JP4197225B2 - Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Download PDF

Info

Publication number
JP4197225B2
JP4197225B2 JP2001315912A JP2001315912A JP4197225B2 JP 4197225 B2 JP4197225 B2 JP 4197225B2 JP 2001315912 A JP2001315912 A JP 2001315912A JP 2001315912 A JP2001315912 A JP 2001315912A JP 4197225 B2 JP4197225 B2 JP 4197225B2
Authority
JP
Japan
Prior art keywords
active material
lithium
powder
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001315912A
Other languages
Japanese (ja)
Other versions
JP2003123755A (en
Inventor
真司 有元
彰 橋本
高弘 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001315912A priority Critical patent/JP4197225B2/en
Publication of JP2003123755A publication Critical patent/JP2003123755A/en
Application granted granted Critical
Publication of JP4197225B2 publication Critical patent/JP4197225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用正極活物質およびその製造方法に関する。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源を担う小型・軽量で、高エネルギー密度を有する二次電池への要望も高まっている。非水系二次電池は、とりわけ高電圧・高エネルギー密度を有することから、その開発が急がれている。
【0003】
非水系二次電池のなかでは、特に高エネルギー密度を有することから、リチウム二次電池が注目を集めている。リチウム二次電池は、正極活物質としてリチウム含有複合酸化物を、負極材料として炭素材料を含んでおり、リチウム含有複合酸化物としては、特にLiCoO2の実用化が進んでいる。そこで、以下にLiCoO2の技術を例として示す。
【0004】
LiCoO2は、炭酸リチウム、水酸化リチウムなどのリチウム化合物と、酸化コバルト、炭酸コバルトなどのコバルト化合物とを、原子比Co/Liがほぼ1:1になるように混合し、650〜1000℃で5〜20時間焼成することにより合成される。
【0005】
このようにして得られた正極活物質と、導電材と、結着剤とを、カルボキシメチルセルロース水溶液のような糊料溶液またはN−メチル−2−ピロリドンのような有機溶剤に分散させるとペーストが得られる。そのペーストを集電体となる金属箔に塗着し、乾燥後、圧延して、活物質層を有する正極板が作製される。
【0006】
しかしながら、従来の方法で合成されたLiCoO2は、吸湿により、あるいはペーストの調製に用いると、強い塩基性を呈する。そのため、ペーストをアルミニウム箔のような集電体に塗着すると、集電体表面が腐食して、活物質層が脱落するという問題がある。また、電池を高温で保存すると、塩基性成分が極板上に不動態被膜を形成し、電池特性を著しく劣化させるという問題がある。
【0007】
ペーストが塩基性を呈する原因を探求した結果、LiCoO2の合成反応が充分に進行せず、未反応のリチウム化合物が粉末表面に残留し、これが水分と接触して塩基性を呈することが見出された。未反応のリチウム化合物は、多くの場合、炭酸リチウムに変化しており、電池内に侵入した炭酸リチウムは、電池を高温で保存すると分解し、炭酸ガスを発生することが知られている。さらに、未反応のリチウム化合物は、空気中の二酸化炭素を吸収するため、電池内でのガス発生を増大させる。
【0008】
上記問題は、LiCoO2以外のリチウム含有複合酸化物にも共通の問題である。これらの問題を解決するために、特開平5−266889号公報では、酸化コバルトと炭酸リチウムとを原子比Co/Liが1.01〜1.07になるように混合して焼成することにより、LiCoO2を合成し、未反応の炭酸リチウム量を最小にすることが提案されている。しかしながら、Co/Li比を1.01〜1.07にすると、酸化コバルトが残存してしまう。酸化コバルトは充放電容量に寄与しないため、電池容量の低下を生じる。
【0009】
また、特開平8−69791号公報には、正極活物質と増粘剤を含むペーストに炭酸ガス等を含ませて、ペーストのpHを7〜11に中和する技術が開示されている。しかし、ペーストに炭酸ガスを吸収させる工程が煩雑であるうえ、炭酸リチウムが生成してしまうため、実用的ではない。また、ペーストの分散媒に有機溶剤を用いる場合、ペーストへの酸の添加は副反応を誘発するため好ましくない。
【0010】
さらに、特開平10−79244号公報では、リチウム含有複合酸化物からなる活物質、結着剤および導電材を溶媒中で混合する際、無機酸や有機酸を添加してペーストを得ることが提案されている。しかし、このような方法を採用しても、ペーストの調製に用いられるまでの間に活物質が二酸化炭素や水を吸収してしまうため、上記問題を抑制する効果は不充分である。また、ペーストに含まれる耐酸性の小さい物質、例えば結着剤が、酸で変質するという問題がある。
【0011】
【発明が解決しようとする課題】
本発明は、上記問題を解決するものであり、比容量が高く、かつ、強い塩基性を呈することのない活物質を提供するものである。また、本発明は、優れた性状のペーストを与える活物質を提供するものである。
【0012】
【課題を解決するための手段】
本発明は、塩基性のリチウム含有複合酸化物の粉末に、酸性水溶液を吹きつけ、乾燥する工程、または前記リチウム含有複合酸化物の粉末に、酸性ガスを吹きつける工程を有することを特徴とする非水電解質二次電池用正極活物質の製造方法に関する。
【0013】
前記リチウム含有複合酸化物としては、LiMa4で表され、Maが、Co、Ni、Mn、Mg、Fe、Al、Cu、Zn、Ca、Ba、SrおよびCrよりなる群から選ばれた少なくとも1種である複合酸化物が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0014】
水と前記正極活物質とを等重量で含む混合物のpHは8〜10.5であることが好ましく、前記混合物に含まれる遊離強酸イオン濃度は、遊離炭酸イオン濃度よりも高いことが好ましい。前記強酸イオンは、硫酸イオン、亜硫酸イオン、硝酸イオンおよび塩化物イオンよりなる群から選ばれた少なくとも1種であることが好ましい。
【0016】
工程Aで用いる酸性水溶液は、硫酸、硝酸および塩酸ならびにこれらのアンモニウム塩よりなる群から選ばれた少なくとも1種を含む。
工程で用いる酸性ガスは、酸化硫黄、酸化窒素、塩化水素および塩素よりなる群から選ばれた少なくとも1種である。
【0017】
【発明の実施の形態】
本発明は、例えばLiCoO2およびLiNiO2の粉末に有効である。
【0018】
例えばLiCoO2粉末の合成法としては、炭酸リチウム、水酸化リチウムなどのリチウム化合物と、酸化コバルト、炭酸コバルトのようなコバルト化合物とを所定の割合で混合し、高温で焼成する方法がよく知られている。この方法を採用すると、上述したように、未反応のリチウム化合物がLiCoO2粉末中に残留する。そして未反応のリチウム化合物は、多くの場合、炭酸リチウムに変化しており、特に粉末粒子の表面に多く存在する。
【0019】
本発明によれば、塩基性リチウム塩を含む塩基性リチウム含有複合酸化物の粉末(以下、塩基性粉末という。)に、酸性水溶液を吹きつけ、乾燥する工程、または塩基性粉末に、酸性ガスを吹きつける工程を行う。そのため、炭酸リチウムなどの塩基性リチウム塩は、酸と反応して、硫酸リチウム、硝酸リチウム、塩化リチウムなどの中性リチウム塩に変化する。中性リチウム塩は、水に溶解しても強酸イオンしか発生しないため、塩基性を呈することはない。
【0020】
さらに、中性リチウム塩は、粉末の表面に多く生成するため、空気中の二酸化炭素や水と、活物質表面との接触を抑制する。これにより、活物質による二酸化炭素や水の吸収量が低減され、より効果的に活物質の塩基性を低下させることができる。従って、高温保存時におけるガス発生量を大幅に低減することができる。
【0021】
工程A〜のいずれかを行うことにより、塩基性粉末に含まれる塩基性リチウム塩の濃度は低減される。工程A〜のいずれかを経たリチウム含有複合酸化物を等重量の水と混合してペースト状混合物を調製した場合、混合物のpHは8〜10.5になり、遊離強酸イオン濃度が遊離炭酸イオン濃度よりも高いことが望まれる。強酸イオンは、中性リチウム塩の溶解で生成するものであり、硫酸イオン、亜硫酸イオン、硝酸イオン、塩化物イオンなどが挙げられる。
【0022】
前記混合物のpHが10.5を超えるほど塩基性が高い場合、正極集電体となるアルミニウム箔の腐食を抑制する効果が不充分である。また、pHが10.5を超えると、電池内に水分が侵入しやすくなったり、電池を高温で保存した場合に極板上に不動態被膜を形成したりして、電池特性を劣化させる。一方、ペーストのpHが8未満では、リチウム含有複合酸化物が溶解し、電池容量を低下させることがある。
【0023】
工程Aで用いる酸性水溶液には、入手が容易で、コスト面でも有利なことから、硫酸、硝酸、塩酸、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウムなどの水溶液を用いることが好ましい。また、工程で用いる酸性ガスには、入手が容易で、コスト面でも有利なことから、酸化硫黄、酸化窒素、塩化水素、塩素などを用いることが好ましい。酸化硫黄としては、SO2、SO3などを用いることができ、酸化窒素としては、NO、NO2、N24などを用いることができる。
【0024】
製造工程が容易である点で、工程A〜のうちでは、工程が最も有効である。また、工程は水を用いないため、水で劣化しやすい活物質、例えばLiNiO2の製造において特に有利である。
工程で用いる酸化ガスとしては、ガスの安定性およびアルカリとの反応性の点で、SO2が最も好ましい。SO2ガスには、空気との混合ガスを用いることができる。SO2と空気との混合ガスにおいて、SO2の濃度は50%以下であることが、使用の便宜上好ましい。
【0025】
工程では、酸性水溶液を塩基性粉末に吹き付けながら、35〜100℃になるように粉末を加熱することが好ましい。
【0026】
本発明は、どのような形状の電池にも適用することができ、例えば、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などの電池に適用することができる。また、電気自動車等に用いる大型電池にも適用できる。
【0027】
【実施例】
以下、本発明の実施例を図面を参照しながら説明する。
参考例1》
炭酸リチウムと酸化コバルトとを原子比Co/Liが1.00になるように混合した。この混合物を空気雰囲気の電気炉内に入れ、炉内の温度を900℃まで2時間で昇温し、900℃で10時間保持することにより、LiCoO2粉末A1を合成した。
【0028】
次に、1000gのLiCoO2粉末A1と表1に示す濃度にそれぞれ調整した硫酸水溶液2Lとを反応槽に入れ、攪拌洗浄し、ろ過し、乾燥することにより、活物質粉末A2〜A5を得た。粉末A2〜A5の表面を、飛行時間型二次イオン質量分析(TOF−SIMS)で調べたところ、中性塩である硫酸リチウムが粉末表面に付着していることがわかった。
【0029】
【表1】

Figure 0004197225
【0030】
粉末A1〜A5を、それぞれ等重量の水と混合し、得られた混合物の水のpHを測定した。
次いで、pH測定後のペーストをろ過し、ろ液の遊離イオン濃度を測定した。測定は誘導結合プラズマ(ICP)発光分光分析により行なった。
前記水性混合物のpHと、硫酸イオン濃度Csと炭酸イオン濃度Cwとの比:Cs/Cwとの関係を図1に示した。
【0031】
次に、LiCoO2粉末A1を用いて、図2に示したような角型の非水電解質二次電池(幅34mm、高さ50mm)を作製した。
(i)正極板の作製
100重量部の粉末A1と、導電材としてアセチレンブラック3重量部と、結着剤としてポリ四フッ化エチレン7重量部とを混合し、1重量%のカルボキシメチルセルロースを含む水溶液100重量部を加え、攪拌混合して、ペースト状の正極合剤を得た。正極合剤は、厚さ20μmのアルミニウム箔製集電体の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、正極板とした。
【0032】
(ii)負極板の作製
平均粒径が約20μmの鱗片状黒鉛100重量部と、結着剤のスチレン/ブタジエンゴム3重量部とを混合し、1重量%のカルボキシメチルセルロースを含む水溶液100重量部を加え、攪拌混合して、ペースト状の負極合剤を得た。負極合剤は、厚さ15μmの銅箔製集電体の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、負極板とした。
【0033】
(iii)非水電解質の調製
非水電解質は、エチレンカーボネートとエチルメチルカーボネートとの体積比1:1の混合溶媒に、1.0mol/Lの濃度でLiPF6を溶解して調製した。
【0034】
(iv)電池の組み立て
厚さ25μmの微多孔性ポリエチレン樹脂製セパレータを介して、正極板と負極板とを渦巻状に巻回して、極板群1を構成した。正極板および負極板には、それぞれアルミニウム製正極リード2およびニッケル製負極リード3を溶接した。極板群1は、上部にポリエチレン樹脂製絶縁リング(図示しない)を装着して、アルミニウム製電池ケース4内に収容した。正極リード2の他端は、アルミニウム製封口板5にスポット溶接し、負極リード3の他端は、封口板5の中心部にあるニッケル製負極端子6の下部にスポット溶接した(図は溶接前の状態を示す)。電池ケース4の開口端部と封口板5とをレーザ溶接し、所定量の非水電解質を注入口から注入した。最後に注入口にアルミニウム製の栓7を配してレーザー溶接し、図2に示すような電池A1を完成した。
【0035】
(v)活物質比容量の測定
得られた電池の充放電を環境温度20℃で行った。充電は、600mAの電流で、充電終止電位を4.2Vとして2時間行った。放電は、600mAの電流で、放電終止電位を3.0Vとして行った。10サイクル目の電池容量を粉末A1の重量で割ることにより、活物質比容量を算出した。
【0036】
(vi)容量維持率の測定
活物質比容量の測定に続き、さらに電池を充電し、充電状態の電池を、60℃で20日間保存した。次いで、保存後の電池を上記と同条件で放電して容量を求めた。得られた保存後の容量の、保存前の容量に対する割合を100分率で求めた。
【0037】
次いで、LiCoO2粉末A1の代わりに活物質粉末A2〜A5を用いたこと以外、電池A1と同様の電池A2〜A5をそれぞれ作製した。また、電池A2〜A5の活物質比容量および容量維持率を上記と同様に求めた。
粉末と水との混合物のpHと、活物質比容量と、容量維持率との関係を図3に示す。
【0038】
《実施例
参考例1で得られたLiCoO2粉末A1を1000g計量し、流動層乾燥機に入れ、流動させた。流動層内に設置されたスプレーノズルから、表2に示す濃度にそれぞれ調整した硫酸水溶液500mLを、20ml/分の割合で噴射し、粉末A1に吹き付けながら、流動層内の温度が80℃になるまで加熱・乾燥させ、活物質粉末A6〜A9を得た。
粉末A6〜A9の表面をTOF−SIMSで調べたところ、中性塩である硫酸リチウムが、粉末表面に付着していることがわかった。
【0039】
【表2】
Figure 0004197225
【0040】
粉末A6〜A9を用いて、水性混合物のpH、ならびに前記混合物のろ液の遊離イオン濃度を参考例1と同様にして求めた。
水性混合物のpHと、硫酸イオン濃度Csと炭酸イオン濃度Cwとの比:Cs/Cwとの関係を図4に示した。
【0041】
次いで、LiCoO2粉末A1の代わりに活物質粉末A6〜A9を用いたこと以外、参考例1の電池A1と同様の電池A6〜A9をそれぞれ作製した。また、電池A6〜A9の活物質比容量および容量維持率を参考例1と同様に求めた。
水性混合物のpHと、活物質比容量と、容量維持率との関係を図5に示す。
【0042】
《実施例
参考例1で得られたLiCoO2粉末A1を1000g計量し、攪拌装置を有する容器に入れ、攪拌した。前記容器内に表3に示す濃度にそれぞれ調整した25℃の亜硫酸ガス(SO2)と空気の混合ガスを、流量500ml/分で注入しながら、さらに60分間粉末を攪拌し、活物質粉末A10〜A13を得た。
粉末A10〜A13の表面をTOF−SIMSで調べたところ、中性塩である硫酸リチウムが、粉末表面に付着していることがわかった。これは、SO2と塩基性リチウム塩とが反応して亜硫酸リチウムが生成し、亜硫酸リチウムがさらに空気中の酸素と反応して、硫酸リチウムに変化したものと考えられた。
【0043】
【表3】
Figure 0004197225
【0044】
粉末A10〜A13を用いて、水性混合物のpH、ならびに前記混合物のろ液の遊離イオン濃度を参考例1と同様にして求めた。
水性混合物のpHと、硫酸イオン濃度Csと炭酸イオン濃度Cwとの比:Cs/Cwとの関係を図6に示した。
【0045】
次いで、LiCoO2粉末A1の代わりに活物質粉末A10〜A13を用いたこと以外、参考例1の電池A1と同様の電池A10〜A13をそれぞれ作製した。また、電池A10〜A13の活物質比容量および容量維持率を参考例1と同様に求めた。
水性混合物のpHと、活物質比容量と、容量維持率との関係を図7に示す。
【0046】
図1および図3〜7に示されるように、粉末と水との水性混合物のpHが8未満では、活物質比容量が不充分であった。pHが8未満の場合、未反応の炭酸リチウムと硫酸とが反応し、硫酸リチウムが生成した他、過剰の硫酸がLiCoO2と反応してしまうため、活物質比容量が減少したものと考えられる。一方、pHが8以上では、充分な活物質比容量が得られた。
【0047】
pHが10.5を超えると、容量維持率が不充分であった。水性混合物がpH10.5を超える高い塩基性を示す場合、高温保存中に、正極集電体であるアルミニウム箔が腐食して活物質層が極板から脱落したため、容量が減少したものと考えられた。また、活物質が強い塩基性を呈する場合、水分が電池内に混入し、LiPF6を分解してフッ酸を生成し、フッ酸が集電体やケースを腐食して、容量維持率の低下に寄与したものと考えられる。さらに、未反応の炭酸リチウムが高温保存した際に分解し、炭酸ガスを発生し、極板の隙間にガスが混入し、活物質比容量が減少したとも考えられる。一方、pHが9〜10の場合には、容量維持率が85%以上と非常に優れていた。
【0048】
参考
参考例1で得られたLiCoO2粉末A1を1000gと、0.025mol/Lの硫酸アンモニウム水溶液2Lとを反応槽に入れ、攪拌混合し、ろ過し、乾燥することにより、活物質粉末Bを得た。また、0.05mol/Lの硝酸水溶液または0.05mol/Lの塩酸水溶液を用いたこと以外、上記と同様にして、活物質粉末CおよびDを得た。
【0049】
粉末B〜Dを用いて、水性混合物のpH、ならびに前記混合物のろ液の遊離イオン濃度を参考例1と同様にして求めた。
水性混合物のpHと、強酸イオン(硫酸イオン、硝酸イオンまたは塩化物イオン)濃度Csと炭酸イオン濃度Cwとの比:Cs/Cwを表4に示した。
【0050】
【表4】
Figure 0004197225
【0051】
表4に示したように、硫酸アンモニウム、硝酸または塩酸の水溶液を用いた場合にも、攪拌洗浄の工程により、水性混合物のpHを充分に低下させることができた。
【0052】
次いで、LiCoO2粉末A1の代わりに活物質粉末B〜Dを用いたこと以外、参考例1の電池Aと同様の電池B〜Dをそれぞれ作製した。また、電池B〜Dの活物質比容量および容量維持率を参考例1と同様に求めた。結果を表5に示す。
【0053】
【表5】
Figure 0004197225
【0054】
表5に示したように、活物質粉末B〜Dを用いた場合にも、電池A1に比べて活物質比容量を低下させることなく、容量維持率の高い電池を得ることができた。
【0055】
《実施例
参考例1で得られたLiCoO2粉末A1を1000gを計量し、流動層乾燥機に入れ、流動させた。流動層内に設置されたスプレーノズルから、0.1mol/Lの硫酸アンモニウム水溶液500mlを、20ml/分の割合で噴射し、粉末A1に吹き付けながら、流動層内の温度が80℃になるまで加熱・乾燥させ、活物質粉末Eを得た。また、0.2mol/Lの硝酸水溶液または0.2mol/Lの塩酸水溶液を用いたこと以外、上記と同様にして、活物質粉末FおよびGを得た。
【0056】
粉末E〜Gを用いて、水性混合物のpH、ならびに前記混合物のろ液の遊離イオン濃度を参考例1と同様にして求めた。
水性混合物のpHと、強酸イオン(硫酸イオン、硝酸イオンまたは塩化物イオン)濃度Csと炭酸イオン濃度Cwとの比:Cs/Cwを表6に示した。
【0057】
【表6】
Figure 0004197225
【0058】
表6に示したように、硫酸アンモニウム、硝酸または塩酸の水溶液を用いた場合にも、水性混合物のpHを充分に低下させることができた。
【0059】
次いで、LiCoO2粉末A1の代わりに活物質粉末E〜Gを用いたこと以外、参考例1の電池Aと同様の電池E〜Gをそれぞれ作製した。また、電池E〜Gの活物質比容量および容量維持率を参考例1と同様に求めた。結果を表7に示す。
【0060】
【表7】
Figure 0004197225
【0061】
表7に示したように、活物質粉末E〜Gを用いた場合にも、電池A1に比べて活物質比容量を低下させることなく、容量維持率の高い電池を得ることができた。
【0062】
《実施例
参考例1で得られたLiCoO2粉末A1を1000g攪拌装置を有する容器に入れ、攪拌した。前記容器内に25℃で、NO2を2.5%含むNO2と空気との混合ガスを流量500ml/分で注入しながら、さらに60分間粉末を攪拌し、活物質粉末Hを得た。また、塩化水素を2.5%含む塩化水素と空気との混合ガスまたは塩素を2.5%含む塩素と空気との混合ガスを用いたこと以外、上記と同様にして、活物質粉末IおよびJを得た。
【0063】
粉末H〜Jを用いて、水性混合物のpH、ならびに前記混合物のろ液の遊離イオン濃度を参考例1と同様にして求めた。
水性混合物のpHと、強酸イオン(硝酸イオンまたは塩化物イオン)濃度Csと炭酸イオン濃度Cwとの比:Cs/Cwを表8に示した。
【0064】
【表8】
Figure 0004197225
【0065】
表8に示したように、酸化窒素ガス、塩化水素ガスまたは塩素ガスを用いた場合にも、水性混合物のpHを充分に低下させることができた。
【0066】
次いで、LiCoO2粉末A1の代わりに活物質粉末H〜Jを用いたこと以外、参考例1の電池Aと同様の電池H〜Jをそれぞれ作製した。また、電池H〜Jの活物質比容量および容量維持率を参考例1と同様に求めた。結果を表9に示す。
【0067】
【表9】
Figure 0004197225
【0068】
表9に示したように、活物質粉末H〜Jを用いた場合にも、電池A1に比べて活物質比容量を低下させることなく、容量維持率の高い電池を得ることができた。
【0069】
《参考例
正極板を以下の手順で作製した。
100重量部の粉末A1と、導電材としてアセチレンブラック3重量部と、結着剤としてポリフッ化ビニリデン4重量部とを混合し、N−メチル−2−ピロリドン100重量部を加え、攪拌混合して、ペースト状の正極合剤を得た。正極合剤は、厚さ20μmのアルミニウム箔製集電体の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、正極板とした。
上記のように、分散媒にN−メチル−2−ピロリドンを用いた正極合剤から作製した正極板を用いたこと以外、参考例1の電池A1と同様の電池K1を作製した。
【0070】
次いで、LiCoO2粉末A1の代わりに参考例1の活物質粉末A2〜A5を用いたこと以外、電池K1と同様にして電池K2〜K5をそれぞれ作製した。また、電池K1〜K5の活物質比容量および容量維持率を参考例1と同様に求めた。
粉末と水との混合物のpHと、活物質比容量と、容量維持率との関係を図8に示す。
【0071】
図8より、正極板の作製に有機溶剤を用いた場合にも、本発明によれば、優れた特性の電池を得ることができることが確認できた。
従来のペーストに炭酸ガスを吸収させたり、酸を添加したりする方法では、正極合剤の分散媒として水を用いる必要があるが、本発明では、正極合剤の分散媒として有機溶剤を用いることができる。従って、活物質自体を酸で処理する点に特徴を有する本発明は、正極合剤の分散媒として有機溶剤を用いる場合に特に有効であると言える。
【0072】
なお、参考例1では、LiCoO2粉末A1の原料に炭酸リチウムを用いたが、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸化リチウム等を用いても同様の効果が得られると考えられる。
【0073】
【発明の効果】
本発明によれば、比容量が高く、かつ、強い塩基性を呈することのない正極活物質を提供することができる。本発明の正極活物質を用いれば、高容量で、優れた高温保存特性を有する非水電解質二次電池を得ることができる。
【図面の簡単な説明】
【図1】 粉末A1〜A5を含む水性混合物のpHと、遊離イオン濃度比:Cs/Cwとの関係を示す図である。
【図2】 参考例1で作製した角型非水電解質二次電池の一部を切り欠いた斜視図である。
【図3】 粉末A1〜A5を含む水性混合物のpHと、電池A1〜A5の活物質比容量および容量維持率との関係を示す図である。
【図4】 粉末A6〜A9を含む水性混合物のpHと、遊離イオン濃度比:Cs/Cwとの関係を示す図である。
【図5】 粉末A6〜A9を含む水性混合物のpHと、電池A6〜A9の活物質比容量および容量維持率との関係を示す図である。
【図6】 粉末A10〜A13を含む水性混合物のpHと、遊離イオン濃度比:Cs/Cwとの関係を示す図である。
【図7】 粉末A10〜A13を含む水性混合物のpHと、電池A10〜A13の活物質比容量および容量維持率との関係を示す図である。
【図8】 粉末K1〜K5を含む水性混合物のpHと、電池K1〜K5の活物質比容量および容量維持率との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same.
[0002]
[Prior art]
In recent years, consumer electronic devices have become increasingly portable and cordless, and there is an increasing demand for secondary batteries that are compact, lightweight, and have a high energy density as the driving power source. The development of non-aqueous secondary batteries is urgent because of their high voltage and high energy density.
[0003]
Among non-aqueous secondary batteries, lithium secondary batteries are attracting attention because they have a particularly high energy density. Lithium secondary batteries include a lithium-containing composite oxide as a positive electrode active material and a carbon material as a negative electrode material. As the lithium-containing composite oxide, in particular, LiCoO 2 is in practical use. Therefore, the LiCoO 2 technique will be described below as an example.
[0004]
LiCoO 2 is a mixture of lithium compounds such as lithium carbonate and lithium hydroxide and cobalt compounds such as cobalt oxide and cobalt carbonate so that the atomic ratio Co / Li is approximately 1: 1. It is synthesized by baking for 5 to 20 hours.
[0005]
When the positive electrode active material, the conductive material, and the binder thus obtained are dispersed in a paste solution such as an aqueous carboxymethyl cellulose solution or an organic solvent such as N-methyl-2-pyrrolidone, a paste is obtained. can get. The paste is applied to a metal foil serving as a current collector, dried, and rolled to produce a positive electrode plate having an active material layer.
[0006]
However, LiCoO 2 synthesized by a conventional method exhibits strong basicity when it is used for moisture absorption or for preparing a paste. Therefore, when the paste is applied to a current collector such as an aluminum foil, there is a problem that the surface of the current collector corrodes and the active material layer falls off. Further, when the battery is stored at a high temperature, there is a problem that the basic component forms a passive film on the electrode plate, and the battery characteristics are remarkably deteriorated.
[0007]
As a result of searching for the cause of the basicity of the paste, it was found that the synthesis reaction of LiCoO 2 did not proceed sufficiently, and the unreacted lithium compound remained on the powder surface, which was in contact with moisture and exhibited basicity. It was done. In many cases, the unreacted lithium compound is changed to lithium carbonate, and it is known that lithium carbonate that has entered the battery decomposes and generates carbon dioxide gas when the battery is stored at a high temperature. Further, the unreacted lithium compound absorbs carbon dioxide in the air, and thus increases gas generation in the battery.
[0008]
The above problem is common to lithium-containing composite oxides other than LiCoO 2 . In order to solve these problems, JP-A-5-266889 discloses that cobalt oxide and lithium carbonate are mixed and fired so that the atomic ratio Co / Li is 1.01-1.07, It has been proposed to synthesize LiCoO 2 and minimize the amount of unreacted lithium carbonate. However, when the Co / Li ratio is 1.01 to 1.07, cobalt oxide remains. Since cobalt oxide does not contribute to the charge / discharge capacity, the battery capacity is reduced.
[0009]
Japanese Patent Application Laid-Open No. 8-67991 discloses a technique for neutralizing the pH of a paste to 7 to 11 by adding carbon dioxide gas or the like to a paste containing a positive electrode active material and a thickener. However, the process of absorbing the carbon dioxide gas in the paste is complicated and lithium carbonate is generated, which is not practical. Further, when an organic solvent is used as the dispersion medium of the paste, addition of an acid to the paste is not preferable because it induces a side reaction.
[0010]
Furthermore, Japanese Patent Laid-Open No. 10-79244 proposes that an inorganic acid or an organic acid is added to obtain a paste when an active material, a binder, and a conductive material made of a lithium-containing composite oxide are mixed in a solvent. Has been. However, even if such a method is adopted, the active material absorbs carbon dioxide and water before it is used for the preparation of the paste, so that the effect of suppressing the above problems is insufficient. In addition, there is a problem that a substance having low acid resistance, for example, a binder, contained in the paste is altered by acid.
[0011]
[Problems to be solved by the invention]
The present invention solves the above problems, and provides an active material having a high specific capacity and no strong basicity. Moreover, this invention provides the active material which gives the paste of the outstanding property.
[0012]
[Means for Solving the Problems]
The present invention relates to powdered late basic lithium-containing composite oxide, blowing acidic aqueous solution, drying process A or to the powder of the lithium-containing composite oxide, further comprising the step B of blowing acid gases The present invention relates to a method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery.
[0013]
Examples of the lithium-containing composite oxide is represented by LiM a O 4, M a is selected Co, Ni, Mn, Mg, Fe, Al, Cu, Zn, Ca, Ba, from the group consisting of Sr and Cr composite oxides is at least one. These may be used alone or in combination of two or more.
[0014]
The pH of the mixture containing water and the positive electrode active material in equal weight is preferably 8 to 10.5, and the free strong acid ion concentration contained in the mixture is preferably higher than the free carbonate ion concentration. The strong acid ion is preferably at least one selected from the group consisting of sulfate ion, sulfite ion, nitrate ion and chloride ion.
[0016]
The acidic aqueous solution used in Step A includes at least one selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid, and ammonium salts thereof.
The acidic gas used in Step B is at least one selected from the group consisting of sulfur oxide, nitrogen oxide, hydrogen chloride, and chlorine.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is effective for powders of LiCoO 2 and LiNiO 2 In example embodiment.
[0018]
For example, as a method of synthesizing LiCoO 2 powder, a method in which a lithium compound such as lithium carbonate and lithium hydroxide and a cobalt compound such as cobalt oxide and cobalt carbonate are mixed at a predetermined ratio and calcined at a high temperature is well known. ing. When this method is employed, as described above, unreacted lithium compounds remain in the LiCoO 2 powder. In many cases, the unreacted lithium compound is changed to lithium carbonate, and particularly present on the surface of the powder particles.
[0019]
According to the present invention, a powder of a basic lithium-containing composite oxide containing a basic lithium salt (hereinafter, referred to. Basic powder) blows acidic aqueous solution, drying process A or basic powder, acidic Process B which blows gas is performed. Therefore, a basic lithium salt such as lithium carbonate reacts with an acid and changes to a neutral lithium salt such as lithium sulfate, lithium nitrate, or lithium chloride. A neutral lithium salt does not exhibit basicity because it generates only strong acid ions even when dissolved in water.
[0020]
Further, since a large amount of neutral lithium salt is generated on the surface of the powder, the contact between carbon dioxide and water in the air and the active material surface is suppressed. Thereby, the amount of carbon dioxide and water absorbed by the active material is reduced, and the basicity of the active material can be more effectively lowered. Therefore, the amount of gas generated during high temperature storage can be greatly reduced.
[0021]
By performing any of Steps A to B , the concentration of the basic lithium salt contained in the basic powder is reduced. When a paste-like mixture was prepared by mixing the lithium-containing composite oxide obtained through any of steps A to B with an equal weight of water, the pH of the mixture was 8 to 10.5, and the free strong acid ion concentration was free carbonic acid. It is desired that the concentration be higher than the ion concentration. Strong acid ions are generated by dissolving a neutral lithium salt, and examples thereof include sulfate ions, sulfite ions, nitrate ions, and chloride ions.
[0022]
When the basicity is so high that the pH of the mixture exceeds 10.5, the effect of suppressing corrosion of the aluminum foil serving as the positive electrode current collector is insufficient. On the other hand, when the pH exceeds 10.5, moisture easily enters the battery, or a passive film is formed on the electrode plate when the battery is stored at a high temperature, thereby deteriorating the battery characteristics. On the other hand, when the pH of the paste is less than 8, the lithium-containing composite oxide is dissolved, and the battery capacity may be reduced.
[0023]
As the acidic aqueous solution used in Step A, it is preferable to use an aqueous solution of sulfuric acid, nitric acid, hydrochloric acid, ammonium sulfate, ammonium nitrate, ammonium chloride or the like because it is easily available and advantageous in terms of cost. In addition, it is preferable to use sulfur oxide, nitrogen oxide, hydrogen chloride, chlorine, or the like as the acid gas used in Step B because it is easily available and advantageous in terms of cost. As sulfur oxide, SO 2 , SO 3 or the like can be used, and as nitrogen oxide, NO, NO 2 , N 2 O 4 or the like can be used.
[0024]
Of the processes A to B , the process B is the most effective in that the manufacturing process is easy. Further, since the process B does not use water, it is particularly advantageous in the production of an active material that easily deteriorates with water, for example, LiNiO 2 .
The oxidizing gas used in the step B is most preferably SO 2 in terms of gas stability and alkali reactivity. As the SO 2 gas, a mixed gas with air can be used. In the mixed gas of SO 2 and air, the concentration of SO 2 is preferably 50% or less for convenience of use.
[0025]
In step A , it is preferable to heat the powder to 35 to 100 ° C. while spraying the acidic aqueous solution onto the basic powder.
[0026]
The present invention can be applied to batteries of any shape, for example, batteries of coin type, button type, sheet type, stacked type, cylindrical type, flat type, square type, and the like. It can also be applied to large batteries used in electric vehicles and the like.
[0027]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
<< Reference Example 1 >>
Lithium carbonate and cobalt oxide were mixed so that the atomic ratio Co / Li was 1.00. This mixture was placed in an electric furnace in an air atmosphere, the temperature in the furnace was raised to 900 ° C. over 2 hours, and held at 900 ° C. for 10 hours, thereby synthesizing LiCoO 2 powder A1.
[0028]
Next, 1000 g of LiCoO 2 powder A1 and 2 L of sulfuric acid aqueous solution adjusted to the concentration shown in Table 1 were put in a reaction vessel, stirred and washed, filtered, and dried to obtain active material powders A2 to A5. . When the surfaces of the powders A2 to A5 were examined by time-of-flight secondary ion mass spectrometry (TOF-SIMS), it was found that lithium sulfate as a neutral salt was attached to the powder surface.
[0029]
[Table 1]
Figure 0004197225
[0030]
Powders A1 to A5 were each mixed with an equal weight of water, and the pH of the water of the obtained mixture was measured.
Subsequently, the paste after pH measurement was filtered, and the free ion concentration of the filtrate was measured. The measurement was performed by inductively coupled plasma (ICP) emission spectroscopic analysis.
The relationship between the pH of the aqueous mixture and the ratio of the sulfate ion concentration Cs to the carbonate ion concentration Cw: Cs / Cw is shown in FIG.
[0031]
Next, a square nonaqueous electrolyte secondary battery (width 34 mm, height 50 mm) as shown in FIG. 2 was produced using LiCoO 2 powder A1.
(I) Production of positive electrode plate 100 parts by weight of powder A1, 3 parts by weight of acetylene black as a conductive material, and 7 parts by weight of polytetrafluoroethylene as a binder are mixed and contain 1% by weight of carboxymethylcellulose. 100 parts by weight of an aqueous solution was added and mixed by stirring to obtain a paste-like positive electrode mixture. The positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 20 μm, dried, rolled, and cut into a predetermined size to obtain a positive electrode plate.
[0032]
(Ii) Production of negative electrode plate 100 parts by weight of scaly graphite having an average particle diameter of about 20 μm and 3 parts by weight of styrene / butadiene rubber as a binder are mixed, and 100 parts by weight of an aqueous solution containing 1% by weight of carboxymethylcellulose. And stirring and mixing were performed to obtain a paste-like negative electrode mixture. The negative electrode mixture was applied to both sides of a 15 μm thick copper foil current collector, dried, rolled, and cut into a predetermined size to obtain a negative electrode plate.
[0033]
(Iii) Preparation of Nonaqueous Electrolyte A nonaqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 1.
[0034]
(Iv) Battery assembly A positive electrode plate and a negative electrode plate were spirally wound through a separator made of a microporous polyethylene resin having a thickness of 25 μm to constitute the electrode plate group 1. An aluminum positive electrode lead 2 and a nickel negative electrode lead 3 were welded to the positive electrode plate and the negative electrode plate, respectively. The electrode plate group 1 was accommodated in an aluminum battery case 4 with a polyethylene resin insulating ring (not shown) attached to the top thereof. The other end of the positive electrode lead 2 is spot welded to the aluminum sealing plate 5, and the other end of the negative electrode lead 3 is spot welded to the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5 (the figure is before welding). Status). The opening end of the battery case 4 and the sealing plate 5 were laser welded, and a predetermined amount of nonaqueous electrolyte was injected from the injection port. Finally, an aluminum plug 7 was placed at the inlet and laser welded to complete a battery A1 as shown in FIG.
[0035]
(V) Measurement of specific capacity of active material The obtained battery was charged and discharged at an environmental temperature of 20 ° C. Charging was performed for 2 hours at a current of 600 mA with a charge end potential of 4.2 V. The discharge was performed at a current of 600 mA and a discharge end potential of 3.0V. The active material specific capacity was calculated by dividing the battery capacity at the 10th cycle by the weight of the powder A1.
[0036]
(Vi) Measurement of capacity retention rate Following measurement of the specific capacity of the active material, the battery was further charged, and the charged battery was stored at 60 ° C. for 20 days. Next, the battery after storage was discharged under the same conditions as described above to determine the capacity. The ratio of the obtained capacity after storage to the capacity before storage was determined in 100 minutes.
[0037]
Next, batteries A2 to A5 similar to the battery A1 were produced, respectively, except that the active material powders A2 to A5 were used instead of the LiCoO 2 powder A1. Further, the active material specific capacities and capacity retention rates of the batteries A2 to A5 were determined in the same manner as described above.
The relationship between the pH of the mixture of powder and water, the active material specific capacity, and the capacity retention rate is shown in FIG.
[0038]
Example 1
1000 g of LiCoO 2 powder A1 obtained in Reference Example 1 was weighed and placed in a fluidized bed dryer to be fluidized. From the spray nozzle installed in the fluidized bed, 500 mL of sulfuric acid aqueous solution adjusted to the concentration shown in Table 2 is sprayed at a rate of 20 ml / min and sprayed on the powder A1, and the temperature in the fluidized bed becomes 80 ° C. And dried to obtain active material powders A6 to A9.
When the surfaces of the powders A6 to A9 were examined by TOF-SIMS, it was found that lithium sulfate, which is a neutral salt, adhered to the powder surface.
[0039]
[Table 2]
Figure 0004197225
[0040]
Using powders A6 to A9, the pH of the aqueous mixture and the free ion concentration of the filtrate of the mixture were determined in the same manner as in Reference Example 1.
The relationship between the pH of the aqueous mixture and the ratio of the sulfate ion concentration Cs to the carbonate ion concentration Cw: Cs / Cw is shown in FIG.
[0041]
Next, batteries A6 to A9 similar to the battery A1 of Reference Example 1 were produced, respectively, except that the active material powders A6 to A9 were used instead of the LiCoO 2 powder A1. The active material specific capacities and capacity retention rates of the batteries A6 to A9 were determined in the same manner as in Reference Example 1.
FIG. 5 shows the relationship among the pH of the aqueous mixture, the specific capacity of the active material, and the capacity retention rate.
[0042]
Example 2
1000 g of LiCoO 2 powder A1 obtained in Reference Example 1 was weighed, placed in a container having a stirring device, and stirred. While injecting a mixed gas of sulfurous acid gas (SO 2 ) and air at 25 ° C. adjusted to the concentrations shown in Table 3 into the container at a flow rate of 500 ml / min, the powder was further stirred for 60 minutes to obtain active material powder A10 -A13 was obtained.
When the surfaces of the powders A10 to A13 were examined by TOF-SIMS, it was found that lithium sulfate as a neutral salt was adhered to the powder surface. This was considered that SO 2 and basic lithium salt reacted to produce lithium sulfite, and lithium sulfite further reacted with oxygen in the air to change into lithium sulfate.
[0043]
[Table 3]
Figure 0004197225
[0044]
Using powders A10 to A13, the pH of the aqueous mixture and the free ion concentration of the filtrate of the mixture were determined in the same manner as in Reference Example 1.
FIG. 6 shows the relationship between the pH of the aqueous mixture and the ratio of the sulfate ion concentration Cs to the carbonate ion concentration Cw: Cs / Cw.
[0045]
Next, batteries A10 to A13 similar to the battery A1 of Reference Example 1 were produced, respectively, except that the active material powders A10 to A13 were used instead of the LiCoO 2 powder A1. Moreover, the active material specific capacity and capacity maintenance rate of batteries A10 to A13 were determined in the same manner as in Reference Example 1.
FIG. 7 shows the relationship among the pH of the aqueous mixture, the active material specific capacity, and the capacity retention rate.
[0046]
As shown in FIG. 1 and FIGS. 3 to 7, when the pH of the aqueous mixture of powder and water was less than 8, the specific capacity of the active material was insufficient. When the pH is less than 8, unreacted lithium carbonate and sulfuric acid react to generate lithium sulfate, and excess sulfuric acid reacts with LiCoO 2 , which is considered to reduce the specific capacity of the active material. . On the other hand, when the pH was 8 or more, a sufficient active material specific capacity was obtained.
[0047]
When the pH exceeded 10.5, the capacity retention rate was insufficient. When the aqueous mixture shows a high basicity exceeding pH 10.5, it is considered that the capacity was reduced because the aluminum foil as the positive electrode current collector was corroded and the active material layer dropped off from the electrode plate during high temperature storage. It was. In addition, when the active material has a strong basicity, moisture is mixed in the battery, LiPF 6 is decomposed to generate hydrofluoric acid, and the hydrofluoric acid corrodes the current collector and the case, resulting in a decrease in capacity maintenance rate. It is thought that it contributed to. Further, it is considered that unreacted lithium carbonate decomposes when stored at a high temperature, generates carbon dioxide gas, mixes in the gap between the electrode plates, and decreases the specific capacity of the active material. On the other hand, when the pH was 9 to 10, the capacity retention rate was very excellent at 85% or more.
[0048]
<< Reference Example 2 >>
1000 g of LiCoO 2 powder A1 obtained in Reference Example 1 and 2 L of 0.025 mol / L ammonium sulfate aqueous solution were placed in a reaction vessel, stirred and mixed, filtered and dried to obtain active material powder B. . Further, active material powders C and D were obtained in the same manner as described above except that a 0.05 mol / L nitric acid aqueous solution or a 0.05 mol / L hydrochloric acid aqueous solution was used.
[0049]
Using powders B to D, the pH of the aqueous mixture and the free ion concentration of the filtrate of the mixture were determined in the same manner as in Reference Example 1.
Table 4 shows the pH of the aqueous mixture and the ratio of strong acid ion (sulfate ion, nitrate ion or chloride ion) concentration Cs to carbonate ion concentration Cw: Cs / Cw.
[0050]
[Table 4]
Figure 0004197225
[0051]
As shown in Table 4, even when an aqueous solution of ammonium sulfate, nitric acid or hydrochloric acid was used, the pH of the aqueous mixture could be sufficiently lowered by the stirring and washing step.
[0052]
Next, batteries B to D similar to the battery A of Reference Example 1 were produced, respectively, except that the active material powders B to D were used instead of the LiCoO 2 powder A1. The active material specific capacities and capacity retention rates of the batteries B to D were determined in the same manner as in Reference Example 1. The results are shown in Table 5.
[0053]
[Table 5]
Figure 0004197225
[0054]
As shown in Table 5, even when the active material powders B to D were used, a battery having a high capacity retention rate could be obtained without reducing the active material specific capacity as compared with the battery A1.
[0055]
Example 3
1000 g of LiCoO 2 powder A1 obtained in Reference Example 1 was weighed and put into a fluidized bed dryer to be fluidized. From the spray nozzle installed in the fluidized bed, 500 ml of a 0.1 mol / L ammonium sulfate aqueous solution is sprayed at a rate of 20 ml / min, and sprayed onto the powder A1 until the temperature in the fluidized bed reaches 80 ° C. An active material powder E was obtained by drying. Also, active material powders F and G were obtained in the same manner as described above except that a 0.2 mol / L nitric acid aqueous solution or a 0.2 mol / L hydrochloric acid aqueous solution was used.
[0056]
Using powders E to G, the pH of the aqueous mixture and the free ion concentration of the filtrate of the mixture were determined in the same manner as in Reference Example 1.
Table 6 shows the pH of the aqueous mixture and the ratio of strong acid ion (sulfate ion, nitrate ion or chloride ion) concentration Cs to carbonate ion concentration Cw: Cs / Cw.
[0057]
[Table 6]
Figure 0004197225
[0058]
As shown in Table 6, even when an aqueous solution of ammonium sulfate, nitric acid or hydrochloric acid was used, the pH of the aqueous mixture could be sufficiently lowered.
[0059]
Next, batteries E to G similar to the battery A of Reference Example 1 were prepared, respectively, except that the active material powders E to G were used instead of the LiCoO 2 powder A1. The active material specific capacities and capacity retention rates of the batteries E to G were determined in the same manner as in Reference Example 1. The results are shown in Table 7.
[0060]
[Table 7]
Figure 0004197225
[0061]
As shown in Table 7, even when the active material powders E to G were used, a battery having a high capacity retention rate could be obtained without reducing the active material specific capacity as compared with the battery A1.
[0062]
Example 4
The LiCoO 2 powder A1 obtained in Reference Example 1 was placed in a container having a 1000 g stirrer and stirred. At 25 ° C. in the container, while injecting a mixed gas of NO 2 and air containing NO 2 2.5% at a flow rate of 500 ml / min, further stirred for 60 min powder to obtain an active material powder H. In addition, the active material powder I and the same as above except that a mixed gas of hydrogen chloride containing 2.5% hydrogen chloride and air or a mixed gas of chlorine containing 2.5% chlorine and air was used. J was obtained.
[0063]
Using powders H to J, the pH of the aqueous mixture and the free ion concentration of the filtrate of the mixture were determined in the same manner as in Reference Example 1.
Table 8 shows the pH of the aqueous mixture and the ratio of strong acid ion (nitrate ion or chloride ion) concentration Cs to carbonate ion concentration Cw: Cs / Cw.
[0064]
[Table 8]
Figure 0004197225
[0065]
As shown in Table 8, even when nitrogen oxide gas, hydrogen chloride gas or chlorine gas was used, the pH of the aqueous mixture could be sufficiently lowered.
[0066]
Next, batteries H to J similar to the battery A of Reference Example 1 were produced, respectively, except that the active material powders H to J were used instead of the LiCoO 2 powder A1. The active material specific capacities and capacity retention rates of the batteries H to J were determined in the same manner as in Reference Example 1. The results are shown in Table 9.
[0067]
[Table 9]
Figure 0004197225
[0068]
As shown in Table 9, even when the active material powders H to J were used, a battery with a high capacity retention rate could be obtained without reducing the active material specific capacity as compared with the battery A1.
[0069]
<< Reference Example 3 >>
A positive electrode plate was produced by the following procedure.
100 parts by weight of powder A1, 3 parts by weight of acetylene black as a conductive material, and 4 parts by weight of polyvinylidene fluoride as a binder are mixed, and 100 parts by weight of N-methyl-2-pyrrolidone is added and mixed by stirring. A paste-like positive electrode mixture was obtained. The positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 20 μm, dried, rolled, and cut into a predetermined size to obtain a positive electrode plate.
As described above, a battery K1 similar to the battery A1 of Reference Example 1 was produced, except that a positive electrode plate produced from a positive electrode mixture using N-methyl-2-pyrrolidone as the dispersion medium was used.
[0070]
Next, batteries K2 to K5 were respectively produced in the same manner as the battery K1, except that the active material powders A2 to A5 of Reference Example 1 were used instead of the LiCoO 2 powder A1. The active material specific capacities and capacity retention rates of the batteries K1 to K5 were determined in the same manner as in Reference Example 1.
FIG. 8 shows the relationship among the pH of the mixture of powder and water, the active material specific capacity, and the capacity retention rate.
[0071]
From FIG. 8, it was confirmed that even when an organic solvent was used for the production of the positive electrode plate, a battery having excellent characteristics could be obtained according to the present invention.
In the conventional method of absorbing carbon dioxide gas or adding an acid to the paste, it is necessary to use water as a dispersion medium for the positive electrode mixture, but in the present invention, an organic solvent is used as the dispersion medium for the positive electrode mixture. be able to. Therefore, it can be said that the present invention, which is characterized in that the active material itself is treated with an acid, is particularly effective when an organic solvent is used as a dispersion medium for the positive electrode mixture.
[0072]
In Reference Example 1, lithium carbonate was used as the raw material for the LiCoO 2 powder A1, but it is considered that the same effect can be obtained by using lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide, or the like.
[0073]
【The invention's effect】
According to the present invention, it is possible to provide a positive electrode active material that has a high specific capacity and does not exhibit strong basicity. By using the positive electrode active material of the present invention, a non-aqueous electrolyte secondary battery having a high capacity and excellent high-temperature storage characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the pH of an aqueous mixture containing powders A1 to A5 and the free ion concentration ratio: Cs / Cw.
2 is a perspective view in which a part of the prismatic nonaqueous electrolyte secondary battery manufactured in Reference Example 1 is cut away. FIG.
FIG. 3 is a diagram showing the relationship between the pH of an aqueous mixture containing powders A1 to A5, and the active material specific capacities and capacity retention rates of batteries A1 to A5.
FIG. 4 is a diagram showing the relationship between the pH of an aqueous mixture containing powders A6 to A9 and the free ion concentration ratio: Cs / Cw.
FIG. 5 is a graph showing the relationship between the pH of an aqueous mixture containing powders A6 to A9 and the active material specific capacities and capacity retention rates of batteries A6 to A9.
FIG. 6 is a diagram showing the relationship between the pH of an aqueous mixture containing powders A10 to A13 and the free ion concentration ratio: Cs / Cw.
FIG. 7 is a graph showing the relationship between the pH of an aqueous mixture containing powders A10 to A13 and the active material specific capacities and capacity retention rates of batteries A10 to A13.
FIG. 8 is a diagram showing the relationship between the pH of an aqueous mixture containing powders K1 to K5, and the active material specific capacity and capacity retention rate of batteries K1 to K5.

Claims (2)

塩基性のリチウム含有複合酸化物の粉末に、酸性水溶液を吹きつけ、乾燥する工程を有し、前記リチウム含有複合酸化物が、LiMa2(Maは、Co、Ni、Mn、Mg、Fe、Al、Cu、Zn、Ca、Ba、SrおよびCrよりなる群から選ばれた少なくとも1種)で表される化合物であり、前記酸性水溶液が、硫酸、硝酸および塩酸ならびにこれらのアンモニウム塩よりなる群から選ばれた少なくとも1種を含むことを特徴とする非水電解質二次電池用正極活物質の製造方法。A basic lithium-containing composite oxide powder is sprayed with an acidic aqueous solution and dried, and the lithium-containing composite oxide is LiM a O 2 (M a is Co, Ni, Mn, Mg, At least one selected from the group consisting of Fe, Al, Cu, Zn, Ca, Ba, Sr and Cr), wherein the acidic aqueous solution is composed of sulfuric acid, nitric acid and hydrochloric acid, and ammonium salts thereof. The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries characterized by including at least 1 sort (s) chosen from the group which consists of. 塩基性のリチウム含有複合酸化物の粉末に、酸性ガスを吹きつける工程を有し、前記酸性ガスが、酸化硫黄、酸化窒素、塩化水素および塩素よりなる群から選ばれた少なくとも1種であることを特徴とする非水電解質二次電池用正極活物質の製造方法。  A step of blowing an acidic gas onto the powder of the basic lithium-containing composite oxide, wherein the acidic gas is at least one selected from the group consisting of sulfur oxide, nitrogen oxide, hydrogen chloride and chlorine A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2001315912A 2001-10-12 2001-10-12 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Fee Related JP4197225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315912A JP4197225B2 (en) 2001-10-12 2001-10-12 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315912A JP4197225B2 (en) 2001-10-12 2001-10-12 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003123755A JP2003123755A (en) 2003-04-25
JP4197225B2 true JP4197225B2 (en) 2008-12-17

Family

ID=19134007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315912A Expired - Fee Related JP4197225B2 (en) 2001-10-12 2001-10-12 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4197225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378986A (en) * 2013-07-05 2016-03-02 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507537B2 (en) * 2003-09-04 2010-07-21 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
KR100508941B1 (en) 2003-11-29 2005-08-17 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery and positive active material for rechargeable lithium battery fabricated using same
CN100429812C (en) * 2003-12-05 2008-10-29 日产自动车株式会社 Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP5135664B2 (en) * 2003-12-05 2013-02-06 日産自動車株式会社 Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP5470669B2 (en) * 2005-05-13 2014-04-16 日産自動車株式会社 Cathode material for non-aqueous electrolysis lithium ion battery, battery using the same, and method for producing cathode material for non-aqueous electrolysis lithium ion battery
JP5132307B2 (en) * 2005-05-17 2013-01-30 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
KR101201170B1 (en) 2006-03-21 2012-11-13 삼성에스디아이 주식회사 Positive electrode for lithium rechargeable battery and Lithium rechargeable battery comprising the same and Method of making the lithium rechargeable battery
JP4306697B2 (en) 2006-06-16 2009-08-05 ソニー株式会社 Secondary battery
JP5515211B2 (en) * 2007-12-14 2014-06-11 ソニー株式会社 Method for producing positive electrode active material
JP2009193745A (en) * 2008-02-13 2009-08-27 Sony Corp Method for manufacturing positive electrode active material
CN102239118B (en) * 2008-12-04 2016-11-09 户田工业株式会社 Lithium complex chemical compound particle powder and manufacture method, rechargeable nonaqueous electrolytic battery
CN102047473A (en) * 2009-03-31 2011-05-04 松下电器产业株式会社 Method for producing positive electrode for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using the positive electrode
CN101872860B (en) 2009-04-22 2013-11-20 索尼公司 Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
WO2010125729A1 (en) * 2009-04-27 2010-11-04 パナソニック株式会社 Positive electrode plate for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US8333950B2 (en) * 2009-08-27 2012-12-18 Honeywell International Inc. Process for the preparation of lithium metal oxides involving fluidized bed techniques
US8986571B2 (en) * 2010-06-09 2015-03-24 Toda Kogyo Corporation Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2012003891A (en) * 2010-06-15 2012-01-05 Nissan Motor Co Ltd Method for producing active material
JP2014197451A (en) * 2011-07-29 2014-10-16 Agcセイミケミカル株式会社 Method of producing lithium cobalt-containing composite oxide for lithium ion secondary battery
JP5686378B2 (en) * 2011-12-07 2015-03-18 株式会社豊田自動織機 Hydrogen-containing lithium silicate compound and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and vehicle
JP2013211203A (en) * 2012-03-30 2013-10-10 Furukawa Battery Co Ltd:The Method of manufacturing negative electrode for nonaqueous electrolyte battery, and negative electrode for nonaqueous electrolyte battery, and manufacturing slurry
KR101966763B1 (en) * 2012-04-04 2019-04-08 피너지 엘티디. A shutdown system for metal-air batteries and methods of use thereof
WO2015072359A1 (en) * 2013-11-15 2015-05-21 住友金属鉱山株式会社 Method for producing surface-treated oxide particles, and oxide particles produced by said production method
JP6176489B2 (en) * 2014-02-28 2017-08-09 株式会社豊田自動織機 Method for producing electrode mixture and method for producing electrode
CA2963616A1 (en) 2014-10-07 2016-04-14 Phinergy Ltd. A shutdown system for metal-air batteries and methods of use thereof
US10230093B2 (en) * 2015-09-25 2019-03-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode
EP3645466A1 (en) * 2017-06-28 2020-05-06 Basf Se Process for making a cathode active material for a lithium ion battery
JP7003006B2 (en) * 2018-06-26 2022-01-20 信越化学工業株式会社 Manufacturing method of negative electrode active material for non-aqueous electrolyte secondary battery
CN108832117A (en) * 2018-06-27 2018-11-16 江西星盈科技有限公司 A kind of nickelic positive electrode method of modifying of stratiform
CN111422920A (en) 2019-12-26 2020-07-17 蜂巢能源科技有限公司 Cobalt-free cathode material of lithium ion battery, preparation method of cobalt-free cathode material and lithium ion battery
CN112090382A (en) * 2020-08-28 2020-12-18 江苏富矿智能科技有限公司 Novel size mixing device for lithium ion battery production and size mixing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824043B2 (en) * 1988-11-17 1996-03-06 松下電器産業株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material
JP3054511B2 (en) * 1993-02-12 2000-06-19 三洋電機株式会社 Non-aqueous secondary battery
JP3811974B2 (en) * 1994-11-22 2006-08-23 住友化学株式会社 Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JPH1079244A (en) * 1996-09-04 1998-03-24 Toray Ind Inc Electrode and nonaqueous electrolyte second battery using it
JPH1186846A (en) * 1997-07-07 1999-03-30 Asahi Chem Ind Co Ltd Battery positive electrode
JPH11204108A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery
JP3654005B2 (en) * 1998-09-18 2005-06-02 新神戸電機株式会社 Method for producing positive electrode plate for lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378986A (en) * 2013-07-05 2016-03-02 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
CN105378986B (en) * 2013-07-05 2018-07-31 住友化学株式会社 The manufacturing method of positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2003123755A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
JP4197225B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
EP2104163B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP4766040B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
JP5232631B2 (en) Non-aqueous electrolyte battery
JP2008277307A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same
US7026068B2 (en) Positive electrode active material for lithium ion secondary battery
US20140110641A1 (en) Method for producing active material particles for lithium ion secondary battery, electrode and lithium ion secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP7118129B2 (en) METHOD FOR PRODUCING POSITIVE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY
JP2000012031A (en) Positive active material for nonaqueous electrolyte secondary battery, its manufacture, and the nonaqueous electrolyte secondary battery using the positive active material
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP4686871B2 (en) Lithium secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
KR20180043276A (en) POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
JP4019729B2 (en) Lithium manganese composite oxide powder
JP3835419B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3132504B2 (en) Non-aqueous electrolyte secondary battery
JP2004006229A (en) Positive electrode active material for lithium-ion secondary battery
JP2019040844A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4168609B2 (en) Positive electrode active material for lithium ion secondary battery
JP4513210B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4197225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees