cycle reversibility, the storage performance, and the low-temperature characteristics are insufficient, and some improvement is considered necessary.

本発明の目的は、サイクルの進行に対して常に安定し
た放電容量を有する高エネルギ密度のリチウム二次電池
を提供することである。そして本発明はまた、高エネル
ギ密度を有するMnO2を改良し、サイクル可逆性、貯蔵特
性、および低温特性にも優れた活物質を提供するもので
ある。
An object of the present invention is to provide a high energy density lithium secondary battery having a stable discharge capacity with respect to the progress of a cycle. Further, the present invention improves MnO 2 having a high energy density and provides an active material having excellent cycle reversibility, storage characteristics, and low-temperature characteristics.

課題を解決するための手段 本発明は、Mn:Pを1.00:0.10〜1.00:0.02の原子比で、
二酸化マンガン(MnO2)中にリン(P)を含む酸化物を
正極活物質とするものである。
Means for Solving the Problems The present invention provides Mn: P with an atomic ratio of 1.00: 0.10 to 1.00: 0.02,
An oxide containing phosphorus (P) in manganese dioxide (MnO 2 ) is used as a positive electrode active material.

さらに、MnO2は電解二酸化マンガン(EMD)であるこ
とが望ましい。また、その製造法は、MnO2とP2O5をMn
O2:P2O5が1.00:0.01〜1.00:0.05のモル比で混合し、空
気中で400℃以上、500℃以下の温度範囲で焼成するとい
うものである。さらに、二酸化マンガンとP2O5の混合時
に媒体として水を用い、P2O5を予め水に溶解してリン酸
とした後、上記所定温度で焼成することが好ましい。以
上の本発明の正極活物質ならびに製造法を用いることに
より、MnO2の持つ高いエネルギ密度を維持したまま、サ
イクル可逆性、貯蔵特性、低温特性の向上がはかれ、優
れたリチウム二次電池が達成できる。
Further, MnO 2 is desirably electrolytic manganese dioxide (EMD). In addition, the manufacturing method is to convert MnO 2 and P 2 O 5 to Mn.
O 2 : P 2 O 5 is mixed at a molar ratio of 1.00: 0.01 to 1.00: 0.05 and calcined in air at a temperature of 400 ° C. or more and 500 ° C. or less. Further, it is preferable to use water as a medium when manganese dioxide and P 2 O 5 are mixed, dissolve P 2 O 5 in water in advance to make phosphoric acid, and then bake at the above-mentioned predetermined temperature. By using the above-described cathode active material and the production method of the present invention, cycle reversibility, storage characteristics, and low-temperature characteristics are improved while maintaining the high energy density of MnO 2 , and an excellent lithium secondary battery is obtained. Can be achieved.

作 用 従来P2O5を活物質中に添加する試みとして、V2O5にP2
O5を混合し焼成してアモルファス状のV2O5とするという
ものがあり、これがリチウム二次電池用の活物質として
有効であるという報告がある。元来、V2O5はサイクル可
逆性には優れているが、二段放置を有するため、実使用
ではいずれかの段を選択しなければならず、いずれを選
択してもその容量は低くなり、高エネルギ密度が望めな
いものであった。ところが、この技術はV2O5をアモルフ
ァス化し、その放電形態を一段放電にするというもので
あり、その放電電圧曲線はアモルファス特有のきわめて
平坦性の悪いものであるが、エネルギ密度としては向上
するというものである。
The conventional P 2 O 5 for work in an attempt to be added to the active material, P 2 to V 2 O 5
There is a method in which O 5 is mixed and fired to form amorphous V 2 O 5, and there is a report that this is effective as an active material for a lithium secondary battery. Originally, V 2 O 5 is excellent in cycle reversibility, but because it has two stages, one of the stages must be selected in actual use, and the capacity is low regardless of which is selected. Therefore, a high energy density cannot be expected. However, in this technology, V 2 O 5 is made amorphous and its discharge form is made into a single-step discharge, and its discharge voltage curve is extremely poor in flatness peculiar to amorphous, but the energy density is improved. That is.

ところが、本発明のMnO2にPを含む活物質はX線回折
分析を行った結果、アモルファスにはなっていなかっ
た。また、その回折パターンは、一部解析できない新し
いピークの存在が確認されたが、ほぼγ−β型MnO2に近
いものであった。また、MnO2の放電形態は元来1段放電
であり、その放電平坦性も本発明の活物質は従来のもの
とほとんど変わらなかった。従って、上記V2O5の場合の
アモルファス化による改良とは基本的には異なる技術で
あると考えられる。また、新しいピークの存在は、何等
かの異なる結晶フェーズができていることを示唆してい
るが、詳細は明らかではない。しかし、この結晶形態の
わずかな変化は、γ−β型MnO2の充放電に伴う結晶構造
の崩れを抑制し、少なくともサイクル可逆性に寄与して
いることは明らかである。また、一般にMnO2をリチウム
電池として放電するとMnO2結晶中に電気化学的にLiが侵
入し、電子伝導性が低下するといわれている。さらに、
リチウム二次電池の場合、放電でMnO2中に侵入したLiは
すべて充電でMnO2からの脱離するものではなく、その一
部は結晶中に残ってしまうといわれている。すなわち、
リチウム二次電池の活物質とする場合、MnO2は電子伝導
性の低い状態で使用していることになる。ところが、従
来のγ−β型MnO2を放電させた後の活物質の比抵抗と本
発明の活物質の放電後の比抵抗を比較すると、本発明の
活物質においてその抵抗が低いことがわかった。すなわ
ち、本発明の活物質のようにMnO2中に一種の不純物とし
てPが存在する場合、4価のMnと5価のPの間で結合を
作り、原子価制御による半導体化が起こっていることが
仮定できる。すなわち、活物質そのものの電子伝導性の
向上が、低温特性の向上する原因の一つとして考えられ
る。また、従来においてMnO2の結合水を除くために加熱
処理を行うことを述べたが、一般に加熱処理により、Mn
O2の表面積は著しく減少する(例えばEMDを空気中で400
℃で熱処理すると元の表面積の20%〜40%になる)こと
がわかっている。
However, the active material of the present invention containing P in MnO 2 was not amorphous as a result of X-ray diffraction analysis. In addition, the diffraction pattern was confirmed to include a new peak that could not be partially analyzed, but was almost similar to γ-β type MnO 2 . The discharge form of MnO 2 was originally a one-step discharge, and the discharge flatness was almost the same as that of the conventional active material of the present invention. Therefore, it is considered that the technique is basically different from the improvement by the amorphization in the case of V 2 O 5 . Also, the presence of a new peak suggests that some different crystallization phase has occurred, but details are not clear. However, it is clear that this slight change in the crystal morphology suppresses the collapse of the crystal structure due to the charge and discharge of the γ-β type MnO 2 , and at least contributes to the cycle reversibility. Also, it is generally said that when MnO 2 is discharged as a lithium battery, Li electrochemically penetrates into the MnO 2 crystal and the electron conductivity decreases. further,
In the case of a lithium secondary battery, it is said that all the Li that has entered MnO 2 by discharging is not desorbed from MnO 2 by charging, and part of the Li remains in the crystal. That is,
When used as an active material of a lithium secondary battery, MnO 2 is used in a state of low electron conductivity. However, when comparing the specific resistance of the active material of the present invention after discharging the conventional γ-β type MnO 2 with the specific resistance of the active material of the present invention after discharging, it was found that the resistance of the active material of the present invention was low. Was. That is, when P is present as a kind of impurity in MnO 2 as in the active material of the present invention, a bond is formed between tetravalent Mn and pentavalent P, and the semiconductor is formed by controlling the valence. It can be assumed that: That is, the improvement in the electronic conductivity of the active material itself is considered as one of the causes of the improvement in the low-temperature characteristics. In addition, although it has been described that heat treatment is conventionally performed to remove bound water of MnO 2 , MnO 2 is generally treated by heat treatment.
The surface area of O 2 is significantly reduced (eg EMD in air at 400
Heat treatment at 20 ° C to 20% to 40% of the original surface area).

さらに、この加熱処理によって、活物質表面が一部β
型に変わったり、活物質表面が部分的に還元される等の
表面活性の低下が起こることを既に述べたが、この表面
積の減少と表面活性の低下もMnO2の低温特性に影響を与
えていると考えられる。そこで、本発明の活物質につい
ても、MnO2の焼成前の表面積(BET法で測定)と焼成後
の表面積を比較してみた結果、元の表面積の80%以上を
維持していることがわかった。さらに、P2O5は焼成工程
において酸化剤として働くことが予想され、少なくとも
MnO2の表面は還元されにくく、活性な状態を保ちうると
考えられる。すなわち、これも低温特性の向上の原因と
考えられる。おそらく、これらのうちの何れかが、また
はこれらが複合的に作用して、低温特性の向上に寄与し
たものと思われる。
Further, the surface of the active material is partially β
Or changes to the mold, but the active material surface was already mentioned that the reduction in the surface activity of such partially reduction occurs, lowering of the loss and the surface activity of the surface area affect the low temperature properties of MnO 2 It is thought that there is. Therefore, for the active material of the present invention, found that the results were compared with the surface area after firing the surface area before firing MnO 2 (measured by the BET method), it is maintained more than 80% of the original surface area Was. Further, P 2 O 5 is expected to act as an oxidizing agent in the firing step, at least
It is considered that the surface of MnO 2 is hardly reduced and can maintain an active state. That is, this is also considered to be a cause of improvement in low-temperature characteristics. Probably, any of these or these act in combination to contribute to the improvement of low-temperature properties.

次に、貯蔵性能であるが、一次電池の場合、放電を経
験していない状態での性能を問うので、γ−β型MnO2
も結合水は結晶中に閉じ込められており、その影響は小
さかった。しかし、二次電池として用いる場合、従来の
γ−β型MnO2を用いた電池では、数サイクル経験させた
後、例えば60℃の環境下に1カ月程貯蔵すると、内部抵
抗の著しい増大がみられ、その後の充放電はおもわしく
なかった。そこで、貯蔵後の電池を分解して観察してみ
ると、特に負極のLi表面が腐食していることがわかっ
た。これは、一次電池の場合、故意に水分の多い電解液
を用いたときに起こるものとよく似ていた。すなわちγ
−β型MnO2では充放電に伴い結晶の崩れが発生し、二次
発生的に結合水の流出が起こるため、特に水分に弱い負
極Liが貯蔵中に侵されることに起因すると思われる。と
ころが、本発明の活物質の場合、貯蔵性能が向上した。
これは、本発明の活物質の結晶形態が従来のものと多少
異なり、充放電による崩れの少ないことがその一つの要
因と考えられる。さらに、この活物質において、PはMn
O2中に均一に分布していると思われるが、活物質表面に
露出するPは、部分的にP2O5の形態を有していることが
予想される。すなわち、きわめて水分の吸着性の強いP2
O5が活物質表面にあるため、流出した結合水はここでト
ラップされ、負極へ移動せず、負極Liが腐食しないとい
うことも考えられる。
Next, regarding the storage performance, in the case of a primary battery, since the performance in a state where no discharge has been experienced is questioned, even in γ-β type MnO 2 , the bound water is confined in the crystal, and the effect is small. Was. However, when used as a secondary battery, in a battery using the conventional γ-β type MnO 2 , when the battery is stored for about one month in an environment of, for example, 60 ° C. after several cycles, the internal resistance is remarkably increased. The subsequent charge and discharge was not inconvenient. Then, when the battery after storage was disassembled and observed, it was found that the Li surface of the negative electrode was particularly corroded. This was very similar to what happens when a primary battery is intentionally used with a high water content. That is, γ
In the case of -β-type MnO 2 , crystal collapse occurs during charge / discharge, and secondary water is bound to flow out. This is thought to be caused by the negative electrode Li, which is particularly vulnerable to moisture, being attacked during storage. However, in the case of the active material of the present invention, storage performance was improved.
One of the reasons for this is considered to be that the active material of the present invention has a slightly different crystal form from that of the conventional active material, and is less likely to collapse due to charge and discharge. Further, in this active material, P is Mn
Although it seems that P is uniformly distributed in O 2 , it is expected that P exposed on the surface of the active material partially has the form of P 2 O 5 . In other words, P 2 with extremely strong water absorption
Since O 5 is present on the surface of the active material, the bound water that has flowed out is trapped here, does not move to the negative electrode, and it is conceivable that the negative electrode Li does not corrode.

以上のように、各種性能向上のメカニズムについて
は、いくつかの仮定がなしうるが、本発明の活物質およ
び製造法を用いることにより、サイクル可逆性、貯蔵性
能、および低温特性が同時に向上するこの事実はきわめ
て興味深いものである。
As described above, some assumptions can be made about the mechanism of various performance improvements. However, by using the active material and the production method of the present invention, cycle reversibility, storage performance, and low-temperature characteristics are simultaneously improved. The facts are very interesting.

実施例 以下本発明の実施例を示す。Examples Examples of the present invention will be described below.

(実施例1) 本発明のMnとPからなる酸化物は以下のように調製し
た。まず、P2O5所定量水に溶解させ、これに所定量のMn
O2粉末を加え、充分にかくはん混合し、水分を一部蒸発
させて泥状の塊にした後、電気炉を用い所定温度で4〜
5時間焼成するというものである。また、MnO2とP2O5
予め粉末のまま混合してから水を加え練る方法、リン酸
(H2PO4)水溶液にMnO2粉末加え練る方法等、何れの混
合方法を用いてもその後の焼成では同じものが調製でき
た。しかし、水を用いず、粉末同士を混合しただけのも
のを直接焼成すると反応が均一に行われにくく、性能ば
らつきが大きくなることと、P2O5の仕込量に比べ、調製
後のP含有量が減少することが起こった。従来、P2O5
その結晶形態にいくつかの型があり、その一つの型に35
0℃を超えると昇華するものがあるといわれている。お
そらく、そのような型のP2O5が含まれていたものと思わ
れる。ところが、如何なる型のP2O5も水に溶解するとオ
ルトリン酸というものになり、これを再び加熱するとき
わめて昇華しにくい安定した型に変わるといわれてい
る。
(Example 1) An oxide composed of Mn and P of the present invention was prepared as follows. First, a predetermined amount of P 2 O 5 is dissolved in water, and a predetermined amount of Mn is added thereto.
Add O 2 powder, mix thoroughly, and partially evaporate water to form a muddy mass.
Baking for 5 hours. Also, any mixing method such as a method in which MnO 2 and P 2 O 5 are mixed in a powder state in advance and then adding and kneading water, and a method in which MnO 2 powder is added and kneaded in an aqueous phosphoric acid (H 2 PO 4 ) solution are used. The same thing was able to be prepared by the subsequent baking. However, if the mixture of powders is directly baked without using water, the reaction is difficult to be performed uniformly, the performance variation becomes large, and the P content after preparation is lower than the amount of P 2 O 5 charged. It has happened that the amount has decreased. Conventionally, P 2 O 5 has several forms in its crystalline form, one of which is 35
It is said that some substances sublime when the temperature exceeds 0 ° C. Probably, it contained such a form of P 2 O 5 . However, it is said that when any type of P 2 O 5 is dissolved in water, it becomes orthophosphoric acid, and when it is heated again, it changes into a stable type that is extremely resistant to sublimation.

すなわち、本発明のようにMnO2とP2O5の混合時に水を
関与させる製造法は重要な意味を持っているといえる。
That is, it can be said that the production method in which water is involved in mixing MnO 2 and P 2 O 5 as in the present invention has an important meaning.

そこで、EMDとP2O5の仕込み混合比と活物質中のMnと
Pの比の関係を活物質の化学分析によって調べた結果、
本発明の調製法に従えば、本発明の焼成温度範囲内でMn
もPも失われることなくそのまま活物質中に含まれるこ
とがわかった。
Then, as a result of examining the relationship between the mixing ratio of EMD and P 2 O 5 and the ratio of Mn and P in the active material by chemical analysis of the active material,
According to the preparation method of the present invention, within the firing temperature range of the present invention, Mn
It was found that neither P nor P was included in the active material without loss.

(実施例2) MnO2としてEMDを用い、上記調製法に従って、MnO2:P2
O5=1.00:0.03のモル比で混合し、400℃で焼成した本発
明の活物質(Mn:Pが1.00:0.06)と、EMDを400℃で熱処
理した従来のγ−β型MnO2活物質を調製した。まずこの
二つの活物質について第2図のようなボタン形電池をい
くつか組み立てて、その特性比較を行った。
(Example 2) Using MMD as MnO 2 , according to the above-mentioned preparation method, MnO 2 : P 2
An active material of the present invention (Mn: P is 1.00: 0.06) mixed at a molar ratio of O 5 = 1.00: 0.03 and calcined at 400 ° C., and a conventional γ-β type MnO 2 Material was prepared. First, several button-type batteries as shown in FIG. 2 were assembled for these two active materials, and their characteristics were compared.

第2図において正極1は、活物質に導電剤の炭素粉末
(活物質に対して5重量%)と結着剤のポリ4フッ化エ
チレン樹脂粉末(活物質に対して7重量%)を混合した
もので、正極ケース内側にスポット溶接で固定したチタ
ンネット2上にプレス成形したものである。また、活物
質量はいずれも100mgとした。そして、ポリプロピレン
製のセパレータ3、封口板4に圧着した金属リチウムの
負極5及び電解液6(1モル/のLiAsF6を炭酸プロピ
レンと炭酸エチレンの混合溶媒中に溶かしたもの)と共
にポリプロピレン製のガスケット7を介して密封し直径
2mm、高さ1.6mmの電池としている。また、この電池は正
極の特性を比較する目的で試作したもので、正極の容量
に対し負極の容量を約4倍充填しており、充放電特性に
負極の欠乏等による影響が現れないようにしている。充
放電試験は、1.0mAの定電流充放電を充電終止電圧を3.8
V、放電終止電圧を2.0Vと設定して行った。
In FIG. 2, the positive electrode 1 is composed of an active material in which carbon powder of a conductive agent (5% by weight based on the active material) and polytetrafluoroethylene resin powder of a binder (7% by weight based on the active material) are mixed. This is press-formed on a titanium net 2 fixed by spot welding inside the positive electrode case. The amount of active material was 100 mg in each case. A gasket made of polypropylene together with a separator 5 made of polypropylene, a negative electrode 5 of metallic lithium pressed on a sealing plate 4 and an electrolytic solution 6 (1 mol / LiAsF 6 dissolved in a mixed solvent of propylene carbonate and ethylene carbonate). 7 sealed through diameter
The battery is 2mm and 1.6mm high. This battery was prototyped for the purpose of comparing the characteristics of the positive electrode. The capacity of the negative electrode was filled about four times the capacity of the positive electrode, so that the charge-discharge characteristics were not affected by lack of the negative electrode. ing. The charge / discharge test was performed at a constant current charge / discharge of 1.0 mA and a charge end voltage of 3.8
V, and the discharge end voltage was set to 2.0 V.

第1図は上記二種類の活物質を用いた電池の容量一サ
イクル特性を示したものである。
FIG. 1 shows the capacity-cycle characteristics of a battery using the above two types of active materials.

第1図において曲線8は従来の活物質の特性で、曲線
9は本発明の活物質のものである。従来の活物質を用い
た電池は、サイクル初期における容量は大きいがサイク
ルに伴う容量低下も大きい。一方、本発明の活物質を用
いたものは、サイクル初期における容量は小さいが、10
サイクルを超えると本発明の活物質が従来のものを上回
る。さらに、その後の容量低下をみる限り、明らかに本
発明の活物質のサイクル可逆性が優れていることがわか
る。特に、本発明の活物質では、サイクル初期に容量が
徐々に増加するという挙動が特徴的である。
In FIG. 1, curve 8 is the characteristic of the conventional active material, and curve 9 is that of the active material of the present invention. A battery using a conventional active material has a large capacity at the beginning of a cycle, but also has a large capacity decrease accompanying the cycle. On the other hand, those using the active material of the present invention have a small capacity at the beginning of the cycle,
When the cycle is exceeded, the active material of the present invention exceeds the conventional one. Further, as can be seen from the subsequent decrease in capacity, it is apparent that the cycle reversibility of the active material of the present invention is clearly excellent. In particular, the active material of the present invention is characterized by a behavior that the capacity gradually increases at the beginning of the cycle.

次に、上記二種類の電池について、30サイクル目の充
電状態で電池を取り出し、60℃の環境下に1カ月貯蔵
し、貯蔵前と貯蔵後の内部抵抗の変化を測定した。いず
れの電池も貯蔵前の内部抵抗は5〜10Ωであったが、貯
蔵後、従来の電池ではその内部抵抗が40〜50Ωへ増大し
ていた。しかし、本発明の電池では、10〜15Ω程度に増
大するだけであった。そこで、この貯蔵を施した二種類
の電池で再び充放電試験を行った。
Next, with respect to the above two types of batteries, the batteries were taken out in the state of charge at the 30th cycle, stored for one month in an environment of 60 ° C., and changes in internal resistance before and after storage were measured. The internal resistance of all batteries was 5 to 10Ω before storage, but after storage, the internal resistance of the conventional battery was increased to 40 to 50Ω. However, in the battery of the present invention, it only increased to about 10 to 15Ω. Therefore, a charge / discharge test was performed again on the two types of batteries subjected to this storage.

第3図は、途中(30サイクル目)に上記貯蔵を含む場
合の容量−サイクル特性を比較したものであるが、従来
の電池(曲線10)では貯蔵を境にその容量が大きく低下
していることがわかる。しかし、本発明の活物質を用い
た電池(曲線11)ではその容量低下はきわめて小さく、
貯蔵特性としては優れているといえる。
FIG. 3 shows a comparison of the capacity-cycle characteristics when the above-mentioned storage is included in the middle (30th cycle). In the conventional battery (curve 10), the capacity greatly decreases after storage. You can see that. However, in the battery using the active material of the present invention (curve 11), the decrease in capacity was extremely small.
It can be said that the storage characteristics are excellent.

次に、上記二種類の電池について、室温(20℃)およ
び−20℃の低温環境下で充放電試験を行ない、その放電
特性を比較した。第4図は、それぞれの電池の30サイク
ル目の放電電圧特性を示したもので、従来の電池では、
室温のもの(破線曲線12)に比べ、−20℃のもの(曲線
13)は電圧が低くなり、容量も室温の30%以下になって
しまうことがわかる。しかし、本発明の活物質を用いた
電池では、室温のもの(破線曲線14)に比べ、−20℃の
もの(曲線15)は、電圧の低下はあるものの、容量は室
温の70%以上を維持していることがわかる。従って、本
発明の活物質は低温特性にも優れているといえる。
Next, charge and discharge tests were performed on the two types of batteries in a low-temperature environment of room temperature (20 ° C.) and −20 ° C., and their discharge characteristics were compared. FIG. 4 shows the discharge voltage characteristics at the 30th cycle of each battery.
Compared to room temperature (dashed curve 12), the one at -20 ° C (curve)
In 13), the voltage is reduced and the capacity is reduced to 30% or less of room temperature. However, in the battery using the active material of the present invention, the battery at −20 ° C. (curve 15) has a voltage lower than that at room temperature (dashed curve 14), but has a capacity of 70% or more of room temperature. You can see that it is maintained. Therefore, it can be said that the active material of the present invention has excellent low-temperature characteristics.

次に、化学合成二酸化マンガン(CMD)を原材料と
し、P2O5と共に上記と同組成および同条件で調製した活
物質についても検討した。その結果、活物質を同重量用
いたボタン型電池では、EMDの場合とほぼ同じ放電特性
を有し、容量も変わらなかった。しかしかさ密度を測定
した結果、EMDに比べ20%近くかさ高く、同形状、同寸
法の正極とする場合(一般に実用電池では寸法規制とな
る)、CMDではメリットは小さい。従って、高エネルギ
密度を実現するためには、原材料MnO2はEMDが好まし
い。
Next, active materials prepared using chemically synthesized manganese dioxide (CMD) as a raw material together with P 2 O 5 under the same composition and under the same conditions as above were also examined. As a result, the button battery using the same weight of the active material had almost the same discharge characteristics as the case of the EMD, and the capacity did not change. However, as a result of measuring the bulk density, when using a positive electrode having the same shape and the same size as that of the EMD by nearly 20% higher than the EMD (generally, the size is restricted in a practical battery), the advantage of the CMD is small. Therefore, in order to realize a high energy density, the raw material MnO 2 is preferably EMD.

(実施例3) 上述のように、本発明の活物質が優れたサイクル可逆
性、貯蔵性能ならびに低温特性を示すことがわかったの
で、次に製造法に係るところの焼成温度について検討し
た。EMDとP2O5をMn:Pが1.00:0.06となるように混合し、
焼成温度を300℃〜500℃の間で種々変えて調製したそれ
ぞれの活物質について実施例2と同条件の電池を構成し
充放電試験を行った。
(Example 3) As described above, since it was found that the active material of the present invention exhibited excellent cycle reversibility, storage performance and low-temperature characteristics, the firing temperature according to the production method was examined next. Mix EMD and P 2 O 5 so that Mn: P becomes 1.00: 0.06,
A battery under the same conditions as in Example 2 was constructed for each active material prepared by changing the firing temperature variously between 300 ° C. and 500 ° C., and a charge / discharge test was performed.

充放電試験は、1.0mAの定電流充放電で、充電終止電
圧を3.8V、放電終止電圧を2.0Vに設定して行った。
The charge / discharge test was performed at a constant current charge / discharge of 1.0 mA, with the charge end voltage set to 3.8 V and the discharge end voltage set to 2.0 V.

第5図は、上記活物質のうち典型的なものについてそ
の容量−サイクル特性を示したものである。焼成温度が
300℃〜340℃のものは、第5図中の曲線16(340℃)に
みられるように初期容量は大きいがサイクル可逆性に難
があり、焼成温度が490℃〜500℃のものは、曲線17(49
0℃)にみられるようにサイクル可逆性には優れるが容
量が小さくなった。また、焼成温度が350℃〜480℃のも
のは、曲線18(350℃)、曲線19(400℃)、曲線20(45
0℃)及び曲線21(480℃)にみられるように容量ならび
にサイクル可逆性ともに優れたものであった。従って、
容量−サイクル特性からは、本発明の活物質の焼成温度
は350℃〜480℃が好ましいといえる。また、この温度範
囲で調製した本発明の活物質のいずれも、電池の貯蔵性
能ならびに低温特性は上記実施例同様に優れていた。
FIG. 5 shows the capacity-cycle characteristics of typical active materials. Firing temperature
Those having a temperature of 300 to 340 ° C have a large initial capacity as shown by the curve 16 (340 ° C) in FIG. 5, but have difficulty in cycle reversibility. Curve 17 (49
(0 ° C.), the cycle reversibility was excellent, but the capacity was small. Curing temperatures of 350 ° C to 480 ° C correspond to curves 18 (350 ° C), 19 (400 ° C), and 20 (45 ° C).
0 ° C.) and curve 21 (480 ° C.), the capacity and cycle reversibility were both excellent. Therefore,
From the capacity-cycle characteristics, it can be said that the firing temperature of the active material of the present invention is preferably 350 ° C to 480 ° C. In addition, all of the active materials of the present invention prepared in this temperature range exhibited excellent storage performance and low-temperature characteristics of the battery as in the above-described examples.

(実施例4) 次に、活物質中のMnのPの原子比(Mn:P)についての
検討を行った。活物質の調製法は実施例1で示した通り
で、焼成温度は400℃に固定し、Mn:P比を1.00:0.01〜1.
00:0.15の間で種々変えた活物質を調製した。次いで、
それぞれについて上記実施例と同条件の電池を構成し充
放電試験を行った。
Example 4 Next, the atomic ratio of P of Mn (Mn: P) in the active material was examined. The preparation method of the active material was as described in Example 1, the firing temperature was fixed at 400 ° C., and the Mn: P ratio was 1.00: 0.01 to 1.
Various active materials were prepared between 00: 0.15. Then
For each, a battery under the same conditions as in the above example was constructed and a charge / discharge test was performed.

充放電試験は、1.0mAの定電流充放電で、充電終止電
圧を3.8V、放電終止電圧を2.0Vに設定して行った。第6
図は上記活物質のうち典型的なものについてその容量−
サイクル特性を示したものである。この図からも明らか
なように、Mn:P=1.00:0.01の活物質の特性(曲線22)
は従来のγ−β型MnO2の特性(図中破線)に近く、初期
容量は大きいがサイクル可逆性に難があった。次いで、
Mn:P=1.00:0.22〜1.00:0.10のものは、曲線23(Mn:P=
1.00:0.02)、曲線24(Mn:P=1.00:0.05)及び曲線25
(Mn:P=1.00:0.10)にみられるように初期容量は小さ
いが、サイクルにともなって容量は徐々に増加し、10サ
イクル〜15サイクル程度で従来のγ−β型MnO2の容量特
性を上回り、さらにその後のサイクル可逆性もきわめて
優れているものであった。ところが、Mn:P=1.00:0.11
〜1.00:0.15になると、曲線26(Mn:P=1.00:0.11)にみ
られるように、初期容量もきわめて小さく、サイクルに
ともなって容量は徐々に増加するものの、従来のγ−β
型MnO2の容量特性に到達するまでに50サイクル以上経過
しなければならず、実用上従来のものと比べてメリット
はない。ただし、サイクル可逆性という観点からは、こ
の活物質は従来のものよりは優れている。従って、容量
−サイクル特性からは、Mn:P=1.00:0.02〜1.00:0.10の
範囲が好ましいといえる。また、このMn:P比を有する本
発明の活物質のいずれも、電池の貯蔵性能ならびに低温
特性は上記実施例同様に優れていた。
The charge / discharge test was performed at a constant current charge / discharge of 1.0 mA, with the charge end voltage set to 3.8 V and the discharge end voltage set to 2.0 V. Sixth
The figure shows the capacity of typical active materials.
It shows the cycle characteristics. As is clear from this figure, the characteristics of the active material with Mn: P = 1.00: 0.01 (curve 22)
Was close to the characteristics of the conventional γ-β type MnO 2 (broken line in the figure), and although the initial capacity was large, the cycle reversibility was difficult. Then
The curve for Mn: P = 1.00: 0.22 to 1.00: 0.10 is indicated by curve 23 (Mn: P =
1.00: 0.02), curve 24 (Mn: P = 1.00: 0.05) and curve 25
(Mn: P = 1.00: 0.10), the initial capacity is small, but the capacity gradually increases with the cycle, and the capacity characteristic of the conventional γ-β type MnO 2 is reduced in about 10 to 15 cycles. In addition, the cycle reversibility after that was excellent. However, Mn: P = 1.00: 0.11
At に な る 1.00: 0.15, the initial capacity is very small as shown by curve 26 (Mn: P = 1.00: 0.11), and the capacity gradually increases with the cycle, but the conventional γ-β
50 cycles or more must be elapsed before the capacity characteristics of the type MnO 2 are reached, and there is no advantage in practical use compared with the conventional one. However, from the viewpoint of cycle reversibility, this active material is superior to the conventional one. Therefore, from the capacity-cycle characteristics, it can be said that the range of Mn: P = 1.00: 0.02 to 1.00: 0.10 is preferable. Further, all of the active materials of the present invention having this Mn: P ratio were excellent in storage performance and low-temperature characteristics of the battery as in the above-mentioned examples.

発明の効果 本発明によれば、高エネルギ密度でサイクル可逆性に
優れ、さらには貯蔵性能、低温特性にも優れたリチウム
二次電池が提供できる。
According to the present invention, a lithium secondary battery having high energy density, excellent cycle reversibility, and excellent storage performance and low-temperature characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第3図,第5図および第6図は容量−サイクル
特性の比較図であり、第2図は本発明の実施例に用いた
電池の縦断面図であり、第4図は放電電圧特性図であ
る。 1……正極、2……チタンネット、3……セパレータ、
4……封口板、5……リチウム負極、6……電解液、7
……ガスケット。
1, 3, 5, and 6 are comparison diagrams of capacity-cycle characteristics, FIG. 2 is a longitudinal sectional view of a battery used in an embodiment of the present invention, and FIG. It is a discharge voltage characteristic diagram. 1 ... Positive electrode, 2 ... Titanium net, 3 ... Separator,
4 ... sealing plate, 5 ... lithium negative electrode, 6 ... electrolyte solution, 7
……gasket.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 奥野 博美 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 尾崎 義幸 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−253560(JP,A) 特開 平2−155166(JP,A) 特開 平2−256163(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/50 - 4/58 H01M 10/40 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Nobuo Eda 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (72) Inventor Hiromi Okuno 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Document JP-A-2-253560 (JP, A) JP-A-2-155166 (JP, A) JP-A-2-256163 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/50-4/58 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn:Pが1.00:0.02〜1.00:0.10の原子比を有
する、MnO2にリンを添加したリチウム二次電池用正極活
物質。
1. A Mn: P 1.00: 0.02 to 1.00: having an atomic ratio of 0.10, the positive electrode active material for lithium secondary battery by adding phosphorus to MnO 2.
【請求項2】MnO2が電解二酸化マンガン(EMD)であ
り、MnO2:P2O5=1.00:0.01〜1.00:0.05のモル比で混合
し、空気中で350℃以上、480℃以下の温度範囲で焼成す
ることを特徴とするリチウム二次電池用正極活物質の製
造法。
(2) MnO 2 is electrolytic manganese dioxide (EMD), which is mixed at a molar ratio of MnO 2 : P 2 O 5 = 1.00: 0.01 to 1.00: 0.05, and which is mixed at 350 ° C. or more and 480 ° C. or less in air. A method for producing a positive electrode active material for a lithium secondary battery, characterized by firing in a temperature range.
【請求項3】二酸化マンガンとP2O5の混合時に媒体とし
て水を用い、P2O5を予め水に溶解した後、上記所定温度
で焼成することを特徴とする特許請求の範囲第(2)項
記載のリチウム二次電池用正極活物質の製造法。
3. The method according to claim 1, wherein water is used as a medium when manganese dioxide and P 2 O 5 are mixed, and P 2 O 5 is dissolved in water in advance and then fired at the predetermined temperature. 2. The method for producing a positive electrode active material for a lithium secondary battery according to the item 2).
JP01257354A 1989-10-02 1989-10-02 Positive active material for lithium secondary battery and method for producing the same Expired - Fee Related JP3141377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01257354A JP3141377B2 (en) 1989-10-02 1989-10-02 Positive active material for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01257354A JP3141377B2 (en) 1989-10-02 1989-10-02 Positive active material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03119657A JPH03119657A (en) 1991-05-22
JP3141377B2 true JP3141377B2 (en) 2001-03-05

Family

ID=17305217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01257354A Expired - Fee Related JP3141377B2 (en) 1989-10-02 1989-10-02 Positive active material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3141377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191170A (en) * 2013-03-27 2014-10-06 Toppan Printing Co Ltd Standing panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2787153B2 (en) * 1994-09-30 1998-08-13 株式会社日立製作所 Secondary battery and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191170A (en) * 2013-03-27 2014-10-06 Toppan Printing Co Ltd Standing panel

Also Published As

Publication number Publication date
JPH03119657A (en) 1991-05-22

Similar Documents

Publication Publication Date Title
JP4325112B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4205308B2 (en) Nickel-containing compound useful as an electrode and method for producing the same
JP5972513B2 (en) Cathode and lithium battery using the same
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP4271448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH0746607B2 (en) Non-aqueous secondary battery
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4032744B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP2001345101A (en) Secondary battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
WO2003088382A1 (en) Non-aqueous secondary cell
JPH09270259A (en) Electrode and lithium secondary battery
JP3141377B2 (en) Positive active material for lithium secondary battery and method for producing the same
JP2002203556A (en) Non-aqueous electrolyte secondary battery
JP3578503B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP3102005B2 (en) Positive active material for lithium secondary battery and method for producing the same
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JPH1116567A (en) Nonaqueous electrolyte battery, and manufacture thereof
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JPH07272765A (en) Nonaqueous electrolytic secondary battery and its manufacture
JP2797528B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees